Efficient Precomputation of Quality-of-Service Routes

Anees Shaikh', Jennifer Rexford¥, and Kang G. Shin'

T Department of Electrical Engineering

and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122
{ashaikh,kgshin}@eecs.umich.edu

Abstract

Quality-of-service (QoS) routing satisfies applica-
tion performance requirements and improves network
resource usage by selecting paths based on connection
traffic parameters and available link capacity. How-
ever, QoS-routing protocols can wntroduce significant
network overhead for computing routes and distribut-
wng wnformation about link load. Route precomputation
15 an effective way to amortize the cost of the path-
selection algorithm over multiple connection requests.
This paper introduces efficient mechanisms for precom-
puting one or more routes to each destination, and on-
demand checking of the suitability of the routes at con-
nection arrival, based on the most recent link-state in-
formation. Simulation experiments show that the route
precomputation and route extraction techniques are ef-
fective at lowering the computational overheads for QoS
routing, while achieving performance similar to the
more erpensive on-demand path-selection schemes.

1 Introduction

The success of distributed audio and video appli-
cations hinges on having predictable performance in
the underlying communication network. The network
can provide throughput and delay guarantees by re-
serving resources for individual connections or flows.
The routing algorithm plays a pivotal role in this pro-
cess by locating paths that can satisfy the performance
requirements of arriving connections. This is partic-
ularly important for handling high-bandwidth multi-
media streams, which often consume a relatively large
fraction of the link capacity. Quality-of-service rout-
ing has the potential to optimize the usage of net-

! Network Mathematics Research
Networking and Distributed Systems
AT&T Labs — Research
Florham Park, NJ 07932-0971

jrex@research.att.com

work resources, and increase the likelihood of accept-
ing new connections, by selecting paths based on ex-
isting network load and connection traffic parame-
ters [13, 20, 6]. However, distributing link load infor-
mation and computing routes for new connections can
consume considerable bandwidth, memory, and pro-
cessing resources [19, 2]. Controlling these overheads
in large backbone networks introduces a trade-off be-
tween performance and complexity. In this paper, we
present an efficient path-selection scheme that precom-
putes routes, while still capitalizing on the most recent
network load information available at connection ar-
rival.

Our study focuses on link-state routing algorithms
where the source router or switch selects a path based
on connection throughput requirements and the avail-
able resources in the network. For example, the
ATM Forum’s PNNI standard [17] defines a rout-
ing protocol for distributing topology and load in-
formation throughout the network, and a signalling
protocol for processing and forwarding connection-
establishment requests from the source. Similarly, pro-
posed QoS extensions to the OSPF protocol include
an “explicit routing” mechanism for source-directed 1P
routing [23, 9]. Each switch maintains its own view
of the available link resources, distributes link-state in-
formation to other switches, and selects routes for new
connections. To improve the scalability of these pro-
tocols in large configurations, the switches and links
can be assigned to smaller peer groups or areas that
exchange detailed link-state information. In this pa-
per, we focus on reducing the overheads of QoS routing
within a single peer group, though the algorithms apply
to the general case of hierarchical networks. We con-
sider the case of large, relatively well-connected, back-
bone topologies that offer the possibility of multiple

routes between source-destination pairs. In addition,
we compare performance on more sparsely-connected
networks that provide fewer routing options.

Efficient QoS routing requires effective techniques
for computing routes and exchanging link-state infor-
mation. Link state is typically propagated in a peri-
odic fashion, or in response to a significant change in
available capacity. For example, a link may advertise
its available bandwidth metric whenever 1t changes by
more than 10% since the previous update message; in
addition, a minimum time between update messages is
often imposed to avoid excessive link-state update traf-
fic. When a connection request arrives, the source typ-
ically computes a suitable route, using the most recent
link-state information. If such a route exists, it initiates
hop-by-hop signalling to reserve resources along that
path to the destination. The set-up attempt fails if one
or more of the links does not have sufficient resources
to accept the new connection. After such a set-up fail-
ure, the source may decide to try a new route that
excludes the offending link, or may simply block the
connection. These route computations and signalling
attempts consume processing resources at the switches,
and introduce set-up latency for each accepted connec-
tion. Minimizing these overheads is particularly im-
portant during periods of transient overload, such as
bursty connection arrivals or rerouting of traffic after
a link failure.

Most previous research on QoS routing has investi-
gated on-demand policies that compute a path at con-
nection arrival. Recent work considers precomputation
or path caching schemes that attempt to amortize the
overheads of route computation by reusing the paths
for multiple connection requests [14, 16, 12, 10, 9].
Path precomputation introduces a trade-off between
processing overheads and the quality of the routing
decisions. Previous work on precomputed routes has
focused on quantifying this trade-off and developing
guidelines for when to recompute routes. We extend
this work by presenting efficient mechanisms for pre-
computing paths under source-directed link-state rout-
ing. In particular, this paper addresses several impor-
tant practical questions:

e How should the precomputed routes be stored?
e How should multiple routes be computed?

e How much work should be performed at connec-
tion arrival?

e How should routing and signalling overheads be
limited?

We answer these questions with four key elements that
are described in detail in Section 2:

e Coarse-grain link costs: Path selection is based
on link-cost metrics, which are a function of link-
state information. Limiting link costs to a small
number of values reduces the computational com-
plexity of the path-selection algorithm. Coarse-
grain link costs do not significantly degrade perfor-
mance, and increase the likelihood of having more
than one minimum-cost route to a destination.

e Precomputation of minimum-cost graph: Each
switch or router precomputes a compact data
structure that stores all minimum-cost routes to
each destination. A small modification to Di-

jkstra’s shortest-path algorithm can locate all
minimume-cost routes to each destination. Instead
of storing the precomputed paths in a cache or ta-
ble, route extraction is postponed until connection
arrival.

e Route extraction with feastbility check: As part of
extracting a route, the source checks the feasibil-
ity of each link, based on the most recent link-
state information and the bandwidth requirement
of the new connection. The algorithm performs a
depth-first search through the Dijkstra data struc-
ture, extracting the first route in the common case.
Then, the source initiates signalling in the network
to reserve resources along the selected path.

e Reranking of multiple routes: The depth-first ex-
traction algorithm imposes an implicit ordering
of the links when a node appears in multiple
minimum-cost paths. As part of route extrac-
tion, the source can rerank these links to improve
the path-selection process for the next connection.
This provides a simple framework for a number of
alternate-routing policies.

These mechanisms enable a wide range of policies for
when to compute new routes, how many candidate
routes to try for a new connection, and how often to
update link-state information. Coupled with our effi-
cient routing mechanisms, these policy decisions allow
significant reduction of processing overheads and set-
up delay, in comparison to traditional on-demand al-
gorithms. In addition, the simulation experiments in
Section 3 show that the feasibility check, and the poten-
tial for multiple candidate routes, results in lower like-
lihood of rejecting requests and lower signalling over-
heads, in relation to other precomputation schemes.
The performance evaluation also investigates the in-
fluence of the network topology and link-state update
mechanisms on the effectiveness of the path-selection
algorithm and routing policies. Section 4 compares our

approach to related work on QoS route precomputa-
tion, and Section b concludes the paper with a discus-
sion of future research directions.

2 Precomputation of QoS Routes

Reducing the overheads of route computation re-
quires careful consideration about how much infor-
mation and processing are involved on various time
scales. The source receives the most accurate infor-
mation about network load and connection resource
requirements upon the arrival of new link-state up-
dates and connection requests. To lower complexity,
though, our precomputation scheme does not perform
any work upon receiving a link-state message, beyond
recording the new load information, and only modest
work on connection arrival. Instead, most of the pro-
cessing 1s relegated to background computation of a
shortest-path graph of routes to each destination. By
delaying route extraction until connection arrival, we
exploit the most recent link-state to find a suitable path
while incurring only modest overhead. Allowing occa-
sional triggered recomputation for individual connec-
tion requests further improves the ability to find a path
and to select better routes for future connections.

2.1 Compact Storage of Precomputed Routes

Our study of path precomputation focuses on intra-
domain routing in large, flat networks with N nodes
(switches or routers) and L links. In this context, we
focus on topologies with relatively high connectivity,
an increasingly common feature of emerging core back-
bone networks [22, 8], and on multimedia traffic that
requires throughput guarantees. Each switch knows
the underlying topology and has (possibly out-of-date)
information about the unreserved bandwidth on each
link. Link state is flooded periodically, or in response
to a significant change in available bandwidth, ensur-
ing that the switches have fairly accurate knowledge
of network load. The source switch selects a route for
an arriving connection, based on the link state and
the connection’s bandwidth requirement. Route com-
putation is based on the Dijkstra shortest-path algo-
rithm [5], where link cost (or “distance”) is a function
of the link load. To minimize resource requirements
and end-to-end delay, we focus on link-cost functions
that favor routes with a small number of links.

The Dijkstra shortest-path algorithm computes a
route to a destination node in O(L log N) time, when
implemented with a binary heap [5]. Although ad-
vanced data structures can reduce the average and

worst-case complexity [4], the shortest-path computa-
tion still incurs significant overhead in large networks.
In computing a route to each destination, the Dijk-
stra algorithm generates a shortest-path graph, where
each node has a parent pointer to the upstream node
in its route from the source, as shown in Figure 1(a).
Extracting a route to a particular destination involves
traversing these parent pointers, and introduces com-
plexity in proportion to the path length. For on-
demand routing of a single connection, the construc-
tion of the shortest-path graph terminates upon reach-
ing the destination. Continuing the computation to
generate a route for every destination, however, does
not significantly increase the processing requirements,
and the complexity remains O(Llog N). This allows
path precomputation schemes to amortize the overhead
of the shortest-path calculation over multiple destina-
tion nodes. Thus, even if some source-destination pairs
never communicate, computing their associated routes
does not impose much extra cost.

Path precomputation schemes typically store one or
more routes in a cache or table. In hop-by-hop rout-
ing, the router stores only the next hop of the route
to each destination, allowing for simple storage in a
route table. In contrast, source-directed routing typi-
cally requires the source to maintain a variable-length
list of the links on the path to the destination. This
list (or stack) becomes part of the signalling message
that establishes a connection (e.g., a “designated tran-
sit list” in PNNI, or an “explicit route advertisement”
in the QoS extensions to OSPF), instructing each in-
termediate node to forward the message to the next
link on the route. To precompute routes, the source
could generate paths to one or more destinations and
store each route list in a cache, occasionally recomput-
ing one or more routes based on the most recent link-
state information. However, computing and extracting
multiple routes introduces computational and storage
complexity, particularly if some routes are never used.
In addition, since link-state information changes over
time, these cached routes must be invalidated and/or
recomputed periodically. Instead of storing paths in a
separate data structure, such as a cache of the variable-
length routes, we consider a compact representation
that maintains the routes directly in the shortest-path
graph, as in Figure 1(a).

2.2 Precomputation of Multiple Minimum-Cost
Routes

Path precomputation schemes benefit from having mul-
tiple candidate routes to each destination, to balance
network load and have additional routing choices in

source

(a) Shortest-path graph

Figure 1. Delayed Pruning of Shortest-Path Routes:

source

(b) All-shortest-path graph

source

(¢) Route extraction

The left figure shows a network graph with a link-cost

metric on each edge. Each node has a parent pointer to the upstream node along a minimum-cost path from
the source. By allowing multiple parent pointers at each node, the graph can represent all of the minimum-
cost paths for each node, as shown in the center figure. These parent pointers allow efficient extraction of
a route for a specific destination, as shown in the right figure. If a link appears infeasible (denoted by the
“X"), an alternate minimum-cost route (shown by dashed lines) can be extracted through a search along the

parent pointers.

case of a set-up failure. However, the multiple routes
should have similar cost, to avoid selecting paths that
make inefficient use of network resources. A switch
could conceivably precompute the & > 1 shortest paths
(in terms of hop-count or other cost) to each destina-
tion. Alternatively, a routing algorithm could com-
pute all paths within some additive or multiplicative
factor € of the best path. However, these approaches
introduce considerable computational complexity. For
example, computing the k& shortest paths for a single
destination in a directed graph has complexity as high
as O(kN?3) [21, 11]. In addition, the k shortest paths
(or paths within € of optimal) to one node may not be
part of the best routes to other destinations; hence, it
is usually not possible to store these multiple routes in
a compact, shortest-path graph representation.

Instead, we focus on an efficient special case of com-
puting multiple equal-cost paths to each destination.
This formulation permits a compact representation of
the multiple routes, as shown in Figure 1(b). Comput-
ing all minimum-cost routes requires a small modifica-
tion to the traditional Dijkstra computation to store
multiple parent pointers for each node; each pointer
identifies an upstream node along a shortest path to
the destination. The nodes and parent pointers form a
directed, acyclic subgraph of the original graph, rooted
at the source switch. Each node in the graph has a
list of its parent pointers, or a bit-mask to indicate

which upstream nodes reside on shortest-path routes.
We maintain the parent pointers in a circular list to
facilitate simple traversal of the graph when extracting
routes. Figure 2 summarizes the algorithm, which is
similar to a traditional Dijkstra computation, except
for the addition of lines 4-5. The algorithm uses a
heap to visit the nodes in order of their distance from
the source, and relaxes each outgoing link. A parent
pointer is assigned if a link is on a minimum-cost path
(so far) to the neighboring node. To minimize the stor-
age requirements and complexity of route extraction,
the algorithm can impose a limit on the number of
parents for each node (e.g., 2 or 3).

The likelithood of having multiple minimum-cost
routes to a destination depends on the link cost func-
tion and the underlying network topology. To increase
the chance of “ties” in the route computation, we dis-
cretize the link costs and map them into a small num-
ber of values, C' (say, 5 or 10). This approach of-
fers a much cheaper way to compute near equal-cost
paths without resorting to a k-shortest computation.
Although fine-grain link costs (larger values of C') usu-
ally result in lower blocking probabilities, a moderately
coarse link-cost function does not significantly degrade
performance, particularly if link-state information is
stale [19]. When link-state information is somewhat
out-of-date, the benefit of a fine-grain link cost func-
tion is greatly diminished. Perhaps more importantly,

Heap = set of all N nodes;
while (Heap is not empty) {
u = PopMin(Heap);

parent[v] = {u};

© 0 ~NOoO e WO

[
= O
—
—

foreach node v € Neighbors(u) { # relax each link

if (dist[ul + costl[u,v] == distl[v])
parent[v] = parent[v] U {u};

else if (dist[ul + costl[u,v] < dist[vl) { # cheaper route

dist[v] = dist[ul + costl[u,v];

visit each node

+

equal route

Figure 2. Dijkstra algorithm with multiple parent pointers:

Initially, each node u has distance dist [u]=co,

except for the source which has a distance of 0. Starting with the source, the algorithm visits the node u with
the smallest distance and considers the cost cost [u,v] of the link to each neighboring node v, extending
or reassigning the set of parent pointers parent [v] if the new route has equal or lower cost, respectively.
At the end, each connected node has one or more parent pointers to upstream nodes along minimum-cost

routes from the source.

coarse-grain link costs reduce the processing require-
ments of the shortest-path computation by reducing
heap complexity. The complexity of Dijkstra’s algo-
rithm, and the variation in Figure 2, decreases from
O(Llog N) to O(L + CN) [5], while more advanced
data structures offer even further reduction [4]. Hence,
these coarse-grain link costs become particularly ap-
propriate in large, well-connected networks (large L
and N) where the switches have stale link-state infor-
mation.

2.3 Delayed Extraction of Precomputed Routes

Rather than extracting and caching routes in a sep-
arate data structure, we store the precomputed routes
in the shortest-path graph and delay the extraction
operation until a connection request arrives. During
the path extraction the source applies the most recent
link-state information in selecting a route. The extrac-
tion process operates on the subgraph of nodes and
parent pointers along minimum-cost routes to the des-
tination, as shown in Figure 1(c). Though the switch
could conceivably run a new Dijkstra computation on
this subgraph to select the “best” precomputed route,
we instead optimize for the common case of extracting
the first route by following a single set of parent point-
ers (e.g., the leftmost path in Figure 1(c)). More gen-
erally, we perform a depth-first search through the re-
duced graph to extract the first feasible route, based on
the current link-state information and the bandwidth
requirement of the new connection. If the extraction

process encounters a link that does not (appear to)
have enough available bandwidth, the algorithm back-
tracks to the previous node and tries a different parent
pointer.

The depth-first search and the feasibility check effec-
tively “simulate” hop-by-hop signalling, using the most
recent link-state information. Note that this operation
is purely local at the source, and much less costly than
discovering an infeasible link by sending and process-
ing signalling messages in the network. Starting at the
destination node, the algorithm builds a stack of the
nodes in the route from the source, as shown in Fig-
ure 3. Each node has a circular list of parent pointers,
starting with the head parent; a second pointer ptr is
used to sequence through the list of one or more par-
ents, until ptr cycles back to head. Each iteration of
the while loop considers the link between the node at
the top of the stack and its current parent (pointed
to by the ptr pointer and denoted by new in line 4).
If the link is feasible, new is added to the stack and
its parents are considered in the next iteration (lines
5-8). Otherwise, if the feasibility check fails, we pro-
ceed to the next parent, or backtrack until we find a
node whose parent list has not been exhausted (lines
10-13). The algorithm terminates when we reach the
source via a feasible path (top == src), or when the
path stack becomes empty (top == NULL) because no
feasible path was found. In the former case, the route
is read by popping the stack from source to destination.

A potential drawback of this approach is that a sub-
sequent connection request may have to duplicate some

1: push(dest); # start at the destination node
2: ptrldest] = head[dest]; # start at dest’s first parent

3: while ((top !'= NULL) and (top != src)) { # continue until reaching src

4: new = ptrltop].nodeid; # explore parents of top node

5: if (feasible(new, top)) {

6: push(new); # explore next node in route

7: ptrinew] = head[new];

8: }

9: else {

10: while (ptr[top].next == head[top])

11: porO); # backtrack from exhausted node(s)
12: if (top != NULL)

13: ptrltop]l = ptrltop].next; # sequence to next parent pointer
14: }

15: }

Figure 3. Depth-first route extraction:

Starting at the destination node (dest), the algorithm performs a

depth-first traversal of parent pointers to construct a stack of the nodes in the route. By the end of the
algorithm, the top of the stack points to the source (src) if a feasible route exists; otherwise, the stack is
empty (top == NULL). The algorithm explores multiple parent pointers by sequencing through a circular list,

starting with the head parent.

of the same backtracking as the preceding request, par-
ticularly since the traversal always starts with the par-
ent marked by the head pointer. We can avoid this
problem by performing some simple pointer manipu-
lations as part of the route extraction process. As we
pop each node in the route from the path stack, we may
alter the position of its head pointer so that a subse-
quent extraction attempt for the same destination (or
any destination along the path) visits a different set of
links. Three possibilities are:

e Leave parents in existing order (do nothing).

e Make the selected parent the mnew head
(head[node] = ptrlnodel). This
essentially to “sticky” routing where we stay with
the first route that was found to be feasible in the
last extraction.

amounts

e Round-robin to the next parent (head[node] =
ptrlnode] .next). This policy attempts to bal-
ance load by alternating the links that carry traffic
for a set of destinations.

These alternation policies differ from traditional alter-
nate routing, where the switch rotates among a set of
cached paths. Here, the rotation for one destination
node influences the order in which links are visited
for other destination nodes along the path. Moreover,
changing the position of the head pointer may actually

provide added benefit because the alternate routing is
performed on a more global scale.

2.4 Route Computation Policy Options

The path precomputation and extraction algorithms
provide a useful framework for computing, storing, and
selecting from multiple quality-of-service routes. These
techniques provide significant latitude in handling in-
dividual connection requests, depending on the inac-
curacy of the link-state information, connectivity of
the underlying network, and tolerance to set-up de-
lay. Table 1 summarizes the key policy decisions, start-
ing with four options discussed in the previous sub-
sections. The remaining design decisions concern how
and when to recompute routes and initiate signalling
for new connections. The simplest approach relies en-
tirely on a periodic, background computation of the
shortest-path graph. Periodic recomputation is likely
to simplify CPU provisioning, at the expense of block-
ing connections on routing and set-up failures. When
a request arrives, the source extracts a route and ini-
tiates signalling. The source blocks the request if the
extraction process does not produce a route, and con-
nection set-up delay is determined almost entirely by
signalling delay.

Instead of blocking the connection, the source could
trigger recomputation of the shortest-path graph after
a failure in route extraction or connection establish-

Policy

Description

on-demand or precomputed

recompute routes for every request or try first to extract from the existing
shortest-path graph

allow multiple routes

limit extraction to just one route instead of allowing backtracking to find
alternate routes

feasibility checking

whether to use feasibility checking during route extraction

re-rank multiple routes

policy to arrange head pointers in the shortest-path graph during route
extraction (none, sticky, round-robin)

periodic recomputations

specification of a background route computation frequency

recompute on routing failure

trigger recomputation when initial route extraction fails

recompute on set-up failure

trigger recomputation on set-up failure

reextract on set-up failure

try to reextract another feasible route (rather than recompute) when sig-
nalling fails

prune on recomputation

whether to omit the links that failed the admission test when recomputing
after a set-up failure

maximum signalling attempts

limit the number of times each connection request may attempt signalling

Table 1. Routing and signalling policy options:

This table summarizes some possible policies for connec-

tion request handling. The choice of policies may be dictated by objectives such as minimizing processing

overhead, connection set-up delay, or blocking probability.

ment. Recomputing routes with the most recent link-
state information would reduce connection blocking, at
the expense of additional processing load and set-up
delay. Inaccurate link state or rapidly arriving connec-
tion requests may require frequent path recomputation,
introducing computation overhead comparable to on-
demand routing. To bound set-up delay and limit pro-
cessing overheads, the source can impose a maximum
number of route computations and signalling attempts
for each connection. Since the source recomputes the
entire shortest-path graph, the overhead is amortized
over all destinations and can benefit subsequent con-
nection requests. To bound the worst-case computa-
tional load, the source can impose a minimum time
between route recomputations, even in the presence of
routing and set-up failures.

When routes are recomputed after a set-up failure,
the source can choose to omit the link that failed the
admission test. In effect, the set-up failure provides
more recent information about the load on the offend-
ing link. Temporarily removing this link from consid-
eration is particularly important if the source attempts
to compute and signal a new route for the same con-
nection. This new route should avoid using the link
that caused the previous failure. In addition, prun-
ing the heavily-loaded link is useful for future connec-
tion arrivals, particularly if the shortest-path graph is
dedicated to connections with the same (or similar)
bandwidth requirements. When connections have more
diverse quality-of-service parameters, the source can

support a small number of different bandwidth classes
(e.g., audio and video), with separate precomputed
routes that are tailored to the performance require-
ments [14, 9]. Employing a different link-cost function
and path computation policy for each class enhances
the network’s ability to route high-bandwidth traffic.

3 Performance Evaluation

In this section, we evaluate the proposed routing al-
gorithm under a range of recomputation periods and
link-state update policies. The experiments show that
precomputation of the minimum-cost graph, coupled
with a feasibility check, approximates the good per-
formance of on-demand routing and the low computa-
tional overhead of path caching. The feasibility check is
especially effective in reducing the likelihood of expen-
sive set-up failures, even when link-state information is
somewhat out-of-date.

3.1 Simulation Model

To evaluate the cost-performance trade-offs of pre-
computed routes, we have developed an event-driven
simulator that models link-state routing at the connec-
tion level. A route is chosen for each incoming connec-
tion based on a throughput requirement (bandwidth b)
and the available bandwidth in the network, based on
the source’s view of link-state information. Then, hop-
by-hop signalling reserves the requested bandwidth at

Parameter MCI Internet | 5-ary 3-cube
offered load p=0.65 p=0.8b
bandwidth b=(0,4%] b=(0,6%]
arrival rate A=1 A=1
connection duration £ =46.8 £ =468

Table 2. Simulation invariants:

This table lists the parameters that remain fixed throughout the simulation

experiments., In the MCI topology N = 19, L. = 64, diameter D = 4, and average node degree is 3.4. The
5-ary 3-cube has N = 125, L. = 750, D = 6, and degree 6.

each link in the route. That is, if a link has a reserved
bandwidth with utilization u, admitting the new con-
nection increases the reservation to u = u+b. A set-up
failure occurs if a link in the path cannot support the
throughput requirement of the new connection (i.e., if
u—+ b > 1). For the simulations in this section, we as-
sume that a connection blocks after a set-up failure,
though we briefly summarize other experiments that
allow multiple signalling attempts. Blocking can also
occur during path selection if the feasibility check sug-
gests that none of the candidate routes can support
the new connection; these routing failures impose less
of a burden on the network than set-up failures, which
consume resources at downstream nodes.

The source selects a minimum-hop route with the
least cost!; previous studies show that algorithms with
a strong bias toward minimum-hop routes almost al-
ways outperform algorithms that do not consider the
hop-count [1, 7, 18, 15]. To distinguish among paths
of the same length, each link has a cost in the set
{1/C,2/C,...,C/C}. For the experiments in this pa-
per, a link with reserved capacity u has cost ¢ =
([u? - (C = 1)] 4+ 1)/C; our experiments with link-
cost functions show that an exponent of 2 biases away
from routes with heavily-loaded links, without being
too sensitive to small changes in link-state informa-
tion [19]. For simplicity we assume that links are bidi-
rectional, with unit capacity in each direction. We
evaluate the routing algorithms on a “well-known” core
topology (an early version of the MCI Internet back-
bone [15, 14]) and a uniformly connected 125-node 5-
ary 3-cube topology (with 5 nodes along each of 3 di-
mensions). The relationship between size and connec-
tivity in the b-ary 3-cube is similar to existing com-

1A careful assignment of link weights w; permits a single in-
vocation of the Dijkstra algorithm to produce a minimum-cost,
shortest path. In a network with diameter D, and link costs in
the range 0 < ¢; < 1, the link weights w; = D + ¢; ensure that
paths with fewer hops always appear cheaper. Such an assign-
ment for w; results in a relatively small number of possible path
cost estimates, thus reducing the complexity of the computation.

mercial networks, and allows us to study the potential
benefits of having multiple minimum-hop routes be-
tween pairs of nodes. The MCI network, on the other
hand, is very small and loosely connected.

Connection requests arrive at the same rate at all
nodes and destinations are selected uniformly. Con-
nection holding times have mean ¢ and follow a Pareto
distribution with shape parameter 2.5 to capture the
heavy-tailed nature of connection durations?. Con-
nection interarrival times are exponentially distributed
with mean 1/X; and requested bandwidths are uni-
formly distributed with equal spread about a mean size
b. The experiments evaluate connections with mean
bandwidth requirements in the range of 2-3% of link
capacity. While smaller bandwidths may be more real-
istic, the large requests provide some insight to the be-
havior of the high-bandwidth multimedia traffic (e.g.,
video) we are interested in. Also, smaller bandwidths
result in very low blocking probabilities, making it very
difficult to gain sufficient confidence on the simulation
results in a reasonable time. Our earlier work in [19]
considers a wider range of bandwidth requests in the
context of QoS routing with inaccurate information.
With a connection arrival rate A at each of N nodes, the
offered network load is p = AN(¢bh/L, where L is the
number of links and h is the mean distance (in hops)
between nodes, averaged across all source-destination
pairs. Table 2 summarizes the simulation parameters
for the two network topologies.

3.2 Accurate Link-State Information

The initial simulation experiments compare the per-
formance and overhead of the routing algorithms un-
der accurate link-state information, as shown in Fig-
ure 4 and 5. We vary the background period for path
precomputation, and also allow a switch to recompute
its shortest-path graph when the route extraction does

2We use a standard form of the Pareto distribution with shape
parameter a, scale parameter (3, and cumulative distribution

function Fx (z) =1 — (8/xz)*.

0.06

0.05 -

o o
1=} o
@ i
T T
I I

Connection blocking probability
g
.

o—o0 multiple routes, feasibility—check
o — -0 single route, feasibility—check

& — A single route, no feasibility—check
V- —v on-demand, C =5

>— —> on—-demand, C = inf

0.01 -

25

0.00
0 5 10 15 20
Route recomputation period (unit time)

(a) MCI Internet topology

30

Figure 4. Performance with accurate link state:

Connection blocking probability

0.08

o—o0 multiple routes, feasibility—check
o - -o single route, feasibility—check

0.07 = & - - single route, no feasibility-check a7 7
v —v on-demand, C=5 -
>— —> on-demand, C = inf 7
0.06 | L 4
x
0.05 4 —
X

o
o
R
T
I

0.03 -

0.02

0.01 -

25

. . .
10 15 20
Route recomputation period (unit time)

(b) 5-ary 3-cube

30

These graphs plot the blocking probability as a function

of the background path computation period under accurate link-state information, for both the MCI and 5-ary

3-cube topologies.

not produce a candidate route (due to failed feasibil-
ity checks) and after a set-up failure. Since we allow
only one signalling attempt for each connection, re-
computing after a set-up failure only benefits future
arrivals. The single-route algorithms use a precom-
puted shortest-path graph with one route, as in Fig-
ure 1(a). The multiple-route approach offers greater
flexibility by allowing the source to perform feasibil-
ity checks on several paths in the graph, as in Fig-
ure 1(b). We also consider two on-demand algorithms
that compute routes on a per-request basis. One has a
link-cost discretization of C' = 5, identical to the pre-
computed routing algorithms, and the other has dis-
cretization limited only by machine precision (referred
to as C' = 00).

Figure 4 plots the connection blocking probabil-
ity as we increase the recomputation period to more
than 30 times the connection interarrival time. The
precomputation algorithms perform well, relative to
the more expensive on-demand schemes. Feasibility
checking substantially improves performance over tra-
ditional path-caching techniques, allowing the use of
much larger computation periods. In addition, un-
der accurate link-state information, feasibility check-
ing completely avoids set-up failures by “simulating”
the effects of signalling during the route extraction
process. This is particularly helpful in the 5-ary 3-
cube network, since the richly-connected topology fre-
quently has an alternate shortest-path route available
when the first choice is infeasible. On-demand routing

with ' = b suffers somewhat by its inability to distin-
guish the “best” route, compared to the ¢' = oo case,
but this effect diminishes under link-state inaccuracy.
Other experiments illustrate that, without a feasibil-
ity check, precomputed routing can only achieve these
performance gains by allowing multiple signalling at-
tempts for a connection, at the expense of longer set-up
delays and higher processing requirements.

The ability to precompute multiple candidate routes
does not substantially reduce the blocking probabil-
ity in Figure 4(a), since the sparsely-connected MCI
topology typically does not have multiple shortest-path
routes, let alone multiple routes of equal cost. In con-
trast, the 5-ary 3-cube experiment in Figure 4(b) shows
a more substantial performance benefit. These ben-
efits will apply to real networks as they grow larger
and more densely connected. We also expect a more
significant gain under nonuniform traffic loads, since
alternate routes would enable connections to circum-
vent regions of congestion. This is especially true dur-
ing transient fluctuations in network load, caused by
bursty connection arrivals or rerouting after a link fail-
ure. In these cases, the precomputation of multiple
routes allows the source to survive longer intervals of
time without computing a new shortest-path graph.
The algorithm with multiple precomputed routes, cou-
pled with the feasibility test, performs almost as well
as on-demand routing with the same number of cost
levels. However, using (' = oo offers a noticeable per-
formance advantage in Figure 4, since the accurate

o—o0 multiple routes, feasibility—check B
o+ - -0 single route, feasibility—check

& - -A single-route, no feasibility-check

V- —v on-demand

1.40

o 4 g I

@ © o)

S S 1<) o
T T T T
I

Route computation rate per node

I

IS

S
T

. . . .
10 15 20
Route recomputation period (unit time)

0.00 L
0 5

30

(a) MCI Internet topology

Figure 5. Overhead with accurate link state:

Route computation rate per node

o—o0 multiple routes, feasibility—check B
o+ - -0 single route, feasibility—check

& — A single route, no feasibility—check

V- —v on-demand

1.40

=
N
o
T
L

g

o

=)
T

4

©

S
T

o

@

S
T

I

IS

S
T

0.00

10 15 20
Route recomputation period (unit time)

(b) 5-ary 3-cube

30

These graphs plot the route computation frequency as a

function of the background path computation period under accurate link-state information for both the MCI

and 5-ary 3-cube topologies.

link-state information enables the fine-grain link-cost
function to locate the “best” routes.

The lower blocking probabilities for on-demand
routing come at the expense of a significant cost in
processing load, as shown in Figure 5. In both the
MCT and b-ary 3-cube topologies, the route compu-
tation frequency is lowered by a factor of 10 below
that of on-demand routing. In addition, the precom-
putation schemes have much lower complexity for each
route computation, relative to the C' = oo on-demand
algorithm. Comparing the different precomputation
algorithms, the processing load is dominated by the
background recomputation of the shortest-path graph,
though the feasibility test introduces slightly more trig-
gered recomputations. As the period increases, the
graphs flatten since triggered recomputations become
increasingly common for all of the algorithms. Al-
though disabling these triggered recomputations re-
sults in more predictable processing overheads, ad-
ditional simulation experiments (not shown) indicate
that this substantially increases the blocking probabil-

ity.

3.3 Inaccurate Link-State Information

While the previous experiments assume that the
source has accurate knowledge of network load, Fig-
ure 6 considers the effects of stale link-state informa-
tion, for both periodic and triggered link-state updates,
with a background recomputation period of 5 time

units. As staleness increases, the C' = co and C' = 5
curves gradually converge, since fine-grain link costs
offer progressively less meaningful information about
network load. However, large link-state update periods
also degrade the effectiveness of the feasibility check
in our precomputed routing scheme, as shown in Fig-
ure 6(a). Periodic updates can lead the source switch to
mistakenly identify infeasible links as feasible, and fea-
sible links as infeasible. When link-state information is
extremely stale (e.g., an update period that is 20 times
larger than the mean connection interarrival time), sig-
nalling blindly without a feasibility check offers better
performance. In fact, under such large update periods,
none of the QoS-routing algorithms perform well; un-
der the same network and traffic configuration, even
static shortest-path routing (not shown) can achieve
a blocking probability of 16%. Experiments with the
MCI topology configuration do not show as much ben-
efit from feasibility checking, due to the lower number
of shortest-path routes, though the feasibility test does
reduce the likelihood of set-up failures.

Despite the effects of large update periods, we find
that the feasibility check still offers significant advan-
tages under more reasonable levels of link-state stale-
ness. This is particularly true when link-state updates
are triggered by a change in available link capacity, as
shown in Figure 6(b). For example, a trigger of 0.2
spawns a link-state update message whenever avail-
able capacity has changed by 20% since the last up-
date, due to the establishment and termination of con-

0.20 T T

o—o feasibility-check
o—0 no feasibility-check
A~ —A on-demand, C=5
V- —v on—-demand, C= inf

o
i
o

o
e
)

o
e
15

0.08

Connection blocking probability

0.05

0.03

0.00
10 15 20
Link—state update period (unit time)

25 30

(a) Periodic link-state updates

Figure 6. Performance with stale link state:

Connection blocking probability

0.10

o—o feasibility-check
o—a no feasibility—check b
4&— —A on-demand, C =5

v— —v on-demand, C = inf
0.08 - 4

0.07 - B

0.05

0.04

0.03

0.02

0.01 - 4

0.00 I I I I I I I
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Link-state update trigger

0.80

(b) Triggered updates

These graphs plot the blocking probability for the 5-ary 3-cube

topology for periodic and triggered link-state updates, with a background path computation period of 5 time

units.

nections. Triggered link-state updates, like triggered
path recomputations, generate new routing informa-
tion during critical fluctuations in network load. Un-
der triggered link-state updates, the switches typically
have accurate information about heavily-loaded links,
even for large trigger values. Consequently, the con-
nection blocking probability is fairly insensitive to the
trigger, across all of the routing algorithms. In addi-
tion, feasibility checking remains very effective across
the range of update triggers and competitive with on-
demand routing (with C' = 5), in contrast to the results
for update periods in Figure 6(a). We find also that
using triggered updates allows feasibility checking to
reduce blocking even in the MCI topology, though the
difference between feasibility and no feasibility check-
ing is less significant than in the 5-ary 3-cube.

Although the blocking probability remains nearly
constant as a function of the link-state trigger, small
triggers result in fewer set-up failures, as long as the
source performs a feasibility test. In contrast, set-up
failures account for all connection blocking when rout-
ing does not involve feasibility checking. As the trigger
grows, the feasibility test sometimes mistakenly con-
cludes that a heavily-loaded link is feasible, and the
connection blocks in signalling instead of experiencing
a routing failure. Still, even for a 50% trigger, set-up
failures only contribute 30% of the connection block-
ing under feasibility checking. Also, despite the fact
that periodic updates cause significant staleness and
worsen overall connection blocking, feasibility check-

ing still manages to avoid signalling for connections
that ultimately block about 30 —40% of the time. The
ability of feasibility checking to reduce blocking inside
the network is an important benefit since set-up failures
consume processing resources and delay the establish-
ment of other connections. Routing failures, on the
other hand, are purely local and do not consume addi-
tional resources beyond the processing capacity at the
source switch.

Examining the blocking relative to hop-count shows
that feasibility checking at the source also helps in
routing connections between distant source-destination
pairs. Since bandwidth must be reserved on more links,
signalling blindly without checking recent link state has
a lower probability of finding a successful route. Other
experiments show that when a hold-down timer is used
to 1mpose a minimum time between consecutive update
messages, the blocking probability rises slightly for all
algorithms, though the benefit of feasibility checking
remains. The hold-down timer is useful, however, in re-
ducing link-state update overhead, especially when us-
ing small trigger levels. For example, with a hold-down
timer equal to the mean connection interarrival time,
the update generation rate can be reduced by over 35%
for triggers in the range 0 —0.1. Moreover, even with a
hold-down timer, coarser triggers do not degrade per-
formance. The combination of triggered updates and a
small hold-down timer, coupled with feasibility checks
and multiple precomputed routes, offer an efficient and
effective approach to quality-of-service routing in large

networks.

4 Related Work in QoS Route Precom-
putation

Previous work on route precomputation has focused
on path caching policies; performance evaluation, and
algorithmic issues. Our work complements these stud-
ies by emphasizing lower-level mechanisms and intro-
ducing an efficient framework for precomputing and
storing QoS routes, which applies to a variety of rout-
ing and signalling policies.

Research on path caching has focused on storing
routes in a separate data structure and considering dif-
ferent policies for updating and replacing precomputed
routes. The work in [16] introduces a policy that inval-
idates cache entries based on the number of link-state
updates that have arrived for links in the precomputed
paths. The proposed algorithms also check the current
link-state when selecting a path from the cache and al-
low recomputation when the cached paths are not suit-
able, similar to the feasibility check in this paper. This
earlier work does not, however, address route compu-
tation or path extraction mechanisms. Another study
proposes a set of route precomputation policies that
optimize various criteria, such as connection blocking
and set-up latency [10]. The algorithms try to locate
routes that satisfy several QoS requirements through
an iterative search of precomputed paths (optimized
for hop-count) followed, if necessary, by several on-
demand calculations that optimize different additive
QoS parameters, one at a time.

Other research has focused on detailed performance
evaluation to compare precomputed and on-demand
routing under different network, traffic, and staleness
configurations. The work in [3] evaluates the perfor-
mance and processing overhead of a specific path pre-
computation algorithm. The study adopts a Bellman-
Ford-based algorithm from [9] and evaluates a purely
periodic precomputation scheme under a variety of
traffic and network configurations. The study presents
a detailed cost model of route computation to compare
the overhead of on-demand and precomputed strate-
gies. As part of a broader study of QoS routing, the
work in [14] evaluates a class-based scheme that pre-
computes a set of routes for different bandwidth classes.
The evaluation compares the performance of several
algorithms for class-based path computation to on-
demand computation. These two studies do not pro-
pose any particular strategy for path storage or extrac-
tion but instead focus on performance trends.

The remaining studies consider different ways to pre-
compute paths for multiple destination nodes and con-

nection QoS requirements. The work in [9] proposes
a Dijkstra-based algorithm that computes minimum-
hop paths for different bandwidth classes. Another
algorithm, introduced in [12], precomputes a set
of extremal routes to all destinations such that no
other route has both higher bottleneck bandwidth and
smaller hop-count. The Bellman-Ford-based algorithm
in [9] uses a similar optimization criterion to construct
a next-hop routing table with multiple routing entries
for each destination. The emphasis of these last three
proposals is on algorithmic issues, such as reducing
complexity. In addition to a focus on computational
overheads, we also consider efficient ways to store pre-
computed paths and apply the most recent link-state
information.

5 Conclusions and Ongoing Work

In this paper, we have proposed efficient mechanisms
for precomputing quality-of-service routes, while still
applying the most recent link-state information at con-
nection arrival. Route computation employs a small
extension to Dijkstra’s algorithm, coupled with dis-
cretized link costs, to generate a shortest-path graph
with one or more routes to each destination. On con-
nection arrival, route extraction involves a depth-first
search with a feasibility test, which returns the first
route in the common case. Simulation experiments
show that the algorithm offers substantial reductions
in computational load with only a small degradation in
performance, compared to more expensive on-demand
algorithms. Our precomputation scheme continues to
perform well under stale link-state information, partic-
ularly under triggered link-state updates. In addition
to having lower blocking probabilities than traditional
path-caching schemes, the feasibility test reduces net-
work overhead by decreasing the frequency of signalling
failures.

As part of future work, we are investigating enhance-
ments to our path precomputation and extraction al-
gorithms. To increase the likelihood of having multi-
ple candidate routes to each destination, we are con-
sidering heuristics for generating near-minimum-cost
alternate routes, while still storing the precomputed
routes in a compact graph representation. In addition,
we are pursuing other ways to test the suitability of
routes during the extraction process. For example, in-
stead of checking link feasibility, the source could use
the most recent link-state information to compute new
path costs as part of the depth-first search for a route;
whenever the accumulated path cost exceeds a cer-
tain threshold, the algorithm can backtrack to consider
other precomputed routes. This approach is well-suited

to precomputing paths that balance network load with-
out requiring information about the traffic or QoS pa-
rameters of individual connections. Our initial exami-
nation of different policies for alternating between links
during route extraction did not show a significant ef-
fect on the general performance trends. We intend to
explore the load-balancing semantics of these link-level
alternation policies in more detail. Finally, we are per-
forming more extensive simulation experiments to eval-
uate our path-selection schemes under a wider range
of network topologies, communication workloads, and
routing and signalling policies.

Acknowledgment

The authors wish to thank Gisli Hjalmtysson and
Khawar Zuberi for their constructive feedback on ear-
lier versions of this paper.

References

[1] H. Ahmadi, J. S. Chen, and R. Guerin. Dynamic
routing and call control in high-speed integrated net-

In Teletraffic and Datatraffic in a Period of
Change: Proceedings of the International Teletraffic
Congress, volume 14 of Studies in Telecommunication,
pages 397-403. North-Holland, June 1991.

[2] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tri-
pathi. Quality of service based routing: A performance
perspective. To appear in Proc. ACM SIGCOMM,
September 1998.

[3] G. Apostolopoulos and S. K. Tripathi. On the effec-
tiveness of path pre-computation in reducing the pro-
cessing cost of on-demand QoS path computation. In
Proceedings of IFEE Symposium on Computers and
Communication, June 1998.

[4] B. V. Cherkassky, A. V. Goldberg, and T. Radzik.
Shortest-path algorithms: Theory and experimental
evaluation. Mathematical Programming, 73(2):129-
174, May 1996.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press (McGraw-Hill),
Cambridge, MA (New York), 1990.

[6] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick.
A framework for QoS-based routing in the Internet. In-
ternet Draft (draft-ietf-qosr-framework-04.txt), work
in progress, April 1998.

[7] R. Gawlick, C. Kalmanek, and K. Ramakrishnan. On-
line routing for virtual private networks. Computer
Communications, 19(3):235-244, March 1996.

[8] A. G. Greenberg and R. Srikant. Computational tec-
niques for accurate performance evaluation of multi-
rate, multihop communication networks. IEEE/ACM
Transactions on Networking, 5(2):266-277, April
1997.

[9] R. Guerin, A. Orda, and D. Williams. QoS routing

mechanisms and OSPF extensions. In Proceedings of

works.

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

IFEFE GLOBFECOM, Phoenix, AZ, November 1997.
Extended version appears as Internet Draft (draft-
guerin-qos-routing-ospf-03.txt), March 1998.

A. Iwata, R. Izmailov, H. Suzuki, and B. Sengupta.
PNNI routing algorithms for multimedia ATM inter-
net. NEC Reserach & Development, 38(1), January
1997.

E. L. Lawler. A procedure for computing the &k best
solutions to discrete optimization problems and its ap-
plication to the shortest path problem. Management
Science, 18(7):401-405, March 1972.

J.-Y. Le Boudec and T. Przygienda. A route pre-
computation algorithm for integrated services net-
works. Journal of Network and Systems Management,
3(4):427-449, 1995.

W. C. Lee, M. G. Hluchyj, and P. A. Humblet. Routing
subject to quality of service constraints in integrated
communication networks. [EFE Network Magazine,
pages 46-55, July/August 1995.

Q. Ma and P. Steenkiste. On path selection for traffic
with bandwidth guarantees. In Proceedings of IEEFE
International Conference on Network Protocols, At-
lanta, GA, October 1997.

Q. Ma and P. Steenkiste. Quality-of-service routing
for traffic with performance guarantees. In Proc. IFIP
International Workshop on Quality of Service, pages
115-126, Columbia University, New York, May 1997.
M. Peyravian and A. D. Kshemkalyani. Network path
caching: Issues, algorithms and a simulation study.
Computer Communications, 20:605-614, 1997.
PNNI Specification Working Group.
Network-Network Interface Specification Version
1.0. ATM Forum, March 1996. Document available
at {tp://ftp.atmforum.com/pub/approved-specs/af-
pnni-0055.000.

C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS
based routing in integrated services packet networks.
In Proceedings of IFEE International Conference on
Network Protocols, Atlanta, GA, October 1997.

A. Shaikh, J. Rexford, and K. Shin. Dynamics of
quality-of-service routing with inaccurate link-state in-
formation. Technical Report CSE-TR-350-97, Com-
puter Science and Engineering Division, University of
Michigan, Ann Arbor, MI, November 1997.

7. Whang and J. Crowcroft. Quality-of-service routing
for supporting multimedia applications. IEFE Jour-
nal on Selected Areas in Communications, 14(7):1228—
1234, September 1996.

J. Y. Yen. Finding the k shortest loopless paths in a
network. Management Science, 17(11):712-716, July
1971.

E. W. Zegura, K. L. Calvert, and S. Bhattacharjee.
How to model an internetwork. In Proceedings of IEFE
INFOCOM, pages 594-602, March 1996.

7. Zhang, C. Sanchez, B. Salkewicz, and E. S. Craw-
ley. Quality of service extensions to OSPF or qual-
ity of service path first routing (QOSPF). Internet
Draft (draft-zhang-qos-ospf-01.txt), work in progress,
September 1997.

Private

