
1088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

A Router Architecture for Real-Time
Communication in Multicomputer Networks

Jennifer Rexford, Member, IEEE, John Hall, and Kang G. Shin, Fellow, IEEE

Abstract—Parallel machines have the potential to satisfy the large computational demands of real-time applications. These
applications require a predictable communication network, where time-constrained traffic requires bounds on throughput and
latency, while good average performance suffices for best-effort packets. This paper presents a new router architecture that tailors
low-level routing, switching, arbitration, flow-control, and deadlock-avoidance policies to the conflicting demands of each traffic
class. The router implements bandwidth regulation and deadline-based scheduling, with packet switching and table-driven multicast
routing, to bound end-to-end delay and buffer requirements for time-constrained traffic while allowing best-effort traffic to capitalize
on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-
constrained traffic, the router includes a novel packet scheduler that shares link-scheduling logic across the multiple output ports,
while masking the effects of clock rollover on the represention of packet eligibility times and deadlines. Using the Verilog hardware
description language and the Epoch silicon compiler, we demonstrate that the router design meets the performance goals of both
traffic classes in a single-chip solution. Verilog simulation experiments on a detailed timing model of the chip show how the
implementation and performance properties of the packet scheduler scale over a range of architectural parameters.

Index Terms—Multicomputer router, real-time communication, link scheduling, wormhole switching, packet switching.

——————————���F���——————————

1 INTRODUCTION

EAL-TIME applications, such as avionics, industrial pro-
cess control, and automated manufacturing, impose

strict timing requirements on the underlying computing
system. As these applications grow in size and complexity,
parallel processing plays an important role in satisfying the
large computational demands. Real-time parallel comput-
ing hinges on effective policies for placing and scheduling
communicating tasks in the system to ensure that critical
operations complete by their deadlines. Ultimately, a par-
allel or distributed real-time system relies on an intercon-
nection network that can provide throughput and delay
guarantees for critical communication between cooperating
tasks; this communication may have diverse performance
requirements, depending on the application [1]. However,
instead of guaranteeing bounds on worst-case communica-
tion latency, most existing multicomputer network designs
focus on providing good average network throughput and
packet delay. Consequently, recent years have seen in-
creasing interest in developing interconnection networks
that provide performance guarantees in parallel machines
[2], [3], [4], [5], [6], [7], [8].

Real-time systems employ a variety of network archi-
tectures, depending on the application domain and the per-
formance requirements. Although prioritized bus and ring
networks are commonly used in small-scale real-time sys-

tems [9], larger applications can benefit from the higher
bandwidth available in multihop topologies. In addition,
multihop networks often have several disjoint routes be-
tween each pair of processing nodes, improving the appli-
cation’s resilience to link and node failures. However, these
networks complicate the effort to guarantee end-to-end
performance, since the system must bound delay at each link
in a packet’s route. To deliver predictable communication
performance in multihop networks, we present a novel
router architecture that supports end-to-end delay and
throughput guarantees by scheduling packets at each net-
work link. Our prototype implementation is geared toward
two-dimensional meshes, as shown in Fig. 1; such topolo-
gies have been widely used as the interconnection network
for a variety of commercial parallel machines. The design
directly extends to a broad set of topologies, including the
class of k-ary n-cube networks; with some changes in the
routing of best-effort traffic, the proposed architecture ap-
plies to arbitrary point-to-point topologies.

Communication predictability can be improved by as-
signing priority to time-constrained traffic or to packets
that have experienced large delays earlier in their routes
[10]. Ultimately, though, bounding worst-case communica-
tion latency requires prior reservation of link and buffer
resources based on the application’s anticipated traffic load.
Under this traffic contract, the network can provide end-to-
end performance guarantees through effective link-
scheduling and buffer-allocation policies. To handle a wide
range of bandwidth and delay requirements, the real-time
router implements the real-time channel [11], [12], [13] ab-
straction for packet scheduling, as described in Section 2.
Conceptually, a real-time channel is a unidirectional virtual
connection between two processing nodes, with a source
traffic specification and an end-to-end delay bound. Separate

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� J. Rexford is with Network and Distributed Systems, AT&T Labs Research,
A169 180 Park Ave., Florham Park, NJ 07932.
E-mail: jrex@research.att.com.

•� J. Hall and K.G. Shin are with the Real-Time Computing Laboratory, De-
partment of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109. E-mail:{hallj, kgshin}@eecs.umich.edu.

Manuscript received 18 Oct. 1996; revised 18 Nov. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102137.

R

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1089

parameters for bandwidth and delay permit the model to
accommodate a wider range and larger number of connec-
tions than other service disciplines [14], [15], [16] at the ex-
pense of increased implementation complexity.

The real-time channel model guarantees end-to-end per-
formance through a combination of bandwidth regulation
and deadline-based scheduling at each link. Implementing
packet scheduling in software would impose a significant
burden on the processing resources at each node and would
prove too slow to serve multiple high-speed links. This
software would have to rank packets by deadline for each
outgoing link, in addition to scheduling and executing ap-
plication tasks. With high-speed links and tight timing con-
straints, real-time parallel machines require hardware sup-
port for communication scheduling. An efficient, low-cost
solution requires a design that integrates this run-time
scheduling with packet transmission. Hence, we present a
chip-level router design that handles bandwidth regulation
and deadline-based scheduling, while relegating non-real-
time operations (such as admission control and route selec-
tion) to the network protocol software.

Although deadline-based scheduling bounds the worst-
case latency for time-constrained traffic, real-time applica-
tions also include best-effort packets that do not have strin-
gent performance requirements [10], [11], [15], [17]; for ex-
ample, good average delay may suffice for some status and
monitoring information, as well as the protocol for estab-
lishing real-time channels. Best-effort traffic should be able
to capitalize on the low-latency communication techniques
available in modern parallel machines without jeopardizing
the performance guarantees of time-constrained packets.
Section 3 describes how our design tailors network routing,
switching, arbitration, flow-control, and deadlock-avoidance
policies to the conflicting performance requirements of
these two traffic classes. Time-constrained traffic employs
packet switching and small, fixed-sized packets to bound
worst-case performance, while best-effort packets employ
wormhole switching [18] to reduce average latency and
minimize buffer space requirements, even for large packets.
The router implements deadlock-free, dimension-ordered
routing for best-effort packets while permitting the protocol
software to select arbitrary multicast routes for the time-
constrained traffic; together, flexible routing and multicast

packet forwarding provide efficient group communication
between cooperating real-time tasks.

Section 4 describes how the network can reserve buffer
and link resources in establishing time-constrained connec-
tions. In addition to managing the packet memory and
connection data structures, the real-time router effectively
handles the effects of clock rollover in computing schedul-
ing keys for each packet. The router overlaps communica-
tion scheduling with packet transmission to maximize utili-
zation of the network links. To reduce hardware complexity,
the architecture shares packet buffers and sorting logic
amongst the router’s multiple output links, as discussed in
Section 5; a hybrid of serial and parallel comparison opera-
tions enables the scheduler to trade space for time to fur-
ther reduce implementation complexity. Section 6 describes
the router implementation, using the Verilog hardware de-
scription language and the Epoch silicon compiler. The Ep-
och implementation demonstrates that the router can sat-
isfy the performance goals of both traffic classes in an af-
fordable, single-chip solution. Verilog simulation experi-
ments on a detailed timing model of the chip show the cor-
rectness of the design and investigate the scaling properties
of the packet scheduler across a range of architectural pa-
rameters. Section 7 discusses related work on real-time
multicomputer networks, while Section 8 concludes the
paper with a summary of the research contributions and
future directions.

2 REAL-TIME CHANNELS

Real-time communication requires advance reservation of
bandwidth and buffer resources, coupled with run-time
scheduling at the network links. The real-time channel model
[11] provides a useful abstraction for bounding end-to-end
network delay, under certain application traffic characteristics.

2.1 Traffic Parameters
A real-time channel is a unidirectional virtual connection
that traverses one or more network links. In most real-time
systems, application tasks exchange messages on a peri-
odic, or nearly periodic, basis. As a result, the real-time
channel model characterizes each connection by its mini-
mum spacing between messages (Imin time units) and
maximum message size (Smax bytes), resulting in a maxi-
mum transfer rate of Smax/Imin bytes per unit time. To per-
mit some variation from purely periodic traffic, a connec-
tion can generate a burst of up to Bmax messages in excess of
the periodic restriction Imin. Together, these three parame-
ters form a linear bounded arrival process [19] that governs a
connection’s traffic generation at the source node.

2.2 End-to-End Delay Bound
In addition to these traffic parameters, a connection has a
bound D on end-to-end message delay based on the mini-
mum message spacing Imin. At the source node, a message
mi generated at time ti has a logical arrival time

,
,0

0 1

0
0m

t i

m I t ii
i

i i
2 7 2 7= B=

=
+ >

%&K'K −

if
if max , .min

Fig. 1. Router in a mesh network: This figure shows a router in a 4 × 4
square mesh of processing nodes. To communicate with another node,
a processor injects a packet into its router; then, the packet traverses
one or more links before reaching the reception port of the router at the
destination node.

1090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

By basing performance guarantees on these logical arrival
times, the real-time channel model limits the influence an
ill-behaving or malicious connection can have on other traf-
fic in the network. The run-time link scheduler guarantees
that message mi reaches its destination node by its deadline
,0(mi) + D.

2.3 Per-Hop Delay Bounds
The network does not admit a new connection unless it can
reserve sufficient buffer and bandwidth resources without
violating the requirements of existing connections [11], [20].
A connection establishment procedure decomposes the
connection’s end-to-end delay bound D into local delay

bounds dj for each hop in its route such that dj � Imin and

d Djj∑ ≤ . Based on the local delay bounds, a message mi

has a logical arrival time

,j(mi) = ,j-1(mi) + dj-1 for j > 0

at node j in its route, where j = 0 corresponds to the source
node. Link scheduling ensures that message mi arrives at
node j no later than time ,j-1(mi) + dj-1, the local deadline at
node j - 1. In fact, message mi may reach node j earlier due
to variations in delay at previous hops in the route. The
scheduler at node j ensures that such “early” arrivals do not
interfere with the transmission of “on-time” messages from
other connections.

2.4 Run-Time Link Scheduling
Each link schedules time-constrained traffic, based on logi-
cal arrival times and deadlines, in order to bound message
delay without exceeding the reserved buffer space at inter-
mediate nodes. The scheduler, which employs a multiclass
variation of the earliest due-date algorithm [21], gives high-
est priority to time-constrained messages that have reached
their logical arrival time (i.e., ,j(mi) � t), transmitting the
message with the smallest deadline ,j(mi) + dj, as shown in
Table 1. If Queue 1 is empty, the link services best-effort traf-
fic from Queue 2, ahead of any early time-constrained mes-
sages (i.e., ,j(mi) > t). This improves the average performance
of best-effort traffic without violating the delay requirements
of time-constrained communication. Queue 3 holds early
time-constrained traffic, effectively absorbing variations in
delay at the previous node. Upon reaching its logical arrival
time, a message moves from Queue 3 to Queue 1.

2.5 Link Horizon Parameter
By delaying the transmission of early time-constrained
messages, the link scheduler can avoid overloading the

buffer space at the downstream node [11], [15], [16]. Still,
the scheduler could potentially improve link utilization and
average latency by transmitting early messages from Queue 3
when the other two scheduling queues are empty. To bal-
ance this trade-off between buffer requirements and aver-
age performance, the link can transmit an early time-
constrained message from Queue 3, as long as the message
is within a small horizon h � 0 of its logical arrival time (i.e.,
,j(mi) � t + h). Larger values of h permit the link to transmit
more early time-constrained traffic at the expense of in-
creased memory requirements at the downstream node.
Although each connection could conceivably have its own h
value, employing a single horizon parameter allows the
link to transmit early traffic directly from the head of
Queue 3, without any per-connection data structures.

2.6 Buffer Requirements
To avoid buffer overflow or message loss, a connection
must reserve sufficient memory for storing traffic at each
node in its route. The required buffer space at node j de-
pends on the connection’s local delay bound dj, as well as
the horizon parameter hj-1 for the incoming link. In par-
ticular, node j can receive a message from node j - 1 as early
as ,j(mi) - (dj-1 + hj-1) if node j - 1 transmits the message at
the earliest possible time. In the worst case, node j can hold
a message until its deadline ,j(mi) + dj. Hence, for this con-
nection, ,j(mi) ¶ [t - dj, t + dj-1 + hj-1] for any messages mi
stored at node j at time t. If a connection has messages ar-
rive as early as possible and depart as late as possible, then
node j could have to store as many as

d d h

I
j j j+ +�

"

#
###

− −1 14 9
min

messages from this connection at the same time. By reserv-
ing buffer and bandwidth resources in advance, the real-
time channel model guarantees that every message arrives
at its destination node by its deadline, independent of other
best-effort and time-constrained traffic in the network.

3 MIXING BEST-EFFORT AND TIME-CONSTRAINED
TRAFFIC

Although the real-time channel model bounds the worst-
case performance of time-constrained messages, the sched-
uling model in Table 1 can impose undue restrictions on the
packet size and flow-control schemes for best-effort traffic.
To overcome these limitations, we propose a router archi-
tecture that tailors its low-level communication policies to

TABLE 1
REAL-TIME CHANNEL SCHEDULING MODEL

Under the real-time channel model, each link transmits traffic from three scheduling queues. To provide delay guarantees to
time-constrained connections, the link gives priority to the on-time time-constrained messages in Queue 1 over the best-effort
traffic in Queue 2. Queue 3 serves as a staging area for holding any early time-constrained messages.

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1091

the unique demands of the two traffic classes. Fine-grain,
priority-based arbitration at the network links permits the
best-effort traffic to capitalize on the low-latency techniques
in modern multicomputer networks without sacrificing the
performance guarantees of the time-constrained connec-
tions. Fig. 2 shows the high-level architecture of the real-
time router, with separate control and data path for the two
traffic classes.

3.1 Complementary Switching Schemes
To ensure that time-constrained connections meet their de-
lay requirements, the router must have control over band-
width and memory allocation. For example, suppose that a
time-constrained message arrives with a tight deadline (i.e.,
,(mi) + d - t is small), while the outgoing link is busy
transmitting other traffic. To satisfy this tight timing re-
quirement, the outgoing link must stop servicing any
lower-priority messages within a small, bounded amount
of time. This introduces a direct relationship between con-
nection admissibility and the maximum packet size of the
time-constrained and best-effort traffic sharing the link. In
most real-time systems, time-constrained communication
consists of 10-20 byte exchanges of command or status in-
formation [9]. Consequently, the real-time router restricts
time-constrained traffic to small, fixed-size packets that can
support a distributed memory read or write operation. This
bounds link access latency and buffering delay while sim-
plifying memory allocation in the router.

To ensure predictable consumption of link and buffer re-
sources, time-constrained traffic employs store-and-forward
packet switching. By buffering packets at each node, packet
switching allows each router to independently schedule
packet transmissions to satisfy per-hop delay requirements.
To improve average performance, the time-constrained traf-
fic could conceivably employ virtual cut-through switching

[22] to allow an incoming packet to proceed directly to an
idle outgoing link. However, in contrast to traditional vir-
tual cut-through switching of best effort traffic, the real-
time router cannot forward a time-constrained packet with-
out first assessing its logical arrival time (to ensure that the
downstream router has sufficient buffer space for the
packet) and computing the packet deadline (which serves
as the logical arrival time at the downstream router). To
avoid this extra complexity and overhead, the initial design
of the real-time router implements store-and-forward
packet switching, which has the same worst-case perform-
ance guarantees as virtual cut-through switching. A future
implementation could employ virtual cut-through switch-
ing to reduce the average latency of the time-constrained
traffic.

Although packet switching delivers good, predictable
performance to small, time-constrained packets, this ap-
proach would significantly degrade the average latency of
long, best-effort packets. Even in a lightly loaded network,
end-to-end latency under packet switching is proportional
to the product of packet size and the length of the route.
Instead, the best-effort traffic can employ wormhole switch-
ing [18] for lower latency and reduced buffer space re-
quirements. Similar to virtual cut-through switching,
wormhole switching permits an arriving packet to proceed
directly to the next node in its route. However, when the
outgoing link is not available, the packet stalls in the network
instead of buffering entirely within the router.

In effect, wormhole switching converts the best-effort
scheduling “queue” in Table 1 into a logical queue that
spans multiple nodes. The router simply includes small
five-byte flit (flow control unit) buffers [23] to hold a few
bytes of a packet from each input link. When an incoming
packet fills these buffers, internode flow control halts fur-
ther transmission from the previous node until more space

Fig. 2. Real-time router: This figure shows the real-time router architecture, with separate control and data path for best-effort and time-
constrained packets. The router includes a packet memory, connection routing table, and scheduling logic to support delay and bandwidth guar-
antees for time-constrained traffic. To connect to the local processor, the router exports a control interface, a reception port, and separate injection
ports for each traffic class.

1092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

is available; once the five-byte chunk proceeds to a buffer at
the outgoing link, the router transmits an acknowledgment
bit to signal the upstream router to start sending the next
flit. This fine-grain, per-hop flow control permits best-effort
traffic to use large variable-sized packets, reducing or even
avoiding packetization overheads, without increasing buffer
complexity in the router. The combination of wormhole and
packet switching, with best-effort traffic consuming small
flit buffers and time-constrained connections reserving
packet buffers, results in an effective partitioning of router
resources.

3.2 Separate Logical Resources
Even though wormhole and packet switching exercise
complementary buffer resources, best-effort and time-
constrained traffic still share access to the same network
links. To provide tight delay guarantees for time-
constrained connections, the router must bound the time
that the variable-sized, wormhole packets can stall the for-
ward progress of on-time, time-constrained traffic. How-
ever, a blocked wormhole packet can hold link resources at
a chain of consecutive routers in the network, indirectly
delaying the advancement of other traffic that does not
even use the same links. This complicates the effort to pro-
vision the network to bound worst-case end-to-end latency,
as discussed in the treatment of related work in Section 7.
In order to control the interaction between the two traffic
classes, the real-time router divides each link into two vir-
tual channels [23]. A single bit on each link differentiates
between time-constrained and best-effort packets, as shown
in Fig. 3; each link also includes an acknowledgment bit for
flow control on the best-effort virtual channel.

Each wormhole virtual channel performs round-robin
arbitration on the input links to select an incoming best-
effort packet for service, while the packet-switched virtual
channel transmits time-constrained packets based on their
deadlines and logical arrival times. Priority arbitration be-
tween the two virtual channels tightly regulates the intru-
sion of best-effort traffic on time-constrained packets on
each outgoing link. This effectively provides flit-level pre-
emption of best-effort traffic whenever an on-time time-
constrained packet awaits service, while permitting worm-
hole flits to consume any excess link bandwidth. In a sepa-
rate simulation study, we have demonstrated the effective-
ness of using flit-level priority arbitration policies to mix
best-effort wormhole traffic and time-constrained packet-
switched traffic [24], [25], [26].

While the real-time router gives preferential treatment to
time-constrained traffic, the outgoing links transmit best-
effort flits ahead of any early time-constrained packets, con-
sistent with the policies in Table 1. Although this arbitration

mechanism ensures effective scheduling of the traffic on the
outgoing links and the reception port, the best-effort and
time-constrained packets could still contend for resources at
the injection port at the source node. The local processor
could solve this problem by negotiating between best-effort
and time-constrained traffic at the injection port, but this
would require the processor to perform flit-level arbitra-
tion. Instead, the real-time router includes a dedicated in-
jection port for each traffic class. The two injection ports,
coupled with the low-level arbitration on the outgoing
links, ensure that time-constrained traffic has fine-grain
preemption over the best-effort packets across the entire
path through the network, while allowing best-effort pack-
ets to capitalize on any remaining link bandwidth.

3.3 Buffering and Packet Forwarding
To support the multiple incoming and outgoing ports, the
real-time router design requires high throughput for receiv-
ing, storing, and transmitting packets. Internally, the router
isolates the best-effort and time-constrained traffic on sepa-
rate buses to increase the throughput and reduce the com-
plexity of the arbitration logic. Each incoming and outgoing
port includes nominal buffer space to avoid stalling the flow
of data while waiting for access to the bus. The best-effort
bus is one flit wide and performs round-robin arbitration
among the flit buffers at the incoming ports. Running at the
same speed as the byte-wide input ports, this five-byte bus
has sufficient throughput to accommodate a peak load of
best-effort traffic. Transferring best-effort packets in five-byte
chunks incurs a small initial transmission delay at each
router, which could be reduced by using a crossbar switch;
however, we employ a shared bus for the sake of simplicity.
Other recent multicomputer router architectures have used a
wide bus for flit transfer [27], [28].

The structure and placement of packet buffers plays a
large role in the router’s ability to accommodate the per-
formance requirements of time-constrained connections. The
simplest solution places a separate queue at each input link.
However, input queuing has throughput limitations [29],
since a packet may have to wait behind other traffic destined
for a different outgoing link. In addition, queuing packets at
the incoming links complicates the effort to schedule outgo-
ing traffic based on delay and throughput requirements. In-
stead, the real-time router queues time-constrained packets
at the output ports; the router shares a single packet memory
among the multiple output ports to maximize the network’s
ability to accommodate time-constrained connections with
diverse buffer requirements. To accommodate the aggregate
memory bandwidth of the five input and five output ports,
the router stores packets in 10-byte chunks, with demand-
driven round-robin arbitration among the ports.

Fig. 3. Link encoding: In the real-time router, each link can transmit a byte of data, along with a strobe signal and a virtual channel identifier. In the
reverse direction, an acknowledgment bit indicates that the router can store another flit on the best-effort virtual channel.

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1093

Since time-constrained traffic is not served in a first-in
first-out order, the real-time router must have a data struc-
ture that records the idle memory locations in the packet
buffer. Similar to many shared-memory switches in high-
speed networks, the real-time router maintains an idle-
address pool [29], implemented as a stack. This stack con-
sists of a small memory, which stores the address of each
free location in the packet buffer, and a pointer to the first
entry. Initially, the stack includes the address of each loca-
tion in the packet memory. An incoming packet retrieves an
address from the top of the stack and increments the stack
pointer to point to the next available entry. Upon packet
departure, the router decrements this pointer and returns
the free location to the top of stack. The idle-address stack
always has at least one free address when a new packet
arrives, since the real-time channel model never permits the
time-constrained traffic to overallocate the buffer resources.

3.4 Routing and Deadlock-Avoidance
Although wormhole switching reduces the buffer require-
ments and average latency for best-effort traffic, the low-
level internode flow control could potentially introduce
cyclic dependencies between stalled best-effort packets. To
avoid these cycles, the real-time router implements dimen-
sion-ordered routing, a shortest-path scheme that com-
pletely routes a packet in the x-direction before proceeding
in the y-direction to the destination, as shown by the
shaded nodes in Fig. 1. Dimension-ordered routing avoids
packet deadlock in a square mesh [30] and also facilitates

an efficient implementation based on x and y offsets in the
packet header, as shown in Fig. 4a; the offsets reach zero
when the packet has arrived at its destination node. To im-
prove the performance of best-effort traffic, an enhanced
version of the router could support adaptive wormhole
routing and additional virtual channels, at the expense of
increased implementation complexity [31], [32]. In particu-
lar, nonminimal adaptive routing would enable best-effort
packets to circumvent links with a heavy load of time-
constrained traffic.

Although routing is closely tied with deadlock-
avoidance for best-effort packets, the real-time router need
not dictate a particular routing scheme for the time-
constrained traffic. Instead, each time-constrained connec-
tion has a fixed path through the network, based on a table
in each router; this table is indexed by the connection iden-
tifier field in the header of each time-constrained packet, as
shown in Fig. 4b. As part of establishing a real-time chan-
nel, the network protocol software can select a fixed path
from the source to the destination(s), based on the available
bandwidth and buffer resources at the routers. The protocol
software can employ a variety of algorithms for selecting
unicast and multicast routes based on the resources avail-
able in the network [33]. Once the connection establishment
protocol reserves buffer and bandwidth resources for a real-
time channel, the combination of bandwidth regulation and
packet scheduling prevents packet deadlock for time-
constrained traffic. Table 2 summarizes how the real-time
router employs these and other policies to accommodate
the conflicting performance requirements of the two traffic
classes.

4 MANAGING TIME-CONSTRAINED CONNECTIONS

A real-time multicomputer network must have effective
mechanisms for establishing connections and scheduling
packets, based on the delay and throughput requirements
of the time-constrained traffic. To permit a single-chip im-
plementation, the real-time router offloads non-real-time
operations, such as route selection and admission control,
to the network protocol software. At run-time, the router
coordinates access to buffer and link resources by managing
the packet memory and the connection data structures. In
addition, the router architecture introduces efficient tech-
niques for bounding the range of logical arrival times and
deadlines, to limit scheduler delay and implementation
complexity.

 (a) (b)

Fig. 4. Packet formats: This figure illustrates the packet formats for
best-effort and time-constrained packets in the real-time router. Best-
effort packets consist of a two-byte routing header and a one-byte
length field, along with the variable-length data. Time-constrained
packets are 20 bytes long and include the connection identifier and the
deadline from the previous hop in the route, which serves as the logical
arrival time at the current router. (a) Best-effort packet. (b) Time-
constrained packet.

TABLE 2
ARCHITECTURAL PARAMETERS

This table summarizes how the real-time router supports the conflicting performance requirements of time-constrained
and best-effort traffic.

1094 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

4.1 Route Selection and Admission Control
Establishing a real-time channel requires the application to
specify the traffic parameters and performance require-
ments for the new connection. Admitting a new connection,
and selecting a multihop route with suitable local delay
parameters, is a computationally-intensive procedure [10],
[11], [20]. Fortunately, channel establishment typically does
not impose tight timing constraints, in contrast to the actual
data transfer, which requires explicit guarantees on mini-
mum throughput and worst-case delay. In fact, in most
cases, the network can establish the required time-
constrained connections before the application commences.
To permit a single-chip solution, the real-time router rele-
gates these non-real-time operations to the protocol soft-
ware. The network could select routes and admit new con-
nections through a centralized server or a distributed pro-
tocol. In either case, this protocol software can use the best-
effort virtual network, or even a set of dedicated time-
constrained connections, to exchange information to select a
route and provision resources for each new connection.

The route selected for a connection depends on the traf-
fic characteristics and performance requirements, as well as
the available buffer and bandwidth resources in the net-
work. As part of establishing a new real-time channel, the
protocol software assigns a unique connection identifier at
each hop in the route. Then, each node in the route writes
control information into the router’s connection table, as
shown in Table 3. At run-time, this table is indexed by the
connection identifier field of each incoming time-
constrained packet, as shown in Fig. 4b. To minimize the
number of pins on the router chip, the controlling processor
updates this table as a sequence of four, one-byte operations
that specify the incoming connection identifier and the
three fields in the table. After closing a connection, the net-
work protocol software can reuse the connection identifier
by overwriting the entry in the routing table. The processor
uses the same control interface to set the horizon parame-
ters h for each of the five outgoing ports.

As shown in Table 3, the routing table stores the connec-
tion’s identifier at the next node, the local delay bound d,
and a bit mask for directing traffic to the appropriate out-
going port(s). When a packet arrives, the router indexes the
table with the incoming connection identifier and replaces
the header field with the new identifier for the downstream
router. At the same time, the router computes the packet’s
deadline from the logical arrival time in the packet header
and the local delay bound in the connection table. Finally,

the bit mask permits the router to forward an incoming
packet to multiple outgoing ports, allowing the network
protocol software to establish multicast real-time channels.
This facilitates efficient, timely communication between a
set of cooperating nodes. To simplify the design, the real-
time router requires a multicast connection to use the same
value of d for each of its outgoing ports at a single node.
Then, based on the bit mask in the routing table, the router
queues the updated packet for transmission on the appro-
priate outgoing port(s).

By implementing a shared packet memory, the real-time
router can store a single copy of each multicast packet, re-
moving the packet only after it has been transmitted by
each output port selected in the bit mask. The shared packet
memory also permits the network protocol software to em-
ploy a wide variety of buffer allocation policies. On the one
extreme, the route selection and admission control proto-
cols could allocate packet buffers to any new connection,
independent of its outgoing link. However, this could allow
a single link to consume the bulk of the memory locations,
reducing the chance of establishing time-constrained con-
nections on the other outgoing links. Instead, the admission
control protocol should bound the amount of buffer space
available to each of the five outgoing ports. Similarly, the
network could limit the size of the link horizon parameters
h to reduce the amount of memory required by each con-
nection. In particular, at run-time, a higher-level protocol
could reduce the h values of a router’s incoming links when
the node does not have sufficient buffer space to admit new
connections.

4.2 Handling a Clock with Finite Range
The packet deadline at one node serves as the logical arrival
time at the downstream node in the route. Carrying these
logical arrival times in the packet header, as shown in
Fig. 4b, implicitly assumes that the network routers have a
common notion of time, within some bounded clock skew.
Although this is not appropriate in a wide-area network
context, the tight coupling in parallel machines minimizes
the effects of clock skew. Alternatively, the router could
store additional information in the connection table to
compute ,j(mi) from a packet’s actual arrival time and the
logical arrival time of the connection’s previous packet [34];
however, this approach would require the router to periodi-
cally refresh this connection state to correctly handle the
effects of clock rollover. Instead, the real-time router avoids
this overhead by capitalizing on the tight coupling between
nodes to assume synchronized clocks.

Even with synchronized clocks, the real-time router can-
not completely ignore the effects of clock rollover. To
schedule time-constrained traffic, the router architecture
includes a real-time clock, implemented as a counter that
increments once per packet transmission time. For a practi-
cal implementation, the router must limit the number of
bits b used to represent the logical arrival times and dead-
lines of time-constrained packets. Since logical arrival times
continually increase, the design must use modulo arithme-
tic to compute packet deadlines and schedule traffic for
transmission. As a result, the network must restrict the
logical arrival times that can exist in a router at the same

TABLE 3
CONTROL INTERFACE COMMANDS

This table summarizes the control commands used to configure the real-time
router.

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1095

time; otherwise, the router cannot correctly distinguish
between different packets awaiting access to the outgoing
link.

Selecting a value for b introduces a fundamental trade-off
between connection admissibility and scheduler complexity.
To select a packet for transmission, the scheduler must com-
pare the deadlines and logical arrival times of the time-
constrained packets; for example, the data structures in Table 1
require comparison operations to enqueue/dequeue packets.
Larger values of b would increase the hardware cost and
latency for performing these packet comparison operations.
However, smaller values of b would restrict the network’s
ability to select large delay bounds d and horizon parame-
ters h for time-constrained connections. The network proto-
col software can limit the delay and horizon parameters,
based on the value of b imposed by the router implementa-
tion. Alternatively, in implementing the router, a designer
could select a value for b based on typical requirements for
the expected real-time applications.

To formalize the trade-off between complexity and ad-
missibility, consider a connection traversing consecutive
links j - 1 and j, with local delay parameters dj-1 and dj, re-
spectively, where link j - 1 has horizon parameter hj-1. As
discussed in Section 2, a packet can arrive as much as hj-1 +
dj-1 time units ahead of its logical arrival time ,j(m) and
depart as late as its deadline ,j(m) + dj. Consequently,

,j(mi) ¶ [t - dj, t + dj-1 + hj-1]

for any messages mi from this connection at time t. The net-
work must ensure that the router can differentiate between
the full range of logical arrival times in this set. The router
can correctly interpret logical arrival times and deadlines,
even in the presence of clock rollover, as long as every con-

nection has hj-1 + dj-1 and dj values that are less than half the

range of the on-chip clock. That is, the router requires dj < 2b-1

and dj-1 + hj-1 < 2b-1 for all connections sharing the link.
Under this restriction, the router can compare packets

based on their logical arrival times and deadlines by using
modulo arithmetic. For example, suppose b = 8 (i.e., the
clock has a range of 256 time units) and the connections all
satisfy dj � 40 and dj-1+ hj-1 � 106. At time t = 240, this con-
figuration corresponds to Fig. 5. Any early packets have
logical arrival times between 240 and 346, modulo 256. For
example, a packet with ,(m) = 80 would be considered early
traffic (since (80 - t) mod 256 = 96 < 128). Similarly, any on-
time packets have logical arrival times between 200 and
240. For example, a packet with ,(m) = 210 would be con-
sidered on-time traffic (since (t - 210) mod 256 = 30 < 128).
Since on-time packets have ,j(mi) � t, their deadlines satisfy
,j(mi) + dj ¶ [t, t + dj]. Hence, these deadlines also fall within
the necessary range in Fig. 5, allowing the router to com-
pute (,j(mi) + dj - t) mod 256 to compare on-time packets
based on their deadlines.

5 SCHEDULING TIME-CONSTRAINED PACKETS

To satisfy connection delay, throughput, and buffer require-
ments, each outgoing port must schedule time-constrained

packets based on their logical arrival times and deadlines, as
well as the horizon parameter. The real-time router reduces
implementation complexity by sharing a single scheduler
amongst the early and on-time traffic on each of the five out-
put ports. Extensions to the scheduler architecture further
reduce the implementation cost by trading space for time.

5.1 Integrating Early and On-Time Packets
To maximize link utilization and channel admissibility, each
outgoing port should overlap packet scheduling operations
with packet transmission. As a result, packet size deter-
mines the acceptable worst-case scheduling delay. Sched-
uling time-constrained traffic, based on delay or through-
put parameters, typically requires a priority queue to rank
the outgoing packets. Priority queue architectures introduce
considerable hardware complexity [35], [36], [37], [38], [39],
particularly when the link must handle a wide range of
packet priorities or deadlines. For example, most high-
speed solutions require O(n) hardware complexity to rank n
packets, using a systolic array or shift register consisting of
n comparators [35], [40], [41]. Additional technical chal-
lenges arise in trying to integrate packet scheduling with
bandwidth regulation [42], since the link cannot transmit a
packet unless it has reached its logical arrival time.

To perform bandwidth regulation and deadline-based
scheduling, the real-time router could include two priority
queues for each of its five outgoing ports, as suggested by Ta-
ble 1. However, this approach would be extremely expensive
and would require additional logic to transfer packets from the
“early” queue to the “on-time” queue; this is particularly
complicated when multiple packets reach their eligibility times
simultaneously. In the worst case, an outgoing port could have
to dequeue a packet from Queue 1 or Queue 3, enqueue sev-
eral arriving packets to Queue 1 and/or Queue 3, and move a
large number of packets from Queue 3 to Queue 1, all during a
single packet transmission time. To avoid this complexity, the
real-time router does not attempt to store the time-constrained
packets in sorted order. Instead, the router selects the packet
with the smallest key via a comparator tree, as shown in Fig. 6.

Fig. 5. Handling clock rollover: This figure illustrates the effects of clock
rollover with an 8-bit clock, where the current time is t = 240 (mod 256).
In the example, all connections satisfy dj � 40 and dj-1 + hj-1 � 106,
ensuring that the router can correctly compare ,j(mi) to t to distinguish
between on-time and early packets.

1096 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

Like the systolic and shift register approaches, the tree archi-
tecture introduces O(n) hardware complexity. For the moder-
ate size of n in a single-chip router, the comparator tree can
overlap the O(lg n) stages of delay with packet transmission.

To avoid this excessive complexity, the real-time router
integrates early and on-time packets into a single data
structure. Each link schedules time-constrained packets
based on sorting keys, as shown in Fig. 7, where smaller
keys have higher priority. A single bit differentiates be-
tween early and on-time packets. For on-time traffic, the
lower bits of the key represent packet laxity, the time re-
maining till the local deadline expires, whereas the key for
early traffic represents the time left before reaching the
packet’s logical arrival time. The packet keys are normal-
ized, relative to current time t, to allow the scheduler to
perform simple, unsigned comparison operations, even in
the presence of clock rollover. Each scheduling operation
operates independently to locate the packet with the mini-
mum sorting key, permitting dynamic changes in the values
of keys. The base of the tree computes a key for each
packet, based on the packet state and the current time t, as
shown in the right side of Fig. 6; the base of the tree stores
per-packet state information, whereas the packet memory
stores the actual packet contents.

5.2 Sharing the Scheduler Across Output Ports
By using a comparator tree, instead of trying to store the
packets in sorted order, the router can allow all five outgoing

ports to share access to this scheduling logic, since the tree
itself does not store the packet keys. As shown in Fig. 6,
each leaf in the tree stores a logical arrival time ,(m), a
deadline ,(m) + d, and a bit mask of outgoing ports, as-
signed at packet arrival based on the connection state. The
bit mask determines if the leaf is eligible to compete for
access to a particular outgoing port. When a port transmits
a selected packet, it clears the corresponding field in the
leaf’s bit mask; a bit mask of zero indicates an empty packet
leaf slot and a corresponding idle slot in the packet mem-
ory. The base of the tree also determines if packets are early
(,(m) > t) or on-time (,(m) � t) and computes the sorting
keys based on the current value of t. At the top of the sort-
ing tree, an additional comparator checks to see if the win-
ner is an early packet that falls within the port’s horizon
parameter; if so, the port transmits this packet, unless best-
effort flits await service.

Still, to share the comparator logic, the scheduler must
operate quickly enough to overlap run-time scheduling
with packet transmission on each of the outgoing ports.
Consequently, the real-time router pipelines access to the
comparator tree. With p stages of pipelining, the scheduler
has a row of latches at p - 1 levels in the tree to store the
sorting key and buffer location for the winning packet in
the subtrees. Every few cycles, another link begins its
scheduling operation at the base of the tree. Similarly, every
few cycles, another link completes a scheduling operation
and can initiate a packet transmission. As a result, the
router staggers packet departures on the five outgoing
ports. The necessary amount of pipelining depends on the
latency of the comparator tree, relative to the packet trans-
mission delay.

5.3 Balancing Hardware Complexity and Scheduler
Latency

The pipelined comparator tree has relatively low hardware
cost compared to alternate approaches that implement
separate priority queues for the early and on-time packets
on each outgoing port. However, as shown in Section 6, the

Fig. 6. Comparator tree scheduler: This figure shows the scheduling architecture in the real-time router. The leaf nodes at the base of the com-
parator tree stores a small amount of per-packet state information.

Fig. 7. Scheduler keys: This figure illustrates how the real-time router
assigns a key to each time-constrained packet awaiting transmission
on an outgoing port. A single bit differentiates on-time and early pack-
ets; ineligible traffic refers to packets that are not destined to this port.

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1097

scheduler logic is still the main source of complexity in the
real-time router architecture. To handle n packets, the sched-
uler in Fig. 6 has a total of 2 + lg n stages of logic, including
the operations at the base of the tree, as well as the com-
parator for the horizon parameter. In terms of implementa-
tion cost, the tree requires n comparators and n leaf nodes,
for a total of 2n elements of similar complexity. As n grows,
the number of leaf nodes can have a significant influence on
the bus loading at the base of the tree. Fortunately, for certain
values of n, the comparator tree has low enough latency to
avoid the need to fully pipeline the scheduling logic. This
suggests that the scheduler could reduce the number of
comparators by trading space for time.

Under this approach, the scheduler combines several leaf
units into a single module with a small memory (e.g., a
register file) to store the deadlines and logical arrival times
for k packets, as shown in Fig. 8. At the base of the tree,
each of the n/k modules can sequentially compare its k sort-
ing keys, using a single comparator, to select the packet
with the minimum key; this incurs k stages of delay. Then, a
smaller comparator tree finds the smallest key amongst n/k
packets. As a result, the scheduler incurs

k
n
k+ +
�
��
�
��11 6 lg

stages of delay. Note that, for k = 1, the architecture reduces
to the comparator tree in Fig. 6, with its 2 + lg n stages of
logic. For larger values of k, the scheduler has larger arbi-
tration delay but reduced implementation complexity. The
architecture in Fig. 8 has 2n/k comparators, as well as a
lighter bus loading of n/k elements at the base of the tree.
In addition, larger values of k allow the base of the tree to
consist of n/k k-element register files, instead of n individ-
ual registers, with a reduction in chip complexity. With a
careful selection of n and k, the real-time router can have an
efficient, single-chip implementation that performs band-
width regulation and deadline-based scheduling on multi-
ple outgoing ports.

6 PERFORMANCE EVALUATION

To demonstrate the feasibility of the real-time router and
study its scaling properties, a prototype chip has been de-
signed using the Verilog hardware description language
and the Epoch silicon compiler from Cascade Design
Automation. This framework facilitates a detailed evalua-
tion of the implementation and performance properties of
the architecture. The Epoch tools compile the structural and
behavioral Verilog models to generate a chip layout and an
annotated Verilog model for timing simulations. These tools
permit extensive testing and performance evaluation with-
out the expense of chip fabrication.

6.1 Router Complexity
Using a three-metal, 0.5mm CMOS process, the 123-pin chip
has dimensions 8.1 mm � 8.7 mm for an implementation
with 256 time-constrained packets and up to 256 connec-
tions, as shown in Table 4. The scheduling logic accounts
for the majority of the chip area, with the packet memory
consuming much of the remaining space, as shown in Table 5.
Operating at 50 MHz, the chip can transmit or receive a
byte of data on each of its ten ports every 20 nsec. This
closely matches the access time of the 10-byte-wide, single-
ported SRAM for storing time-constrained traffic; the
memory access latency is the bottleneck in this realization
of the router. Since time-constrained packets are 20-bytes
long, the scheduling logic must select a packet for transmis-
sion every 400 nsec for each of the five output ports. To
match the memory and link throughputs, the comparator
tree consists of a two-stage pipeline, where each stage re-
quires approximately 50 nsec.

Although the tree could incorporate up to five pipeline
stages, the two-stage design provides sufficient throughput
to satisfy the output ports. This suggests that the link
scheduler could effectively support a larger number of
packets or additional output ports for a higher-dimensional
mesh topology. Alternately, the router design could reduce
the hardware cost of the comparator tree by sharing com-
parator logic between multiple leaves of the tree, as dis-
cussed in Section 5.3. Fig. 9 highlights the cost-performance
trade-offs of logic sharing, based on Epoch implementa-
tions and Verilog simulation experiments. As k increases,
the scheduler complexity decreases in terms of area, tran-
sistor count, and power dissipation, with reasonable in-
creases in scheduler latency. The results start with a
grouping size of k = 4, since the Epoch library does not
support static RAM components with fewer than four lines.
(For k = 1, the graphs plot results from the router imple-
mentation in Table 5, which uses flip-flops to store packet
state at the base of the tree. The Epoch silicon compiler gen-
erates a better automated layout of these flip-flops than of
the small SRAMs, resulting in better area statistics in Table 5,
despite the larger transistor count. A manual layout would
significantly improve the area statistics for k > 1; still, the
area graph shows the relative improvement for larger val-
ues of k.)

These plots can help guide the trade-off between hard-
ware complexity and scheduler latency in the router im-
plementation. For example, a group size of k = 4 reduces the
number of transistors by 45 percent (from 555,025 to

Fig. 8. Logic sharing: This figure illustrates how the scheduler can
trade space for time by sharing comparator logic among groups of k
packets.

1098 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

306,829). The number of transistors does not decrease by a
factor of four, since the smaller scheduler still has to store
the state information for each packet; in addition, the
scheduler requires additional logic and registers to serialize
access to the shared comparators. Still, logic sharing signifi-
cantly reduces implementation complexity. Larger values of
k further reduce the number of comparators and improve the
density of the memory at the base of the tree. Scheduler la-
tency does not grow significantly for small values of k. For
k = 4, delay in the comparator tree increases by just 67 per-
cent (from 0.115 msec to 0.192 msec). The lower bus loading
at the base of the tree helps counteract the increased latency
from serializing access to the first layer of comparators and
significantly reduces power dissipation.

6.2 Simulation Experiments
Since Verilog simulations of the full chip are extremely
memory and CPU intensive, we focus on a modest set of
timing experiments, aimed mainly at testing the correctness
of the design. A preliminary experiment tests the baseline
performance of best-effort wormhole packets. To study a
multihop configuration, the router connects its links in the x
and y directions. The packet proceeds from the injection
port to the positive x link, then travels from the negative x
input link to the positive y direction; after reentering the

router on the negative y link, the packet proceeds to the
reception port. In this test, a b byte wormhole packet incurs
an end-to-end latency of 30 + b cycles, where the link
transmits one byte in each cycle. This delay is proportional
to packet length, with a small overhead for synchronizing
the arriving bytes, processing the packet header, and accu-
mulating five-byte chunks for access to the router’s internal
bus. In contrast, packet switching would introduce addi-
tional delay to buffer the packet at each hop in its route.

An additional experiment illustrates how the router
schedules time-constrained packets to satisfy delay and
throughput guarantees, while allowing best-effort traffic to
capitalize on any excess link bandwidth. Fig. 10 plots the
link bandwidth consumed by best-effort traffic and each of
three time-constrained connections with the following pa-
rameters, in units of 20-byte slots:

d Imin

0 8 9
1 5 7
2 3 4

All three connections compete for access to a single net-
work link with horizon parameter h = 0, where each con-
nection has a continual backlog of traffic. The time-
constrained connections receive service in proportion to
their throughput requirements, since a packet is not eligible
for service till its logical arrival time. Similarly, the link
transmits each packet by its deadline, with best-effort flits
consuming any remaining link bandwidth.

7 RELATED WORK

This paper complements recent work on support for real-
time communication in parallel machines [2], [3], [4], [5],
[6], [7]. Several projects have proposed mechanisms to im-
prove predictability in the wormhole-switched networks
common in modern multicomputers. In the absence of
hardware support for priority-based scheduling, applica-
tion and operating system software can control end-to-end
performance by regulating the rate of packet injection at
each source node [7]. However, this approach must limit
utilization of the communication network to account for
possible contention between packets, even from lower-
priority traffic. This is a particularly important issue in
wormhole networks, since a stalled packet may indirectly
block the advancement of other traffic that does not even
use the same links. The underlying router architecture can
improve predictability by favoring older packets when as-
signing virtual channels or arbitrating between channels on
the same physical link [23].

Although these mechanisms reduce variability in end-to-
end latency, more aggressive techniques are necessary to
guarantee performance under high network utilization. A
router can support multiple classes of traffic, such as user
and system packets, by partitioning traffic onto different
virtual channels, with priority-based arbitration for access
to the network links [23]. Flit-level preemption of low-
priority virtual channels can significantly reduce intrusion
on the high-priority packets. Still, these coarse-grain pri-
orities do not differentiate between packets with different

TABLE 4
ROUTER SPECIFICATION

(A)� ARCHITECTURAL PARAMETERS

(B)� CHIP COMPLEXITY

This table summarizes the architectural parameters and chip complexity of the
prototype implementation of the real-time router.

TABLE 5
ROUTER COMPONENTS

This table summarizes the area contribution and transistor count for the main
components of the router.

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1099

latency tolerances. With additional virtual channels, the
network has greater flexibility in assigning packet priority,
perhaps based on the end-to-end delay requirement, and

restricting access to virtual channels reserved for higher-
priority traffic [4], [5].

Coupled with restrictions on the source injection rate,
these policies can bound end-to-end packet latency by lim-
iting the service and blocking times for higher-priority traf-
fic [3]. Although assigning priorities to virtual channels
provides some control over packet scheduling, this ties pri-
ority resolution to the number of virtual channels. The
router can support fine-grain packet priorities by increasing
the number of virtual channels at the expense of additional
implementation complexity; these virtual channels incur
the cost of additional flit buffers and larger virtual channel
identifiers, as well as more complex switching and arbitra-
tion logic [32]. Instead of dedicating virtual channels and
flit buffers to each priority level, a router can increase pri-
ority resolution by adopting a packet-switched design.

The priority-forwarding router chip [6] follows this ap-
proach by employing a 32-bit priority field in small, eight-
packet priority queues at each input port. The router incor-
porates a priority-inheritance protocol to limit the effects of
priority inversion when a full input buffer limits the trans-
mission of high-priority packets from the previous node;
the input buffer’s head packet inherits the priority of the
highest-priority packet still waiting at the upstream router.
In contrast, the real-time router implements a single, shared
output buffer that holds up to 256 time-constrained packets,

Fig. 9. Evaluating logic sharing: These plots compare different implementations of the comparator tree with different group sizes k. As k grows,
implementation complexity decreases but scheduler latency increases.

Fig. 10. Timing experiment: This experiment evaluates a mixture of
time-constrained and best-effort packets competing for access to a
single outgoing link with horizon h = 0. The scheduler satisfies the
deadlines of the time-constrained packets while permitting best-effort
flits to capitalize on any additional bandwidth.

1100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

with a link-scheduling and memory reservation model that
implicitly avoids buffer overflow. By dynamically assigning
an 8-bit packet priority at each node, the real-time router
can satisfy a diverse range of end-to-end delay bounds,
while permitting best-effort wormhole traffic to capitalize
on any excess link bandwidth.

8 CONCLUSION

Parallel real-time applications impose diverse communica-
tion requirements on the underlying interconnection net-
work. The real-time router design supports these emerging
applications by bounding packet delay for time-constrained
traffic, while ensuring good average performance for best-
effort traffic. Low-level control over routing, switching, and
flow control, coupled with fine-grain arbitration at the net-
work links, enables the router to effectively mix these two
diverse traffic classes. Careful handling of clock rollover
enables the router to support connections with diverse de-
lay and throughput parameters with small keys for logical
arrival times and deadlines. Sharing scheduling logic and
packet buffers among the five output ports permits a sin-
gle-chip solution that handles up to 256 time-constrained
packets simultaneously. Experiments with a detailed timing
model of the router chip show that the design can operate
at 50 MHz with appropriate pipelining of the scheduling
logic. Further experiments show that the design can trade
space for time to reduce the complexity of the packet
scheduler.

As ongoing research, we are considering alternate link-
scheduling algorithms that would improve the router’s
scalability. In this context, we are investigating efficient
hardware architectures for integrating bandwidth regula-
tion and packet scheduling [42]; these algorithms include
approximate scheduling schemes that balance the trade-off
between accuracy and complexity, allowing the router to
efficiently handle a larger number of time-constrained
packets. We are also exploring the use of the real-time
router as a building block for constructing large, high-speed
switches that support the quality-of-service requirements of
real-time and multimedia applications. The router’s delay
and throughput guarantees for time-constrained traffic,
combined with good best-effort performance and a single-
chip implementation, can efficiently support a wide range
of modern real-time applications, particularly in the context
of tightly-coupled local area networks.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the U.S. National Science Foundation under grant MIP–
9203895 and the U.S. Office of Naval Research under grants
N00014-94-1-0229. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the
NSF or the ONR.

REFERENCES

[1]� D. Ferrari, “Client Requirements for Real-Time Communication
Services,” IEEE Comm., pp. 65-72, Nov. 1990.

[2]� L.R. Welch and K. Toda, “Architectural Support for Real-Time
Systems: Issues and Trade-Offs,” Proc. Int’l Workshop Real-Time
Computing Systems and Applications, Dec. 1994.

[3]� M.W. Mutka, “Using Rate Monotonic Scheduling Technology for
Real-Time Communications in a Wormhole Network,” Proc. Work-
shop Parallel and Distributed Real-Time Systems, Apr. 1994.

[4]� J.-P. Li and M.W. Mutka, “Priority Based Real-Time Communica-
tion for Large Scale Wormhole Networks,” Proc. Int’l Parallel Proc-
essing Symp., pp. 433-438, Apr. 1994.

[5]� A. Saha, “Simulator for Real-Time Parallel Processing Architec-
tures,” Proc. IEEE Ann. Simulation Symp., pp. 74-83, Apr. 1995.

[6]� K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi,
“Design and Implementation of a Priority Forwarding Router
Chip for Real-Time Interconnection Networks,” Int’l J. Mini and
Microcomputers, vol. 17, no. 1, pp. 42-51, 1995.

[7]� R. Games, A. Kanevsky, P. Krupp, and L. Monk, “Real-Time
Communications Scheduling for Massively Parallel Processors,”
Proc. Real-Time Technology and Applications Symp., pp. 76-85, May
1995.

[8]� S. Balakrishnan and F. Ozguner, “Providing Message Delivery
Guarantees in Pipelined Flit-Buffered Multiprocessor Networks,”
Proc. Real-Time Technology and Applications Symp., pp. 120-129, June
1996.

[9]� R.S. Raji, “Smart Networks for Control,” IEEE Spectrum, vol. 31,
pp. 49-55, June 1994.

[10]� C.M. Aras, J.F. Kurose, D.S. Reeves, and H. Schulzrinne, “Real-
Time Communication in Packet-Switched Networks,” Proc. IEEE,
vol. 82, pp. 122-139, Jan. 1994.

[11]� D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communica-
tion in Multi-Hop Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 10, pp. 1,044-1,056, Oct. 1994.

[12]� D. Verma, H. Zhang, and D. Ferrari, “Delay Jitter Control for
Real-Time Communication in a Packet Switching Network,” Proc.
Tricom, Mar. 1991.

[13]� D. Ferrari and D.C. Verma, “A Scheme for Real-Time Channel
Establishment in Wide-Area Networks,” IEEE J. Selected Areas in
Comm., vol. 8, pp. 368-379, Apr. 1990.

[14]� H. Zhang and D. Ferrari, “Rate-Controlled Service Disciplines,”
J. High Speed Networks, vol. 3, no. 4, pp. 389-412, 1994.

[15]� H. Zhang, “Providing End-to-End Performance Guarantees
Using Non-Work-Conserving Disciplines,” Computer Comm., vol. 18,
pp. 769-781, Oct. 1995.

[16]� L. Georgiadis, R. Guerin, V. Peris, and K.N. Sivarajan, “Efficient
Network QoS Provisioning Based on per Node Traffic Shaping,”
IEEE/ACM Trans. Networking, vol. 4, pp. 482-501, Aug. 1996.

[17]� Y. Ofek and M. Yung, “The Integrated MetaNet Architecture: A
Switch-Based Multimedia LAN for Parallel Computing and Real-
Time Traffic,” Proc. IEEE INFOCOM, pp. 802-811, 1994.

[18]� W.J. Dally and C.L. Seitz, “The Torus Routing Chip,” J. Distributed
Computing, vol. 1, no. 3, pp. 187-196, 1986.

[19]� R.L. Cruz, “A Calculus for Network Delay, Part I: Network Ele-
ments in Isolation,” IEEE Trans. Information Theory, vol. 37, pp. 114-
131, Jan. 1991.

[20]� Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-
Time Channels in Point-to-Point Packet-Switched Networks,”
IEEE Trans. Comm., pp. 1,096-1,105, Feb./Mar./Apr. 1994.

[21]� C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
Programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
pp. 46-61, Jan. 1973.

[22]� P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New Com-
puter Communication Switching Technique,” Computer Networks,
vol. 3, pp. 267-286, Sept. 1979.

[23]� W. Dally, “Virtual-Channel Flow Control,” IEEE Trans. Parallel and
Distributed Systems, vol. 3, no. 3, pp. 194-205, Mar. 1992.

[24]� J. Rexford, J. Dolter, and K.G. Shin, “Hardware Support for Con-
trolled Interaction of Guaranteed and Best-Effort Communication,”
Proc. Workshop Parallel and Distributed Real-Time Systems, pp. 188-
193, Apr. 1994.

[25]� J. Rexford and K.G. Shin, “Support for Multiple Classes of Traffic
in Multicomputer Routers,” Proc. Parallel Computer Routing and
Comm. Workshop, pp. 116-130, May 1994.

[26]� J. Rexford, W. Feng, J. Dolter, and K.G. Shin, “PP-MESS-SIM: A
Flexible and Extensible Simulator for Evaluating Multicomputer
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 1,
pp. 25-40, Jan. 1997.

REXFORD ET AL.: A ROUTER ARCHITECTURE FOR REAL-TIME COMMUNICATION IN MULTICOMPUTER NETWORKS 1101

[27]� J. Duato and P. Lopez, “Bandwidth Requirements for Wormhole
Switches: A Simple and Efficient Design,” Proc. Euromicro Work-
shop Parallel and Distributed Processing, pp. 377-384, 1994.

[28]� C.B. Stunkel et al., “The SP2 High-Performance Switch,” IBM
Systems J., vol. 34, pp. 185-204, Feb. 1995.

[29]� F.A. Tobagi, “Fast Packet Switch Architectures for Broadband
Integrated Services Digital Networks,” Proc. IEEE, vol. 78, pp. 133-
167, Jan. 1990.

[30]� W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Computers,
vol. 36, no. 5, pp. 547-553, May 1987.

[31]� L. Ni and P. McKinley, “A Survey of Wormhole Routing Tech-
niques in Direct Networks,” Computer, pp. 62-76, Feb. 1993.

[32]� K. Aoyama and A. Chien, “Cost of Adaptivity and Virtual Lanes
in a Wormhole Router,” J. VLSI Design, vol. 2, no. 4, pp. 315-333,
1995.

[33]� W.C. Lee, M.G. Hluchyj, and P.A. Humblet, “Routing Subject to
Quality of Service Constraints in Integrated Communication Net-
works,” IEEE Network, pp. 46-55, July/Aug. 1995.

[34]� Q. Zheng, K.G. Shin, and C. Shen, “Real-Time Communication in
ATM,” Proc. Ann. Conf. Local Computer Networks, pp. 156-164, Oct.
1994.

[35]� H.J. Chao, “A Novel Architecture for Queue Management in the
ATM Network,” IEEE J. Selected Areas in Comm., vol. 9, pp. 1,110-
1,118, Sept. 1991.

[36]� D. Picker and R.D. Fellman, “VLSI Priority Packeet Queue with
Inheritance and Overwrite,” IEEE Trans. VLSI, vol. 3, pp. 245-253,
June 1995.

[37]� J. Liebeherr, D.E. Wrege, and D. Ferrari, “Exact Admission Con-
trol for Networks with Bounded Delay Services,” IEEE/ACM
Trans. Networking, vol. 4, pp. 885-901, Dec. 1996.

[38]� J. Rexford, A. Greenberg, and F. Bonomi, “Hardware-Efficient Fair
Queueing Architectures for High-Speed Networks,” Proc. IEEE
INFOCOM, pp. 638-646, Mar. 1996.

[39]� S.-W. Moon, K. Shin, and J. Rexford, “Scalable Hardware Priority
Queue Architectures for High-Speed Packet Switches,” Proc. Real-
Time Technology and Applications Symp., pp. 203-212, June 1997.

[40]� H.J. Chao and N. Uzun, “A VLSI Sequencer Chip for ATM Traffic
Shaper and Queue Manager,” IEEE J. Solid-State Circuits, vol. 27,
pp. 1,634-1,643, Nov. 1992.

[41]� C.E. Leiserson, “Systolic Priority Queues,” Proc. Caltech Conf. VLSI,
pp. 200-214, Jan. 1979.

[42]� J. Rexford, F. Bonomi, A. Greenberg, and A. Wong, “Scalable Ar-
chitectures for Integrated Traffic Shaping and Link Scheduling in
High-Speed ATM Switches,” IEEE J. Selected Areas in Comm., vol. 15,
pp. 938-950, June 1997.

Jennifer Rexford received a BSE degree in
electrical engineering from Princeton University
in 1991, and MS and PhD degrees in computer
science and engineering from the University of
Michigan in Ann Arbor, in 1993 and 1996, re-
spectively. Since 1996, she has been with the
Networking and Distributed Systems Center at
AT&T Labs-Research in New Jersey. Her re-
search interests include routing/signaling proto-
cols, video streaming, and packet scheduling, with
an emphasis on efficient support for quality-of-

 service guarantees.

John M. Hall received a BSE degree in com-
puter engineering from the University of Michi-
gan, Ann Arbor, in 1996. He worked at Hewlett-
Packard’s Microprocessor Technology Lab, Fort
Collins, Colorado working on the physical design
of an IA-64 microprocessor and has recently re-
turned to the University of Michigan graduate
school majoring in electrical engineering.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from Cor-
nell University, Ithaca, New York, in 1976 and
1978, respectively. He is a professor and director
of the Real-Time Computing Laboratory, De-
partment of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor.
He has authored/coauthored more than 460
technical papers (about 170 of these in archival

journals) and numerous book chapters in the areas of distributed real-
time computing and control, fault-tolerant computing, computer archi-
tecture, robotics and automation, and intelligent manufacturing. He is
the coauthor (with C.M. Krishna) of a textbook Real-Time Systems
(McGraw-Hill, 1997). In 1987, he received the Outstanding IEEE
Transactions on Automatic Control Paper Award for a paper on robot
trajectory planning. In 1989, he also received the Research Excellence
Award from The University of Michigan. In 1985, he founded the Real-
Time Computing Laboratory, where he and his colleagues are investi-
gating various issues related to real-time and fault-tolerant computing.
He has also been applying the basic research results of real-time com-
puting to multimedia systems, intelligent transportation systems, em-
bedded systems, and manufacturing applications.

From 1978 to 1982 he was on the faculty of Rensselaer Polytechnic
Institute, Troy, New York. He has held visiting positions at the U.S. Air
Force Flight Dynamics Laboratory, AT&T Bell Laboratories, Computer
Science Division at the University of California at Berkeley, IBM T.J.
Watson Research Center, and the Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science and
Engineering Division at The University of Michigan for three years
beginning in January 1991. He is an IEEE fellow, was the program
chairman of the 1986 IEEE Real-Time Systems Symposium (RTSS),
the general chairman of the 1987 RTSS, the guest editor of the 1987
special issue of IEEE Transactions on Computers on real-time sys-
tems, a program cochair for the 1992 International Conference on
Parallel Processing, and served on numerous technical program com-
mittees. He also chaired the IEEE Technical Committee on Real-Time
Systems during 1991-1993, was a distinguished visitor of the Com-
puter Society of the IEEE, an editor of IEEE Transactions on Parallel
and Distributed Computing, and an area editor of International Journal
of Time-Critical Computing Systems.

