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Abstract
Provision of end-to-end QoS guarantees on communication ne-
cessitates appropriate support in the end systems (i.e., hosts) and
network routers that form the communication fabric. This paper
focuses on the architectural and implementation challenges in-
volved in realizing QoS-sensitive host communication subsystems
on contemporary microkernel operating systems with limited real-
time support. We motivate and describe the components constitut-
ing our integrated service architecture that together ensure QoS-
sensitivehandling of network traffic at both sending and receiving
hosts and demonstrate a communication framework that can im-
plement alternative QoS models by applying appropriate policies.
An experimental evaluation in a controlled configuration demon-
strates the efficacy with which QoS guarantees are maintained,
despite limitations imposed by the underlying operating system.

1 Introduction
With the continued upsurge in the demand for networked mul-

timedia and real-time applications, a key issue is to identify and
resolve the challenges of realizing QoS-sensitive communication
subsystems at end systems (i.e., network clients and servers). Tra-
ditional design of communication subsystems has centered around
optimizing average performance without regard to the perfor-
mance variability experienced by applications or end users. As
such, simple and efficient schemes have been employed for traf-
fic and resource management, as exemplified by the first-come-
first-serve service policy. Provision of QoS guarantees, however,
requires sophisticated traffic and resource management functions
within the communication subsystem, and hence significantly im-
pacts its structure and performance.

In this paper we explore QoS-sensitive communication subsys-
tem design for contemporary operating systems. We describe the
general architecture, implementation, and evaluation of a guaran-
teed QoS communication service for a microkernel operating sys-
tem. Microkernel operating systems continue to play an important
role in operating system design [20], and are being extended to
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support real-time and multimedia applications [31]. We describe
how to map the architectural components of a QoS-sensitive com-
munication subsystem onto the support furnished by the operating
system in order to provide appropriate QoS guarantees. We dis-
cuss the difficulties in realizing real-time behavior on such plat-
forms and our approach to providing predictability within plat-
form limitations. While we have focused on a microkernel op-
erating system, we believe that our design approach and issues
highlighted are equally applicable, although with necessary mod-
ifications, to the in-kernel protocol stacks of monolithic Unix-like
operating systems [5, 14].

When implementing the service architecture, lack of appro-
priate operating system mechanisms for scheduling and commu-
nication may negatively impact real-time communication perfor-
mance. Accordingly, we have developed compensatory mecha-
nisms in the communication subsystem to reduce the effects of
platform unpredictability. For purposes of admission control, we
parameterize the communication subsystem via detailed profiling
of the send and receive data paths. Based on this parameteriza-
tion, we identify the relevant overheads and constraints and pro-
pose run-time resource management mechanisms that, along with
an admission control procedure, bound and account for these over-
heads. Execution profiling is, therefore, a key component of our
architecture. An experimental evaluation in a controlled config-
uration demonstrates the efficacy with which QoS guarantees are
maintained, within limitations of the inherent unpredictability im-
posed by the underlying operating system.

For application-level QoS guarantees, an end system must pro-
vide adequate computation as well as communication resources
to simultaneousely executing applications. We focus on QoS-
sensitive communication subsystem design while recognizing that
real-time performance cannot be fully guaranteed without addi-
tional support from the operating system kernel. Such support
could be in the form of processor capacity reserves for the ser-
vice [28] or appropriate system partitioning [7], and are beyond the
scope of this paper.. We envision a system structure with thecom-
munication subsystemdistinct from thecomputation subsystem.
The communication subsystem handles all activities and resources
involved in transmission and reception of data to and from the net-
work. The computation subsystem, on the other hand, comprises
all application processes and threads that perform tasks other than
communication processing.

We believe that the communication subsystem is a resource



management domain distinct from the computation subsystem,
since the QoS requirements and traffic characteristics of appli-
cations might not necessarily be tied to application importance.
While we do not consider integration of QoS-sensitive communi-
cation and computation subsystems in this paper, we argue that the
architectural support described in this paper is complementary to
the underlying operating system support required for application-
level QoS guarantees. We are currently investigating architectural
approaches to integrate the two subsystems in a flexible manner.

Our primary contribution lies in realizing and demonstrating
a QoS-sensitive communication subsystem that partially compen-
sates for the unpredictability in a contemporary operating system,
while exploiting the available support for provision of QoS guar-
antees on communication. This includes integration of the archi-
tectural components providing QoS guarantees with local commu-
nicaiton resources and management policies, support for dynamic
scheduling of all communication processing, and detailed prame-
terization of the communication subsystem to incorporate under-
lying platform overheads for acccurate admission control. The
insights gained from our work can benefit system designers and
practitioners contemplating addition of elaborate QoS support in
existing operating systems.

In the next section we note related work in the design of QoS-
sensitive communication services. Section 3 presents the goals
and architecture of the real-time (guaranteed-QoS) communica-
tion service. The components of the architecture are described in
Section 4. Section 5 describes our prototype implementation and
the issues faced in its realization on a platform with limited real-
time support. Section 6 follows with results of an experimental
evaluation of our implementation and Section 7 concludes the pa-
per with a summary and directions for future work.

2 Related Work
A number of approaches are being explored to realize QoS-
sensitive communication and computation in the context of dis-
tributed multimedia systems. An extensive survey of QoS archi-
tectures is provided in [9], which provides a comprehensive view
of the state of the art in the provisioning of end-to-end QoS.
Network and protocol support for QoS: The Tenet real-time
protocol suite [4] is an implementation of real-time communica-
tion on wide-area networks (WANs), but it did not address the
problem of QoS-sensitive protocol processing inside hosts. Fur-
ther, it does not incorporate implementation constraints and their
associated overheads, or QoS-sensitive processing of traffic at the
receiving host. While we focus on end-host design, support for
QoS or preferential service in the network is being examined for
provision of integrated and differentiated services on the Inter-
net [6, 8, 12]. The signalling required to set up reservations for
application flows can be provided by RSVP [34], which initiates
reservation setup at the receiver, or ST-II [13], which initiates
reservation setup at the sender.
QoS architectures:The OMEGA [30] end point architecture pro-
vides support for end-to-end QoS guarantees with a focus on an
integrated framework for the specification and translation of ap-
plication QoS requirements, and allocation of the necessary re-
sources. OMEGA assumes appropriate support from the operating
system for QoS-sensitive application execution, and the network

subsystem for provision of transport-to-transport layer guarantees
(the subject of this paper). QoS-A [10] is a communication sub-
system architecture which provides features similar to our service,
but its realization would necessitate architectural mechanisms and
extensions like those presented in this paper. A novel RSVP-based
QoS architecture supporting integrated services in TCP/IP pro-
tocol stacks is described in [5]. A native-mode ATM transport
layer has been designed and implemented in [3]. These architec-
tures provide support for traffic policing and shaping but not for
scheduling protocol processing and incorporating implementation
overheads and constraints.
Operating system support for QoS-sensitive communication:
Real-time upcalls (RTUs) [17] are used to schedule protocol pro-
cessing for networked multimedia applications via event-based up-
calls [11]. In contrast to RTUs, our approach adopts a thread-based
execution model for protocol processing, schedules threads via a
modified earliest-deadline-first (EDF) policy [22], and accounts
for a number of implementation overheads. Similar to our ap-
proach, rate-based flow control of multimedia streams via kernel-
based communication threads is also proposed in [33]. However,
in contrast to our notion of per-connection threads, a coarser no-
tion of per-process kernel threads is adopted. Also, the architecture
outlined in [33] does not provide signalling and resource manage-
ment services within the communication subsystem.

Explicit operating system support for communication is a focus
of the Scout operating system, which uses paths as a fundamental
operating system structuring technique [29]. A path can be viewed
as a logical channel through a multilayered system over which I/O
data flows. As we demonstrate, the CORDS path abstraction [16],
similar to Scout paths, provides a rich framework for development
of real-time communication services. Our architecture general-
izes and extends the path abstraction to provide dynamic allocation
and management of communication resources according to appli-
cation QoS requirements. Recently, processor capacity reserves
in Real-Time Mach [28] have been combined with user-level pro-
tocol processing [23] for predictable protocol processing inside
hosts [21]. However, no support is provided for traffic enforce-
ment or the ability to control protocol processing priority separate
from application priority.

3 Real-Time Communication Service
Architecture

Our primary goal is to provide applications with a service to re-
quest and utilize guaranteed-QoS unicast connections between two
hosts. The overall service is currently being utilized in theAR-
MADAproject [1], which implements a set of communication and
middleware services that support end-to-end guarantees and fault-
tolerance in embedded real-time distributed applications.

Common to QoS-sensitive communication service models are
the following three architectural requirements: (i) maintenance of
per-connection QoS guarantees, (ii) overload protection via per-
connection traffic enforcement, and (iii) fairness to best-effort traf-
fic [25]. Earlier work in [25] presented and justified a high-level
architectural design in the context of a specific communication ser-
vice model. We generalize the architecture to apply to a number
of service models, and focus on techniques and issues that arise in
implementing the generic architectural components.
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Figure 1. Real-time communication service architecture

Figure 1 illustrates the high-level software architecture of our
guaranteed-QoS service at end-hosts. The core functionality of
the communication service is realized via three components that
interact to provide guaranteed-QoS communication. Applications
use the service via the real-time communication application pro-
gramming interface (RTC API); RTCOPcoordinates end-to-end
signalling for resource reservation and reclamation during connec-
tion set-up or tear-down; andCLIPS performs run-time manage-
ment of resources for QoS-sensitive data transfer. Since platform-
specific overheads must be characterized before QoS guarantees
can be ensured, an execution profiling component is added to mea-
sure and parameterize the overheads incurred by the communica-
tion service on a particular platform, and make these parameters
available for admission control decisions. The control path taken
through the architecture during connection setup is shown in Fig-
ure 1 as dashed lines. Data is then transferred viaRTC API and
CLIPS as indicated by the solid lines.

Together, these components provide per-connection communi-
cation resource management, including signalling, admission con-
trol and resource reservation, traffic enforcement, buffer manage-
ment, and CPU and link scheduling. We organize these functions
into reusable core mechanisms that can implement alternative QoS
communication paradigms given the appropriate policies.

We have approached the architectural component design with
the goal of separating mechanisms that provide QoS-sensitive
communication from the policies that dictate the nature of QoS
guarantees. A relaxed admission control policy, for example, cou-
pled with these component mechanisms could be used to imple-
ment a statistical guarantee model. Similarly, changing the pol-
icy for expression of application QoS requirements, along with a
suitable admission control policy, facilitates QoS negotiation and
adaptation, as is demonstrated in [2].

4 Architecture Component Design

Below, we discuss the salient features of each architectural com-
ponent of the service along with its interaction with other com-
ponents to provide QoS guarantees. We also describe how the
components are used to realize a particular service model.

4.1 RTC Application Interface
The programming interface exported to applications comprises
routines for connection establishment and teardown, message
transmission and reception on established connections, and ini-
tialization and support routines. Table 1 lists some of the main
routines currently available inRTC API. The API has two parts:
a top half that interfaces to applications and is responsible for val-
idating application requests and creating internal state, and a bot-
tom half which interfaces toRTCOPfor signalling (i.e., connection
setup and teardown), and toCLIPS for QoS-sensitive data trans-
fer.

The design ofRTC API is based in large part on the well-
known socket API in BSD Unix. Each connection endpoint is
a pair(IPaddr, port) formed by the IP address of the host
(IPaddr ) and an unsigned 16-bit port (port ) unique on the host,
similar to an INET domain socket endpoint. In addition to unique
endpoints for data transfer, an application may use several end-
points to receive signalling requests from other applications. Ap-
plications willing to be receivers of real-time traffic register their
signalling ports with a name service or use well-known ports. Ap-
plications wishing to create connections must first locate the cor-
responding receiver endpoints before signalling can be initiated.

The key aspect which distinguishesRTC API from the socket
API is that the receiving applicationexplicitlyapprovesconnection
establishment and teardown. When registering its intent to receive
signalling requests, the application specifies an agent function that
is invoked in response to connection requests. This function, im-
plemented by the receiving application, determines whether suf-
ficient application-level resources are available for the connec-
tion and, if so, reserves necessary resources (e.g., CPU capacity,
buffers, etc.) for the new connection.

The QoS-parameters passed tortcCreateConnection
are translated, for generality, into abstract resource requirements.
These are, (i) a specified message buffer size to be reserved for the
connection, and (ii) a specified number of packets to be transmit-
ted per specified period. These parameters are passed toCLIPS
so that it can perform resource management. In addition, optional
(QoS model-specific) parameters can be specified and interpreted
by the admission policy. Typically, such parameters would consti-
tute additional constraints, such as message deadline for example
that affect admission control decisions.

4.2 Resource Reservation with RTCOP

Requests to create and destroy connections initiate the Real-Time
Connection Ordination Protocol (RTCOP), a distributed end-to-
end signalling protocol.RTCOPis composed ofrequest and reply
handlersthat manage signalling state and interface to the admis-
sion control policy, and acommunication modulethat handles the
task of reliably forwarding signalling messages. This separation
allows simpler replacement of admission control policies or con-
nection state management algorithms without affecting communi-
cation functions. Note that signalling and connection establish-
ment are non-real-time (but reliable) functions. QoS guarantees
apply to the data sent on an established connection but signalling
requests are sent as best-effort traffic.

When processing a new signalling request, the request han-
dler at each hop invokes an admission control procedure to decide



Function Parameters Operation Performed

rtcInit none service initialization
rtcGetParameter chan id, param type query parameter on specified real-time connection
rtcRegisterPort local port, agent function register local port and agent for signalling
rtcUnRegisterPort local port unregister local signalling port
rtcCreateConnection remote host/port, max rate, create connection with given parameters

max burst size, max msg size, max delayto remote endpoint ; return connection id
rtcAcceptConnection local port, chan id, obtain the next connection already

remote host/port established at specified local port
rtcDestroyConnection chan id destroy specified real-time connection
rtcSendMessage chan id, buf ptr send message on specified real-time connection
rtcRecvMessage chand id, buf ptr receive message on specified real-time connection

Table 1. Routines comprisingRTC API
whether or not sufficient resources are available for the new re-
quest. When a connection is admitted at allnodes on the route, the
reply handler at the destination node generates a positive acknowl-
edgment on the reverse path to the source to commit connection
resources. These resources include packet and message buffers
and aCLIPS connection handler thread.

The communication module handles the basic tasks of send-
ing and receiving signalling messages, as well as forwarding data
packets to and from the applications. Most of the protocol pro-
cessing performed by the communication module is in the control
path during processing of signalling messages. In the data path it
functions as a simple transport protocol, forwarding data packets
on behalf of applications, much like UDP.

RTCOPexports an interface toRTC API for specification of
connection establishment and teardown requests and replies, and
selection of logical ports for connection endpoints. TheRTC API
uses the latter to reserve a signalling port in response to a request
from the application, for example.RTCOPalso interfaces to an
underlying routing engine to query an appropriate route before
initiating signalling for a new connection. In general, the rout-
ing engine should find a route that can support the desired QoS
requirements. However, for simplicity we use static (fixed) routes
for connections since it suffices to demonstrate the capabilities of
our architecture and implementation.

4.3 CLIPS-based Resource Scheduling
The Communication Library for Implementing Priority Semantics
(CLIPS), implements the necessary resource-management mech-
anisms to realize QoS-sensitive real-time data transfer. It provides
a simple interface that exports the abstraction of a guaranteed-rate
communication endpoint, where the guarantee is in terms of the
number of packets sent during a specified period. The endpoint
also has an associated configurable buffer to acommodate bursty
sources. We call this combination aclip. To control jitter,CLIPS
also accepts a deadline parameter. Within each period packets will
be transmitted (via the clip) by the specified deadline measured
from the start of the period.

Internal toCLIPS , each clip is provided with amessage queue
to buffer messages generated or received on the corresponding
endpoint, acommunication handler threadto process these mes-
sages, and apacket queueto stage packets waiting to be trans-
mitted or received. Once a pair of clips are created for a connec-
tion, messages can be transferred in a prioritized fashion using the
CLIPS API. TheCLIPS library implements the key functional

componentsillustrated in Figure 2.

QoS-sensitive scheduling:The communication handler thread of
a clip executes in a continuous loop either dequeuing outgoing
messages from the clip’s message queue and fragmenting them (at
the source host), or dequeuing incoming packets from the clip’s
packet queue and reassembling messages (at the destination host).
Each message must be sent within a given local delay bound (dead-
line) that is specified to the clip as a QoS parameter. To achieve the
best schedulable utilization, communication handlers are sched-
uled based on an earliest-deadline-first (EDF) policy. Since most
operating systems do not provide EDF scheduling,CLIPS imple-
ments it with a user-level scheduler layered on top of the oper-
ating system scheduler. The user-level scheduler runs at a static
kernel priority and maintains a list of all kernel threads registered
with it, sorted by increasing deadline. At any given time, the
CLIPS scheduler blocks all of the registered threads using ker-
nel semaphores except the one with the earliest deadline, which it
considers in the running state. The running thread will be allowed
to execute until it explicitly terminates or yields using a primitive
exported byCLIPS . In the context of executing this primitive, the
scheduler blocks the thread on a kernel semaphore and signals the
thread with the next earliest deadline. This arrangement imple-
ments non-preemptive EDF scheduling within a single protection
domain.

Policing and communication thread scheduling:Each commu-
nication handler is assigned abudgetto prevent a communication
client from monopolizing resources. The budget is expressed in
terms of a maximum number of packets to be processed per period
and is replenished at the start of a new period. Communication
handlers call the CLIPS scheduler after processing each packet to
decrement the budget. To police non-conformant sources, the han-
dler is blocked when its budget expires. A handler is rescheduled
for execution when the budget is replenished. We implement a
“cooperative preemption” mechanism that prevents handlers with
large periods and budgets from inflicting unacceptablejitter on the
execution of handlers with smaller periods. Each handler partici-
pates in cooperative preemption by voluntarily yielding the CPU
after processing a small number of packets. If no handler of higher
priority is ready for execution at that time,CLIPS returns control
to the yielding handler immediately. Otherwise, the higher prior-
ity handler is executed. Thus, a handler may be rescheduled by the
communication thread scheduler when the it blocks due to expira-
tion of its budget, or when it yields the CPU.
QoS-sensitive link bandwidth allocation:Modern operating sys-
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tems typically implement FIFO packet transmission over the com-
munication link. While we cannot avoid FIFO queuing in the
kernel’s network device,CLIPS implements a dynamic priority-
basedlink schedulerat the bottom of the user-level protocol stack
to schedule outgoing packets. The link scheduler implements the
EDF scheduling policy using a priority heap for outgoing packets.
To prevent a FIFO accumulation of outgoing packets in the ker-
nel (e.g., while the link is busy), theCLIPS link scheduler does
not release a new packet until it is notified of the completion of
previous packet transmission. Best-effort packets are maintained
in a separate packet heap within the user-level link scheduler and
serviced at a lower priority than those on real-time clips.

4.4 Execution profiling
The execution profiling component is invoked when the sys-

tem is deployed on a new platform, or upon system upgrades. It
abstracts the communication overheads and costs of the host hard-
ware and software platform and makes them available to admis-
sion control to account for protocol processing delay, packet trans-
mission latency, message send delay, etc. Details of our profiling
methodology, including measured parameters of our service im-
plementation, are available in [26].

4.5 Service Model Instantiation
Our real-time communication architecture may be used to real-
ize a family of service models that differ in the choice of QoS-
parameters and admission control policy, as long as QoS param-
eters can be converted into a rate constraint (maximum number
of packets sent per period), a storage constraint (maximum packet
buffer size), and a deadline on each node. We have implemented a
communication paradigm amenable to such an abstraction, namely
the real-time channels model [15, 19]. A real-time channel is a uni-
cast virtual connection between a source and destination host with
associated performance guarantees on message delay and available
bandwidth. In requesting a new channel, the application specifies
its message generation process to allow the communication sub-
system to compute resource requirements and decide whether it
can guarantee the desired quality-of-service. The generation pro-
cess is expressed in terms of the maximum message size (Mmax),
maximum message rate (Rmax), and maximum message burst size
(Bmax). The burst parameter serves to bound the short-term vari-
ability in the message rate and partially determines the necessary

buffer size (i.e. in timet, the number of messages generated must
be no more thanBmax + t � Rmax). The QoS requirement is
expressed as an upper bound on end-to-end communication de-
lay from the sending application to the receiving application. This
deadline parameter influences admission control decisions at all
nodes in the route during signalling.

The admission control policy for real-time channels imple-
ments theD order algorithm to perform schedulability analysis
for CPU and link bandwidth allocation. Details onD order and
subsequent extensions to account for CPU preemption costs and
the relationship between CPU and link bandwidth are available
in [19] and [24], respectively.

5 Service Implementation
Our experimental testbed and implementation environment is
based on the MK 7.2 microkernel operating system from the Open
Group Research Institute. The hardware platform consists of sev-
eral 133 MHz Pentium-based PCs connected by a Cisco 2900 Eth-
ernet switch operating at 10MB/s.

While not a full-fledged real-time OS, MK 7.2 includes several
features that facilitate provision of QoS guarantees. Specifically,
though it provides only preemptive fixed-priority scheduling, the
7.2 release includes theCORDS(Communication Object for Real-
time DependableSystems) protocol environment [16] in which our
implementation resides.CORDSis based on thex-kernel object-
oriented networking framework originally developed at the Uni-
versity of Arizona [18], with some significant extensions for con-
trolled allocation of system resources.CORDSis also available
for Windows NT and, as such, serves as a justifiable vehicle for
exploring the realization of communication services on modern
microkernels with limited real-time support.

5.1 Service Configuration
Figure 3(a) shows the software configuration for the guaranteed-
QoS communication service. While theCORDSframework can
be used at user-level as well as in the kernel, we have developed
the prototype implementation as a user-levelCORDSserver. There
are several reasons for this choice as discussed in Section 5.2 be-
low, the most obvious being the ease of development and debug-
ging, resulting in a shorter development cycle. Applications link
with the librtc library and communicate real-time connection
requests and data via IPC with the user-levelCORDSserver.

The service protocol stack is configured within the server as
shown in Figure 3(b).RTC API interfaces with applications via
Mach Interface Generator (MIG) stubs, translating application re-
quests to specific invocations of operations onRTCOP(for sig-
nalling) or CLIPS (for data transfer).RTCOPserves as a trans-
port protocol residing above a two-part network layer composed
of RTROUTERandIP . Though we currently use default IP rout-
ing, we provideRTROUTERas a go-between protocol to keep the
routing interface independent of IP so thatRTCOPmay eventually
work with more sophisticated routing protocols that support QoS-
or policy-based routing. TheIP , ETH, andETHDRVprotocols are
standard implementations distributed with theCORDSframework.
ETH is a generic hardware-independent protocol that provides an
interface between higher level protocols and the actual Ethernet
driver. ETHDRVis specific to the user-level implementation of the
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CORDSserver. It is an out-of-kernel device driver that interacts
with the network device driver in the Mach kernel through system
calls to a Mach device control port. Note thatCLIPS spans the
protocol stack, providing scheduling and resource management
services at both the message and packet levels.

When an application sends a message to theCORDSserver for
transmission on an established real-time connection, an API thread
waiting on the corresponding Mach port first deposits it into a
connection-specific message queue.CLIPS then schedules the
connection’s handler thread to perform protocol processing and
fragment the message into packets. These packets are labeled with
their local deadline and staged in theCLIPS packet heap. From
this point theCLIPS link scheduler thread retrieves packets and
transmits them according to their dealines. A packet arriving at the
receiving host is demultiplexed into its connection-specific packet
buffer when it enters theCORDSserver from the kernel. The con-
nection handler thread, scheduled byCLIPS , retrieves the packet
and shepherds it up the protocol stack performing protocol pro-
cessing and message reassembly. Once reassembled, the message
is deposited in the connection message queue and the correspond-
ing API thread is notified of the message arrival (if it is waiting).
Finally, the API thread constructs a MIG message containing the
data and delivers it to the application task.

5.2 Implementation Issues and Platform Support
Below we highlight several issues and challenges in implementing
the communication service. We discuss limitations in the under-
lying platform that lead to unpredictable behavior and the com-
pensatory mechanisms that we used to circumvent them. We also
describe platform features that are useful in realizing a real-time
communication service and their use in our implementation.
Server-based implementation:While a server-based implemen-
tation is natural for a microkernel operating system, it may per-
form poorly compared to user-level protocol libraries due to exces-
sive data copying and context switching [23, 32]. Implementing
the service as a protocol library, however, distributes the functions
of admission control and run-time resource management among
several address spaces. Since applications may each compete for
communication resources, controlling system-wide resources is

more effectively done when these functions are localized in a sin-
gle domain. Moreover, in the worst case, compared to user-level
protocol libraries a server configuration only suffers from addi-
tional context switches. While this has significant implications for
small messages, the relative degradation in performance is not as
significant for large data transfers performed by the guaranteed-
QoS communication service, although it may affect connection
admissibility. Once developed and debugged, the server can be
moved into the kernel to improve performance and predictability.
Our design approach and lessons learned are applicable to com-
munication subsystems realized as user-level libraries, co-located
kernel servers, or integrated kernel implementations.

Network device interface: A server-based implementation
presents a number of problems for data input and output in our ar-
chitecture. The bottom layer of the protocol stack interfaces with
the kernel device driver via the kernel’s IPC mechanism. Device
output is initiated by theCLIPS link scheduler, as close as pos-
sible to the device driver without being in the kernel. The kernel
device driver cannot directly invoke the user-level link scheduler
in response to transmission completion interrupts unless the OS
supports mapped device drivers or user-level upcalls. In the ab-
sence of such support, user-level link scheduling cannot be done
in interrupt context. Instead, we utilize user-level threads to per-
form synchronous device transfers and link scheduling is realized
in the context of a high priority thread.

Resource reservation with Paths:Resource reservation must be
coordinated in an end-to-end fashion along the route of each con-
nection during connection establishment.CORDSprovides two
abstractions,pathsandallocators, for reservation and allocation
of system resources within theCORDSframework. Resources as-
sociated with paths include dynamically allocated memory, input
packet buffers, and input threads that shepherd messages up the
protocol stack [16]. Paths, coupled with allocators, provide a capa-
bility for reserving and allocating resources at any protocol stack
layer on behalf of a particular connection, or class of messages.
With packet demultiplexing at the lowest level at the receiver (i.e.,
performed in the device driver), it is possible to isolate packets
on different paths from each other early in the protocol stack. In-
coming packets are stored in buffers explicitly tied to the appropri-



ate path and serviced by threads previously allocated to that path.
Moreover, threads reserved for a path may be assigned one of sev-
eral scheduling policies and priority levels. We use paths to facili-
tate per-connection resource reservation during connection setup.
Packet classification: Proper handling of prioritized real-time
data at the receiving host requires that packet priority be identi-
fied as early as possible in the protocol stack, and that packets
be served accordingly.CORDSassociates outgoing packets with
paths and demultiplexes incoming traffic into per-path buffers, es-
sentially acting as a specialized packet filter. The data link device
driver examines outgoing packets and adds an appropriate path
identifier to allow early path-based demultiplexing at the receiver.
This allows packet handling to be done in path-dependent order
and facilitates imposing relative priorities among paths (e.g., pack-
ets of one path can be served before those of another). While this
technique is natural for networks supporting a notion of virtual cir-
cuit identifiers (VCI) such at ATM, it is not so for traditional data
link technologies such as Ethernet. In the case of Ethernet, the
CORDSdriver adds a newpath identifierto the data link header.
This creates a non-standard Ethernet header that would not be un-
derstood by hosts not running theCORDSframework.
Packet queuing:While packet classification, as discussed above,
occurs in the QoS-sensitive communication server, we cannot as-
sume that the kernel supports prioritized packet processing. The
in-kernel network device driver simply relays received packets to
the communication server in FIFO order via the available IPC
mechanism, in our case Mach ports. This FIFO ordering does not
respect connection QoS requirements, however, since urgent pack-
ets can suffer unbounded priority inversion when preceded by an
arbitrary number of less urgent packets in the queue. Also, since
the same queue is used for real-time and non-real-time traffic,
depending on packet arrival-time patterns, real-time data maybe
dropped when the queue is filled by non-real-time packets. These
two problems cannot be solved without modifying the kernel de-
vice driver. To ameliorate this unpredictability, a high priority
thread waits on the communication server’s input port and de-
queues incoming packets as soon as they arrive, depositing them in
their appropriate path-specific queues. This prevents FIFO packet
accumulation in the kernel and allows the server to service packets
in priority order according to the connection path.
Application-server IPC: A problem similar to the above arises
when applications use kernel-level IPC mechanisms to send mes-
sages via the QoS-sensitive communication server. Unless syn-
chronous communication (e.g., RPC) is used to send messages to
the server, successive application messages will accumulate in the
kernel buffers for delivery to the server. In a QoS-sensitive sys-
tem the length of such a queue should be derived from the ap-
plication traffic specification, for example based on message rate,
size, and burst. If the queue is too small, application messages
may be dropped or require retransmission from the application.
If the queue is overly long, application messages may reside in it
longer than anticipated and result in deadline violations. We do
not assume that we can control allocation of the kernel-level IPC
queues. Our strategy is to drain them as fast as possible, transfer-
ring messages to connection-specific queues in the communication
server, which are sized in accordance with the connection’s traffic
specification. We dedicate an API thread per connection within
the server whose function is to consume messages from the corre-
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Figure 4. Traffic enforcement on a single real-time
channel:Rmax = 5 msg/sec,Mmax = 40KB, Bmax =
10, andD = 200ms.

sponding Mach port queue. Once an application sends a message
to the server, the corresponding API thread reads it from the Mach
port and queues it for the corresponding communication handler.
The thread, whose execution time is charged to the handler’s bud-
get, runs at handler priority, and is allowed to continue running
at background priority when the handler’s budget expires. Like
the handler, the API thread adheres to the cooperative preemption
model by yielding to waiting, higher priority messages after pro-
cessing a fixed amount of message data.
Dynamic path creation and deletion: Real-time connections
may be created and deleted repeatedly over an application’s life-
time requiring that paths be dynamic entities with appropriate tear-
down and resource reclamation mechanisms. TheCORDSframe-
work envisions a relatively static use of paths, with a single path
for best-effort traffic and a few paths for different classes of traffic.
That is, there are never more than perhaps ten active paths, all of
these long-lived and preconfigured. Accordingly, theCORDSpath
library does not support path teardown or resource reclamation op-
erations. To facilitate a one-to-one association between real-time
connections and paths, we have extendedCORDSto support path
destruction and reclamation of resources associated with a path.
These mechanisms are invoked byRTCOPduring signalling of
teardown messages from connection source to destination.

6 Experimental Evaluation
We conducted several experiments to evaluate the efficacy of our
prototype implementation. The experiments demonstrate two key
aspects of the QoS support provided: traffic enforcement (i.e.,
policing and shaping) on a single connection, and traffic isola-
tion between multiple real-time and best-effort connections. We
show that reasonably good QoS-guarantees can be achieved de-
spite the lack of real-time scheduling and communication support
in the kernel.

The experimental setup consists of two hosts communicating
on a private segment through the Ethernet switch. To avoid in-
terference from the Unix server, we suppress extraneous network
traffic (e.g., ARP requests and replies) and configure theCORDS
server to receive all incoming network traffic. This allows us to
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Figure 5. In (a) channel 1 has the same specification as in Figure 4 and channel 2 hasRmax = 2 msg/sec,Mmax = 15 KB,
Bmax = 10, andD = 100 ms. In (b) channel 1 has a specification ofRmax = 10 msg/sec,Mmax = 20 KB, Bmax = 10,
andD = 200 ms and channel 2 hasRmax = 5 msg/sec,Mmax = 5 KB, Bmax = 10, andD = 100 ms.

limit the background CPU load on each host and accurately con-
trol network traffic between them. For each experiment reported
below, connections are created between MK client tasks running
at the two hosts. Connection parameters are specified according
to the real-time channel model, namely as maximum message size
(Mmax), maximum message burst (Bmax), message rate (Rmax),
and message deadline (D). Message traffic is generated by threads
running within the MK client task at the source and consumed by
threads running within the destination client. Our evaluation met-
ric is the per-connection application-level throughput delivered to
the receiving task at the destination host.

6.1 Traffic Enforcement
For this experiment, we establish a real-time channel with a spec-
ified rate of 200 KB/s and a 200 ms deadline. The actual offered
load on the channel is varied, however, by changing the interval
between generation of successive messages, ranging from 500 ms
to 0 ms (i.e., continuous traffic generation).

As shown in Figure 4, the delivered throughput increases lin-
early with the offered load until the offered load equals the spec-
ified channel rate. For example, at an offered load of 100 KB/s
(corresponding to a message generation interval of 400 ms), the
delivered throughput is 100 KB/s. Similarly, at an offered load of
200 KB/s, the delivered throughput is 200 KB/s. For offered loads
beyond the specified channel rate, however, the delivered through-
put equals the specified channel rate. This continues to be the case
even under continuous message generation (message generation
interval of 0 ms). These measurements show that the traffic en-
forcement mechanisms effectively prevent a real-time connection
from violating its specified rate.

6.2 Traffic Isolation
In addition to proper traffic enforcement, recall that one of the ar-
chitectural goals of the guaranteed-QoS communication service is
to ensure isolation between different QoS and best-effort connec-
tions. We first consider traffic isolation between multiple real-time
channels subject to traffic violation by a real-time channel. Two

real-time channels are established between the hosts, one repre-
senting a high-rate channel (channel 1) and the other representing
a low-rate channel (channel 2). The high-rate channelhas the same
traffic and deadline specification as before, i.e. a specified rate of
200 KB/s. The low-rate channel has a specified channel rate of 30
KB/s. Message generation on channel 2 is continuous, so that it
sends at a persistent 30 KB/s. Channel 1 is controlled in order to
vary the offered load.

Figure 5(a) shows the delivered throughput on channels 1 and 2
as a function of the offered load on channel 1. Once again, the de-
livered throughput on channel 1 increases linearly with the offered
load until the offered load equals the specified channel rate (200
KB/s). Subsequent increase in offered load has no effect on the
delivered throughput which stays constant at the specified channel
rate. The delivered throughput on channel 2, on the other hand,
remains constant at approximately 30 KB/s (its specified channel
rate) regardless of the offered load on channel 2. That is, traffic vi-
olations on one connection (even continuous message generation)
do not affect the delivered QoS for another connection.

We also consider traffic isolation between real-time and best-
effort traffic under increasing best-effort load. For this experiment
we create an additional best-effort channel in addition to two real-
time channels. As before, one real-time channel (channel 1) rep-
resents a high-rate channel with a specified rate of 200 KB/s. The
other real-time channel (channel 2) is a low-rate channel with rate
25 KB/s. Message generation on channels 1 and 2 is continuous,
i.e., with a message generation interval of 0 ms. The offered load
on the best-effort channel (channel 3) is varied from 50 KB/s to
350 KB/s by controlling the message generation interval.

Figure 5(b) plots the delivered throughput on each channel as
a function of the offered best-effort load. A number of observa-
tions can be made from these measurements. First, the delivered
throughput on channels 1 and 2 are roughly independent of the
offered best-effort load. That is, real-time traffic is effectively iso-
lated from best-effort traffic, except under very high best-effort
loads as explained below. Second, best-effort traffic utilizes any
excess capacity not consumed by real-time traffic, as evidenced by
the roughly linear increase in delivered throughput on channel 3



as a function of the offered load. Once the system reaches sat-
uration (beyond a best-effort offered load of approximately 250
KB/s), however, best-effort throughput declines sharply due to
buffer overflows and the resulting packet loss at the receiver.

Under very high best-effort loads, the delivered throughput on
channel 1 declines slightly. We believe that this is due to the over-
heads of receiving and discarding best-effort packets, which have
not been accounted for in the admission control procedure. These
overheads impact the delivered throughput on high-rate connec-
tions more than low-rate connections, as evidenced by the constant
throughput delivered to channel 2 even under very high best-effort
load.

6.3 Fairness to Best-Effort Traffic
While the load offered by real-time connections in the previous ex-
periments was persistent (always greater than the reserved capac-
ity), this experiment focuses on utilization of any reserved capac-
ity not utilized by a real-time connection. It is desirable that this
unused capacity be utilized by best-effort traffic, as per our goal
of fairness. Other real-time connections should not be allowed to
consume this excess capacity at the expense of best-effort traffic.
We create two real-time channels and a best-effort channel as be-
fore. While the offered load on channel 2 is continuous, channel 1
only offers a load of 100 KB/s even though it is allocated a capac-
ity of 200 KB/s. We consider two cases of message generation on
channel 1, as explained below. In case 1, channel 1 carries 20 KB
messages at 5 messages/second (half the specified rate). In case 2,
it generates 10 KB messages at 10 messages/second.

Figure 6 plots the delivered throughput on all the channels as
a function of the offered load on the best-effort channel (channel
3). Channel 1 receives a constant 100 KB/s throughput indepen-
dent of the offered best-effort load. Similarly, channel 2 receives
its allocated capacity of 25 KB/s. In case 1, Channel 3’s deliv-
ered throughput increases linearly with the offered load until an
offered load of 250 KB/s. Beyond this load, the delivered best-
effort throughput falls as before, but continues to be higher than
that obtained in Figure 5(b) when real-time channels were using
their full reserved capacity.

We found, though, that best-effort traffic is unable to fully uti-
lize the unused capacity left by channel 1. We suspect that this
effect is primarily due to packet losses caused by buffer overflow
at the receiver, either in the adapter or in the kernel device port
queue used by theCORDSserver to receive incoming packets. To
validate this, we ran additional experiments with case 2, in which
channel 1 generates smaller messages (10 KB) at a higher rate to
offer the same average load of 100 KB/s. As can be seen in Fig-
ure 6, the delivered best-effort throughput in this case continues to
increase linearly beyond 250 KB/s and shows no decline even for a
best-effort load of 350 KB/s. These results suggest that best-effort
traffic is able to fully utilizeunused capacity when real-time traffic
is less bursty (i.e., has fewer packets in each message).

6.4 Further Observations
With the user-levelCORDSserver configuration, the receiving task
is able to receive packets at an aggregate rate of 450-500 KB/s (de-
pending on the number of packets in a message), even though the
sender can send at a maximum rate of approximately 750 KB/s.
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Figure 6. Channels 1 and 2 have the same parameters as
in Figure 5(b) but channel1 underutilizes its reservation.
In case1, channel1 generates20 KB messagesat 5 msg/s;
in case 2, it generates 10 KB messages at 10 msg/s.

This discrepancy is most likely due to CPU contention between
the receiving application task and theCORDSserver and the re-
sulting context switching overheads, and the high cost of IPC
across the client and server. Another reason could be the unneces-
sary copy performed by the lowest layer (ETHDRV) of theCORDS
protocol stack whenever packets from multiple paths arrive in an
interleaved fashion. Since this occurs frequently with multiple
channels and under high traffic load, it is likely that this extra
copy is slowing down the receiver significantly; this extra copy
can only be eliminated by redesigning path buffer management in
the CORDSframework. More importantly, none of these effects
are accounted for in the admission control procedure, and must be
addressed when the communication subsystem is integrated more
closely within the host operating system. We expect to see sig-
nificant improvements in the base performance for an in-kernel
realization of our prototype implementation.

7 Summary and Future Work
In this paper we have described our experiences with the design,
implementation, and evaluation of a guaranteed-QoS communi-
cation service implemented on a contemporary microkernel op-
erating system with limited real-time supprt. We designed three
primary components that provide general mechanisms for real-
time communication, including support for signalling and resource
reservation, traffic enforcement, buffer management, and CPU and
link scheduling. A fourth execution profiling component is respon-
sible for the essential task of characterizing platform-specific com-
munication overheads. When combined with with specific policies
for admission control and interpretation of QoS parameters, these
components can be used to implement several QoS-sensitive com-
munication models.

We have tested our prototype with transmission of stored com-
pressed video and playout usingmpeg play . We plan to conduct
further experiments with a number of stored video traces. To al-
low for QoS-adaptation, we have implemented an end-host archi-
tecture for adaptive-QoS communication services [2]. In [26] we
describe the complex process of parameterizing the overheads of
the communication subsystem and target platform. These efforts



illustrate the need for an automated approach to profiling and sys-
tem parameterization. We have, therefore, also begun to explore
self-parameterizing protocol stacks for QoS-sensitive communica-
tion subsystems [27].
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