
IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998 603

Damage Assessment for
Optimal Rollback Recovery

Tein-Hsiang Lin, Member, IEEE Computer Society, and Kang G. Shin, Fellow, IEEE

Abstract—Conventional schemes of rollback recovery with checkpointing for concurrent processes have overlooked an important
problem: contamination of checkpoints as a result of error propagation among the cooperating processes. Error propagation is
unavoidable due to imperfect detection mechanisms and random interprocess communications, and it could give rise to
contaminated checkpoints which, in turn, result in unsuccessful rollbacks. To counter the problem of error propagation, a damage
assessment model is developed to estimate the correctness of saved checkpoints under various circumstances. Using the result of
damage assessment, determination of the “optimal” checkpoints for rollback recovery—which minimize the average total recovery
overhead—is formulated and solved as a nonlinear integer programming problem. Integration of damage assessment into existing
recovery schemes is also discussed.

Index Terms—Damage assessment, error propagation, rollback recovery, checkpointing, nonlinear integer programming.

—————————— ✦ ——————————

1 INTRODUCTION

ONSIDERABLE research effort has been directed toward
rollback error recovery with checkpointing for concur-

rent processes [1], [2], [3], which requires each process to
save its intermediate state, called a checkpoint, several times
during the execution so that, upon detection of an error, it
may roll back to, and resume execution from, one of the
saved checkpoints. A major problem in such rollback recov-
ery is the rollback propagation (or domino effect) that results
from uncoordinated/asynchronous checkpoints and/or
random communications among the concurrent processes
[4], [5], [6]. Two types of solution have been proposed: syn-
chronous and optimistic approaches. A synchronous ap-
proach eliminates rollback propagation by synchronizing
both checkpoint establishments and interprocess communi-
cations among the concurrent processes, whereas an opti-
mistic approach minimizes the effect of rollback propaga-
tion by recording interprocess messages (message logging)
and replaying them during rollback recovery.

The numerous synchronous approaches proposed over the
last decade or so include rollback propagation detection [7],
[8], redundant recovery points insertion [9], [10], two-phase
commitment protocols [11], [12], [13], and pseudorecovery
points [14]. The main disadvantage of these approaches is
the coordination overhead incurred during normal opera-
tion, but their advantage is fast rollback recovery upon de-
tection of an error.

Most optimistic approaches [3], [15], [16], [17], [18], [19],
[20] assume optimistic message logging in which each pro-
cess establishes its own checkpoints independently and

saves the checkpoints and the received messages asynchro-
nously with others. Rollback propagation in these schemes
may originate from those messages which have not been
recorded by the receiver processes because they need to be
regenerated, thus causing the sender processes to roll back.
Rollback propagation could also occur if the system rolled
back to an inconsistent system state where some messages
have been recorded and will be replayed by the receiver
processes but may not be generated again by the rolled-
back sender processes due to the nondeterministic nature of
distributed systems. In such cases, the receiver processes
would have to roll back further until they reach a consistent
system state. To identify consistent system states, a depend-
ency vector is attached to every message indicating the
state of the sender process at the time of message transmis-
sion. Whenever a recorded message satisfies a certain crite-
rion, it can be discarded to free storage space since the mes-
sage won’t be needed for any future rollback recovery. Be-
cause these schemes do not eliminate rollback propagation
completely, their disadvantage is a slower recovery than the
synchronous approach in case an error is detected. Their
advantage is the small overhead during normal operation,
because checkpointing and message logging can be done
asynchronously.

Besides rollback propagation, another major problem
which has been overlooked in the existing approaches is
error propagation as a result of random interprocess commu-
nications and incomplete detection coverage [21]. All the
schemes mentioned above are based on the assumption that
errors are detected immediately upon their occurrence. Un-
der this assumption, the information contained in each
checkpoint is always correct, because an error would oth-
erwise have been detected before the checkpoint is saved.
The benefits of this assumption (perfect detection coverage)
are twofold: less secure storage space and less recovery
overhead. A checkpoint can be discarded immediately as
soon as the most recent consistent recovery line goes past it.

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� T.-H. Lin is with Microtec/Mentor Graphics, 2350 Mission College Blvd.,
Santa Clara, CA 95054. E-mail: Michael.Lin@mri.com.

•� K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI” 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received 24 June 1994; revised 8 Jan. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106498.

C

604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

However, it is practically impossible to achieve perfect cov-
erage of error detection. The penalty for making such an
unrealistic assumption is the global restart—restart from the
very beginning—required when a saved checkpoint is
found to be incorrect. This procedure is acceptable only if
the global restart is not very expensive and/or the cost of
keeping several checkpoints is very high.

There are, however, a class of applications where the
global restart is very expensive and the cost of keeping
more than one checkpoint is low. For such applications, one
must minimize the occurrence of global restarts by keeping
multiple checkpoints. Under imperfect error detection, the
key issues are to assess damages (caused by errors before
their detection) and determine “optimal” rollback points
using the results of damage assessment.

Damage assessment refers to the evaluation of the cor-
rectness of checkpoints in each process. Whether a check-
point is correct or not can never be known for sure until it is
actually used for error recovery. But, it is possible to esti-
mate the time when a process became contaminated based
on the information obtained from error detection and fault
diagnosis mechanisms. The probability of a checkpoint be-
ing incorrect can then be determined under the assumption
that the checkpoints established in a process after it became
contaminated are incorrect. We develop a new method for
damage assessment on the basis of our earlier results on
error propagation [21] and fault diagnosis [22], [23]. Be-
cause of the probabilistic nature of damage assessment, the
success of any rollback recovery cannot always be guaran-
teed and, thus, other recovery mechanisms, such as the
global restart, should always be provided in case of unsuc-
cessful rollbacks. Using the result of damage assessment,
one can determine the optimal rollback points by minimiz-
ing the average recovery overhead, which is based on the
overheads of the rollback recovery and the global restart,
and the probabilities of incorrect checkpoints.

The paper is organized as follows. In Section 2, damage
assessment is carried out by deriving the distributions of
contamination times of individual processes. Three differ-
ent cases are considered for this derivation. In Section 3, the
problem of determining the optimal rollback points is for-
mulated and solved as a nonlinear programming problem.
In Section 4, we discuss how to integrate damage assess-
ment into an existing optimistic scheme of rollback recov-
ery. The paper concludes with Section 5.

2 DAMAGE ASSESSMENT

In this section, a method of damage assessment is devel-
oped by probabilistically characterizing the interval be-
tween the occurrence and the detection of an error using
parameters associated with faults and errors.

A fault is defined as any defect capable of causing poten-
tial damage, or any deviation from the normal state of a
computing system. An error is deviation from the specifica-
tion of a program running on a computing system. Con-
sider a multimodule computing system, where the proc-
esses communicate with one another via message passing.
Each process is assumed to run on a separate module and,
thus, the term “module” will mean a hardware module or

the process running on it. The computing system can be

represented by a digraph, D = (V, E), where V = {v1, º, vN}

denotes the set of nodes, and E = {eij, 1 £ i, j £ N} denotes the
set of directed edges. Each node in V represents a module

in the system, and a directed edge eij represents the com-

munication channel via which vi can send messages to vj. A
module is said to be faulty if it contains faults, and contami-

nated if it contains errors. Let Ti
F , the vi’s faulty time, denote

the time instant a fault occurs in vi. Let Ti
C , the vi’s contami-

nation time, denote the time instant the first error occurs in

vi as a result of either the manifestation of a fault within vi

or the propagation of error(s) from other module(s). Then,
damage assessment can be viewed as the estimation of the
distributions of all modules’ contamination times.

Faults are detected directly by periodic diagnostics or
fault detection mechanisms, such as self-checking circuits.
Errors, on the other hand, are detected by error detection
mechanisms, such as acceptance tests, capability checks,
and time-outs. Upon detection of an error, a fault location
procedure is called for to identify the faulty module. (Note
that, in the absence of error propagation, the fault location
procedure is not needed.) In the discussions below, we as-
sume that there is only one faulty module to simplify
mathematical derivation. Based on when and how a detec-
tion is made, damage assessment is carried out separately
in the following three cases:

Case 1: An error is detected and the faulty module is
identified.

Case 2: An error is detected but the faulty module is not yet
identified.

Case 3: A fault is detected by periodic diagnostics.

When a fault is detected by a self-checking circuit, instruction
retry is a better recovery scheme than rollback [24], [25].

The accuracy of damage assessment depends on the in-
formation collected from detection and diagnosis mecha-
nisms. This information includes the location of the faulty
module and the error syndrome 6, expressed as

6 = v t v tb b ss1 1, ; ; ,K ,

where v vb bs1
, ,K are the modules which have detected

error(s), and t1, º, ts are the times at which the respective
modules detected their first error. The modules which have
not detected any error will be denoted by v vw wN s1

, ,K
-

. In

Case 1, both the error syndrome and the faulty module are
known. In Case 2, only the error syndrome is available. In
Case 3, the faulty module is known, but the error syndrome
is not.

Let Di(t) denote the conditional probability that vi’s con-
tamination time is no later than t, given the information
necessary for damage assessment, and let di(t) denote the
density function of Di(t). Damage assessment is actually the
derivation of di(t), 1 £ i £ N. These functions will be used in
the next section to determine the optimal rollback points by
minimizing the average total recovery time.

LIN AND SHIN: DAMAGE ASSESSMENT FOR OPTIMAL ROLLBACK RECOVERY 605

2.1 Modeling Error Propagation
We briefly describe an error propagation model which is
instrumental in the derivation of di(t)’s. The parameters
defined in this model are random variables with certain
distributions unless explicitly defined otherwise. For a de-
tailed account of this model, see [21] and [22].

The rate of fault occurrence in module vi is characterized
by its fault cycle, denoted by Yi, which is the time interval
between two consecutive fault arrivals at vi. If vi is the
faulty module, then the fault latency of vi, denoted by Li, is
the interval between vi’s faulty time and contamination
time.

Errors in one module can propagate to other modules
via propagation paths, which are communication paths from
the source to the destination with distinct intermediate
modules. Errors propagating into an already contaminated
module are assumed to have negligible effects on its error
propagation property (see [21] for a justification of this as-
sumption). The error propagation time from vi to vj, denoted
by Xij, is defined as the time interval between the contami-
nation times of vi and vj. The error propagation times will
be derived from Bij, which is defined as the time for an error
to propagate from vi to one of its neighbors, vj, via a direct
communication channel between them. Bij’s are assumed to
be independent of each other. The relationship between Xijs
and Bijs is obtained as follows: First, identify all propaga-
tion paths and calculate the error propagation time of each
path by summing up the Bijs along the path. Then, Xij is the
minimum propagation time among all the paths from vi to
vj. For example, for a system represented by graph D1 in
Fig. 1,

X13 = min (B12 + B23, B14 + B45 + B53, B14 + B45 + B52 + B23,

B12 + B24 + B45 + B53).

The distributions of Xijs can be derived from those of Bijs
systematically and efficiently, as shown in [21].

Based on the types of detection mechanism used, faults
in a module are classified into three categories:

1)�FD-detectable if they can be uncovered by signal-level
fault detection mechanisms [26],

2)�PD-detectable if they are not FD-detectable but are de-
tectable by periodic diagnostics, and

3)�undetectable if they are neither FD-detectable nor PD-
detectable.

A signal-level fault detection mechanism has the property
that faults are detected immediately upon their occurrence
[26]. If a fault is detected in a module during periodic diag-
nostics, errors might already have been induced and
propagated to other modules. An undetectable fault can be
captured only during the fault diagnosis after the errors
induced by this fault are detected by some detection
mechanisms. The probabilities for any fault to be FD-
detectable and PD-detectable, denoted by Ci

F and Ci
P , re-

spectively, are assumed to be fixed and known.
Error detection in a module vi is characterized by Ki, the

detection latency of vi, defined as the time interval from the
vi’s contamination time to its detection time, which is the
time the first error detection is made. The distribution of Ki
depends on the error detection mechanisms used in vi.

2.2 Damage Assessment for Case 1

Both 6 and the faulty module vk are known in this case.

Damage assessment will start from vk, the source of errors.

To derive dk(t), it is essential to calculate

1)� fk
TC

, the density function of Tk
C without considering

the error syndrome, and

2)� the error syndrome’s conditional likelihood /k(6, t),

which is the conditional probability of 6 given that vk

is the faulty module and Tk
C = t .

Let Tk
D denote the time of vk’s last complete diagnosis

and Tk
P denote the time of vk’s last periodic diagnostic. A

complete diagnosis is assumed to have 100 percent cover-

age so that vk should be fault-free immediately after Tk
D ,

which can be as early as Tk
Y , the last faulty time, if no com-

plete diagnosis has been applied since then. In vk, only un-

detectable faults could occur between Tk
D and Tk

P , but both
PD-detectable and undetectable faults could occur between
Tk

P and t1, the time of the first error detection. Therefore,

the density function of Tk
F is expressed as

f t
f t T T t T

f t T T t t
k
T

C C

W k
Y

k
Y

k
D

k
P

C

W k
Y

k
Y

k
P

F
k
F

k
P

k

k
F

k

a f e j

e j

e j

e j
=

- £ <

- £ <

R
S
||

T
||

- -

-

1

1

1

if

if ,

where fk
Y ()◊ is the density function of Yk and Wk is the nor-

malizing constant. The density function of Tk
C is evaluated as

f t f t f tk
T

k
T

k
LC Fa f a f a f= * ,

where “*” denotes the convolution, since Tk
C = Tk

F + Lk.
Define Ekj, the error latency from vk to vj, as the time in-

terval from the vk’s contamination time to the vj’s detection
time, i.e.,

Ekj = Xkj + Kj.

If k = j, then Ekj = Kj. Propagation of errors from a faulty
module vk into other modules is characterized by the joint
distribution of Ek1, Ek2, º, and EkN and, thus, the error syn-
drome’s conditional likelihood can be calculated as

Fig. 1. System graph D1.

606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

/ 6i ib ib s iw

iw

E t E t E

T E T

s

N s

, , , ,

, , ,

t t t

t t

a f = = - = - >

- > -
-

Prob
1 11 K

K

where T is the current time instance at which damage as-
sessment is done. Using the Bayes’s equation, dk(t) is de-
rived as

d
t t t

k
k k

T

k k
T

T

tt
t f t

f d

C

C

k
D

a f a f a f
a f a f

=
z

/ 6

/ 6

,

,
1

.

To estimate the damage on module vj, j π k, first calculate

/ 6kj k j(, ,)t t , the likelihood of 6 when Tk
C

k= t and Tj
C

j= t .

Obviously, / 6kj k j(, ,)t t = 0 if min(,)t Tj k k
D

1 t t< < , and for

T tk
D

k j< <t tmin(,)1 ,

/ 6kj k j kj j k

kb
j

j k k

kb
j

j k s k

kw
j

j k k

kw
j

j k k

X

E t

E t

E T

E T

s

N s

, , ,

, ,

,

, ,

,

t t t t

t t t

t t t

t t t

t t t

e j
e j
e j
e j
e j

= = -

- = -

- = -

- > -

- > -
-

Prob

1

1

1 K

K

where E s X s Kki
j

ki
j

i() ()= + and X ski
j () is the error propaga-

tion time from vk to vi under the condition that Xkj = s. In

other words, X ski
j () can be viewed as a special case of Xki

with two sources of errors. One source is vk, from which

errors propagate to vi via all possible paths between vk and

vi except for those passing through vj. The other source is vj,

which starts the propagation of error to vi via all possible

paths between vj and vi at s time units after vk became
faulty. This interpretation simplifies the evaluation of
X ski

j () . For example, in graph D1 of Fig. 1, X s13
4 () can be

evaluated as

X s B B s X

B B s B B s B B B

13
4

12 23 43

12 23 45 53 45 52 23

a f m r
m r

= + +

= + + + + + +

min ,

min , , .

With the knowledge of / 6kj k j(, ,)t t for all tk and tj,

d
t t t

t t t t t

t t t

t t t

j

kj k k
T

k kT

t

kj k j k
T

k k jT

t

T

kj k k
T

k kT

t

k k k
T

k kT

t

t
t f d

f d d

t f d

f d

C

k
D

C

k
D

k
D

C

k
D

C

k
D

a f
c h c h

c h

c h c h

c h c h

=

=

z
zz

z
z

•

/ 6

/ 6

/ 6

/ 6

, ,

(, ,)

, ,

,
.

1

1

Note that the expressions of dk(t) and dj(t) have the same
denominator.

As an example, consider a system represented by D1 in
Fig. 1 and a error syndrome 6 = [v2, 0]. We carried out simu-
lation to determine all the likelihoods and the functions Dis

for this syndrome under different assumptions of the faulty
module. All random parameters, except Bijs, are assumed to
be exponentially distributed. Bij is assumed to have a bi-
modal normal distribution, i.e.,

Bij
ij ij ij

ij ij ij

=
-

R
S|
T|
1

1

m s h

m s h

1 1

2 2 1

,

, ,

e j
e j

with probability

with probability

where 1(m, s) denotes a normally-distributed random
variable with mean m and standard deviation s. The specifi-
cation and derivation of Ki’s distribution were discussed in
[22] and, thus, will not be repeated here. The parameters
used in the simulation are tabulated in Tables 1 and 2,
where all time variables are assumed to have the same unit
with the current error detection time set to zero.

The details of the simulation were reported in [22]. Some
results of Dis are plotted in Figs. 2 and 3, where the faulty
module is v1 and v2, respectively. In Fig. 3, D3 and D4 are
almost identical because the respective parameters are
identical and both v3 and v4 are only one-hop away from v2.
The same can be said about D1 and D5.

2.3 Damage Assessment for Case 2
In this case, damage assessment must be made without any
knowledge on the location of the faulty module. One ex-
ample is when error recovery and fault location are carried
out in parallel. Another example is when the fault diagnosis
routine fails to locate the faulty module due to either the
occurrence of a transient fault or insufficient coverage of the
diagnosis routine.

Let pi represent the vi’s faulty probability without con-

sidering the error syndrome. These pis are our subjective
belief in locating the faulty module. If damage assessment

is performed upon detection of an error, pi is the same as
the prior faulty probability ¢p i determined by

TABLE 1
DISTRIBUTION OF RANDOM PARAMETERS FOR ALL i AND j

Variable Distribution Parameters

Yi Exponential Mean = 100,000

Li Exponential Mean = 40

Bij Bimodal Normal hij = 0.6

m sij ij
1 140 25= =,

m sij ij
2 280 60= =,

TABLE 2
PARAMETERS FOR THE FAULTY MODULE vk

Module Ck
F Ck

P Tk
Y Tk

D Tk
P

1 0.4 0.4 -100,000 -50,000 -600
2 0.4 0.4 -100,000 -40,000 -700
3 0.4 0.4 -100,000 -30,000 -800
4 0.4 0.4 -100,000 -20,000 -900
5 0.4 0.4 -100,000 -10,000 -1,000

LIN AND SHIN: DAMAGE ASSESSMENT FOR OPTIMAL ROLLBACK RECOVERY 607

¢ =

- - -

- - -
F
H
GG

I
K
JJ

= π

= π=

’

’Â
p i

i
Y

i
Y

j
Y

j
Y

j j i

N

j
Y

j
Y

j
Y

j
Y

j j i

N

j

N

F T T F T T

F T T F T T

e j e je j

e j e je j

1

1

1,

1,1

,

where F T T F T Ti
Y

i
Y

j
Y

j
Y

j j i

N
() (())- - -

= π’ 1
1,

 is our relative

suspicion of vi being the faulty module.
On the other hand, if damage assessment is performed

after fault diagnosis, pi is determined by

p p pi i i j jj

N
- ¢ - ¢ -

=Â() ()1 1
1

F F ,

where Fi is the coverage of the diagnosis routine applied to
vi. (1 - Fi) can be interpreted as the likelihood of vi being
faulty but misdiagnosed to be nonfaulty. Using pis as the
weighting factors, dj(t), 1 £ j £ N, is derived as

d
p t t t

p t t t
j

k
k

N

kj k k
T

k kT

t

k
k

N

k k k
T

k kT

t
t

t f d

f d

C

k
D

C

k
D

a f
c h c h

c h c h
= =

=

Â z
Â z

1

1

1

/ 6

/ 6

, ,

,
.

2.4 Damage Assessment for Case 3
This case arises when a periodic diagnostic detects a fault in

vk. It implies that the fault may have occurred any time
between the present and the previous periodic diagnostic
completed at Tk

P . If the fault had occurred before Tk
P , it

would have been detected by the previous periodic diag-

nostic. Using the Bayes’ equation, the distribution of vk’s
faulty time in this case is derived as

f t
f t T F T t

f T F T d

T t T

k
T k

Y
k
Y

k
Y

k
Y

k
Y

k
Y

T

T

k
P

F

k
P

a f e j a fe j
e j a fe j

=
- - -

- - -

£ £

z
1

1t t t

for ,

Fig. 2. D functions when 6 = [v2, 0] and vk = v1.

Fig. 3. D functions when 6 = [v2, 0] and vk = v2.

608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

where T is the fault detection time. If Yk is exponentially dis-

tributed, Tk
F can be shown to be distributed uniformly over the

interval [,]T Tk
P . The function f tk

TC
() is then calculated as the

convolution of f tk
T F

() and f tk
L() , since T T Lk

C
k
F

k= + .
Though no error syndrome is available in this case, the fact

that no errors have been detected so far is useful information.
Let / (, ,)T k jt t be the likelihood of no error detection up to

time T under the condition that Tk
C

k= t and Tj
C

j= t , where

vk is the faulty module and tk £ tj. It is easy to see that

/kj k jT(, ,)t t = 1 if tk > T. For tk £ T,

/kj k j kj j k k
j

j k

k kN
j

j k k

T X E

T E T

(, ,) ,

, , .

t t t t t t

t t t t

= = - - >

- - > -

Prob 1e j

e jK

The function dk(t) for T t Ti
P £ £ is, thus, derived as

d
t t t t

t t t t

k
kk k

T

kk k k k
T

k kTT

kk k
T

k
T

kk k k k
T

k kT

T

t
T t t f t

T f d

T t t f t

F T T f d

C

C

k
P

k
P

C

C C

k
P

a f a f
c h

a f
a f c h

=

=
-F

H
I
K +

•• zz

z

/

/

/

/

(, ,)

(, ,)

(, ,)

(, ,)
.

1

And, for 1 £ j £ N, jπ k,

d
t t t

t t t t t

t t t

t t t t

j

kj k k
T

k kT

kj k j k
T

k k jT

t

T

k
T

kj k k
T

k kT

T

k
T

kk k k k
T

k kT

T

t
T t f d

T f d d

F T T t f d

F T T f d

C

k
P

C

k
P

k
P

C C

k
D

C C

k
P

a f
c h

c h

a f c h

a f c h

=

=
-F

H
I
K +

-F
H

I
K +

•

•

z
zz

z
z

/

/

/

/

(, ,)

(, ,)

(, ,)

(, ,)
.

1

1

2.5 Remarks

The derivation of di(t)s in all three cases requires the knowl-

edge of f ti
TC

() and some likelihood functions such as /k, /kj,
or /kj . It is very complex to derive these likelihoods ana-

lytically and, thus, these likelihood functions are usually
calculated numerically. Since even the numerical solution
requires an excessive amount of time, the likelihood func-

tions are computed off-line. However, the function di(t) has

to be derived on-line since f ti
TC

() depends upon on-line
information, such as the elapsed time from a previous fault
and the elapsed time from the previous periodic diagnostic.

If the situation does not allow for on-line derivation of di(t),

di(t) can be determined off-line using the noninformative

prior function in place of f ti
TC

() . The noninformative prior
function is usually a uniform density function, i.e., a faulty
module could be contaminated any time prior to the detec-
tion time with an equal probability.

2.5.1 List of Symbols

F fi
V

i
V() Distribution (density) function of the random vari-

able Vi.

fi
V Density function of the random variable Vi.

Yi Fault cycle of vi.

Li Fault latency of vi.

Ci
F Coverage of fault detection in vi.

Ci
P Coverage of periodic diagnostics in vi.

Bij Direct propagation time from vi to vj.

Xij Error propagation time from vi to vj.

Ki Detection latency in vi.

Hi Hypothesis of vi being the faulty module.

¢p pi i() Prior (posterior) Prob[Hi].

pi Posterior Prob[Hi].
6 Fault syndrome.

/i(6) Fault syndrome’s likelihood function if Hi is true.

Eij Error latency for the error originated from vi and

detected in vj.

Ti
Y Last time a repair was done on vi.

Ti
D Last time a thorough diagnostic was applied to vi.

Ti
P Last time a periodic diagnostic was applied to vi.

Ti
C The contaminating time of vi.

Ti
F The faulty time of vi.

Fi Percentage of faults that the diagnosis routine can

uncover in vi and fi = dFi/dt.

3 OPTIMAL ROLLBACK POINTS

In this section, we will determine the optimal rollback
points for rollback recovery using the results from damage
assessment.

Let T denote the current time. For the convenience of
problem formulation, T is designated as the origin of the
time axis and all events are enumerated backward from T.
For example, the kth checkpoint (message) means the kth
previous checkpoint (message) from T. Let cpi

k be the time

vi established the kth checkpoint, and ri
k be the time vi re-

ceived the kth message. If vi rolls back to the kth checkpoint,

then vi’s rollback distance is defined as

d k T cpi i
kb g = - . (3.1)

The probability that vi can successfully roll back to the kth

checkpoint is denoted by pi(k). Note that pi(k) is the same as

the probability that vi is contaminated after cpi
k . Hence,

p k d cpi icp i i
k

i
kb g a f e j= = -

•z d t t 1 D . (3.2)

The above equation holds only when vi is the faulty mod-

ule. If vi is not the faulty module, its contamination is

LIN AND SHIN: DAMAGE ASSESSMENT FOR OPTIMAL ROLLBACK RECOVERY 609

caused by incoming message(s) from other module(s), i.e.,

error propagation. Since vi receives messages only at ri
n , n ≥ 1,

if vi is not the faulty module and r cp ri
n

i
k

i
n< < +1 , then

p k ri i i
nb g e j= -1 D .

There is one exception, however; if an error has been de-

tected in vi and vi has received no messages since cpi
k , then

pi(k) = 0.
Define the overhead of rollback recovery as the sum of

the rollback distances (dis) in all modules, which is the total
computation to be redone. Our object is to minimize the
mean recovery overhead, denoted by O. Let Z denote the
total overhead for a global restart which will be invoked in
case rollback recovery fails. Rollback recovery will eventu-
ally fail if any module of the system rolls back to an incor-
rect checkpoint. Thus, the probability of successful rollback
recovery is the product of the probability that each mod-
ule’s rollback point is correct. Hence, O can be expressed as

O p k d k p k d k Zi i
i

N

i i
i

N

i i
i

N

i i
i

N

=
F
HG

I
KJ

+ -
F
HG

I
KJ

+
F
HG

I
KJ= = = =

’ Â ’ Âc h c h c h c h
1 1 1 1

1

= + -
F
HG

I
KJ= =

Â ’d k p k Zi i
i

N

i i
i

N

c h c h
1 1

1 , (3.3)

where ki is a nonnegative integer indicating the rollback
point of vi. There is an upper limit, say Ci, for ki, 1 £ i £ N,
because each secure storage will have a limited capacity.
The optimal rollback problem is then stated as follows:

Minimize

subject to for

d k p k Z

k C i N

i i
i

N

i i
i

N

i i

c h c h
= =
Â ’+ -

F
HG

I
KJ

£ £ £
1 1

1

1 .

This is a nonlinear integer programming problem.
Integer programming problems are in general very diffi-

cult to solve. Most of existing algorithms, such as cutting
plane methods and enumerative search methods, are appli-
cable only if the objective function is a linear function. To
develop an algorithm for a nonlinear integer programming
problem, we have to find and utilize some special proper-
ties of the object function O. One useful property is the
convexity of O. If pi is expressed as in (3.2), O can be viewed
as a continuous function of dis. The following lemma then
provides the necessary and sufficient condition for the con-
vexity of O.

LEMMA 1. O is convex with respect to di if and only if di(t), t =
T - di, is monotonically increasing.

PROOF. From (3.3),

∂
∂

∂
∂

O
d

p
d

Z p
i

i

i
j

j j i

N

= -
= π
’1
1,

and

∂

∂

∂

∂

2

2

2

2
1,

O

d

p

d
Z p

i

i

i
j

j j i

N

= -
= π
’ .

O is convex with respect to di if and only if ∂

∂

2

2 0p

d
i

i
< ,

since both Z and pj are positive. From (3.1) and (3.2),

∂
∂ d

∂
∂ d

p
d

t
t
d

ti

i
i

i
i= - =a f a f

and

∂

∂
d

2

2

p

d
ti

i
i= - ¢a f .

Thus, ∂

∂

2

2 0p

d
i

i
< if and only if ¢ >d i t() 0 , i.e., if di(t) is

monotonically increasing. o

In general, di(t) may not be monotonically increasing for
t Œ [-•, •]. But, there must exist Ti such that di(t) is mono-
tonically increasing for t Œ [-•, Ti], since di(t) Æ 0 as t Æ -•.

Based on the convexity of O, the following algorithm is
developed to solve the optimal rollback problem.

Algorithm RB:

1)�For 1 £ i £ N, let ki be the smallest integer with the

property cp Ti
k

i
i < .

Let ki := Ci if ki > Ci, and Y p k Zi i
i

N

: ()=
F
HG

I
KJ=

’
1

.

2)�Let S := {i : ki < Ci}.
If ki = Ci "i Œ S, then go to Step 6.

3)�"i Œ S, let yi := d di - (ri - 1)Y where

d

r
d

d

d d k d k

p

p k

p p k p k

i i i i i

i
i

i i

i i i i i

: ,

: ,

: .

= + -

= +

= + -

1

1

1

c h c h

c h
c h c h

.

4)�If yi ≥ 0 "i Œ S, then go to Step 5.
Otherwise, "i Œ S where yi < 0, let ki := ki + 1 and Y := riY.
Go to Step 2.

5)�For any A Ã S, let D A d Yi
i A

i
i A

() : = - -
F
HG

I
KJŒ Œ

Â ’d r 1 .

Find a set S* Ã S such that D(S*) < 0.
If such an S* does not exist, then go to Step 6.

Otherwise, "i Œ S*, let ki := ki + 1 and Y := riY.
Go to Step 2.

6)�Terminate the algorithm.
The current value of ki, 1 £ i £ N, is the optimal recov-
ery point for vi.

RB is essentially an algorithm which searches from

smaller kis toward larger kis. In Step 1, ki is initialized to the

smallest value that will put the corresponding cpi
k inside

the convex region of the function O with respect to ki. By

Lemma 1, the optimal solution for kis is obtained when O
cannot be reduced any further by incrementing any subset

of kis. If ki reaches its limit Ci before the minimum O is

reached, the optimal solution for ki will be Ci. If all kis reach
their limits during the search, RB terminates immediately
(Step 2).

The search in RB is conducted in two levels. In the first
level (Steps 3 and 4), we check whether incrementing a

610 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

legitimate ki (i.e., ki < Ci) would result in a smaller mean
overhead. The set S defined in Step 2 is the set of all legiti-
mate ki’s at that moment. The variable yi is actually the dif-
ference in O with ki and ki + 1, i.e.,

yi = O(º, ki + 1, º) - O(º, ki, º).

If all yis are greater than zero, the next level of search is per-
formed in Step 5. If at least one yi is negative, all kis with a
negative yi will be incremented by one, which will yield an
even smaller mean overhead because of the following lemma.

LEMMA 2. Let yi, 1 £ i £ N, be defined as in Step 3 of RB. If yi < 0
and yj < 0, then

O(º, ki + 1, º, kj + 1, º) < O(º, ki, º, kj, º).

PROOF. Let ddi = di(ki + 1) - di(ki) and dpi = pi(ki + 1) - pi(ki) for
1 £ i £ N. Then,

O k k

d k d d

p k p p k p p k Z

O k k y y p p p k Z

O k k

i j

i i i j
i

N

i i i j j j n n
n n i j

N

i j i j i j n n
n n i j

N

i j

K K K

K K K

K K K

, , , ,

, , , ,

, , , , ,

,

,

+ +

= + + +

- + +
F
H
GG

I
K
JJ

= + + -

<

=

= π

= π

Â

’

’

1 1

1

1

1,

1,

e j

c h

c hd i e je j c h

e j c h

e j

d d

d d

d d

since yi < 0, yj < 0, and d dp p p k Zi j n n
n n i j

N

()
,= π

’ >
1,

0 . o

Even if O cannot be reduced any further by incrementing
any single legitimate ki, it is still possible to reduce O fur-
ther by incrementing a subset of S. If such a subset (i.e., S*)
exists, it would be found in Step 5. The function D(A) in
Step 5 is the difference in O with kis and ki + 1s, "i Œ A.
Finding an S* is not a trivial task because the number of
subsets increases exponentially with the number of legiti-
mate kis. A branch-and-bound (B&B) algorithm is, thus,
developed below either to find an S*, if it exists, or to show
that it does not exist.

Let Sn(A) represent any set with n elements which is both

a subset of S and superset of A. In other words, �Sn(A)� = n

and A Ã Sn(A) Ã S, where �X� denotes the cardinality of the
set X. The elements of S will be sorted in two lists: one

based on ddi and the other based on ri so that the sets de-
fined below can be easily determined. For any A Ã S and n
£ �S�, let S A nmax

r (,) be defined such that

(1) A S A n S A n nÃ =max max
r r, ,a f a f and ,

(2) r r r r
i j i S A n A j S S A n≥ Œ - Œ - for any and max max, ,a f a f ,

and let S A nd
min(,) be defined such that

(i) A S A n S A n nd dÃ =min min, ,a f a f and ,

(ii) d dd d i S A n A j S S A ni j
d d£ Œ - Œ - for any and min min, ,a f a f .

For A Ã S and n ≥ �A�, define

w A n d Yi
i S A n

i
i S A nd

,
, ,

a f
a f a f

= - -
F

H
GG

I

K
JJ

Œ Œ
Â ’d r

r
min max

1 ,

and it can be shown easily that w(A, n) £ D(Sn(A)). With
the above definitions, we now present the following B&B
algorithm.

Algorithm BB:

1)�Let n := �S�.
2)�If n = 1, the algorithm terminates and it is concluded

that S* does not exist.
3)�Let A S n S nn

d: (,) (,)= ∆ « ∆min max
r , where ∆ denotes the

empty set.
4)�If w(An, n) ≥ 0, let n := n - 1 and go to Step 2.
5)�If �An� = n, the algorithm terminates with S* := An.
6)�Examine all subsets of S - An with n - �An� ele-

ments using a depth-first search to find a set R with
D(An < R) < 0.
Whenever such an R is found, the algorithm termi-
nates with S* := An < R.
Otherwise, let n := n - 1 and go to Step 2.

The basic strategy in finding an S* is to classify subsets
of S based on the cardinality of each subset and, then,
search within each subset class for a possible solution. The
subset class with the most number of elements is searched
first. If no solutions are found in all subset classes, we con-
clude that S* does not exist. In searching the subset class
with n elements, An Ã S* can be assumed to shorten the
search according to the following lemma.

LEMMA 3. If an S* exists and �S*� = n, then there must exist a
set S¢ with n elements such that D(S¢) < 0 and

A S n S n Sn
d= ∆ « ∆ Ã ¢min max, ,a f a fr .

PROOF. If An Ã S*, the proof is trivial since we can let S¢ = S*.

If A Sn À * , then, by the definitions of Sd
min and Smax

r ,

we can find a set A¢ Ã S* with �An� elements such

that d dd dii A jj AŒ Œ ¢Â Â£ and r rii A jj AŒ Œ ¢’ ’≥ .

The lemma is proved by letting S¢ = (S* - A¢) < A,
since

0 1

1

> = - -
F
H
GG

I
K
JJ

≥ - -
F
H
GG

I
K
JJ

= - ¢ »

Œ - ¢ Œ ¢ Œ - ¢ Œ ¢

Œ - ¢ Œ Œ - ¢ Œ

Â Â ’ ’

Â Â ’ ’

D S d d Y

d d Y

D S A A

i
i S A

j
j A

i
i S A

j
j A

i
i S A

j
j A

i
i S A

j
j A

*

* .

* *

* *

a f

a fc h

d d r r

d d r r

o

Since w(An, n) is the lower bound of D(Sn(An)) "Sn(An),
S* cannot exist in the subset class with n elements if w(An, n)
≥ 0. This property will be applied during the depth-first
search to minimize the search time. To illustrate this, suppose
n = 5, �An� = 2, and S - An = {1, 2, 3, 4, 5}. The objective is to

LIN AND SHIN: DAMAGE ASSESSMENT FOR OPTIMAL ROLLBACK RECOVERY 611

find a set R with 3 elements and D(An < R) < 0. The depth-
first search tree in this case is shown in Fig. 4, where the
subscript of R denotes the search sequence. If for any non-
leaf set Ri in the tree w(An < Ri, n) ≥ 0, then it is not neces-
sary to search the children sets of Ri. For example, if w(An <
R1, n) ≥ 0, then the next set to examine would be R10, skip-
ping all the sets between them.

We now present an example of the optimal rollback re-
covery problem using the results of damage assessment in
Figs. 2 and 3.

EXAMPLE. Consider the system represented by D1 in Fig. 1.
Let 6 = {v2, 0} and the total global restart overhead be
1,200. The rollback distances of all recovery points are
tabulated in Table 3. We assume that there are only six
recovery points for each module, so Ci = 6 "i. Each
module’s probability of successful rollback is ob-
tained from Figs. 2 and 3. Results obtained from ap-
plying Algorithms RB and BB are summarized in Ta-
ble 4.1 Note that if the faulty module and the error-
detecting module are farther apart, the mean over-
head will generally be higher because modules’ con-
taminating probabilities are usually larger. Another
interesting observation is that we have yet to discover
a case where BB finds an S*. It appears that, in most
cases, if O cannot be reduced by incrementing any
single legitimate ki, it will not be reduced by incre-
menting a subset of ki. Therefore, using the bounding
function w(A, n) becomes very beneficial, since it can
speed up the termination of BB.

The optimal recovery points obtained in the above ex-
ample produce a much larger total rollback distance than
what other optimistic approaches would have produced.
But, in view of the facts that

1. The data for the case of v5 being the faulty module are obtained by
simulation similarly to the other two cases.

1)�detection mechanisms are imperfect, and
2)� checkpoints that may have been contaminated are

considered,

our solution should outperform other optimistic ap-
proaches in the sense of minimizing the mean recovery
overhead.2 Actually, our solution will be identical to an op-
timistic solution if the detection mechanisms in every mod-
ule are perfect.

4 DAMAGE ASSESSMENT FOR OPTIMISTIC
ROLLBACK

Many rollback recovery schemes have been proposed for
distributed systems over the last decade or so, but none of
them have considered corrupted checkpoints and damage
assessment. Thus, the focus of this section is to show how
to integrate damage assessment with existing checkpoint-
ing schemes, especially the optimistic message logging and
checkpointing schemes such as the one proposed by John-
son and Zwaenepoel [18].

In general, any rollback recovery scheme equipped with
damage assessment should comply with the following
steps after detecting an error.

1)�Damage assessment: Using the algorithms for deter-
mining the optimal rollback points as derived in the
previous section, compute a set of checkpoints which
are safe to rollback to, while considering the overall
overhead.

2)�Cancellation of corrupted messages: All checkpoints es-
tablished after the set of safe checkpoints are consid-
ered to have been corrupted. Hence, all messages sent
after a corrupted checkpoint are also corrupted and
should be removed from the receiver’s stable storage if
they have been logged. Furthermore, all messages sent
after the receipt of a corrupted message are considered
corrupted and must be canceled as well. The messages
sent between a safe checkpoint and its next checkpoint
are considered correct if they have not been canceled.
In some rare event, rollback may propagate from a
safe checkpoint if one of the messages received before
the establishment of the safe checkpoint has been can-
celled.

3)�Search for a recoverable system state: The system will
likely be in a recoverable state after canceling all cor-
rupted messages, since most messages would have
been logged if they can survive the cancellation. If not,
a new recoverable system state must be determined
from the current state.

4)�Recovery: Roll back to the derived recoverable system
state. The system will recover successfully if this sys-
tem state is indeed not corrupted as predicted in the
damage assessment.

In Johnson and Zwaenepoel’s scheme [18], a search algo-
rithm, FIND_REC, based on a known recoverable state, is
proposed to check if a new state developed afterwards is a
recoverable system state. The initial state of the system is
obviously recoverable. Since then, whenever the system

2. Direct comparison between our solution and others is not possible,
though, because none of the others considered these two facts.

Fig. 4. A depth-first search tree.

612 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

moves into a new state, FIND_REC is called in to determine
if it is recoverable. If the new state is recoverable, it be-
comes the latest recoverable system state, replacing the
previous one. Thus, a series of recoverable system states
will be derived during normal operation and can be stored
in stable storage. Later, when an error is detected, this
knowledge can greatly simplify the search for the latest
recoverable system state before the current state is estab-
lished by damage assessment and message cancellation.
The FIND_REC algorithm can be invoked here using one of
known past recoverable system states closest to the current
state as the base.

Damage assessment can be integrated differently into an
existing recovery scheme. However, the problem of finding
the optimal checkpoints in the previous section will have to
be reformulated under different assumptions and con-
straints. For example, a more efficient damage assessment
for Johnson and Zwaenepoel’s scheme [18] can take ad-
vantage of the series of recoverable system states derived
during normal operation. Instead of rolling back to any
combination of checkpoints, we need to evaluate only the
success rate and the overhead of rolling back to these past
recoverable system states. The optimization is much sim-
pler and there is no need for canceling messages and
searching for a new recoverable state.

The main difficulty of integrating damage assessment
into an existing rollback recovery scheme is the size of sta-
ble storage. Without considering error propagation, when-
ever a checkpoint becomes part of a recoverable system
state, all messages received before the checkpoint can be
safely discarded from the stable storage. With damage as-
sessment, however, checkpoints and messages must be kept
in the stable storage for a longer period, thus requiring a
larger stable storage. This is the cost one has to pay instead
of using more expensive (both in time and resource) error
detection mechanisms to enhance the coverage and thus
remove the need for damage assessment.

5 CONCLUSION

Checkpointing and rollback recovery for concurrent proc-
esses have received considerable attention. Two crucial
problems which must be resolved are the problems of roll-

back propagation (or the domino effect) and error propaga-
tion. All previous work focused on solving the rollback
propagation problem and avoided the error propagation
problem by assuming detection mechanisms to be perfect
so that all checkpoints are correct. However, it is practically
impossible to make error detection perfect and, thus, a
checkpoint may be incorrect if it is established after the pro-
cess became erroneous. These contaminated checkpoints
will lead to unsuccessful rollback recovery. In this paper, we
have developed a method of damage assessment to handle
the error propagation problem, based on our earlier work
on error propagation and fault location. Using the results of
damage assessment, we formulated and solved the problem
of determining the optimal rollback points by minimizing
the average total recovery overhead. Integration of damage
assessment with existing recovery schemes is discussed
using an optimistic message logging and checkpointing
scheme as an example.

It is difficult to compare our approach directly with the
previous work because the assumptions and the perform-
ance criteria are quite different. All previous work assumes
perfect acceptance tests so that error propagation is
bounded by the recovery points and the success of rollback
recovery is guaranteed if proper rollback points are se-
lected. The performance of a rollback recovery scheme is
judged by the overhead of a successful rollback. By con-
trast, we assume that rollback recovery may fail under cer-
tain circumstances since any recovery point could be con-
taminated by error propagation due to imperfect coverage
of acceptance tests. We have to resort to an alternative re-
covery scheme, such as a global restart should rollback re-
covery fail. The rollback points determined in this paper is
thus to minimize the expected overhead taking into consid-
eration the overhead of the rollback recovery and the alter-
native scheme, and the probability of successful rollback
recovery.

The damage assessment model developed in this paper
can also be used to solve other problems, such as the
scheduling of periodic diagnostics and the determination of
optimal inter-checkpoint intervals. These problems are
matters of our future inquiry.

TABLE 3
ROLLBACK DISTANCES OF ALL RECOVERY POINTS

di(k) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
i = 1 5 20 45 70 85 99
i = 2 15 21 35 68 74 98
i = 3 10 20 30 55 80 92
i = 4 12 30 52 65 77 92
i = 5 20 39 50 73 86 98

TABLE 4
THE OPTIMAL ROLLBACK POINTS OF ALL MODULES

Faulty module Optimal recovery points Mean overhead
k1 k2 k3 k4 k5

v1 6 5 4 5 2 401
v2 2 6 4 4 1 334
v5 1 6 6 3 6 388

LIN AND SHIN: DAMAGE ASSESSMENT FOR OPTIMAL ROLLBACK RECOVERY 613

ACKNOWLEDGMENTS

The work reported here was supported in part by the U.S.
Office of Naval Research under Grant N000-14-94-1-0229,
and by the U.S. National Science Foundation under Grant
MIP-9203895. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1]� B. Randell, P.A. Lee, and P.C. Treleaven, “Reliability Issues in
Computing System Design,” Computing Surveys, vol. 10, pp. 123-
165, June 1978.

[2]� P.M. Merlin and B. Randell, “State Restoration in Distributed
Systems,” Digest of Papers, FTCS-8, pp. 129-134, June 1978.

[3]� R.E. Strom and S. Yemini, “Optimistic Recovery in Distributed Sys-
tems,” ACM Trans. Computer Systems, vol. 3, pp. 204-226, Aug. 1985.

[4]� B. Randell, “System Structures for Software Fault Tolerance,”
IEEE Trans. Software Eng., pp. 220-232, June 1975.

[5]� D.L. Russell, “Process Backup in Producer-Consumer Systems,”
Proc. Sixth ACM Symp. Operating System Principles, pp. 151-157,
Nov. 1977.

[6]� D.L. Russell, “State Restoration in Systems of Communicating Proc-
esses,” IEEE Trans. Software Eng., vol. 6, pp. 183-194, Mar. 1980.

[7]� K. Tsuruoka, A. Kaneko, and Y. Nishihara, “Dynamic Recovery
Schemes for Distributed Processes,” Proc. IEEE Reliability in Dis-
tributed Software and Database Systems, pp. 124-130, July 1981.

[8]� W.G. Wood, “A Decentralized Recovery Control Protocol,” Digest
of Papers, FTCS-11, pp. 159-164, June 1981.

[9]� K. Kant and A. Silberschatz, “Error Recovery in Concurrent Proc-
esses,” Proc. COMPSAC, pp. 608-614, 1980.

[10]� K. Venkatesh, T. Radhakrishnan, and H.F. Li, “Optimal Check-
pointing and Local Recording for Domino-Free Rollback Recov-
ery,” Information Processing Letters, vol. 25, pp. 295-303, July 1977.

[11]� G. Ferran, “Distributed Checkpointing in a Distributed Data Man-
agement System,” Proc. Real Time Systems Symp., pp. 43-49, 1981.

[12]� W.H. Kohler, “A Survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems,” Computing Surveys,
vol. 13, pp. 149-183, June 1981.

[13]� R. Koo and S. Toueg, “Checkpointing and Rollback-Recovery for
Distributed Systems,” IEEE Trans. Software Eng., vol. 13, no. 1, pp. 23-
31, Jan. 1987.

[14]� K.G. Shin and Y.-H. Lee, “Evaluation of Error Recovery Blocks
Used for Cooperating Processes,” IEEE Trans. Software Eng., vol. 10,
no. 11, pp. 692-700, Nov. 1984.

[15]� B. Bhargava and S.R. Lian, “Independent Checkpointing and
Concurrent Rollback for Recovery—An Optimistic Approach,”
Proc. IEEE Symp. Reliable Distributed Systems, pp. 3-12, 1988.

[16]� Y.M. Wang and W.K. Fuchs, “Optimistic Message Logging for Inde-
pendent Checkpointing in Message-Passing Systems,” Proc. IEEE
Symp. Reliable Distributed Systems, Oct. 1992.

[17]� A.P. Sistla and J.L. Welch, “Efficient Distributed Recovery Using
Message Logging,” Proc. Eighth ACM Symp. Principles of Distrib-
uted Computing, pp. 223-238, 1989.

[18]� D.B. Johnson and W. Zwaenepoel, “Recovery in Distributed Sys-
tems Using Optimistic Message Logging and Checkpointing,” J.
Algorithms, vol. 11, pp. 462-491, 1990.

[19]� T.T.-Y. Juang and S. Venkatesan, “Crash Recovery with Little
Overhead,” Proc. IEEE Int’l Conf. Distributed Computing Systems,
pp. 454-461, 1991.

[20]� A. Lowry, J.R. Russell, and A.P. Goldberg, “Optimistic Failure
Recovery for Very Large Networks,” Proc. IEEE Symp. Reliable Dis-
tributed Systems, pp. 66-75, 1991.

[21]� K.G. Shin and T.-H. Lin, “Modeling and Measurement of Error
Propagation in a Multi-Module Computing System,” IEEE Trans.
Computers, vol. 37, no. 9, pp. 1,053-1,066, Sept. 1988.

[22]� T.-H. Lin and K.G. Shin, “Location of Faulty Module in a Com-
puting System,” IEEE Trans. Computers, vol. 39, no. 2, pp. 182-194,
Feb. 1990.

[23]� T.-H. Lin and K.G. Shin, “A Bayesian Approach to Fault Classifica-
tion,” Performance Evaluation Review, vol. 18, no. 1, pp. 58-66, 1990.

[24]� Y.-H. Lee and K.G. Shin, “Optimal Design and Use of Retry in Fault-
Tolerant Computer Systems,” J. ACM, vol. 35, pp. 45-69, Jan. 1988.

[25]� T.-H. Lin and K.G. Shin, “An Optimal Retry Policy Based on Fault
Classification,” IEEE Trans. Computers, vol. 43, no. 9, pp. 1,014-
1,025, Sept. 1994

[26]� K.G. Shin and Y.-H. Lee, “Error Detection Process—Model, De-
sign, and Its Impact on Computer Performance,” IEEE Trans.
Computers, vol. 33, no. 6, pp. 529-540, June 1984.

Tein-Hsiang Lin received a PhD degree from
the University of Michigan, Ann Arbor. He is a
principle engineer in the Microtec Division of
Mentor Graphics Corporation, where he is the
system architect of Microtec’s Spectra Cross
Development tool suites and VRTX real-time
kernal. Prior to joining Microtec, Dr. Lin was an
assistant professor in the Department of Electri-
cal and Computer Engineering at the State Uni-
versity of New York at Buffalo. He specializes in
task scheduling algorithms for hard real-time

systems and the design of real-time kernels and cross debuggers for
multitasking operating systems. His research interests include real-time
computing, fault-tolerant computing, and distributed computing. Dr. Lin
is a member of the IEEE Computer Society.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from Cor-
nell University, Ithaca, New York, in 1976 and
1978, respectively. He is a professor and director
of the Real-Time Computing Laboratory, De-
partment of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor.

From 1978 to 1982, Dr. Shin was a member of
the faculty at Rensselaer Polytechnic Institute,

Troy, New York. He has held visiting positions at the U.S. Air Force
Flight Dynamics Laboratory, AT&T Bell Laboratories, the Computer
Science Division within the Department of Electrical Engineering and
Computer Science at the University of California at Berkeley, Interna-
tional Computer Science Institute, Berkeley, California, IBM T.J. Watson
Research Center, and the Software Engineering Institute at Carnegie
Mellon University. He also chaired the Computer Science and Engi-
neering Division, EECS Department at the University of Michigan for
three years beginning in January 1991.

Dr. Shin has authored/coauthored more than 400 technical papers
(about 160 of these in archival journals) and numerous book chapters
in the areas of distributed real-time computing an control, fault-tolerant
computing, computer architecture, robotics and automation, and intelli-
gent manufacturing. He is the coauthor (with C.M. Krishna) of the text-
book Real-Time Systems (McGraw-Hill, 1997). In 1987, he received
the Outstanding IEEE Transactions on Automatic Control Paper Award
for a paper on robot trajectory planning. In 1989, he received the Re-
search Excellence Award from the University of Michigan. In 1985, he
founded the Real-Time Computing Laboratory, where he and his col-
leagues are investigating various issues related to real-time and fault-
tolerant computing.

Dr. Shin has also been applying the basic research results of real-
time computing to multimedia systems, intelligent transport systems,
embedded systems, and manufacturing applications ranging from the
control of robots and machine tools to the development of open archi-
tectures for manufacturing equipment and processes. (The latter is
being pursued as a key thrust area of the newly established U.S. Na-
tional Science Foundation Engineering Research Center on Reconfigu-
rable Machining Systems.)

Dr. Shin is an IEEE fellow, was the program chairman of the 1986
IEEE Real-Time Systems Symposium (RTSS), the general chairman of
the 1987 RTSS, the guest editor of the August 1987 special issue on
real-time systems of the IEEE Transactions on Computers, a program
co-chair for the 1992 International Conference on Parallel Processing,
and has served on numerous technical program committees. He also
chaired the IEEE Technical Committee on Real-Time Systems during
1991-1993, was a distinguished visitor of the IEEE Computer Society,
an editor of the IEEE Transactions on Parallel and Distributed Systems,
and an area editor of the International Journal of Time-Critical Com-
puting Systems.

