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Abstract
Quality-of-service (QoS) routing satisfiesapplication performance
requirements and optimizes network resource usage but effective
path-selection schemes require the distribution of link-state in-
formation, which can impose a significant burden on the band-
width and processing resources in the network. We investigate the
fundamental trade-off between network overheads and the qual-
ity of routing decisions in the context of the source-directed link-
state routing protocols proposed for future IP and ATM networks.
Through extensive simulation experiments with several representa-
tive network topologies and traffic patterns, we uncover the effects
of stale link-state information, random fluctuations in traffic load,
and variations of the link-cost metric on the routing and signalling
overheads. The paper concludes by summarizing our key results as
a list of guidelines for designing efficient quality-of-service routing
policies in large backbone networks.

1 Introduction
The migration to integrated networks for voice, data, and mul-

timedia applications introduces new challenges in supporting pre-
dictable communication performance. To accommodate diverse
traffic characteristics and quality-of-service (QoS) requirements,
these emerging networks can employ a variety of mechanisms to
control access to shared link, buffer, and processing resources.
These mechanisms include traffic shaping and flow control to reg-
ulate an individual traffic stream, as well as link scheduling and
buffer management to coordinate resource sharing at the packet
or cell level. Complementing these lower-level mechanisms, rout-
ing and signalling protocols control networkdynamics by direct-
ing traffic at the flow or connection level. QoS routing selects a
path for each flow or connection to satisfy diverse performance re-
quirements and optimize resource usage [6, 16, 28]. However, to
support high throughput and low delay in establishing connections
in large networks, the path-selection scheme should not consume
excessive bandwidth, memory, and processing resources.

In this paper, we investigate the trade-off between these re-
source requirements and the quality of the routing decisions. We
focus on link-state routing algorithms where the source switch or
router selects a path based on the connection traffic parameters and
the available resources in the network. For example, the ATM Fo-

rum’s PNNI standard [22] defines a routing protocol for distribut-
ing topology and load information throughout the network, and
a signalling protocol for processing and forwarding connection-
establishment requests from the source. Similarly, proposed QoS
extensions to the OSPF protocol include an “explicit routing”
mechanism for source-directed IP routing [11, 30]. During peri-
ods of transient overload, link failure, or general congestion, these
schemes are able to find QoS paths for more flows. However, QoS
routing protocols can impose a significant bandwidth and process-
ing load on the network, since each switch must maintain its own
view of the available link resources, distribute link-state informa-
tion to other switches, and compute and establish routes for new
connections. To improve scalability in large networks, switches
and links can be assigned to smaller peer groups or areas that ex-
change detailed link-state information.

Despite the apparent complexity of QoS routing, these path-
selection and admission control frameworks offer network design-
ers a considerable amount of latitude in limiting overheads. In
particular, the network can control the complexity of the routing
algorithm itself, as well as the frequency of route computation and
link-state update messages. Link-state information can be propa-
gated in a periodic fashion or in response to a significant change
in the link-state metric (e.g., utilization). For example, a link may
advertise its available bandwidth metric whenever it changes by
more than10% since the previous update message; triggering an
update based on a change in available capacity ensures that the
network has progressively more accurate information as the link
becomes congested. In addition, a minimum time between up-
date messages would typically be imposed to avoid overloading
the network bandwidth and processing resources during rapid fluc-
tuations in link bandwidth. However, large periods and coarse trig-
gers result in stale link-state information, which can cause a switch
to select a suboptimal route or a route that cannot accommodate
the new connection. Hence, tuning the frequency of link-state up-
date messages requires a careful understanding of the trade-off be-
tween network overheads and the accuracy of routing decisions.

Several recent studies consider the effects of stale or coarse-
grained information on the performance of QoS routing algo-
rithms. For example, analytical models have been developed to
evaluate routing in hierarchical networks where a switch has lim-
ited information about theaggregateresources available in other



peer groups or areas [12]. To characterize the effects of stale in-
formation, comparisons of different QoS-routing algorithms have
included simulation experiments that vary the link-state update pe-
riod [2, 17, 18], while other work considers a combination of peri-
odic and triggered updates [21]. However, these studies have not
included a detailed evaluation of how the update policies inter-
act with the traffic parameters and the richness of the underlying
network topology. Finally, new routing algorithms have been pro-
posed that reduce computation and memory overheads by basing
path selection on a small set of discrete bandwidth levels [11, 17];
these algorithms attempt to balance the trade-off between accuracy
and computational complexity.

The performance and implementation trade-offs for QoS rout-
ing depend on the interaction between a large and complex set of
parameters. For example, the underlying network topology not
only dictates the number of candidate paths between each pair of
nodes or switches, but also affects the overheads for computing
routes and distributing link-state information. The effects of inac-
curate link-state information depend on the amount of bandwidth
requested by new connections. Similarly, the frequency of link-
state updates should relate to connection interarrival and holding
times. Routing and signalling overheads, coupled with the pres-
ence of short-lived connectionless traffic, limit the proportion of
traffic that can be assigned to QoS routes; this, in turn, affects the
interarrival and holding-time distributions of the QoS-routed con-
nections. Although a lower link-state update rate reduces network
and processing requirements, stale load information incurs set-up
failures, which may require additional resources for computing
and signalling an alternate route for the connection. In addition,
controlling overhead in large networks may require strict limits on
the frequency of link-state updates and route computation, even
though inaccurate information may make it very difficult to suc-
cessfully reserve resources on long routes.

In this paper, we investigate these performance issues through
a systematic study of the scaling characteristics of QoS routing in
large backbone networks. In contrast to recent simulation studies
that compare different routing algorithms under specific network
configurations [2, 9, 10, 14, 17–19,21,23, 24], we focus on under-
standing how routing performance and implementation overheads
grow as a function of the network topology, traffic patterns, and
link-state update policies. In Section 2, we construct a detailed
model of QoS routing that parameterizes the path-selection algo-
rithm, link-cost function, and link-state update policy, based on the
PNNI standard and proposed QoS extensions to OSPF, as well as
the results of previous performance studies. It should be empha-
sized that our study focuses on the interaction between link-state
staleness and the cost-performance trade-offs of QoS-routing pro-
tocols. We consider a mixture of representative topologies, and op-
erating regimes where connection durations and the time between
link-state updates are large relative to propagation and signalling
delays. Our model permits a realistic evaluation of large backbone
networks and the routing of the longer-lived traffic flows that are
likely to employ QoS routing.

Since the complexity of the routing model precludes a closed-
form analytic expression, we present a simulation-based study that
uncovers the effects of stale link-state information on network dy-
namics. To efficiently evaluate a diverse collection of network
configurations, we have developed a connection-level event-driven

simulator that limits the computational overheads of evaluating the
routing algorithm in large networks with stale information. Based
on this simulation model, Section 3 examines the effects of peri-
odic and triggered link-state updates on the performance and over-
heads of QoS routing. The experiments evaluate several topolo-
gies to explore the impact of inaccurate information on how well
a richly-connected network can exploit the presence of multiple
short routes between each pair of switches. Section 4 studies the
impact of stale load information on the choice of link metrics for
selecting minimum-cost routes for new connections. The experi-
ments suggest guidelines for tuning link-state update policies and
link-cost metrics for efficient QoS routing in high-speed networks.
Section 5 concludes the paper with a list of guidelines for design-
ing efficient quality-of-service routing policies in large backbone
networks.

2 Routing and Signalling Model
Our study evaluates a parameterized model of QoS routing,

where routes depend on connection throughput requirements and
the available bandwidth in the network. When a new connection
arrives, the source switch computes a minimum-hop path that can
support the throughput requirement, using the sum of link costs
to choose among feasible paths of equal length. To provide every
switch with a recent view of network load, link information is dis-
tributed in a periodic fashion or in response to a significant change
in the available capacity.

2.1 Route Computation
Since predictable communication performance relies on having

some sort of throughput guarantee, our routing model views band-
width as the primary traffic metric for defining both application
QoS and network resources. Although application requirements
and network load may be characterized by several other dynamic
parameters, including delay and loss, initial deployments of QoS
routing are likely to focus simply on bandwidth to reduce algo-
rithmic complexity. Hence, our model expresses a connection’s
performance requirements with a single parameterb that repre-
sents either a peak, average, or effective bandwidth, depending on
the admission control policy. In practice, the end-host application
may explicitly signal its required bandwidth, or network routers
can detect a flow of related packets and originate a signalling re-
quest. Each linki has reserved (or utilized) bandwidthui that
cannot be allocated to new connections. Consequently, a switch’s
link-state database stores (possibly stale) informationu0i about the
utilization of each linki in order to compute suitable routes for
new connections. Each link also has a costci (c0i) that is a func-
tion of the utilizationui (u0i), as discussed in Section 2.2.

Although networks can employ a wide variety of QoS rout-
ing strategies, previous comparative studies have demonstrated
that algorithms with a strong preference for minimum-hop routes
almost always outperform algorithms that do not consider path
length [1, 9, 10, 18, 19, 23]. For example, selecting the widest
shortest path (i.e., the minimum-hop route with the maximum
value ofminif1 � uig) increases the likelihood of successfully
routing the new connection. Similarly, the network could select the
minimum-hop path with the smallest total load (minimum value ofP

i
ui) to balance network utilization. In contrast,non-minimal



routing algorithms, such as shortest widest path, often select cir-
cuitous routes that consume additional network resources at the
expense of future connections, which may be unable to locate a
feasible route. Biasing toward shortest-path routes is particularly
attractive in a large, distributed network, since path length is a rela-
tively stable metric, compared with dynamic measurements of link
delay or loss rate [10].

In our model, the source selects a route based on the bandwidth
requirementb and the destination node in three steps: (i) (Option-
ally) prune infeasible links (i.e., linksi with u0i + b > 1), (ii)
compute shortest paths to the destination based on hop-count, and
(iii) extract a route with the minimum total cost

P
i
c0i.

This process effectively computes a “cheapest-shortest-
feasible,” or a “cheapest-shortest” path, depending on whether or
not the pruning step is enabled. By pruning any infeasible links
(subject to stale information), the source performs a preliminary
form of admission control to avoid selecting a route that can-
not support the new connection. In anN -node network withL
links, pruning hasO(L) computational complexity and produces a
sparser graph consisting entirely of feasible links. Then, the switch
can employ the Dijkstra shortest-path tree algorithm [5] to com-
pute a the shortest path with the smallest total cost [25]. The Di-
jkstra shortest-path calculation hasO(L logN) complexity when
implemented with a binary heap. Although advanced data struc-
tures can reduce the average and worst-case complexity [3], the
shortest-path computation still incurs significant overhead in large
networks. Extracting the route introduces complexity in propor-
tion to the path length.

2.2 Link-Cost Metrics
The routing algorithm uses link cost metricsfcig to distinguish

between paths of the same length. Previous studies suggest several
possible forms for the path metric, including sum of link utiliza-
tions, maximum link utilization on the path, or sum of the link
delays. For a general model of link cost, we employ a function
that grows exponentially in the link utilization (ci / u�i ), where
the exponent� controls how expensive heavily-loaded links look
relative to lightly-loaded links. An exponent of� = 0 reduces
to load-independent routing, whereas large values of� favor the
widest shortest paths (selecting the shortest-path route that maxi-
mizes the available bandwidth on the bottleneck link). We define a
parameterumin to be the minimum-cost utilization level; any link
utilization belowumin is considered to have the minimum cost.
Settingumin = 0:5, for example, results in a routing policy in
which all links with less than50% utilization look the same with
regard to cost.

We represent link cost withC discrete values. Small val-
ues ofC limit the computational and storage requirements of the
shortest-path computation. However, coarse-grain link-cost in-
formation can degrade performance by limiting the routing algo-
rithm’s ability to distinguish between links with different available
resources, though the presence of multiple minimum-cost routes
provides efficient opportunities to balance load through alternate
routing.

2.3 Connection Signalling
When a new connection request arrives, the source switch ap-

plies the three-step routing algorithm to select a suitable path.

However, the optional step of pruning the (seemingly) infeasible
links may actually disconnect the source and the destination, par-
ticularly when the network is heavily-loaded. When a feasible
route cannot be computed, the source rejects the connection with-
out trying to signal it through the network. Stale link-state infor-
mation may contribute to theserouting failures, since the source
may incorrectly prune a link that could actually support the new
connection (i.e., the link hasui+b � 1, although the source deter-
mines thatu0i+b > 1). Routing failures do not occur when pruning
is disabled. In the absence of a routing failure, the source initiates
hop-by-hop signalling to reserve bandwidthb on each link in the
route. As the signalling message traverses the selected path,each
switch performs an admission test to check that the link can actu-
ally support the connection. If the link has sufficient resources, the
switch reserves bandwidth on behalf of the new connection (i.e.,
ui = ui+b) before forwarding the set-up message to the next link
in the route.

Once the bandwidth resources are reserved on each link in the
route, the network admits the connection, committing bandwidth
b on each link in the path for the duration of the call. However, a
set-up failureoccurs if a link does not have enough resources avail-
able when the set-up message arrives. To deploy QoS routing with
reasonable network overheads, the delays for propagating and pro-
cessing these set-up messages must be much smaller than the link-
state update periods and connection holding times. In assuming
that propagation and processing delays are negligible, our model
focuses on the primary effects of stale link-state information on
establishing connections for the long-lived traffic flows. Finally,
we model at most one attempt to signal a connection. Although
we do not evaluate alternate routing (or crankback) after a set-up
failure, the connection blocking probability provides an estimate
of the frequency of crankback operations. In practice, a “blocked”
request may be repeated at a lower QoS level, or the network may
carry the offered traffic on a preprovisioned static route.

2.4 Link-State Update Policies
Every switch has accurate information about the utilization and

cost of its own outgoing links, and potentially stale information
about the other links in the network. To extend beyond the periodic
link-state update policies evaluated in previous performance stud-
ies [2, 17–19], we consider a three-parameter model that applies
to the routing protocols in PNNI and the proposed QoS extensions
to OSPF. In particular, the model includes a trigger that responds
to significant changes in available bandwidth, a hold-down timer
that enforces a minimum spacing between updates, and a refresh
period that provides an upper bound on the time between updates.
The link state is the available link bandwidth, beyond the capacity
already reserved for other QoS-routed traffic (i.e.,1� ui). This is
in contrast to traditional best-effort routing protocols (e.g., OSPF)
in which updates essentially convey only topology information.
We do not assume, or model, any particular technique for distribut-
ing this information in the network; two possibilities are flooding
(as in PNNI and OSPF) or broadcasting via a spanning tree.

The periodic update messages provide a refresh of the link uti-
lization information, without regard to changes in the available
capacity. Still, the predictable nature of periodicupdates simpli-
fies the provisioning of processor and bandwidth resources for the
exchange of link-state information. To prevent synchronization of



Topology N L Deg. Diam. h

Random graph 100 492 4.92 6 3.03
MCI backbone 19 64 3.37 4 2.34
Regular topology 125 750 6 6 3.63

Table 1. The random graph is generated using Waxman’s
model [27]; nodes in the regular topology have identical
connectivity.

update messages for different links, each link introduces a small
random component to the generation of successive updates [8]. In
addition to the refresh period, the model generatesupdates upon
detection of a significant change�i in the available capacity since

the last update message, where�i =
ju0

i
�uij

1�u0

i

. These changes

in link state stem from the reservation (release) of link bandwidth
during connection establishment (termination). By updating link
load information in response to a change in available bandwidth,
triggered updates respond to smaller changes in utilization as the
link nears capacity, when the link may become incapable of sup-
porting new connections. Similarly, connections terminating on a
heavily-loaded link introduce a large relative change in available
bandwidth, which generates an update message even for very large
triggers. In contrast to periodic updates, though, triggered updates
complicate network resource provisioning since rapid fluctuations
in available capacity can generate a large number of link-state up-
dates, unless a reasonable hold-down timer is used.

2.5 Network and Traffic Model
A key challenge in studying protocol behavior in wide-area net-

works lies in how to represent the underlying topology and traf-
fic patterns. The constantly changing and decentralized nature of
current networks (in particular, the Internet) results in a poor un-
derstanding of these characteristics and makes it difficult to de-
fine any “typical” configuration [20]. Adding to the challenge are
observations that conclusions about algorithm or protocol perfor-
mance may in fact vary dramatically with the underlying network
model. For example, random graphs can result in unrealistically
long paths between certain pairs of nodes, “well-known” topolo-
gies may show effects that are unique to particular configurations,
and regular graphs may hide important effects of heterogeneity
and non-uniformity [29]. Consequently, our simulation experi-
ments consider a range of network topologies (see Table 1), and
we comment on similarities and differences between the trends in
each configuration.

As our study focuses on backbone networks, we consider
topologies with relatively high connectivity, an increasingly com-
mon feature of emerging core backbone networks [29], that sup-
port a dense traffic matrix (with significant traffic between most
pairs of core nodes) and are resilient to link failures. Eachnode
can be viewed as a single core switch in a backbone network that
sends and receives traffic for one or more sources and carries tran-
sit traffic to and from other switches or routers. In addition to
studying a representative “well-known” core topology (an early
representation of the MCI backbone that has appeared in other
routing studies [17, 18]), we also evaluate both random graphs and
regular topologies in order to vary important parameters like size,
diameter, and node degree in a controlled fashion. Most of our
graphs show results for the MCI and random topologies, though
we use a set of regular graphs with different degrees of connectiv-

ity to evaluate the effects of having multiple shortest-path routes
between pairs of nodes [25]. We further assume that the topology
remains fixed throughout each simulation experiment; that is, we
do not model the effects of link failures.

Each node generates connection requests according to a Pois-
son process with rate�, with uniform random selection of destina-
tion nodes. This results in a uniform traffic pattern in the regular
graphs, and a non-uniform pattern on the MCI and random topolo-
gies, allowing us to compare QoS routing to static shortest-path
routing under balanced and unbalanced loads. We model con-
nection holding times using a Pareto distribution (shape param-
etera, scale parameter�, and CDFFX(x) = 1 � (�=x)a) with
a = 2:5 to capture the heavy-tailed nature of connection dura-
tions [20] while still producing a distribution with finite variance
making it possible to gain sufficient confidence on the simulation
results. For comparison we also conducted experiments with ex-
ponentially distributed holding times. We denote the mean holding
time as̀ . Connection bandwidths are uniformly-distributed within
an interval with a spread about the meanb. For instance, call band-
widths may have a mean of5% of link capacity with a spread of
200%, resulting inb � U(0:0; 0:1]. Most of the simulation ex-
periments focus on mean bandwidths from2–5% of link capacity.
Smaller bandwidth values, albeit perhaps more realistic, would re-
sult in extremely low blocking probabilities, making it almost im-
possible to complete the wide range of simulation experiments in
a reasonable time; instead, the experiments consider how the ef-
fects of link-state staleness scale with the�b parameter to project
the performance for low-bandwidth connections. With a connec-
tion arrival rate� at each ofN switches, the offered network load
is � = �N`�b�h=L; where�h is the mean distance (in number of
hops) between nodes, averaged across all source-destination pairs.

3 Link-State Update Policies
Our initial simulation experiments focus on the effects of inac-

curate link-state information on the performance and overheads of
QoS routing by evaluating periodic and triggered updates in isola-
tion.

3.1 Periodic Link-State Updates
The connection blocking probability increases as a function of

the link-state update period, as shown in Figure 1(a). The experi-
ment evaluates three bandwidth ranges on the random graphs with
an offered load of� = 0:75; the connection arrival rate remains
fixed at� = 1, while the Pareto scale parameter,�, is used to ad-
just the mean holding time to keep load constant across the three
configurations. For comparison, the graph shows results with and
without pruning of (seemingly) infeasible links. We vary the up-
date periods from almost continuous updates to very long periods
of 200 times (graphs show up to 80 times) the average connec-
tion interarrival time (further details on simulation setup are avail-
able in [25]). Due to their higher resource requirements, the high-
bandwidth connections experience a larger blocking probability
than the low-bandwidth connections across the range of link-state
update rates. The blocking probability for high-bandwidth con-
nections, while higher, does not appear to grow more steeply as
a function of the update period; instead, the three sets of curves
remain roughly equidistant across the range of update periods.



0 10 20 30 40 50 60 70 80
Link−state update period (unit time)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
on

ne
ct

io
n 

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

b ~ (0, 4%]
b ~ (0, 6%]
b ~ (0, 8%]

no pruning

0 2 4 6 8 10
Link−state update period (unit time)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

B
lo

ck
in

g 
pr

ob
ab

ili
ty

b ~ (0, 4%]
b ~ (0, 6%]
b ~ (0, 8%]
b ~ (0, 10%]

Set−up failures

Routing failures

(a) Connection blocking vs. update period (b) Routing and set-up failures (with pruning)
Figure 1. Random topology with� = 1, � = 1, and� = :75.

Pruning vs. not pruning: In experiments that vary the offered
load, we see that pruning reduces the blocking probabilityunder
small to moderate values of� by allowing connections to consider
nonminimal routes. However, pruning degrades performance un-
der heavy load since these nonminimal routes consume extra link
capacity, at the expense of other connections. Stale link-state in-
formation reduces the effectiveness of pruning, as shown in Fig-
ure 1(a). With out-of-date information, the source may incorrectly
prune a feasible link, causing a connection to follow a nonmini-
mal route when a minimal route is available. Hence, the staleness
of the link-state information narrows the range of offered loads
where pruning is effective, though other techniques can improve
the performance. Experiments with different� values and topolo-
gies show the same basic trends as Figure 1(a), though the results
with pruning disabled show a weaker dependence on the link-state
update period in the MCI topology. Since the MCI topology has
relatively low connectivity, most source-destination pairs do not
have multiple minimum-length routes; hence, when pruning is dis-
abled, the the route computation does not react much to changes
in link load. In general, the network can control the negative influ-
ence of nonminimal routes by limiting the number of extrahops
a connection can travel, or reserving a portion of link resources
to connections on minimal routes. To address staleness more di-
rectly, the pruning policy could more conservative or more liberal
in removing links to balance the trade-off between minimal and
nonminimal routes [13].

Route flapping: Although QoS routing performs well for small
link-state update periods (significantly outperforming static rout-
ing [25]), the blocking probability rises relatively quickly before
gradually plateauing for large update periods. In Figure 1(a), even
an update period of five time units (five times the average connec-
tion interarrival time) shows significant performance degradation.
By this point, set-up failures account for all of the call blocking,
except when the update period is very small (e.g., for update peri-
ods close to the interarrival time), as shown in Figure 1(b) which
focuses on a small region of the experiments with pruning in Fig-
ure 1(a); when pruning is disabled, routing failures never occur,
and set-up failures account for all blocked connections. In gen-
eral, periodic updates do not respond quickly enough to variations

in link state, sometimes allowing substantial changes to go un-
noticed. This suggests that inaccuracy in the link-state database
causes the source switch to mistake infeasible links as feasible;
hence, the source selects an infeasible path, even when there are
other feasible routes to the destination. We see that routing failures
occur only with very accurate information since the source learns
about link infeasibility very quickly. When link-state can fluctu-
ate significantly between updates the source is virtually certain to
find at least one seemingly feasible path, thus avoiding a routing
failure.

Under large update periods, relative to the arrival rates and
holding times, the links can experience dramatic fluctuations in
link state between successive update messages. Such link-state
flapping has been observed in packet routing networks [15], where
path selection can vary on a packet-by-packet basis; the same phe-
nomenon occurs here since the link-state update period is large
relative to the connection arrival rates and holding times. When
an update message indicates that a link has low utilization, the rest
of the network reacts by routing more traffic to the link. Blocking
remains low during this interval, since most connections can be
admitted. However, once the link becomes saturated, connections
continue to arrive and are only admitted if other connections ter-
minate. Blocking stays relatively constant during this interval as
connections come and go, and the link remains near capacity. For
large update periods, this “plateau” interval dominates the initial
“climbing” interval. Hence, the QoS-routing curves in Figure 1(a)
flatten at a level that corresponds to the steady-state blocking prob-
ability during the “plateau” interval.

Eventually, QoS routing starts to perform worse than static
routing, because the fluctuations in link state begin to exceed the
random variations in traffic load. In searching for (seemingly) un-
derutilized links, QoS routing targets a relatively small set of links
until new update messages arrive to correct the link-state database.
In contrast, under static routing, the source blindly routes to a sin-
gle group of links, though this set is typically larger than the set
identified by QoS routing. Thus, when the update period grows
quite large, static routing is more successful at balancing load and
reducing connection blocking. The exact crossover point between
the two routing algorithms is very sensitive to the distribution of
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Figure 2. The experiments evaluate the MCI topology with� = 0:70, � = 1, and� = 1.

traffic in the network. For example, in the presence of “hot-spots”
of heavy load, QoS routing can select links that circumvent the
congestion (subject to the degree of staleness). Under such a non-
uniform load, QoS routing continues to outperform static routing
even for large update periods. For example, experiments with the
non-homogeneousMCI backbonetopology show that QoS routing
consistently achieves lower blocking probability than static rout-
ing over a wide range of update rates.

Path length and bandwidth requirements: Fluctuations in link
state have a more pernicious effect on connections between distant
source-destination pairs, since QoS routing has a larger chance of
mistakenly selecting a path with at least one heavily-loaded link.
This is especially true when links do not report their new state
at the same time, due to skews in the update periods at different
switches. In other experiments, we compared connection blocking
probability to several alternative measures of blocking [25]. The
hop-count blocking probability is defined as the ratio of thehop-
count of blocked connections to the hop-count of all connections;
bandwidth blocking is defined analogously relative to requested
bandwidth. Compared to conventional connection blocking, these
metrics grow more quickly in the presence of stale information.
In general, bandwidth blocking exceeds hop-count blocking, sug-
gesting that high-bandwidth connections are even harder to route
than high hop-count connections, though link-state staleness does
not seem to affect one metric more than the other.

Connection holding times:Despite the fact that staleness due to
periodic updates can substantially increase connection blocking,
the network can limit these effects by controlling which types of
traffic employ QoS routing. For example, other experiments show
that longer holding times allow the use of larger link-state update
periods to achieve the same blocking probability [25]. Also, in
comparing the trends to an identical experiment with exponen-
tially distributed holding times, we found that the Pareto distri-
bution produces a significantly more rapid rise in blocking proba-
bility over the same range ofupdate periods (nearly twice as fast
for some mean holding times). The heavier tail of the Pareto dis-
tribution results in many more shorter-lived connections than an
exponential distribution with the same mean, implying that these

shorter connections require very frequent updates to achieve ac-
ceptably low blocking probability. These results suggest that the
network could limit QoS routing to the longer-lived traffic that
would consume excessive link resources if not routed carefully,
while relegating short-lived traffic to preprovisioned static routes.
With some logical separation of resources for short-lived and long-
lived traffic, the network could tune the link-state update policies
to the arrival rates and holding times of the long-lived connec-
tions. With appropriate mechanisms to identify or detect long-
lived traffic, such as flow detection schemes for grouping related
packets [4], the network can assign this subset of the traffic to QoS
routes and achieve good routing performance with a lower link-
state update rate.

3.2 Triggered Link-State Updates
Although periodic updates introduce a predictable overhead

for exchanging link-state information, triggered updates can of-
fer more accurate link-state information for the same average rate
of update messages. The graph in Figure 2(a) plots the connection
blocking probability for a range of triggers and several bandwidth
ranges in the MCI topology. In contrast to the experiments with
periodic link-state updates, we find that the overall blocking proba-
bility remains relatively constantas a function of the trigger, across
a wide range of connection bandwidths, cost metrics, and load val-
ues, with and without pruning, and with and without hold-down
timers. Additional experiments with the well-connected regular
topology show the same trend [25].
Blocking insensitivity to update trigger: To understand this phe-
nomenon, consider the two possible effects of stale link-state in-
formation on the path-selection process when pruning is enabled.
Staleness can cause infeasible links to appear feasible, or cause
the switch to dismiss links as infeasible when they could in fact
support the connection. When infeasible links look feasible, the
source may mistakenly choose a route that cannot actually sup-
port the connection, resulting in a set-up failure. However, if the
source had accurate link-state information, any infeasible links
would have been pruned prior to computing a route. In this case,
blocking is likely to occur because the source cannot locate a fea-



sible route, resulting in a routing failure. Instead of increasing the
connection blocking probability, the stale information changes the
nature of blocking from a routing failure to a set-up failure. Fig-
ure 2(b) highlights this effect by plotting the blocking probability
for both routing and set-up failures. Across the range of trigger
values, the increase in set-up failures is offset by a decrease in
routing failures.

Now, consider the other scenario in which staleness causes
feasible links to look infeasible. In this case, stale information
would result in routing failures because links would be unneces-
sarily pruned from the link-state database. Although this case can
sometimes occur, it is very unlikely, since the triggering mech-
anism ensures that the source switch has relatively accurate in-
formation about heavily-loaded links. For example, a connection
terminating on a fully-utilized link would result in an extremely
large change in available bandwidth, which would activate most
any trigger. Moreover, a well-connected topology often has more
than one available route between any two nodes; the likelihood
of pruning links incorrectly onall of the feasible routes is quite
low. Hence, the blocking probability is dominated by the previous
scenario, namely mistaking infeasible links as feasible. Additional
experiments illustrate that the trade-off between routing and set-up
failures persists even in the presence of hold-down timers, though
the hold-down timer increases the overall blocking probability and
rate of signalling failures.

However, in a loosely-connected networks, an incorrect prun-
ing decision can cause the source to erroneously consider nonmin-
imal routes. For example, the random topology hashigherblock-
ing rates withsmaller trigger values when trying to route high-
bandwidth connections [25]. Unlike the other two topologies, the
random graph typically does not have multiple equal-length paths
between a pair of nodes. As a result, pruning an infeasible link
along the shortest path results in the selection of a nonminimal
route. In the end, this increases the overall blocking probability,
since these nonminimal routes consume extra resources. If, in-
stead, the source chose not to prune this infeasible link (say, due
to stale link-state information), then the connection would attempt
to signal along the shortest path. Although the connection would
block upon encountering the infeasible link, the network would
benefit by deciding not to accept the connection. Having slightly
out-of-date information has a throttling effect in this case; in fact,
the use of a small hold-down timer has a similar effect, resulting in
much flatter curves for blocking as a function of the trigger. Still,
it is generally unwise to apply pruning for high-bandwidth con-
nections when the topology does not have multiple routes of equal
(or similar) length. For most realistic scenarios, blocking remains
largely insensitive to the trigger value.
Link-state update rate: Despite the increase in set-up failures,
large trigger values substantially reduce the number of update mes-
sages for a given blocking probability, as shown in Figure 3. For
very fine-grained triggers, every connection establishment and ter-
mination generates an update message on each link in the route,
resulting in anupdate rate of2�N�h=L in a network withN
switches,L links, and an average path length of�h hops. For
the parameters in this experiment, the expression reduces to1:23
link-state update messages per unit time, which is close to they-
intercept in Figure 3; additional experiments show that the link-
state update rate is not sensitive to the connection holding times,
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Figure 3. Link-state update rate for random topology
with � = 0:75, � = 1, � = 1, and no pruning.

consistent with the2�N�h=L expression. In Figure 3, the larger
bandwidth values have a slightly lower link-state update rate for
small triggers; high-bandwidth connections experience a higher
blocking rate, which decreases the proportion of calls that enter
the network and generate link-state messages. When triggers are
coarse, however, more connections are signalled in the network
(due to fewer routing failures), and the high-bandwidth connec-
tions trigger more updates since they create greater fluctuation in
link state.

Unlike routing failures, set-up failures can generate link-state
update messages, since reserving and releasing link resources
changes link state, even if the connection ultimately blocks at a
downstream node. The increase in route flapping and set-up fail-
ures for larger triggers slows the reduction in the update rate in
Figure 3 as the trigger grows. The exact effect of set-up failures
depends on the number of successful hops before the connection
blocks. Also, if the network supports crankback operations, the
attempt to signal the connection on one or more alternate routes
could generate additional link-state update messages. Finally, as a
secondary effect, pruning infeasible links at the source switch can
inflate the update rate by selecting nonminimal routes that reserve
(and release) resources on extra links. Overall, though, modest
trigger values are effective at reducing the link-state update rate
by about a factor of three to four. Also, for a fixed update rate,
triggers can significantly reduce the proportion of set-up failures
when compared with periodic updates. For instance, setting the
trigger to around0:30 results in an average update interarrival of 3
(for b � (0; 0:06]) and17% of the blocking occurs in signalling.
When using periodic updates at the same frequency, set-up failures
account for74% of the blocked connections, and the blocking rate
is much higher.

4 Link-Cost Parameters

In this section we consider the impact of the link-cost param-
eters (C and�) of the routing algorithm on blocking probability
and route computation complexity.
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4.1 Number of Cost Levels (C)
The experiments in Section 3 evaluate a link-cost function with

a large number of cost levels, limited only by machine precision.
With such fine-grain cost information, the path-selection algorithm
can effectively differentiate between links to locate the “cheap-
est” shortest-path route. Figure 4(a) evaluates the routing algo-
rithm over a range of cost granularity and link-state update peri-
ods. To isolate the effects of the cost function, the routing algo-
rithm does not attempt to prune (seemingly) infeasible links be-
fore invoking the shortest-path computation. TheC cost levels
are distributed throughout the range of link utilizations by setting
umin = 0. Compared to the high blocking probability for static
routing (C = 1), larger values ofC tend to decrease the blocking
rate, particularly when the network has accurate link-state infor-
mation, as shown in the “period=1” curve in Figure 4(a).

Fine-grain cost metrics are less useful, however, when link-
state information is stale. For example, having more than four cost
levels does not improve performance once the link-state update
period reaches20 times the average interarrival time. Although
fine-grain cost metrics help the routing algorithm distinguish be-
tween links, larger values ofC also limit the number of links that
the routing algorithm considers, which can cause route flapping. In
contrast, coarse-grain cost information generates more “ties” be-
tween the multiple shortest-path routes toeach destination, which
effectively dampens link-state fluctuations by balancing the load
across several alternate routes. In fact, under stale information,
small values ofC can sometimes outperform large values ofC,
but this crossover only occurs once the update period has grown
so large that QoS routing has a higher blocking probability than
static routing. The degradation in performance under high update
periods is less significant in the MCI and random topologies, due
to the lower likelihood of having multiple minimum-hop paths be-
tween pairs of nodes.

The appropriate number of cost levels depends on the update
period and the connection-bandwidth requirements, as well as the
overheads for route computation. Larger values ofC increase the
complexity of the Dijkstra shortest-path computation without of-

fering significant reductions in the connection blocking probabil-
ity. Fine-grain cost information is more useful in conjunction with
triggered link-state updates, as shown in Figure 4(b). We still find,
however, that experiments with a finite number ofC values are
consistent with the results in Section 3.2; that is, the connection
blocking probability remains constant over a wide range of trig-
gers. Since the trigger value does not affect the overall blocking
probability, Figure 4(b) plots only the signalling failures. In con-
trast to the experiment with periodic updates, increasing the num-
ber of cost levels beyondC = 4 continues to reduce the blocking
rate. Since triggered updates do not aggravate fluctuations in link
state, the fine-grain differentiation between links outweighs the
benefits of “ties” between shortest-path routes. Although larger
values ofC reduce the likelihood of signalling failures by a fac-
tor of two, increasing the number of cost levels eventually offers
diminishing returns.

4.2 Link-Cost Exponent (�)
To maximize the utility of coarse-grain load information, the

cost function should assign each cost level to a critical range of link
utilizations. Under fine-grain link costs (largeC), our experiments
show that the exponent� does not have much impact on perfor-
mance; values of� � 1 have nearly identical performance. These
results hold across a range of link-state update periods, suggesting
that large values of� do not introduce much extra route flapping.
This is important for path selection algorithms, since it suggests
that widest shortest-path and cheapest shortest-path should have
similar performance under stale link-state information. However,
the choice of exponent� plays a more important role in cost-based
routing with coarse-grain link costs. These experiments showed a
sharp drop in the blocking probability due to the transition from
static routing (� = 0) to QoS routing (� > 0), followed by an
increase in blocking probability for larger values of� [25]. When
� is too large, the link-cost function concentrates most of the cost
information in a very small, high-load region.

For large� and smallC, some of the cost intervals are so
narrow that the arrival or departure of a single connection could



change the link cost by one or more levels. For example, when
� = 8 andC = 10, the link-cost function has four cost levels
in the 90–100% range. This sensitivity exacerbates route flap-
ping and also limits the routing algorithm’s ability to differentiate
between links with lower utilization. Further experiments demon-
strate that pruning lowers the differences between the curves for
differentC values. This occurs because pruning provides addi-
tional differentiation between links, even for small values ofC.
We also explored the effects of the link-state update period on the
connection blocking probability as� is increased, for a fixed value
of C. Interestingly, larger update periods dampen the detrimental
effects of large values of�, resulting in a flatter blocking probabil-
ity curve. Although large values of� limit the granularity of the
cost information, the drawback of a large value of� is largely off-
set by the benefit of additional “ties” in the routing algorithm when
information is stale. Hence, the selection of� is actually more sen-
sitive when the QoS-routing algorithm has accurate knowledge of
link state.

5 Conclusions and Future Work
The performance and complexity of QoS routing depends on

the complex interaction between a large set of parameters. This
paper has investigated the scaling properties of source-directed
link-state routing in large core networks. Our simulation results
show that the routing algorithm, network topology, link-cost func-
tion, and link-state update policy each have a significant impact on
the probability of successfully routing new connections, as well
as the overheads of distributing network load metrics. Our key
observations are:
Periodic link-state updates:The staleness introduced by periodic
link-state update messages causes flapping that substantially in-
creases the rate of set-up failures. This increases connection block-
ing and also consumes significant resources inside the network,
since most of the failures occur during connection set-up instead
of during path selection. In extreme cases with large update pe-
riods, QoS routing actually performs worse that load-independent
routing, due to excessive route flapping. Our results show that a
purely periodic link-state update policy cannot meet the dual goals
of low blocking probability and lowupdate overheads in realistic
networks.
Bandwidth and hop-count: Connections with large bandwidth
requirements experience higher blocking probabilities, but the ef-
fects of increasing link-state staleness are only slightly worse rel-
ative to lower-bandwidth connections. However, stale link-state
information has a strong influence on connections between distant
source-destination pairs, since long paths are much more likely to
have at least one infeasible link that looks feasible, or one feasible
link that looks infeasible. These effects degrade the performance
of QoS routing in large network domains, unless the topology is
designed carefully to limit the worst-case path length.
Holding times: Longer connection holding times change the
timescale of the network and allow the use of larger link-state up-
date periods. Stale information has a more dramatic effect under
heavy-tailed holding-time distributions, due to the relatively large
number of short-lived connections for the same average holding
time. Our findings suggest that the networks should limit QoS
routing to long-lived connections, while carrying short-lived traf-

fic on preprovisioned static routes. The network can segregate the
traffic in short- and long-lived flows by partitioning link bandwidth
for the two classes, and detecting long-lived flows at the edge of
the network [7].
Triggered link-state updates:Triggered link-state updates do not
significantly affect the overall blocking probability, though coarse-
grain triggers do increase the amount of blocking that stems from
more expensive set-up failures. Triggers reduce the amount of un-
necessary link-state traffic but require a hold-down timer to pre-
vent excessive update messages in short time intervals. However,
larger hold-down timers increase the blocking probability and the
number of set-up failures. Hence, our findings suggest using a
combination of a relatively coarse trigger with a modest hold-
down timer.
Pruning infeasible links: In general, pruning infeasible links im-
proves performance under low-to-moderate load by allowing con-
nections to consider nonminimal routes, and avoiding unnecessary
set-up failures by blocking more connections in the route compu-
tation phase. However, under heavy load, these nonminimal routes
consume extra link resources, at the expense of other connections.
Pruning becomes less effective under stale link-state information,
loosely-connected topologies, and high-bandwidth connections,
since these factors increase the amount of traffic that follows a
nonminimal route, even when a minimal route is feasible. These
results suggest that large networks should disable pruning, unless
most source-destination pairs have multiple routes of equal (or
near equal) length. Alternatively, the network could impose limits
on the resources it allocates to nonminimal routes.
Rich network topologies:The trade-off between routing and set-
up failures also has important implications for the selection of the
network topology. Although dense topologies offer more rout-
ing choices, the advantages of multiple short paths dissipate as
link-state information becomes more stale. Capitalizing on dense
network topologies requires more frequent link-state updates, and
techniques to avoiding excessive link-state traffic. For example,
the network could broadcast link-state updates in a spanning tree,
and piggyback link-state information in signalling messages.
Coarse-grain link costs: Computational complexity can be re-
duced by representing link cost by a small number of discrete
levels without significantly degrading performance. This is espe-
cially true when link-state information is stale, suggesting a strong
relationship between temporal and spatial inaccuracy in the link
metrics. In addition, coarse-grain link costs have the benefit of
increasing the number of equal-cost routes, which improves the
effectiveness of alternate routing. We exploit these characteristics
in our recent work on precomputation of QoS routes [26].
Exponent alpha: Under fine-grain link costs (largeC), routing
performance is not very sensitive to the exponent�; an exponent
of 1 or2 performs well, and larger values do not appear to increase
route flapping, even under very stale information. These results
suggest that selecting routes based widest shortest-paths or cheap-
est shortest-paths would have similar performance under stale link
state. Coarse-grain link costs require more careful selection of�,
to ensure that each cost level provides useful information, and that
the detailed cost information is focused in the expected load re-
gion.
These observations represent an initial step inunderstanding and
controlling the complexdynamics of quality-of-service routing



under stale link-state information. We find that our distinction
between routing and set-up failures, and simulation experiments
under a wide range of parameters, provide valuable insights into
the underlying behavior of the network. Our ongoing work fo-
cuses on exploiting these trends to reduce the computational and
protocol overheads of QoS routing in large backbone networks.
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