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Abstract support real-time and nttimedia applications [31]. We describe

Provision of end-to-end QoS guarantees on communication ne-how to map the architectural components of a QoS-sensitive com-

cessitates appropriate support in the end systems (i.e., hosts) andunication s(lijsystem c_)gto the support furnished by the opi/(\e/raghg
network routers that form the communication fabric. This paper systerE md(')f;' erl to provi el' gppropr:aFe Qgshgugrantees. ; el t's'
focuses on the architectural and implementation challenges in- Cc:Jrsrﬁst aendIOIS:Jgesrg‘a;iatlcfln?o:/ei;r-]tlmered?ctz\l/)li?i: o\r;v ;r:ﬁ ?a?._
volved in realizing QoS-sensitive host communication subsystem% limitati p\?Vh'I hp ¢ 9 pd y K '?
on contemporary microkernel operating systems with limited real- orm limita |tons. t;el_we t:\lf oc%se_ ona mlcroherng op-
time support. We motivate and describe the componentsitins E_raﬁlr_‘ghsyj em, we "e 'evel_ %I OurI heSIgr? a_pkf)roac an |sszes
: : ; : ighlighted are equally applicable, although with necessary mod-
Ing our integrated service architecture that together ensure QoS- ifigatigns to the ig-ker):lelpprotocol stacks gf monolithic Unixry-like
sensitivehandling of network traffic at both sending and receiving o 5 14 P
hosts and demonstrate a communication framework that can im-°P€rating §ystems[ ; 1 _ _
plement alternative QoS models by applying appropriate policies. = When implementing the service architecture, lack of appro-
An experimental evaluation in a controlled configuration demon- p_riat(_a operating system _mechanlsms_ for schedullng a_md commu-
strates the efficacy with which QoS guarantees are maintained,nication may ne_gatwely impact real-time communication perfor-
despite limitations imposed by the underlying operating system. mance. Accordingly, we have developed compensatory mecha-
nisms in the communication subsystem to reduce the effects of

1 Introduction platform unpredictaility. For purposes of admission control, we

) . . parameterize the communication subsystem via detailed profiling
_ With the continued upsurge in the demand for networked mul- ¢ the send and receive data paths. Based on this parameteriza-
timedia and real-time app||cat_|o_ns, a key Issue is to |dent|f_y ar_1d tion, we identify the relevant overheads and constraints and pro-
resolve the challenges of rea_llzmg QoS-sensmve communlcatlonpose run-time resource management mechanisms that, along with
subsystems at end systems (i.e., network clients and servers). Traz, 5gmission control procedure, bound and accountfor these over-
dlthngl_deggn of communication subsystems has centered arounq,4s. Execution profiling is, therefore, a key component of our
optimizing average per_formance Wlth(_)ut_regard to the perfor- 5 enitecture. An experimental evaluation in a controlled config-
mance variability experienced by applications or end users. ASs  aiion demonstrates the efficacy with which QoS guarantees are

Eg?ﬁ;iggfu?cned ri:ir?gzngrﬁgzten;isezae\::pﬁﬁzg E;n?rl]zyﬁitf%rotr:‘fmaintained, within limitations of the inherent unpredidliapim-
’ A “posed by the underlying operating system.

first-serve service policy. Provision of QoS guarantees, however,p y o ying op gsy

requires sophisticated traffic and resource management functions FOr application-level QoS guara“tees, an end system must pro-

within the communication subsystem, and hence significantly im- VId€ adequate computation as well as communication resources

pacts its structure and performance. to simultaneousely executing applications. We focus on QoS-

In this paper we explore QoS-sensitive communication Subsys_sensitive communication subsystem design while recognizing that

tem design for contemporary operating systems. We describe ther.eal-time performance cannot be fully guaranteed without addi-

general architecture, implementation, and evaluation of aguaran-t'Onal support from the operating system kernel. Such support

teed QoS communication service for a microkernel operating sys-c_OUId be in the form of processor_gapgcny reserves for the ser-

tem. Microkernel operating systems continue to play an important vice 28] or_approprlate syste_m_ partitioning [7], and argd_mj the

role in operating system design [20], and are being extended toSCOPe Of this paper.. We envision a system strugture witlsae
munication subsysteuiistinct from thecomputation subsystem
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management domain distinct from the computation subsystem,subsystem for provision of transport-to-transport layer guarantees
since the QoS requirements and traffic characteristics of appli- (the subject of this paper). QoS-A [10] is a communication sub-
cations might not necessarily be tied to application importance. system architecture which provides features similar to our service,
While we do not consider integration of QoS-sensitive communi- but its realization would necessitate architectural mechanisms and
cation and computation subsystems in this paper, we argue that thextensions like those presented in this paper. A novel RSVP-based
architectural support described in this paper is complementary toQoS architecture supporting integrated services in TCP/IP pro-
the underlying operating system support required for application- tocol stacks is described in [5]. A native-mode ATM transport
level QoS guarantees. We are currently investigating architecturallayer has been designed and implemented in [3]. These architec-
approachesto integrate the two subsystems in a flexible manner. tures provide support for traffic policing and shaping but not for
Our primary contribution lies in realizing and demonstrating scheduling protocol processing and incorporating implementation
a QoS-sensitive communication subsystem that partially compen-overheads and constraints.
sates for the unpredictdity in a contemporary operating system, Operating system support for QoS-sensitive communication:
while exploiting the availableupport for provision of QoS guar-  Real-time upcalls (RTUs) [17] are used to schedule protocol pro-
antees on communication. This includes integration of the archi- cessing for networked multimedia applications via event-based up-
tectural components providing QoS guarantees with local commu-calls [11]. In contrastto RTUs, our approach adopts a thread-based
nicaiton resources and management policies, support for dynamigexecution model for protocol processing, schedules threads via a
scheduling of all communication processing, and detailed prame-modified earliest-deadline-first (EDF) policy [22], and accounts
terization of the communication subsystem to incorporate under-for a number of implementation overheads. Similar to our ap-
lying platform overheads for acccurate admission control. The proach, rate-based flow control of multimedia streams via kernel-
insights gained from our work can benefit system designers andbased communication threads is also proposed in [33]. However,
practitioners contemplating addition of elaborate Qafp®rt in in contrast to our notion of per-connection threads, a coarser no-
existing operating systems. tion of per-process kernelthreads is adopted. Also, the architecture
In the next section we note related work in the design of QoS- outlined in [33] does not provide signalling and resource manage-
sensitive communication services. Section 3 presents the goalgnent services within the communication subsystem.
and architecture of the real-time (guaranteed-QoS) communica- EXxplicit operating system support for communication is a focus
tion service. The components of the architecture are described inof the Scout operating system, which uses paths as a fundamental
Section 4. Section 5 describes our prototype implementation andoperating system structuring technique [29]. A path can be viewed
the issues faced in its realization on a platform with limited real- as a logical channelthrough a ftilayered system over which 1/O
time support. Section 6 follows with results of an experimental data flows. As we demonstrate, the CORDS path abstraction [16],
evaluation of our implementation and Section 7 concludes the pa-similar to Scout paths, provides a rich framework for development
per with a summary and directions for future work. of real-time communication services. Our architecture general-
izes and extends the path abstraction to provide dynamic allocation
and management of communication resources according to appli-
2 Related Work cation QoS requirements. Recently, processor capacity reserves
A number of approaches are being explored to realize QoS-in Real-Time Mach [28] have been combined with user-level pro-
sensitive communication and computation in the context of dis- tocol processing [23] for predictable protocol processing inside
tributed multimedia systems. An extensive survey of QoS archi- hosts [21]. However, no support is provided for traffic enforce-
tectures is provided in [9], which provides a comprehensive view Mentor the ability to control protocol processing priority separate
of the state of the art in the provisioning of end-to-end QoS. from application priority.
Network and protocol support for QoS: The Tenet real-time
protocol suite [4] is an implementation of real-time communica- 3 Real-Time Communication Service
tion on wide-area networks (WANSs), but it did not address the .
problem of QoS-sensitive protocol processing inside hosts. Fur- Architecture
ther, it does not incorporate implementation constraints and their Our primary goal is to provide applications with a service to re-
associated overheads, or QoS-sensitive processing of traffic at thguestand utilize guaranteed-QoS unicastreections between two
receiving host. While we focus on end-host design, support for hosts. The overall service is currently being utilized in &f-
QoS or preferential service in the network is being examined for MADAproject [1], which implements a set of communication and
provision of integrated and differentiated services on the Inter- middleware services that support end-to-end guarantees and fault-
net [6, 8,12]. The signalling required to set up reservations for tolerance in embedded real-time distributed applications.
application flows can be provided by RSVP [34], which initiates Common to QoS-sensitive communication service models are
reservation setup at the receiver, or ST-Il [13], whicltidtes the following three architectural requirements: (i) maintenance of
reservation setup at the sender. per-connection QoS guarantees, (ii) overload protection via per-
QoS architectures:The OMEGA [30] end point architecture pro-  connection traffic enforcement, and (iii) fairness to best-effort traf-
vides support for end-to-end QoS guarantees with a focus on arfic [25]. Earlier work in [25] presented and justified a high-level
integrated framework for the specification and translation of ap- architectural designin the context of a specific communication ser-
plication QoS requirements, and allocation of the necessary re-vice model. We generalize the architecture to apply to a number
sources. OMEGA assumes appropriate support from the operatingpf service models, and focus on techniques and issues that arise in
system for QoS-sensitive application execution, and the networkimplementing the generic architectural components.
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The programming interface exported to applications comprises

_ routines for connection establishment and teardown, message
] transmission and reception on established connections, and ini-

tialization and support routines. Table 1 lists some of the main
routines currently available iIRTC API. The API has two parts:
a top half that interfaces to applications and is responsible for val-
idating application requests and creating internal state, and a bot-
tom half which interfaces tRTCOHor signalling (i.e., onnection
setup and teardown), and @_IPS for QoS-sensitive data trans-
fer.

The design ofRTC API is based in large part on the well-
known socket API in BSD Unix. Each connection endpoint is
a pair(IPaddr, port) formed by the IP address of the host
(IPaddr ) and an unsigned 16-bit popgrt ) unique on the host,
similar to an INET domain socket endpoint. In &éh to unique
endpoints for data transfer, an application may use several end-

Figure 1 illustrates the high-level software architecture of our points to receive sigrling requests from other applications. Ap-
guaranteed-QoS service at end-hosts. The core functionality ofplications willing to be eceivers of real-time traffic register their
the communication service is realized via three components thatsignalling ports with a name service or use well-known ports. Ap-
interact to provide guaranteed-QoS communication. Applications plications wishing to create connections must first locate the cor-
use the service via the real-time communication application pro- responding receiver endpoints before siling can be initiated.
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Figure 1. Real-time communication service architecture

gramming interfaceRTC API); RTCOPcoordinates end-to-end
signalling for resource reservation and reclamation durargpec-
tion set-up or tear-down; ar@LIPS performs run-time manage-

The key aspect which distinguishR3C API from the socket
APl is that the receiving applicati@xplicitlyapprovesonnection
establishment and teardown. When registering its intent to receive

ment of resources for QoS-sensitive data transfer. Since platform-signalling requests, the application specifies an agent function that
specific overheads must be characterized before QoS guarantegs invoked in response to connection requests. This function, im-
can be ensured, an execution profiling componentis added to meaplemented by the receiving application, determines whether suf-
sure and parameterize the overheads incurred by the communicaficient application-level resources are available for the connec-
tion service on a particular platform, and make these parametersjon and, if so, reserves necessary resources (e.g., CPU capacity,
available for admission control decisions. The control path taken pyffers, etc.) for the new connection.
through the architecture during connection setup is shown in Fig-  Tpe QoS-parameters passed rtoCreateConnection
ure 1 as dashed lines. Data is then transferredk¥i@ APl and are translated, for generality, into abstract resource requirements.
CLIPS as indicated by the solid lines. These are, (i) a specified message buffer size to be reserved for the
Together, these components provide per-connection communi-connection, and (ii) a specified number of packets to be transmit-
cation resource management, including signalling, admission con-ted per specified period. These parameters are passadRS
trol and resource reservation, traffic enforcement, buffer manage-so that it can perform resource management. In addition, optional
ment, and CPU and link scheduling. We organize these functions(QoS model-specific) parameters can be specified and interpreted
into reusable core mechanisms that can implement alternative Qoy the admission policy. Typically, such parameters would consti-
communication paradigms given the appropriate policies. tute additional constraints, such as message deadline for example

We have approached the architectural component design withthat affect admission control decisions.

the goal of separating mechanisms that provide QoS-sensitive

communication from the policies that dictate the nature of QoS 4.2 Resource Reservation with RTCOP
guarantees. A relaxed admission control policy, for example, cou-
pled with these component mechanisms could be used to imple-
ment a statistical guarantee model. Similarly, changing the pol-
icy for expression of application QoS requirements, along with a
suitable admission control policy, facilitates QoS negotiation and
adaptation, as is demonstrated in [2].

Requests to create and destroy connections initiate the Real-Time
Connection Ordination ProtocoRTCOP, a distributed end-to-
end signalling protocolRTCORs composed ofequest and reply
handlersthat manage signalling state and interface to the admis-
sion control policy, and aommunication moduléat handles the
task of reliably forwarding signalling messages. This separation
allows simpler replacement of admission control policies or con-
nection state management algorithms without affecting communi-
cation functions. Note that signalling andrmection establish-
ment are non-real-time (but reliable) functions. QoS guarantees
Below, we discuss the salient features of each architectural com-apply to the data sent on an established connection but signalling
ponent of the service along with its interaction with other com- requests are sent as best-effort traffic.

ponents to provide QoS guarantees. We also describe how the When processing a new signalling request, the request han-
components are used to realize a particular service model. dler at each hop invokes an admission control procedure to decide

4 Architecture Component Design



| Function | Parameters | Operation Performed |

rtcinit none service initialization
rtcGetParameter chanid, param type query parameter on specified real-time connection
rtcRegisterPort local port, agent function register local port and agent for signalling
rtcUnRegisterPort local port unregister local signalling port
rtcCreateConnection remote host/port, max rate, create connection with given parameters

max burst size, max msg size, max delayo remote endpoint; return connectionid
rtcAcceptConnection local port, chan id, obtain the next connection already

remote host/port established at specified local port
rtcDestroyConnection chanid destroy specified real-time connection
rtcSendMessage chanid, buf ptr send message on specified real-time connection
rtcRecvMessage chand id, buf ptr receive message on specified real-time connection

Table 1. Routines comprisingRTC API

whether or not sufficient resources are available for the new re- componentdlustrated in Figure 2.
quest. When a connectionis admitted ahaltles on the route, the  QoS-sensitive schedulingThe communication handler thread of
reply handler at the destination node generates a positive acknowla clip executes in a continuous loop either dequeuing outgoing
edgment on the reverse path to the source to commit connectionmessages from the clip’'s message queue and fragmenting them (at
resources. These resources include packet and message buffetie source host), or dequeuing incoming packets from the clip’s
and aCLIPS connection handler thread. packet queue and reassembling messages (at the destination host).

The communication module handles the basic tasks of send-Each message mustbe sentwithin a given local delay bound (dead-
ing and receiving sigring messages, as well as forwarding data Jine) that is specified to the clip as a QoS parameter. To achieve the
packets to and from the applications. Most of the protocol pro- best schedulable utilization, communication handlers are sched-
cessing performed by the communication module is in the control yled based on an earliest-deadline-first (EDF) policy. Since most
path during processing of signalling messages. In the data path itoperating systems do not provide EDF schedulZigPS imple-
functions as a simple transport protocol, forwarding data packetsments it with a user-level scheduler layered on top of the oper-
on behalf of applications, much like UDP. ating system scheduler. The user-level scheduler runs at a static

RTCOPexports an interface tRTC API for specification of  kernel priority and maintains a list of all kernel threads registered
connection establishment and teardown requests and replies, anglith it, sorted by increasing deadline. At any given time, the
selection of logical ports for connectionendpoints. RTE API CLIPS scheduler blocks all of the registered threads using ker-
uses the latter to reserve a signalling port ipesse to a request  nel semaphores except the one with the earliest deadline, which it
from the application, for exampleRTCOPalso interfaces to an  considers in the running state. The running thread will be allowed
underlying routing engine to query an appropriate route before o execute until it explicitly terminates or yields using a primitive
initiating signalling for a new @nnection. In general, the rout-  exported byCLIPS. In the context of executing this primitive, the
ing engine should find a route that can support the desired QoSscheduler blocks the thread on a kernel semaphore and signals the
requirements. However, for simplicity we use static (fixed) routes thread with the next earliest deadline. This arrangement imple-
for connections since it suffices to demonstrate the capabilities ofments non-preemptive EDF scheduling within a single protection

our architecture and implementation. domain.
] Policing and communication thread scheduling:Each commu-
4.3 CLIPS-based Resource Scheduling nication handler is assignecbadgetto prevent a communication

The Communication Library for Implementing Priority Semantics client from monopolizing resources. The budget is expressed in
(CLIPS), implements the necessary resource-management mechterms of a maximum number of packets to be processed per period
anisms to realize QoS-sensitive real-time data transfer. It providesand is replenished at the start of a new period. Communication
a simple interface that exports the abstraction of a guaranteed-ratéandlers call the CLIPS scheduler after processing each packet to
communication endpoint, where the guarantee is in terms of thedecrementthe budget. To police non-conformant sources, the han-
number of packets sent during a specified period. The endpointdler is blocked when its budget expires. A handler is rescheduled
also has an associated configurable buffer to acommodate burstfor execution when the budget is replenished. We implement a
sources. We call this combinatiorchp. To control jitter, CLIPS “cooperative preemption” mechanism that prevents handlers with
also accepts a deadline parameter. Within each period packets willarge periods and budgets from inflicting unacceptjiée on the
be transmitted (via the clip) by the specified deadline measuredexecution of handlers with smaller periods. Each handler partici-
from the start of the period. pates in cooperative preemption by voluntarily yielding the CPU
Internal toCLIPS, each clip is provided with message queue after processing a small number of packets. If no handler of higher
to buffer messages generated or received on the correspondingriority is ready for execution at that im€LIPS returns control
endpoint, aommunication handler threa process these mes- 0 the yielding handler immediately. Otherwise, the higher prior-
sages, and @acket queu¢o stage packets waiting to be trans- ity handleris executed. Thus, a handler may be rescheduled by the
mitted or eceived. Once a pair of clips are created for a connec- cOmmunication thread scheduler when the it blocks due to expira-
tion, messages can be transferred in a prioritized fashion using thelion of its budget, or when it yields the CPU.
CLIPS API. The CLIPS library implements the key functional  QoS-sensitive link bandwidth allocation:Modern operating sys-
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5 Service Implementation

Figure 2. Functional structure of CLIPS. Our experimental testbed and implementation environment is
tems typically implement FIFO packet transmission over the com- based on the MK 7.2 microkernel operating system from the Open
munication link. While we cannot avoid FIFO queuing in the Group Research Institute. The hardware platform consists of sev-
kernel's network deviceCLIPS implements a dynamic priority-  eral 133 MHz Pentium-based PCs connected by a Cisco 2900 Eth-
basedink scheduleat the bottom of the user-level protocol stack ernet switch operating at 10MB/s.
to schedule outgoing packets. The link scheduler implements the  While not a full-fledged real-time OS, MK 7.2 includes several
EDF scheduling policy using a priority heap for outgoing packets. features that facilitate provision of QoS guarantees. Specifically,
To prevent a FIFO accumulation of outgoing packets in the ker- though it provides only preemptive fixed-priority scheduling, the
nel (e.g., while the link is busy), th€LIPS link scheduler does 7.2 release includes tt@ORDFCommunication Object for Real-
not release a new packet until it is notified of the completion of time Dependable Systems) protocol environment[16] in which our
previous packet transmission. Best-effort packets are maintainedmplementation residesCORDSs based on the-kernel object-
in a separate packet heap within the user-level link scheduler andoriented networking framework originally developed at the Uni-

serviced at a lower priority than those on real-time clips. versity of Arizona [18], with some significant extensions for con-
_ - trolled allocation of system resource€ORDSs also available
4.4 Execution profiling for Windows NT and, as such, serves as a justifiable vehicle for

The execution profiling component is invoked when the sys- €xploring the realization of communication services on modern
tem is deployed on a new platform, or upon system upgrades. Itmicrokernels with limited real-time support.
abstracts the communication overheads and costs of the host hard-
ware and software platform and makes them available to admis-5.1  Service Configuration
sion control to account for protocol processing delay, packettrans-gigyre 3(a) shows the software configuration for the guaranteed-
mission latency, message send delay, etc. Details of our profiling QoS communication service. While t@ORDSramework can
methodology, including measured parameters of our service im-pe ysed at user-level as well as in the kernel, we have developed

plementation, are available in [26]. the prototype implementation as a user-l&@6IRDServer. There

. L are several reasons for this choice as discussed in Section 5.2 be-
4.5 Service Model Instantiation low, the most obvious being the ease of development and debug-
Our real-time communication architecture may be used to real- ging, resulting in a shorter development cycle. Applications link
ize a family of service models that differ in the choice of QoS- with the librtc library and communicate real-time connection

parameters and admission control policy, as long as QoS param+equests and data via IPC with the user-l@8&IRDServer.

eters can be converted into a rate constraint (maximum number The service protocol stack is configured within the server as
of packets sent per period), a storage constraint (maximum packeshown in Figure 3(b)RTC API interfaces with applications via
buffer size), and a deadline on each node. We have implemented &ach Interface Generator (MIG) stubs, translating application re-
communication paradigm amenable to such an abstraction, namehguests to specific invocations of operationsRRCOP(for sig-

the real-time channels model[15, 19]. A real-time channelis a uni- nalling) or CLIPS (for data transfer).RTCOPserves as a trans-
cast virtual connection between a source and destination host withport protocol residing above a two-part network layer composed
associated performance guarantees on message delay and availabd¢ RTROUTERandIP . Though we currently use default IP rout-
bandwidth. In requesting a new channel, the application specifiesing, we provideRTROUTERs a go-between protocol to keep the
its message generation process to allow the communication subfouting interface independent of IP so tiRREECOPmay eventually
system to compute resource requirements and decide whether itvork with more sophisticated routing protocols that support QoS-
can guarantee the desired quality-of-service. The generation pro-or policy-based routing. Th® , ETH andETHDR\protocols are
cess is expressed in terms of the maximum messageMize.(), standard implementations distributed with @®RDSramework.
maximum message rat€ ... ), and maximum message burstsize ETHis a generic hardware-independent protocol that provides an
(Bmaz). The burst parameter serves to bound the short-term vari- interface between higher level protocols and the actual Ethernet
ability in the message rate and partially determines #eensary driver. ETHDR\s specific to the user-level implementation of the
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Figure 3. Service implementation asCORDSserver: In (a) the communication path used by applications is shown; (b)
illustrates the configurable protocol stack.

CORDSserver. It is an out-of-kernel device driver that interacts more effectively done when these functions are localized in a sin-
with the network device driver in the Mach kernel through system gle domain. Moreover, in the worst case, compared to user-level
calls to a Mach device control port. Note tHatIPS spans the protocol libraries a server configuration only suffers from addi-
protocol stack, providing scheduling and resource managementional context switches. While this has significantimplications for
services at both the message and packet levels. small messages, the relative degradation in performance is not as
When an application sends a message ta®&DServer for significant for large data transfers performed by the guaranteed-
transmission on an established real-time connection, an API thread20S communication service, although it may affect connection
waiting on the corrgsonding Mach port first deposits it into a admissibility. Once developed and dgjged, the server can be
connection-specific message queu@LIPS then schedules the  moved into the kernel to improve performance and predictability.
connection’s handler thread to perform protocol processing andOur design approach and lessons learned are applicable to com-
fragment the message into packets. These packets are labeled witmunication subsystems realized as user-level libraries, co-located
their local deadline and staged in t8&IPS packet heap. From  kernel servers, or integrated kernel implementations.
this point theCLIPS link scheduler thread retrieves packets and neqyork device interface: A server-based implementation
trans_rr_nts them_ accord_lng to th_elr d_eallnes. A packet armving atthe presents a number of problems for data input and output in our ar-
receving hO_St is denttiplexed into its onnection-specific packet chitecture. The bottom layer of the protocol stack interfaces with
buffe_rwhen it enters theORDServer from the_kernel. The con- the kernel device driver via the kernel’'s IPC mechanism. Device
nection handler_thread, scheduled®yPS, retrlev_es the packet output is initiated by th€CLIPS link scheduler, as close as pos-
and _shepherds it up the protocol stack performing protocol pro- gy 14 the device driver without being in the kernel. The kernel
cessing and message reassembly. Once reassembled, the messagg;ice driver cannot directly invoke the user-level link scheduler
is deposited in t_he co_r_mectlon message queue an_d _th_e cor_rc_asponﬂﬁ response to transmission completion interrupts unless the OS
ing API thread is notified of the message arrival (if it is W_al_tmg). supports mapped device drivers or user-level upcalls. In the ab-
Finally, the API thread constructs a MIG message containing the sence of such support, user-level link scheduling cannot be done
data and delivers it to the application task. in interrupt context. Instead, we utilize user-level threads to per-
form synchronous device transfers and link scheduling is realized
5.2 Implementation Issues and Platform Support  in the context of a high priority thread.

Below we highlight several issues and challenges in implementing Resource reservation with Paths:Resource reservation must be
the communication service. We discuss limitations in the under- coordinated in an end-to-end fashion along the route of each con-
lying platform that lead to unpredictable behavior and the com- nection during connection establishmer@ORDSprovides two
pensatory mechanisms that we used to circumvent them. We als@abstractionspathsandallocators for reservation and allocation
describe platform features that are useful in realizing a real-time of system resources within tf@ORDSramework. Resources as-
communication service and their use in our implementation. sociated with paths include dynamically allocated memory, input
Server-based implementation:While a server-based implemen- packet buffers, and input threads that shepherd messages up the
tation is natural for a microkernel operating system, it may per- protocol stack [16]. Paths, coupled with allocators, provide a capa-
form poorly compared to user-level protocol libraries due to exces- bility for reserving and allocating resources at any protocol stack
sive data copying and context switching [23, 32]. Implementing layer on behalf of a particular connection, or class of messages.
the service as a protocol library, however, distributes the functions With packet demultiplexing at the lowest level at tkeeeiver (i.e.,

of admission control and run-time resource management amongperformed in the device driver), it is possible to isolate packets
several address spaces. Since applications may each compete fan different paths from each other early in the protocol stack. In-
communication resources, controlling system-wide resources iscoming packets are stored in buffers explicitly tied to the appropri-
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ate path and serviced by threads previously allocated to that path.

Moreover, threads reserved for a path may be assigned one of sev- 225 | O —Ospecified throughput ]
eral scheduling policies and priority levels. We use paths to facili-
tate per-connection resource reservation during connection setup. 2000

Packet classification: Proper handling of prioritized real-time
data at the receiving host requires that packet priority be identi-
fied as early as possible in the protocol stack, and that packets
be served accordinglyCORDSassociates outgoing packets with
paths and demultiplexes incoming traffic into per-path buffers, es-
sentially acting as a specialized packet filter. The data link device 100 |
driver examines outgoing packets and adds an appropriate path
identifier to allow early path-based demultiplexing at teegiver.

This allows packet handling to be done in path-dependent order 50 s s s s s
and facilitates imposing relative priorities among paths (e.g., pack- % 180 i,gf?e,ed Load ?53,5) 0 %80
ets of one path can be served before those of another). While this ) ) . )
technique is natural for networks supporting a notion of virtual cir- ~ Figure 4. Traffic enforcement on a single real-time
cuit identifiers (VCI) such at ATM, it is not so for traditional data %annd'R@” = 5 msg/secMmas = 40KB, Brar =
; . ,and D = 200ms.

link technologies such as Ethernet. In the case of Ethernet, the

CORDslriver adds a neypath identifierto the data link header.

This creates a non-standar_d Ethernet header that would not be “”éponding Mach port queue. Once an application sends a message
derstood by hosts not running te®RDSramework.

to the server, the corresponding API thread reads it from the Mach
Packet queuing:While packet classification, as discussed above, port and queues it for the corresponding communication handler.
occurs in the QoS-sensitive communication server, we cannot as-The thread, whose execution time is charged to the handler’s bud-
sume that the kernel supports piized packet processing. The  get, runs at handler priority, and is allowed to continue running
in-kernel network device driver simply relays received packets to at hackground priority when the handler's budget expires. Like
the communication server in FIFO order via the available IPC the handler, the API thread adheres to the cooperative preemption
mechanism, in our case Mach ports. This FIFO Ordering does notmode| by y|e|d|ng to Wai’[ing, h|gher priori’[y messages after pro-
respect connection QoS requirements, however, since urgent packeessing a fixed amount of message data.

ets can suffer unbounded priority inversion when preceded by anpynamic path creation and deletion: Real-time connections
arbitrary number of less urgent packets in the queue. Also, sincemay be created and deleted repeatedly over an application’s life-
the same queue is used for real-time and non-real-time traﬂic,time requiring that paths be dynamidities with appropriate tear-
depending on packet arrival-time patterns, real-time data maybegdown and resource reclamation mechanisms. G®&DSrame-
dropped when the queue is filled by non-real-time packets. Theseyork envisions a relatively static use of paths, with a single path
two problems cannot be solved without modifying the kernel de- for hest-effort traffic and a few paths for different classes of traffic.
vice driver. To ameliorate this unpredicttty, a high priority That is, there are never more than perhaps ten active paths, all of
thread waits on the communication server’s input port and de- these long-lived and preconfigured. Accordingly, B@RD$ath
queuesincoming packets as soon as they arrive, depositing them ifibrary does not support path teardown or resource reclamation op-
their appropriate path-specific queues. This prevents FIFO packekrations. To facilitate a one-to-one association between real-time
accumulation in the kernel and allows the server to service packetsonnections and paths, we have exten@&RDSo support path

in priority order according to the connection path. destruction and reclamation of resources associated with a path.
Application-server IPC: A problem similar to the above arises These mechanisms are invoked BfCOPduring signalling of
when applications use kernel-level IPC mechanisms to send mesteardown messages from connection source to destination.

sages via the QoS-sensitive communication server. Unless syn-

chronous communication (e.g., RPC) is used to send messages t . .

the server, successive application messages will accumulate in th(f5 Experlmental Evaluation

kernel buffers for delivery to the server. In a QoS-sensitive sys- We conducted several experiments to evaluate the efficacy of our
tem the length of such a queue should be derived from the ap-prototype implementation. The experiments demonstrate two key
plication traffic specification, for example based on message rate,aspects of the QoS support provided: traffic enforcement (i.e.,
size, and burst. If the queue is too small, application messagegolicing and shaping) on a single connection, and traffic isola-
may be dropped or require retransmission from the application.tion between multiple real-time and best-effodnnections. We

If the queue is overly long, application messages may reside in it show that reasonably good QoS-guarantees can be achieved de-
longer than anticipated and result in deadline violations. We do spite the lack of real-time scheduling and communication support
not assume that we can control allocation of the kernel-level IPC in the kernel.

queues. Our strategy is to drain them as fast as possible, transfer- The experimental setup consists of two hosts communicating
ring messages to connection-specific queues in the communicatioron a private segment through the Ethernet switch. To avoid in-
server, which are sized in accordance with the connection’s traffic terference from the Unix server, we suppress extraneous network
specification. We dedicate an API thread per connection within traffic (e.g., ARP requests and replies) and configured®&DS

the server whose function is to consume messages from the correserver to receive all incoming network traffic. This allows us to
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Figure 5. In (a) channel 1 has the same specification as in Figure 4 and channel 2 Wag,,. = 2 msg/secM 4. = 15 KB,
Biae = 10,and D = 100 ms. In (b) channel 1 has a specification of?,;, . = 10 msg/secM 4 = 20 KB, Bpae = 10,
and D = 200 ms and channel 2 has®, ;.. = 5 msg/secM 4 = 5 KB, Biee = 10,and D = 100 ms.

limit the background CPU load on each host and accurately con-real-time channels are established between the hosts, one repre-
trol network traffic between them. For each experiment reported senting a high-rate channel (channel 1) and the other representing
below, connections are created between MK client tasks runninga low-rate channel (channel 2). The high-rate channelhas the same
at the two hosts. Connection parameters are specified accordingraffic and deadline specification as before, i.e. a specified rate of
to the real-time channel model, namely as maximum message siz€00 KB/s. The low-rate channel has a specified channel rate of 30
(Mmaz), maximum message burd®f,.), message ratéinqz ), KB/s. Message generation on channel 2 is continuous, so that it
and message deadlinB). Message traffic is generated by threads sends at a persistent 30 KB/s. Channel 1 is controlled in order to
running within the MK client task at the source and consumed by vary the offered load.

threads running within the destination client. Our evaluation met-  Figure 5(a) shows the delivered throughput on channels 1 and 2
ric is the per-connection application-level throughput delivered to as a function of the offered load on channel 1. Once again, the de-

the receiving task at the destination host. livered throughput on channel 1 increases linearly with the offered
load until the offered load equals the specified channel rate (200
6.1 Traffic Enforcement KB/s). Subsequent increase in offered load has no effect on the

. . . . . delivered throughput which stays constant at the specified channel
_F_or this experiment, we establish a rea"“”?e channel with a SPEC-ate. The delivered throughput on channel 2, on the other hand
:f'eg ratetk:)f 2?10 KB/IS. and a 50?, ms deaotlllme.h The_ acttl',:al _oftferedl remains constant at approximately 30 KB/s (its specified channel
l;)atwon ec artl_ne '? varied, however, by changing p € |n5eorga rate) regardless of the offered load on channel 2. Thatis, traffic vi-
¢ eO rﬁenigener?]tlicrzn 0 sgrc%?sswi n:etsi,szges, ranging from MBlations on one connection (even continuous message generation)
0 s(ie., C.O . uous traffic ge_ eration). . . do not affect the delivered QoS for another connection.

As shown in Figure 4, the delivered throughput increases lin- We also consider traffic isolation between real-time and best-

i il the off I Is th - ! . ) . )

early with the offered load unti the offered load equals the spec effort traffic under increasing best-effort load. For this experiment

ified channel rate. For example, at an offered load of 100 KB/s - . .

(corresponding to a message generation interval of 400 ms), thelve create an additional best-effort ch_annel in addition to two real-
delivered throughput is 100 KB/s. Similarly, at an offered load of time channgls. As before, one real-tlmg _channel (channel 1) rep-
200 KB/s, the delivered throughputis 200 KB/s. For offered loads resents a high-rate channel with a specified rate of 200 KB/s. The

beyond the specified channel rate, however, the delivered through-other real-time channel (channel 2) is a low-rate channel with rate

put equals the specified channel rate. This continues to be the cas%5 KB/s. Message generation on channels 1 and 2 is continuous,

. . -1.e., with a message generation interval of 0 ms. The offered load
even under continuous message generation (message generatlor‘l3 9eg

interval of 0 ms). These measurements show that the traffic en-2 the best-effort channel (channel 3) is van_ed from 50 KB/s 1o
forcement mechanisms effectively prevent a real-time connection350 KB/S by controlling the message generation interval.

from violating its specified rate. Flggre 5(b) plots the delivered throughput on each channel as
a function of the offered best-effort load. A number of observa-
tions can be made from these measurements. First, the delivered
throughput on channels 1 and 2 are roughly independent of the
In addition to proper traffic enforcemengaall that one of the ar-  offered best-effort load. That is, real-time traffic is effectively iso-
chitectural goals of the guaranteed-QoS communication service islated from best-effort traffic, except under very high best-effort
to ensure isolation between different QoS and best-effort connec-loads as explained below. Second, best-effort traffizas any
tions. We first consider traffic isolation between multiple real-time excess capacity not consumed by real-time traffic, as evidenced by
channels subject to traffic violation by a real-time channel. Two the roughly linear increase in delivered throughput on channel 3

6.2 Traffic Isolation
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as a function of the offered load. Once the system reaches sat-
uration (beyond a best-effort offered load of approximately 250
KB/s), however, best-effort throughput declines sharply due to
buffer overflows and the resulting packet loss at #heeiver.

Under very high best-effort loads, the delivered throughput on
channel 1 declines slightly. We believe that this is due to the over-
heads of receiving and discarding best-effort packets, which have
not been accounted for in the admission control procedure. These
overheads impact the delivered throughput on high-rate connec-
tions more than low-rate connections, as evidenced by the constant
throughput delivered to channel 2 even under very high best-effort
load.
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6.3 Fairness to Best-Effort Traffic

While the load offered by real-time connections in the previous ex-

periments was persistent (always greater than the reserved capac-

ity), this experiment focuses on utilization of any reserved capac-

ity not utilized by a real-time @nnection. It is desirable that this

unused capacity betilized by best-effort traffic, as per our goal

of fairness. Other real-time connections should not be allowed to This discrepancy is most likely due to CPU contention between

consume this excess capacity at the expense of best-effort trafficthe receiving application task and tlRDSserver and the re-

We create two real-time channels and a best-effort channel as besulting context switching overheads, and the high cost of IPC

fore. While the offered load on channel 2 is continuous, channel 1 across the client and server. Another reason could be the unneces-

only offers a load of 100 KB/s even though it is allocated a capac- sary copy performed by the lowest lay&THDRY of the CORDS

ity of 200 KB/s. We consider two cases of message generation onprotocol stack whenever packets from multiple paths arrive in an

channel 1, as explained below. In case 1, channel 1 carries 20 KBinterleaved fashion. Since this occurs frequently with multiple

messages at 5 messages/second (half the specified rate). In case@annels and under high traffic load, it is likely that this extra

it generates 10 KB messages at 10 messages/second. copy is slowing down the receiver significantly; this extra copy
Figure 6 plots the delivered throughput on all the channels as can only be eliminated by redesigning path buffer managementin

a function of the offered load on the best-effort channel (channel the CORDSramework. More importantly, none of these effects

3). Channel 1 receives a constant 100 KB/s throughput indepen-are accounted for in the admission control procedure, and must be

dent of the offered best-effort load. Similarly, channel 2 receives addressed when the communication subsystem is integrated more

Figure 6. Channels 1 and 2 have the same parameters as
in Figure 5(b) but channel 1 underutilizes its reservation.
Incase 1, channel 1 generates 20 KB messagesat 5 msg/s;
in case 2, it generates 10 KB messages at 10 msg/s.

its allocated capacity of 25 KB/s. In case 1, Channel 3's deliv-
ered throughput increases linearly with the offered load until an
offered load of 250 KB/s. Beyond this load, the delivered best-
effort throughput falls as before, but continues to be higher than

that obtained in Figure 5(b) when real-time channels were using 7

their full reserved capacity.
We found, though, that best-effort traffic is unable to fully uti-

lize the unused capacity left by channel 1. We suspect that this

effect is primarily due to packet losses caused by buffer overflow
at the receiver, either in the adapter or in the kernel device por
queue used by theORDSserver to receive incoming packets. To

validate this, we ran additional experiments with case 2, in which

channel 1 generates smaller messages (10 KB) at a higher rate t
offer the same average load of 100 KB/s. As can be seen in Fig-
ure 6, the delivered best-effort throughput in this case continues to
increase linearly beyond 250 KB/s and shows no decline even for &

closely within the host operating system. We expect to see sig-
nificant improvements in the base performance for an in-kernel
realization of our prototype implementation.

Summary and Future Work

In this paper we have described our experiences with the design,
implementation, and evaluation of a guaranteed-QoS communi-
cation service implemented on a contemporary microkernel op-

t erating system with limited real-time supprt. We designed three

primary components that provide general mechanisms for real-
time communication, including support for sidliveg and resource

geservation, traffic enforcement, buffer management, and CPU and

link scheduling. A fourth execution profiling componentis respon-
sible for the essential task of characterizing platform-specific com-
munication overheads. When combined with with specific policies

best-effort load of 350 KB/s. These results suggest that best-effort0f @dmission control and interpretation of QoS parameters, these

traffic is able to fully utilizeunused capacity when real-time traffic
is less bursty (i.e., has fewer packets in each message).

6.4 Further Observations
With the user-leveCORDServer configuration, the receiving task

components can be used to implement several QoS-sensitive com-
munication models.

We have tested our prototype with transmission of stored com-
pressed video and playout usingpeg_play . We plan to conduct

further experiments with a number of stored video traces. To al-

low for QoS-adaptation, we have implemented an end-host archi-

is able to receive packets at an aggregate rate of 450-500 KB/s (detecture for adaptive-QoS communication services [2]. In [26] we
pending on the number of packets in a message), even though thelescribe the complex process of parameterizing the overheads of
sender can send at a maximum rate of approximately 750 KB/s.the communication subsystem and target platform. These efforts



illustrate the need for an automated approach to profiling and sys-
tem parameterization. We have, therefore, also begun to explore
self-parameterizing protocol stacks for QoS-sensitive communica-

tion subsystems [27].
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