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Distributed Tool Sharing in Flexible
Manufacturing Systems

Thomas K. Tsukadaylember, IEEE,and Kang G. ShinFellow, IEEE

Abstract—We present a distributed approach to tool man- Intelligent decentralization of control and peer commu-
agement in flexible manufacturing systems (FMS). Tool sharing njcation can reduce the degree to which high-level con-
among cells in FMS enables greater utilization of tool resources, trollers are communication and processing bottlenecks, and
but requires greater coordination of tool use by different cells, icall I b fault-tol . difi bI
especially when tooling requirements change unexpectedly. We typically a_ OWS etter fau HF’ erance, ea_s'er mol' 'a. '_ '.ty'
discuss how concepts from distributed artificial intelligence (DAI) and exploitation of computational parallelism. While initial
such as negotiation can provide solution methods. In particular, allocation of resources may be most efficiently accomplished
we propose polite methods by which an agent can solve such yjithin the traditional hierarchical framework, relying as it does
a problem through negotiation with other agents. We present ,,, qi5hal knowledge of system resource requirements, peer
simulation results for a tool scheduling problem in which polite . ’
tool sharing is used for handling unexpected “rush” jobs. communication may better ha_mdle unexpected resource needs
which arise during the execution of a manufacturing schedule.
For example, an unexpected scheduling conflict between two
peer modules may be more quickly resolved by interaction
between the two modules, without appealing to and waiting
I. INTRODUCTION upon the decision of a higher authority.

ESOURCE allocation for a manufacturing system usually While peer interaction offers advantages, it often requires

occurs within the traditional hierarchical framework. Arimore sophisticated coordination, being necessarily less simple
organizational module receives its allocation of resources frdfgn interaction between a supervisor module and its subor-
its supervisor on a higher level, and allocates these resourgi¥ates. A module will have less knowledge about its peers
among itself and its subordinates on a lower level. A modutBan will the supervisor, and thus may not fully know how its
having an unexpected requirement for resources unavailablél@sisions affect its peers, or how a peer may act to resolve a
it will notify its supervisor of the problem. Such unexpecte§ommon problem. While Lansky’s work dacalized planning
requirements may occur, for example, if new tasks arril€] suggests that using only relevant local knowledge makes
which were not taken into account in the initial allocatiofthe search for solutions easier, the lack of global knowledge
of resources, or if machine failure renders some alreadj@y preclude obtaining an optimal solution.
allocated resources unavailable. In the past decade, howevefhis paper explores the application of peer negotiation to
there has been increasing interest in new control models f8e domain of tool management. The goal of tool management
flexible manufacturing systems, emphasizing organizatiorialthe efficient use of tooling resources, including maximizing
flexibility, modularity and simplicity of design, and horizontaltool utilization and allocating tool resources in order to facil-
communication among peers (modules on the same hierardtgite the processing of manufacturing tasks. In particular, we
cal level). These models usual emphasize greater autonowilf consider the problem of sudden unexpected tooling needs,
at the level of thework cell the divisions of the shop floor which require a re-allocation of tools, and identify several
where the work is actually performed. They include Duffie’srototype algorithms and metrics by which to evaluate them.
heterarchical model [3], Parunak’s YAMS and CASCADE Specifically, we will show thapolite reschedulingby which
models [8], and more recent work in the distributed Al fieltve mean rescheduling of tools by peers in communication
(DAI) on multi-agent systems for resource allocation and sheyith one another using only local knowledge, performs close
floor control for manufacturing systems [1], [4], [10], [11]. Into good methods using global information, especially when
such systems, distribution of software control modules, amtianges to the current schedule are costly. We propose negotia-
their supporting hardware platforms, parallels the distributidion protocols by which peers which share tools can cooperate
of the manufacturing process itself. to handle unexpected tooling requirements. In this context,

we will also consider some basic issues involving distributed
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a tool borrowing problem, proposes negotiation protocol8, Common Tool Strategies
and evaluates these approaches through simulation. Section ¥, mon tool strategies includmass exchangeool shar-

presents a summary and conclusions. ing, and tool migration [7]. In the mass exchangstrategy,
each work cell has all the tools required for any task it may
] ] ever perform. While this strategy is simple, it is not very
~ Tool management, the allocation and scheduling of toolggicient if different tools are required for the different tasks
is an important problem in FMS. A tool is an implemenpne cell can perform; particular tools may often go unused.
usually specialized for cutting, drilling, or shaping metal ofy the tool sharing strategy, each work cell has every tool
other matter. It is often separate from the machine using it, g&yuired for every task it is to perform in the next production
that a tool used at one machine can be removed and transfegggle. Between production cycles, tools may be moved from
for use on another machine. Tools are often expensive, so thgk cell to another. Thus, while the management of the
strategies for tool allocation and scheduling often have thgy|s is somewhat more complicated, tools can be used more
maximization of tool utilization among their goals. efficiently. In thetool migrationstrategy, tools can be moved
Tools and machines are used to execute jobs (or tasks)frfm cell to cell during the same production cycle (e.g., an
job may consist of the processing of a single work-piece, gfght-hour shift), so that a tool, which has been used but is no
the processing of a batch of similar or identical work-piecefnger needed at one cell, can be transported to another cell,
For example, a job might be to drill a certain number Qjhere it is needed. Thus, even more efficient use of tools is
holes of a specified size, using a specialized drill bit, intgossiple.
each of fifty identical metal parts. The processing time for Tqq| sharing and tool migration offer greater flexibility,
a job can include the time required for set-up before thgt are clearly harder to implement. Tool sharing requires
actual machining begins, and the time required for the actyaformation about the locations of the tools and how they will
machining operation, or repeating operations if the job is & allocated during the next production cycle. Tool migration
batch. Jobs may haverecedence constraintavhich dictate a requires this information, information about which tools are to
partial ordering on the scheduling of jobs. Precedence relatigis moved from one cell to another, and when the transfer is
make most scheduling problems more constrained. In thistake placeTool borrowingis a form of tool migration, in

paper, we will not consider the problem of tool scheduling ighich decisions about the migration of a tool can be made at
the presence of job precedence constraints; a similar approgsd work cell level.

to job-shop rescheduling with precedence constraints in a

distributed manufacturing system is presented in [13]. B. Distributed Manufacturing System Model
Given a set of jobs, a schedule assigning tools to machine

and jobs to machines, can be constructed. If there were

unexpected changes during the production cycle, sched

execution and tool management during execution would

II. TooL MANAGEMENT IN FMS

S
Jn our model of a distributed manufacturing system, in-
émation required for tool management may be distributed.
ggr example, as illustrated in Fig. 1, a shop level supervisory

a straightforward matter. However, unexpected events (§2dule may have only general information about tooling and
disruptions), such as the arrival of a new job, changes X status; a cell controller may have detailed information
job priorities, the breakage of a tool, or the breakdown @IbOUtI cell status ar;dlthe sta&us of Jois ?t th?t cell, while
a machine, may pose problems for schedule execution. Thd0 manager module may keep track of tool status (e.g.,
current schedule could of course be discarded, and a ng@#" capabilities, etc.) and scheduling. Tool management may

one constructed, taking into account the new requiremeﬁ?squ"e detailed information about cells, jobs, and tools, which

imposed by the disruptions. However, this re-scheduling cAY not be centralized in any one module. This model is

be costly, not only because of the re-scheduling task itself, tﬁﬁ't“”ar to the contract ne.t-based multi.-agent shop-floor control
also commitments based upon the original schedule, dealf??g‘.fdeI of Balasubramanian and Norrie [1].
for example with material transport or personnel, may have
to be reorganized. At worst, guarantees made to a customer
about delivery times may be violated. Thus, when unexpectedWe begin our investigation of using polite re-allocation
events can occur, one goal is to handle disruptions with asthods in the tool management domain by considering a
little change to existing schedules as possible. very simple tool scheduling problem. Here, simplifying as-
We focus on the problem caused by unexpected toolisgmptions allow us to consider both optimal and heuristic
requirements. In order to find a solution, some of the coapproaches to the tool re-allocation problem. A more realistic
straints of the scheduling problem may have to be relaxed. Foblem (for which optimal solutions are not possible) will be
example, the processing of a lower priority job may have wonsidered in Section IV.
be postponed or cancelled. However, negotiation may allowln this problem, we consider the allocation of time slots
some of the schedule constraints to be relaxed more easity. use of a tool among tasks which require that tool. We
Tool availability may be less restrictive if a required toolconsider a system in which there are tool manager agents and
assigned to another machine, may be borrowed, and we tdask manager agents. For each tool there is a tool manager
such an approacholite. We examine this type of approachagent, which knows the current schedule for the tool (that is,
in the context of common tool strategies and a distributedhich time slots have been allocated for use by which tasks).
manufacturing model. For each task there is a task manager agent, which knows the

I1l. A SIMPLE TOOL SCHEDULING PROBLEM
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Fig. 1. Distributed manufacturing system model.
tool requirements of the task. Heretaskis a generalization 1 2 3 4 5 6 7 8 9 10

of a job; it may be a commonly recurring category of jobs for
which tool and processing time requirements are well-known,

. .. . . ask A
or it may be a description of a design for which a set o¥
machining operations must be determined.

The constraints for this problem specify, for each task,
not only which tools are needed, but also during which tim&+®
slot windows these tools may be used. This is a simplified
version of the time window scheduling problem, in which tasks
may be scheduled only during certain time windows. Thegé*®
window constraints may reflect other commitments which may
have already been made regarding the task; they are local
to the agent which manages the task. A resource capacity -

. . . Tool Task Task Task
constraint requires that only one task may use a given toshedue A c B
during a given time slot. A task may use one or more tools
during any given time slot, and to complete processing it
must have use of each of its required tools during one of its
time slots (not necessarily the same one). The task managers
may communicate with tool managers in order t0 requesiw Task
reservations or scheduling information, and may communicate
with one another to coordinate their actions.

~possible time slot

A. Problem Description !
. - reserved time slot
One obvious goal of scheduling these tasks (allocating tool
time slots to tasks) is to maximize the number of tasks which E ~ free time in schedule

are allowed use of each of their required tools. Given this _ _

goal, a backtracking algorithm can be used to find an optimaf- 2 A Simple tool scheduling problem.

solution, or some heuristic can be used to find a “good”

solution. However, these tasks may arrive individually ovdtach task requires the use of its required tools for one time

time, rather than all at once. Because a schedule represengtotieach. For each required tool, the task has a number of

commitment to those executing the schedule, and perhapptssible time slots during which it may use the tool.

a customer, we would like to avoid rescheduling a task onceAn example of such a tool scheduling problem is shown

it has already been scheduled. Thus, instead of rescheduiimgrig. 2 in which three tasks have arrived and have been

every current task anew each time a new task arrives, aaheduled. When the new task arrives, either it must be

concern is how best to allocate tool use to tasks incrementaligjected, or one of the already scheduled tasks must be dropped

In other words, we will consider ways in which the scheduler rescheduled. Fig. 3 shows the original schedule, along with

may be, rather than completely rescheduled from scratch,tée possible schedules which allow the new task to be sched-

accommodate each task arrival. uled with the previous three. While both schedules include all
When a new task arrives, its task manager is responsible four tasks, schedule 1 changes the scheduled time for all three

reserving the required time slots on the appropriate tools.df the originally scheduled tasks, while schedule 2 changes

time slots cannot be reserved, then the task must be rejectady the time for task A, and is therefore less disruptive.
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1,2 3 4 5 6 7 8 9 10 tools may be reserved; during one time slot, a tool may be
reserved for only one task. Each task masandomly chosen
Original Task [\ Task | Task[\ [ [ possible time slots; obtaining use of a required tool for any
Sehedule | | A C 0 Bl | | . | one of these time slots will satisfy that task’s requirement for
that tool. In order to simplify the simulation, the first task
Possible |\, | Task N Yew Task NS \ \\ \\ will not start processing before the last task arrives. As eaclh
N N \ \ ) ~ N task arrives, its task manager attempts to schedule it. If it
‘ can reserve time slots on each of the required tools, it is
Sereduie2 | ek \\\ oSk | sk T \\ \\ AN | accepted. Otherwise, it is rejected. The problem at ithe
N NJ N

task arrival is described as follows. Given the time slots, the
Fig. 3. Possible tool schedules. m tools, j < i — 1 previous successfully scheduled tasks and
their tooling requirements and possible time slots, the existing

As mentioned previously, the responsibility for Schedu"nreservatlons for thg Jobs, {:md theith job and its possm_le
: : e slots and tooling requirements, the problem is to find a
a new task belongs to that task’s manager. It tries to schedu . . ' . )
of reservations for all + 1 jobs by which each job will

. i . S
the task by requesting time slots from the appropriate topl . : .
y red 9 pprop ave reservations for each of its required tools.

managers. If possible time slots for each tool are available, .
: We compare two local methods which rely only on local
then the task manager can reserve use of the required tq(ols

. . . . nowledge, a simple scheduling method, and a polite sched-
during appropriate time slots, and the task is thus accepteduﬁtr(])g approach. The goal of each is to schedule as many tasks

is clear that reserving an available time slot is a nondisruptin :
9 PIY possible. In each method, the task manager of a new task

action. first contacts the tool managers to enquire whether any of the
However, one or more of the tools may be unavailable dur- g q y

. . : : : ible time slots are available. If an ropriate time slot i
ing all of the possible time slots. In this case, the environmeRg>> ble time slots are available. |f an appropriate time slot is

; available for each tool, then the task is scheduled. If not, in
of the current schedule and inter-agent resource constraifitS . . ST oo

. . .the simple scheduling method, the task is rejected, while in the
make scheduling the new task in the current schedule im-

. . ..polite scheduling method, the tool manager informs the task
possible. The task manager may handle tool unavailabili .
; . : . anager which tasks have already reserved those requested
in one of the following ways. It can decide that its tas

. time slots. For each unavailable tool, the task manager then
must berejected request of the tool manager that the tool be 9

. . contacts the manager of each of those tasks one at a time,
completely rescheduledr negotiatewith other task managers, ) )

. . ) to ask whether its tool reservation can be rescheduled. The
to relax local constraints stemming from inter-agent resourc . -
constraints. In the traditional bidding approach of the contra%l:?empt to reschedule by a task manager avoids the possibility
' Ing app of deadlock, because at any time, only one task manager
net [1], [8], the task would be rejected, as the tool manager . : .
would be unable t tisfy the r ¢ When task nts ill be trying to reschedule a given tool. The tool allocation
ou i te u .;1 €losa ts;]fy r? equest. A i as tag'(tah Sta? orithms for a task requiring one time slot on one tool can
negotiate with one another, however, a tas agen“ with a tQoF 1 ribed simply as follows:
reservation required by another can become a “contractor, ber of ible lots §
offering use of the tool as if it were a tool manager, if it ”t ntl;m er %I p(tj_ss' elttmf”le ?ots or tagk
determines that it can obtain another replacement reservatiorf: ¢ pt;)sm fef[ |r|ne siot O(; SSK herek < m:

We will show that, when complete rescheduling is costly "t nutm fe;foto?s requllred bytw err]e = m’_
because the collection of global information is not convenient, ** set 0 L 093 required byt, where ¢, =
negotiation to relax local constraints has performance close to . {ai,-- "q_lfct 1’ lot i for tool o is alread
optimal in terms of number of tasks accepted, while being less*e(J)  reserve if time slot j for tool ¢ is already
reservedhold if it is tentatively reservedfree

costly than complete rescheduling in terms of the number of

tasks which have to be rescheduled. " ;)thlfrw;]sfe;] h d 1 Ioffor tool
For example, in the problem in Fig. 2, once the task managerTi i?f)n:lelxcistsas reserved ime siptior tool ¢,

discovers that the task cannot get the tool given the current ,
tool schedule, it can ask the task manager for task A whether ¢
task A can use the tool in a different time slot. Because task A ,
can find out from the tool manager that it can also use the tool
during time slot 5, its manager would reply to the new task
manager that it can change time slots. Thus, the new task can
gain use of the tool without changing the plans of tasks B or ] }
C. The resulting tool schedule would be the second possilSiéPProcedurenake-tentative-reservatioft, )
schedule shown in Fig. 3. If task A had not been able to use0. 7 := 1.
a different time slot, then the task manager of the new taskl. If sch,(p!) =free, thengoto 3;else¢:=i+1;1fi<n
could have asked the task managers of task B or task C. then go to 1; else go to 2.

1) Problem Statement and Solution Methods:these sim- 2. Seth{ := none. Report failure. End.
ulations, there are tasks which arrive separately, all requiring 3. Setsch,(p!) := hold and seth, := p!. Report success.
use of the same set of tools. There are time slots for which End.

time slot reserved for task on tool ¢, if any;
none otherwise;

time slot tentatively reserved for tagkon tool
q, if any.
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subprocedurgentatively-change-reservatid, ¢)
0.4 := 1.

1. If pt # r, andschy(pt) = free, then go to 3; else
1 := i+1; if ¢ < n then go to 1; else go to 2.

2. Report failure. End.

3. Setsch,y(p!) = reserve. Seth{ := p! andr{ = pi;

Report success. End.
subprocedureonfirm-reservations)
0. For allq € @y,
0.1. Setsch,(h]) = reserve;
0.2. If #{ # h{, none, setsch,(r{) := free;
0.3. Setr! := hl.
1. End.
subprocedureancel-reservation(s)
0. For allq € @y,
0.1. If h{ # none, then sekch,(h}) = free;
0.2. Setr! none;
1. End.
proceduresimple-schedulg)
0. For allg € Q,, make-tentative-reservati¢hnq); If fail-
ure, go to 2;
1. confirm-reservation®); report success; End.
2. cancel-reservatior(g); report failure; End.
procedurepolite-reschedul@)
0. For allq € @y,
0.1. make-tentative-reservati¢hq); if failure, go to
0.2; else go to 0.5;
i = 1.
Contact tasKFIit_ and request that itentatively-
change-reservatidp, ¢); if successful, then go to
0.5; elsei := i+1, if i < n then go to 0.3; else
go to 2;
0.4. make-tentative-reservati¢nq);
0.5. Continue;

1. confirm-reservation(s); End.
2. cancel-reservation(s); End.

0.2.
0.3.
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Fig. 4. Simulation results: task scheduling with two tools.

It must be noted that the optimal methods use perfect
information about current tool schedules, but not about future
task arrivals, or the order in which tasks arrive. If future task
arrivals can be perfectly predicted, no task rescheduling would
be required, as tasks are only rescheduled to allow scheduling
of other tasks. If some information about probabilities of future
task characteristics were known, tasks could be scheduled in
order to decrease the expected need for future reschedulings,
using some robust scheduling method such as that of Drum-
mond et al. [2]. The same is true if some prediction can
be made about the order in which particular types of tasks
arrive. In our simulations, however, in order to address a more
general problem, tasks have uniformly random tool-time slot
requirements, so no such knowledge about future tasks, or task
order, can be used by any method.

2) Simulations and Resultd=ach of our simulation figures
shows the results averaged from 20 simulations. Fig. 4 shows
the number of tasks successfully scheduled versughe

We compare these heuristics, which use only local informaumber of possible time slots for each task for each tool. In this
tion about who has a reservation for a particular time slatase, one tool is required, and 24 task requests arrive, one at a
with optimal methods which use global information abouime (s = 24). Here,Optimal maximizes the number of tasks

tool schedules to construct schedules with each new tamtcepted, whil®©ptimal 4:1 hasc = 1

- As would be expected,

arrival. One optimal method simply maximizes the numbenore tasks are scheduled asincreases and the problem

of tasks accepted. Another uses a cost faetofor each becomes less constrained. The polite scheduling method also
task that is moved to a different time slot; for each newchedules about 9% more tasks than the simple method, and
schedule, this method maximizes cr, wheret is the number comes within 5% of the optimal method. Fig. 5 shows the
of tasks accepted, and the number of tasks reschedulednumber of tasks accepted (here with only 16 task requests and
These optimal methods require not only global informatioime slots) versus the number of tools required, witbet to 3.

but also a great deal of search, even when bounds are ugesithe number of required tools is increased, it becomes harder
the search tree has depth equal stqthe number of task to schedule tasks, as would be expected because the problem is
requests), and a branching factgr (wherem is the number more constrained, and the polite method performance degrades
of tools required). (The polite method, because it has much lestative to the optimal solution.

information to deal with, requires only time on the order of While the polite scheduling method is able to schedule
nm.) We will also compare results with a good upper boundnpore tasks (and thus increase tool utilization), it also imposes
based upon total demand characteristics, for problems whitiditional costs. One of these costs is the rescheduling of
are too big for optimal solutions. certain tasks during the negotiation process. We have men-
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Fig. 5. Simulation results: task scheduling versus number of tools. Fig. 6. Simulation results: task rescheduling.

tioned previously that rescheduling is costly, because it oftenheduling preferences can affect communication costs and
requires changing other commitments associated with the taisrations required for a solution. Here, the same is true when
Fig. 6 shows the number of tasks rescheduled versughere agents are competing for individual time slot reservations,
there is one required tools. This number increases initialtgther than trying to find a common acceptable time slot for
when n increases, as it becomes easier to reschedule tagksommon meeting objective. This early-first preference is
However, it soon begins to drop, as an increasingnakes equivalent to Sen’'d.inear early search bias, and depends
the initial scheduling of tasks easier, thus reducing the neegon agents having common initial scheduling preferences.
for rescheduling. HereQptimal 10:1 is an optimal method Similar reasoning can be used if some characteristics about
with ¢ = %, which performed as well a®ptimal in terms task arrival order is known, though arrival order is random in
of number of tasks accepted. The figure clearly shows thhese examples.
the polite method requires fewer task reschedulings than thdn order to avoid communicating with agents known to be
optimal methods, even when the optimal methods take intmhelpful, an agent needs information about which agents are
account task rescheduling. As is increased, the optimal not helpful. One possibility is to decide that any agent that
method reschedules fewer tasks but accepts fewer tasks, aag unhelpful in the past will be unhelpful in the future.
asc is increased abov%, the task acceptance performanc&vhile this assumption may not hold when agents’ situations
becomes worse than that of the polite method. are frequently changing, in this simple problem, it is a very
3) Simple Negotiation StrategiesAnother cost associatedgood assumption. If a task cannot currently change its time
with the polite approach is the communication required bsfot on a tool, it is unlikely that it will ever be able to do so in
negotiation between task managers. While, with increasestlire future. Thus, the tool manager for each tool can keep track
network speed, this communication itself might not causeafwhich task managers were unable to reschedule on that tool,
significant delay, there can be significant costs in netwodnd inform a requesting task manager only of those other tasks
congestion from message traffic, and in computation time fromanagers which have not yet been unable to reschedule.
the processing of incoming and outgoing messages. Thus, afig. 7 shows the advantages of these methods of reducing
important part of negotiation strategies is trying to reduce tmessage traffic. The graph shows the number of messages
number of messages generated. between task managers versysvhere two tools are required
Two basic ways of reducing message traffic are to contdny each task. In thdate-first method, a negotiating task
first those agents most likely to help, and to avoid communicatvanager contacts other task managers in latest-first order, with
ing with agents known to be unhelpful. In order to contact firsegard to the time slot in question. Tharly-first method does
those agents most likely to help, an agent needs informatism in earliest-first order. Thavoid-unhelpful method does
about which agents are likely to help, and which are not. bo in earliest-first order, and avoids contact with unhelpful
this tool scheduling problem, a task with an earliest time sltask managers as described above. The figure also shows that
on a tool is more likely to be able to reschedule than a taike number of messages falls ads increased, even though,
with a later time slot, because the later task is more likely t@ith a greatem, each task manager can negotiate with more
have been unable to schedule earlier and thus is likely to haask managers; the explanation is that the problem is less
fewer alternative possible time slots. Sen’s work in distributezbnstrained and requires less rescheduling with a langer
meeting scheduling [9] shows how search bias determinihgewise, the advantage of avoiding unhelpful task managers
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= 280~~~ e ro-- | - strategy, a tool is_ allocated to only one cell dur_ing a production
@ ! | oo LdeFist cycle (an 8-h shift, for example). The operations at that cell
%24.0 IR o --- EayFist which require use of the tool are scheduled during one such
R R | T AYoid-Unhelptul production cycle.
§ ) ~: Tool sharing, however, does not address the problem of
& 200 unexpected tooling requirements, due to a new job arrival,
§ longer-than-expected processing of existing tasks, or machine
160 breakdown. Due to such circumstances, a cell may require
a tool during a production cycle during which the tool has
been allocated to another cell. Allowirtgol migration (i.e.,
12.0 exchange of tools during production cycles) during such
exceptional circumstances may permit handling of these un-
0 expected events. Using a tool when it is scheduled for use at
another cell, however, should not be done haphazardly. Here
again negotiation can be useful; the cell which needs the tool
4.0 can negotiate with the cells which will have the tool, and
determine whether and from whom the tool can be obtained.
0.0
20 3.0 4.0 5.0 6.0 7.0
Number of Possible Time Slots A. Problem Description
Fig. 7. Simulation results: task rescheduling. We shall investigate how negotiation can allow useful tool

migration, ortool borrowing when unexpected tool require-
is less with greaten, because fewer task managers are likelpents arise, but first we should discuss what kind of schedules

to be unhelpful when the problem is less constrained. and assumptions are involved in this problem. For simplicity,
we assume here that there are a fixed number of manufacturing
B. Discussion cells which share a small set of tools; here we shall consider

. . .just one tool. A similar approach should effectively handle
These results show that, in the incremental SChedu“’%ﬁuations in which more than one tool is being shared, but

of tasks, polite methods using only local knowledge gam%iIII require more complex handling of job sequencing.

through negotiation with a small subset of agents has perfor-EaCh of these cells has a set of jobs to process. Here, we do

mance close to that of optimal for maximizing the number . . . N .
. not deal with the routing problem in which jobs are assigned
of tasks accepted, at lower cost in terms of the number o L2 . .
to cells. The assumption is that this assignment has been made

tasks rescheduled. This is particularly true when Inter"”lg]ez';(]écording to the nonidentical capabilities available at each cell.

gorelzittri?r:zt?;?nl'gn gfed;gézz m |tnhgeosfhoanrientoglf; r?%g%%;gtt his job set changes as jobs arrive or are completed. A job may
9 9 ’ e'auire use of the tool, and can be of high priority (e.g., it is

polite method performance in terms of the number of tasks

. ; ing pr fulfill rticular order) or of low priori
accepted degrades relative to optimal methods, though ¥ g_p_oces_,sed to fuffill pat(_:ug order) or of low priority
. . : . .. (€., itis being processed to build inventory). We assume that
problem size for optimal solutions grows exponentially wit

the number of tools. This broblem. while simpl rovid the production cycle in this problem is a shift, and that jobs
€ number ot 100lS. S problem, € SImple, Provides @, o release times and due times which indicate during which

useful domain in which to study aspects of polite replanningqift a job can begin processing and by which shift a job must

and negotiation as applied to scheduling, particularly because ; . .
it allows comparison with optimal methods. Our results als%omplete processing, respectively. Here we assume jobs have
P P ) no precedence constraints, and each job can thus be scheduled

provide a .ba5|s for our |_nvest|gat|on O.f a more reaIIStIgmy time between its release time and its due time.
tool allocation and scheduling problem discussed in the next.l.he scheduling goal here is to schedule as many jobs as pos-

section. sible, taking into account the priority levels; scheduling more
high-priority jobs is always better. A schedule is constructed
for a scheduling horizonshifts beyond the scheduling horizon

If a tool is frequently moved among several cells, mucare not considered in the schedule. Given a scheduling horizon,
potential utilization of the tool will be wasted in transporta schedule is a set of assignments: an assignment of the tool
given nonnegligible transport times. Tool setup times should one cell for each shift within the scheduling horizon, and
similarly be considered, as should the resources required for each cell, an assignment of its jobs to shifts within the
moving the tool. Thus, some balance should be maintainecheduling horizon. In this problem, we are unconcerned how
between moving tools among cells to allow sharing, arttie jobs are sequenced within a shift; we only require that
keeping the tool in one place to allow efficient utilization. every job assigned to a shift can be processed during that

The tool sharing strategy described previously, in whichshift. Unassigned jobs in a schedule can be processed after the
tools are exchanged between (but not during) productiecheduling horizon, or may be rejected.
cycles, provides this balance. This strategy is similar to We are interested in finding an effective and efficient way
using batch scheduling to reduce machine setup costs. In titisespond to unexpected tooling requirements during schedule

IV. A TooL BORROWING PROBLEM
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execution. Given a schedule for a particular job set and sched- priority jobs may be moved and removed; high priority
uling horizon, and an unexpected demand for the tool (e.g., jobs may be moved.

an unexpected “rush” priority job which requires the tool), the f tool borrowing is allowed, the cell may ask other cells if
objective is to meet the new tooling requirement if possibig may borrow the tool, if it determines that the job cannot be
without completely rescheduling all the cells, without requirinandled without borrowing the tool. The cell can determine
use of a centralized scheduling agent, with as little disruptiggr each shift whether the job can be scheduled in that shift,
as possible to cell schedules which must be changed, aégre the tool available, and then can ask to borrow the tool
without having to reject other already scheduled priority jobfom the cell which has the tool during that shift. A request
For constructing the initial schedule, we use a method whigh horrow the tool should indicate how long the tool will be
first allocates the tool among the cells by considering aggregatgeded, including any tool transport time needed. For the cell
potential demand for tool use (as in “texture™based resour@m which the tool is requested, we consider three possible
allocation of Fox [5] and Sycaret al. [12]), and then assigns ways of handling these requests, which are similar to the above
jobs to shifts using a knapsack packing algorithm whiciycal methods, and which have the same tradeoff.
propagates unassigned jobs forward in the schedule, and whicti) BORROW A: in which the tool is lent if the tool idle
performs close to optimal without exhaustive search. Different * o during the shift is greater than or equal to the

weights assigned to jobs in .for the kn'ap.s'ack packing problem requested time. Thus, lending the tool during this time
can be used to represent different priorities among jobs. This i not require any rescheduling at the lending cell.
initial method can also be used to produce a new schedule iy BORROW B: in which the tool is lent if the tool idle
response to unexpected tooling requirements, but it requires a time, not counting processing time requirements of low
centralized scheduler with global knowledge about tasks and priority jobs, is sufficient for the requested time. Low

tooling _requirements. Here,. we do not consider pregedepce priority jobs may be rescheduled as above; high priority
constraints, but were these jobs to have such constraints, jobs jobs may not be moved.

with unscheduled successors can be propagated forward along) BORROW C: in which the tool is lent if the cell can

with other unassigned jobs. give up the tool for the requested time, and reschedule
without having to remove any high priority jobs. Low
B. Handling “Rush” Jobs priority jobs may be moved and removed; high priority

. . ) . jobs may be moved.
In order to investigate how unexpected tooling requirements

may be handled, we consider how to handle unexpecteoﬁII these *local” and “borrow” methods reschedule or

“rush” jobs, which arrive at a cell after the schedule has beCh OVe Jobs using a similar capacity constraint propagation

constructed. Such a job has a due date sometime within fg%?rghr;nuﬁis_creag't'all(::hsesgk“n%éﬂshosl' gntiglfifsrﬁggg E’)
horizon of the schedule; thus, if this new job is to be accepte pacity P P 9 ag

either a new schedule must be constructed. or the new i ack” each shift with tasks, where each tool corresponds
' Jto one additional capacity constraint in the knapsack. Like

must be fit into the initial schedule. As mentioned previousI)(he traditional knapsack packing problem. this multicapacit
making a new schedule from scratch is undesirable. Here we P b 9p ' pactly

_ i i i m-+41
assume that the rush job can only be processed by the celP: blem_has a psuedo poly_nom|al time SOI.UUQ'CMI ) 3)
which it arrives. whereq is the number of discrete time units in a shift, is

A rush job which requires use of a tool may be harder ttge number of tools, and is the number of jobs. Thus, for a

fit into the schedule, because tool availability is limited. grven . this problem can be solved reasonably quickly.

. . . A final option for handling a rush job is to reschedule
there is no tool borrowing, the new job can only be schedul%ﬂ cells completely. using alobal knowledae of all iob re-
during shifts before its due date and during which the tool IS P Y, 99 9 J

allocated to the cell. For handling the rush job locally (withouqu'rem.ents’ W.Ith tool migration gllowed bemeef? two cells for
one shift (as in the tool borrowing case). In this method, all

o oo e coer e Gt ot a1, o ot
modifying the initial schedule as little as possible ' set, and the tool is reallocated. Then all possible tool migration
i ] T t between two cells sharing one shift evenly are explored, and
1) LOCAL A: in which the job is scheduled during thee initial capacity constraint propagation method is used
latest possible shift in WhICh _there is enough_ldle t|me_tfb assign jobs to shifts. This does not provide an optimal
accommodate the new job without rescheduling anythingtion; any meaningful problem in this domain is too large
else. It is rejected if no such shift exists. _ for an optimal solution, but this method does use the initial
2) LOCAL B: in which the job is scheduled during thegcheqyling method of assigning jobs to shifts, which performs
latest possible shift in which there is enough idle timge| This GLOBAL method would not require cooperation

to accommodate the new job without considering thgar se but it would require all cells to submit to rescheduling
processing time requirements of low priority jobs. LOWy; the same time.

priority jobs may be rescheduled, but high priority jobs
may not be moved. _ )
3) LOCAL C: in which the job is scheduled during theC: Simulations
latest possible shift for which rescheduling does not We performed several simulation experiments to investigate
result in any high priority jobs being removed. Lowthe performance of these methods. For each simulation, a
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Fig. 8. Rush job handling versus load. Fig. 9. Rush job handling versus load (continued).
@ 1000 ———————=o - - oo e
. . . L R ,
random job set was created using the following parameterg: | T TT--TTs +4—+ Global

90.0 o X= ==X Borrow C :

3

the mean number of jobs per shift per céel),(the probability
that a job required use of the togb)( the probability that
a job was a priority job, and the mean job processing time. &o0.0 B T A
The actual number of jobs for each shift of each cell was a
Poisson random variable, which determined the number of jobs 72-¢
for which that shift was the due date; this was not necessarily
the number of jobs scheduled at that shift, as a job can be
scheduled before its due date. Processing time for each job
was a uniform random variable. Each simulation point on the
graphs represents the results averaged from 100 job sets. Four
separate rush job simulations were run for each job set. One
more parameter for rush job simulations was the latency of _ [
the rush job, how many shifts in advance it was due.

The simulations were for a system of four cells with a 5,
scheduling horizon of eight shifts, and sharing the use of one
tool. For each of these simulations, the probability that a job 100
was a priority job was set at 0.5, and the mean job processing
time was set at 0.26 the length of a shift. The time required
for tool transport from one cell to another in the middle ofi9- 10. Rush job handiing versus tool requirements.

a shift was arbitrarily fixed at 0.05 the length of a shift. If o ) )
a shift is 8 h, then this tool transport time is 24 min. Unles§ORROW C, whichis allowed to move important jobs, allows

otherwise specified, each rush job had a latency of three shiftgreater advantage as the problem becomes more constrained.
Where not specified) = 4 andp = 0.20. For a system with Figs. 9-11 show the performance of the most effective
batch jobs and numerically controlled machines, these numbBRRROW and LOCAL methods versus the GLOBAL method
are on a realistic level, but are not derived from any one actiypich constructs a new schedule using global information.
manufacturing example. As the problem becomes more constrained, with more jobs
1) Results: Figs. 8-10, show the performances of the varpPer shift or more jobs requiring tool use, the tool borrowing
ous methods for handling rush jobs. The success axis indicafegthod degrades relative to the GLOBAL method. Never-
how often each method was able to schedule the rush jételess, when the problem is constrained little enough to
without having to remove any other important jobs. Fig. 8llow a good chance of success for the GLOBAL method,
demonstrates that the requirement not to move any job is véhg BORROW method using only local information gath-
constraining; both LOCAL A and BORROW A, which haveered through tool borrowing requests performs close to the
this requirement, perform much worse than their less restrictiGdOBAL method. Fig. 11, showing rush job handling versus
counterparts. It should also be noted that the flexibility afish job latency, also indicates the advantage of tool borrowing
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Fig. 11. Rush job handling versus rush job latency. Fig. 12. Jobs moved to handle rush job versus load.

as the problem is less constrained. In all cases, the BORROVg ! 1

method greatly outperforms the LOCAL method. 3 40l - - A— 4 Berrowe— - - . .
As in the previous tool scheduling problem, two measures 0—0 Bdrrow B

of the cost of handling an unexpected job are the number of X= ==X Bormow A

jobs which have to be rescheduled in order to accommodatg

the new job, and the number of message exchanges whi¢h sol -~ - - . o N

are required to borrow the tool. Fig. 12 shows the number o§>

jobs that are moved to different shifts when an urgent jOb"’

is successfully scheduled. (The LOCAL A and BORROW*

A methods do not move any jobs.) These results show thaE 2.0

while the flexibility to move important jobs (as in LOCAL 5

C and BORROW C) has a higher cost, the flexibility of tool

borrowing does not seem to have a significantly higher cost in

terms of rescheduling jobs. LOCAL C and BORROW C move 1.0

roughly the same number of jobs per rush job acceptance.

Thus, tool borrowing itself does not necessarily entail greater

disruption, when measured by jobs moved, than local handling

methods. Using the GLOBAL method, however, results in  %%3 2.0 py 2.0
many more jobs being moved to different shifts, as might be Mean Number of Jobs per Shift
expected, due to potentially different tool allocations. Fig. 13. Number of message exchanges versus job load.

Fig. 13 shows the number of message exchanges required
by the three tool borrowing algorithms per success, includirigxible borrowing method accepts the rush job almost as
those exchanges which do not result in successful scheduloften as the GLOBAL method, moving fewer jobs from their
of the rush job. The most successful algorithm, BORROtheduled shifts, and without need for global knowledge. This
C, also requires the fewest message exchanges, as its flesirrowing method also far outperforms nonborrowing local
bility allows both more successful local scheduling, and moraethod, without moving more jobs than its corresponding most
successful negotiations. The two other negotiation algorithrfiexible nonborrowing local method. Thus, where collection
require more communication because negotiation with any global information is not convenient, and especially where
given cell is less likely to be successful. tool sharing (rather than tool migration) is the desired policy

Thus, the tradeoff between the local handling and to@dr routine tool scheduling, local rescheduling in response to
borrowing methods is between message exchange (which logaéxpected tooling requirements is a good method, given the
methods do not require) and rush job acceptance, while therformance and cost measures.
tradeoff between the tool borrowing methods and the method
using global information is between disruptiveness and rush
job acceptance. Where current workload is such that rush joln this paper, we have proposed and evaluated tool borrow-
acceptance is likely using the GLOBAL method, the mostg protocols, which require an agent to reason about its pri-

V. CONCLUSION
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