
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998 379

Distributed Tool Sharing in Flexible
Manufacturing Systems

Thomas K. Tsukada,Member, IEEE,and Kang G. Shin,Fellow, IEEE

Abstract—We present a distributed approach to tool man-
agement in flexible manufacturing systems (FMS). Tool sharing
among cells in FMS enables greater utilization of tool resources,
but requires greater coordination of tool use by different cells,
especially when tooling requirements change unexpectedly. We
discuss how concepts from distributed artificial intelligence (DAI)
such as negotiation can provide solution methods. In particular,
we propose polite methods by which an agent can solve such
a problem through negotiation with other agents. We present
simulation results for a tool scheduling problem in which polite
tool sharing is used for handling unexpected “rush” jobs.

Index Terms—Distributed artificial intelligence (DAI), flexible
manufacturing systems, rescheduling, tool scheduling.

I. INTRODUCTION

RESOURCE allocation for a manufacturing system usually
occurs within the traditional hierarchical framework. An

organizational module receives its allocation of resources from
its supervisor on a higher level, and allocates these resources
among itself and its subordinates on a lower level. A module
having an unexpected requirement for resources unavailable to
it will notify its supervisor of the problem. Such unexpected
requirements may occur, for example, if new tasks arrive
which were not taken into account in the initial allocation
of resources, or if machine failure renders some already-
allocated resources unavailable. In the past decade, however,
there has been increasing interest in new control models for
flexible manufacturing systems, emphasizing organizational
flexibility, modularity and simplicity of design, and horizontal
communication among peers (modules on the same hierarchi-
cal level). These models usual emphasize greater autonomy
at the level of thework cell, the divisions of the shop floor
where the work is actually performed. They include Duffie’s
heterarchical model [3], Parunak’s YAMS and CASCADE
models [8], and more recent work in the distributed AI field
(DAI) on multi-agent systems for resource allocation and shop
floor control for manufacturing systems [1], [4], [10], [11]. In
such systems, distribution of software control modules, and
their supporting hardware platforms, parallels the distribution
of the manufacturing process itself.

Manuscript received August 6, 1996; revised February 13, 1998. This paper
was supported in part by the National Science Foundation under Grants IRI-
9209031, DDM-9313222, and IRI-9504412. This paper was recommended
for publication by Associate Editor A. Kusiak and Editor P. B. Luh upon
evaluation of the reviewers’ comments.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122 USA.

Publisher Item Identifier S 1042-296X(98)03971-8.

Intelligent decentralization of control and peer commu-
nication can reduce the degree to which high-level con-
trollers are communication and processing bottlenecks, and
typically allows better fault-tolerance, easier modifiability,
and exploitation of computational parallelism. While initial
allocation of resources may be most efficiently accomplished
within the traditional hierarchical framework, relying as it does
upon global knowledge of system resource requirements, peer
communication may better handle unexpected resource needs
which arise during the execution of a manufacturing schedule.
For example, an unexpected scheduling conflict between two
peer modules may be more quickly resolved by interaction
between the two modules, without appealing to and waiting
upon the decision of a higher authority.

While peer interaction offers advantages, it often requires
more sophisticated coordination, being necessarily less simple
than interaction between a supervisor module and its subor-
dinates. A module will have less knowledge about its peers
than will the supervisor, and thus may not fully know how its
decisions affect its peers, or how a peer may act to resolve a
common problem. While Lansky’s work onlocalized planning
[6] suggests that using only relevant local knowledge makes
the search for solutions easier, the lack of global knowledge
may preclude obtaining an optimal solution.

This paper explores the application of peer negotiation to
the domain of tool management. The goal of tool management
is the efficient use of tooling resources, including maximizing
tool utilization and allocating tool resources in order to facil-
itate the processing of manufacturing tasks. In particular, we
will consider the problem of sudden unexpected tooling needs,
which require a re-allocation of tools, and identify several
prototype algorithms and metrics by which to evaluate them.
Specifically, we will show thatpolite rescheduling, by which
we mean rescheduling of tools by peers in communication
with one another using only local knowledge, performs close
to good methods using global information, especially when
changes to the current schedule are costly. We propose negotia-
tion protocols by which peers which share tools can cooperate
to handle unexpected tooling requirements. In this context,
we will also consider some basic issues involving distributed
approaches to resource allocation and re-allocation.

This paper is organized as follows. Section II provides a
formal description of the problem and our approach, and
briefly discusses tool management and strategies in FMS.
Section III addresses a tool scheduling problem, proposes
basic approaches, and presents simulation results which illus-
trate different issues in resource sharing. Section IV considers

1042–296X/98$10.00 1998 IEEE

380 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998

a tool borrowing problem, proposes negotiation protocols,
and evaluates these approaches through simulation. Section V
presents a summary and conclusions.

II. TOOL MANAGEMENT IN FMS

Tool management, the allocation and scheduling of tools,
is an important problem in FMS. A tool is an implement
usually specialized for cutting, drilling, or shaping metal or
other matter. It is often separate from the machine using it, so
that a tool used at one machine can be removed and transferred
for use on another machine. Tools are often expensive, so that
strategies for tool allocation and scheduling often have the
maximization of tool utilization among their goals.

Tools and machines are used to execute jobs (or tasks). A
job may consist of the processing of a single work-piece, or
the processing of a batch of similar or identical work-pieces.
For example, a job might be to drill a certain number of
holes of a specified size, using a specialized drill bit, into
each of fifty identical metal parts. The processing time for
a job can include the time required for set-up before the
actual machining begins, and the time required for the actual
machining operation, or repeating operations if the job is a
batch. Jobs may haveprecedence constraints, which dictate a
partial ordering on the scheduling of jobs. Precedence relations
make most scheduling problems more constrained. In this
paper, we will not consider the problem of tool scheduling in
the presence of job precedence constraints; a similar approach
to job-shop rescheduling with precedence constraints in a
distributed manufacturing system is presented in [13].

Given a set of jobs, a schedule assigning tools to machines,
and jobs to machines, can be constructed. If there were no
unexpected changes during the production cycle, schedule
execution and tool management during execution would be
a straightforward matter. However, unexpected events (or
disruptions), such as the arrival of a new job, changes in
job priorities, the breakage of a tool, or the breakdown of
a machine, may pose problems for schedule execution. The
current schedule could of course be discarded, and a new
one constructed, taking into account the new requirements
imposed by the disruptions. However, this re-scheduling can
be costly, not only because of the re-scheduling task itself, but
also commitments based upon the original schedule, dealing
for example with material transport or personnel, may have
to be reorganized. At worst, guarantees made to a customer
about delivery times may be violated. Thus, when unexpected
events can occur, one goal is to handle disruptions with as
little change to existing schedules as possible.

We focus on the problem caused by unexpected tooling
requirements. In order to find a solution, some of the con-
straints of the scheduling problem may have to be relaxed. For
example, the processing of a lower priority job may have to
be postponed or cancelled. However, negotiation may allow
some of the schedule constraints to be relaxed more easily.
Tool availability may be less restrictive if a required tool,
assigned to another machine, may be borrowed, and we term
such an approachpolite. We examine this type of approach
in the context of common tool strategies and a distributed
manufacturing model.

A. Common Tool Strategies

Common tool strategies includemass exchange, tool shar-
ing, and tool migration [7]. In the mass exchangestrategy,
each work cell has all the tools required for any task it may
ever perform. While this strategy is simple, it is not very
efficient if different tools are required for the different tasks
one cell can perform; particular tools may often go unused.
In the tool sharing strategy, each work cell has every tool
required for every task it is to perform in the next production
cycle. Between production cycles, tools may be moved from
one cell to another. Thus, while the management of the
tools is somewhat more complicated, tools can be used more
efficiently. In thetool migrationstrategy, tools can be moved
from cell to cell during the same production cycle (e.g., an
eight-hour shift), so that a tool, which has been used but is no
longer needed at one cell, can be transported to another cell,
where it is needed. Thus, even more efficient use of tools is
possible.

Tool sharing and tool migration offer greater flexibility,
but are clearly harder to implement. Tool sharing requires
information about the locations of the tools and how they will
be allocated during the next production cycle. Tool migration
requires this information, information about which tools are to
be moved from one cell to another, and when the transfer is
to take place.Tool borrowing is a form of tool migration, in
which decisions about the migration of a tool can be made at
the work cell level.

B. Distributed Manufacturing System Model

In our model of a distributed manufacturing system, in-
formation required for tool management may be distributed.
For example, as illustrated in Fig. 1, a shop level supervisory
module may have only general information about tooling and
job status; a cell controller may have detailed information
about cell status and the status of jobs at that cell, while
a tool manager module may keep track of tool status (e.g.,
age, capabilities, etc.) and scheduling. Tool management may
require detailed information about cells, jobs, and tools, which
may not be centralized in any one module. This model is
similar to the contract net-based multi-agent shop-floor control
model of Balasubramanian and Norrie [1].

III. A SIMPLE TOOL SCHEDULING PROBLEM

We begin our investigation of using polite re-allocation
methods in the tool management domain by considering a
very simple tool scheduling problem. Here, simplifying as-
sumptions allow us to consider both optimal and heuristic
approaches to the tool re-allocation problem. A more realistic
problem (for which optimal solutions are not possible) will be
considered in Section IV.

In this problem, we consider the allocation of time slots
for use of a tool among tasks which require that tool. We
consider a system in which there are tool manager agents and
task manager agents. For each tool there is a tool manager
agent, which knows the current schedule for the tool (that is,
which time slots have been allocated for use by which tasks).
For each task there is a task manager agent, which knows the

TSUKADA AND SHIN: DISTRIBUTED TOOL SHARING IN FLEXIBLE MANUFACTURING SYSTEMS 381

Fig. 1. Distributed manufacturing system model.

tool requirements of the task. Here, atask is a generalization
of a job; it may be a commonly recurring category of jobs for
which tool and processing time requirements are well-known,
or it may be a description of a design for which a set of
machining operations must be determined.

The constraints for this problem specify, for each task,
not only which tools are needed, but also during which time
slot windows these tools may be used. This is a simplified
version of the time window scheduling problem, in which tasks
may be scheduled only during certain time windows. These
window constraints may reflect other commitments which may
have already been made regarding the task; they are local
to the agent which manages the task. A resource capacity
constraint requires that only one task may use a given tool
during a given time slot. A task may use one or more tools
during any given time slot, and to complete processing it
must have use of each of its required tools during one of its
time slots (not necessarily the same one). The task managers
may communicate with tool managers in order to request
reservations or scheduling information, and may communicate
with one another to coordinate their actions.

A. Problem Description

One obvious goal of scheduling these tasks (allocating tool
time slots to tasks) is to maximize the number of tasks which
are allowed use of each of their required tools. Given this
goal, a backtracking algorithm can be used to find an optimal
solution, or some heuristic can be used to find a “good”
solution. However, these tasks may arrive individually over
time, rather than all at once. Because a schedule represents a
commitment to those executing the schedule, and perhaps to
a customer, we would like to avoid rescheduling a task once
it has already been scheduled. Thus, instead of rescheduling
every current task anew each time a new task arrives, our
concern is how best to allocate tool use to tasks incrementally.
In other words, we will consider ways in which the schedule
may be, rather than completely rescheduled from scratch, to
accommodate each task arrival.

When a new task arrives, its task manager is responsible for
reserving the required time slots on the appropriate tools. If
time slots cannot be reserved, then the task must be rejected.

Fig. 2. A simple tool scheduling problem.

Each task requires the use of its required tools for one time
slot each. For each required tool, the task has a number of
possible time slots during which it may use the tool.

An example of such a tool scheduling problem is shown
in Fig. 2 in which three tasks have arrived and have been
scheduled. When the new task arrives, either it must be
rejected, or one of the already scheduled tasks must be dropped
or rescheduled. Fig. 3 shows the original schedule, along with
two possible schedules which allow the new task to be sched-
uled with the previous three. While both schedules include all
four tasks, schedule 1 changes the scheduled time for all three
of the originally scheduled tasks, while schedule 2 changes
only the time for task A, and is therefore less disruptive.

382 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998

Fig. 3. Possible tool schedules.

As mentioned previously, the responsibility for scheduling
a new task belongs to that task’s manager. It tries to schedule
the task by requesting time slots from the appropriate tool
managers. If possible time slots for each tool are available,
then the task manager can reserve use of the required tools
during appropriate time slots, and the task is thus accepted. It
is clear that reserving an available time slot is a nondisrupting
action.

However, one or more of the tools may be unavailable dur-
ing all of the possible time slots. In this case, the environment
of the current schedule and inter-agent resource constraints
make scheduling the new task in the current schedule im-
possible. The task manager may handle tool unavailability
in one of the following ways. It can decide that its task
must berejected, request of the tool manager that the tool be
completely rescheduled, or negotiatewith other task managers,
to relax local constraints stemming from inter-agent resource
constraints. In the traditional bidding approach of the contract
net [1], [8], the task would be rejected, as the tool manager
would be unable to satisfy the request. When task agents may
negotiate with one another, however, a task agent with a tool
reservation required by another can become a “contractor,”
offering use of the tool as if it were a tool manager, if it
determines that it can obtain another replacement reservation.
We will show that, when complete rescheduling is costly
because the collection of global information is not convenient,
negotiation to relax local constraints has performance close to
optimal in terms of number of tasks accepted, while being less
costly than complete rescheduling in terms of the number of
tasks which have to be rescheduled.

For example, in the problem in Fig. 2, once the task manager
discovers that the task cannot get the tool given the current
tool schedule, it can ask the task manager for task A whether
task A can use the tool in a different time slot. Because task A
can find out from the tool manager that it can also use the tool
during time slot 5, its manager would reply to the new task
manager that it can change time slots. Thus, the new task can
gain use of the tool without changing the plans of tasks B or
C. The resulting tool schedule would be the second possible
schedule shown in Fig. 3. If task A had not been able to use
a different time slot, then the task manager of the new task
could have asked the task managers of task B or task C.

1) Problem Statement and Solution Methods:In these sim-
ulations, there are tasks which arrive separately, all requiring
use of the same set of tools. There are time slots for which

tools may be reserved; during one time slot, a tool may be
reserved for only one task. Each task hasrandomly chosen
possible time slots; obtaining use of a required tool for any
one of these time slots will satisfy that task’s requirement for
that tool. In order to simplify the simulation, the first task
will not start processing before the last task arrives. As each
task arrives, its task manager attempts to schedule it. If it
can reserve time slots on each of the required tools, it is
accepted. Otherwise, it is rejected. The problem at theth
task arrival is described as follows. Given the time slots, the

tools, previous successfully scheduled tasks and
their tooling requirements and possible time slots, the existing
reservations for the jobs, and the th job and its possible
time slots and tooling requirements, the problem is to find a
set of reservations for all jobs by which each job will
have reservations for each of its required tools.

We compare two local methods which rely only on local
knowledge, a simple scheduling method, and a polite sched-
uling approach. The goal of each is to schedule as many tasks
as possible. In each method, the task manager of a new task
first contacts the tool managers to enquire whether any of the
possible time slots are available. If an appropriate time slot is
available for each tool, then the task is scheduled. If not, in
the simple scheduling method, the task is rejected, while in the
polite scheduling method, the tool manager informs the task
manager which tasks have already reserved those requested
time slots. For each unavailable tool, the task manager then
contacts the manager of each of those tasks one at a time,
to ask whether its tool reservation can be rescheduled. The
attempt to reschedule by a task manager avoids the possibility
of deadlock, because at any time, only one task manager
will be trying to reschedule a given tool. The tool allocation
algorithms for a task requiring one time slot on one tool can
be described simply as follows:

number of possible time slots for task;
th possible time slot for task;

number of tools required by, where ;
set of tools required by , where

;
reserve if time slot for tool is already
reserved,hold if it is tentatively reserved,free
otherwise;
task which has reserved time slotfor tool ,
if one exists;
time slot reserved for task on tool , if any;
none otherwise;
time slot tentatively reserved for taskon tool
, if any.

subproceduremake-tentative-reservation()

0. 1.
1. If free, then go to 3; else ; If

then go to 1; else go to 2.
2. Set none. Report failure. End.
3. Set hold and set . Report success.

End.

TSUKADA AND SHIN: DISTRIBUTED TOOL SHARING IN FLEXIBLE MANUFACTURING SYSTEMS 383

subproceduretentatively-change-reservation()

0. 1.
1. If and free, then go to 3; else

1; if then go to 1; else go to 2.
2. Report failure. End.
3. Set reserve. Set and ;

Report success. End.

subprocedureconfirm-reservations()

0. For all ,

0.1. Set reserve;

0.2. If , none, set free;

0.3. Set .

1. End.

subprocedurecancel-reservations()

0. For all ,

0.1. If none, then set free;

0.2. Set none;

1. End.

proceduresimple-schedule()

0. For all , make-tentative-reservation(); If fail-
ure, go to 2;

1. confirm-reservations(); report success; End.
2. cancel-reservations(); report failure; End.

procedurepolite-reschedule()

0. For all ,

0.1. make-tentative-reservation(); if failure, go to
0.2; else go to 0.5;

0.2. 1.

0.3. Contact task and request that ittentatively-
change-reservation(); if successful, then go to
0.5; else 1, if then go to 0.3; else
go to 2;

0.4. make-tentative-reservation();

0.5. Continue;

1. confirm-reservations(); End.
2. cancel-reservations(); End.

We compare these heuristics, which use only local informa-
tion about who has a reservation for a particular time slot,
with optimal methods which use global information about
tool schedules to construct schedules with each new task
arrival. One optimal method simply maximizes the number
of tasks accepted. Another uses a cost factorfor each
task that is moved to a different time slot; for each new
schedule, this method maximizes , where is the number
of tasks accepted, and the number of tasks rescheduled.
These optimal methods require not only global information,
but also a great deal of search, even when bounds are used;
the search tree has depth equal to(the number of task
requests), and a branching factor (where is the number
of tools required). (The polite method, because it has much less
information to deal with, requires only time on the order of

.) We will also compare results with a good upper bound,
based upon total demand characteristics, for problems which
are too big for optimal solutions.

Fig. 4. Simulation results: task scheduling with two tools.

It must be noted that the optimal methods use perfect
information about current tool schedules, but not about future
task arrivals, or the order in which tasks arrive. If future task
arrivals can be perfectly predicted, no task rescheduling would
be required, as tasks are only rescheduled to allow scheduling
of other tasks. If some information about probabilities of future
task characteristics were known, tasks could be scheduled in
order to decrease the expected need for future reschedulings,
using some robust scheduling method such as that of Drum-
mond et al. [2]. The same is true if some prediction can
be made about the order in which particular types of tasks
arrive. In our simulations, however, in order to address a more
general problem, tasks have uniformly random tool-time slot
requirements, so no such knowledge about future tasks, or task
order, can be used by any method.

2) Simulations and Results:Each of our simulation figures
shows the results averaged from 20 simulations. Fig. 4 shows
the number of tasks successfully scheduled versus, the
number of possible time slots for each task for each tool. In this
case, one tool is required, and 24 task requests arrive, one at a
time (24). Here,Optimal maximizes the number of tasks
accepted, whileOptimal 4:1 has . As would be expected,
more tasks are scheduled asincreases and the problem
becomes less constrained. The polite scheduling method also
schedules about 9% more tasks than the simple method, and
comes within 5% of the optimal method. Fig. 5 shows the
number of tasks accepted (here with only 16 task requests and
time slots) versus the number of tools required, withset to 3.
As the number of required tools is increased, it becomes harder
to schedule tasks, as would be expected because the problem is
more constrained, and the polite method performance degrades
relative to the optimal solution.

While the polite scheduling method is able to schedule
more tasks (and thus increase tool utilization), it also imposes
additional costs. One of these costs is the rescheduling of
certain tasks during the negotiation process. We have men-

384 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998

Fig. 5. Simulation results: task scheduling versus number of tools.

tioned previously that rescheduling is costly, because it often
requires changing other commitments associated with the task.
Fig. 6 shows the number of tasks rescheduled versus, where
there is one required tools. This number increases initially
when increases, as it becomes easier to reschedule tasks.
However, it soon begins to drop, as an increasingmakes
the initial scheduling of tasks easier, thus reducing the need
for rescheduling. Here,Optimal 10:1 is an optimal method
with , which performed as well asOptimal in terms
of number of tasks accepted. The figure clearly shows that
the polite method requires fewer task reschedulings than the
optimal methods, even when the optimal methods take into
account task rescheduling. As is increased, the optimal
method reschedules fewer tasks but accepts fewer tasks, and
as is increased above, the task acceptance performance
becomes worse than that of the polite method.

3) Simple Negotiation Strategies:Another cost associated
with the polite approach is the communication required by
negotiation between task managers. While, with increases in
network speed, this communication itself might not cause a
significant delay, there can be significant costs in network
congestion from message traffic, and in computation time from
the processing of incoming and outgoing messages. Thus, an
important part of negotiation strategies is trying to reduce the
number of messages generated.

Two basic ways of reducing message traffic are to contact
first those agents most likely to help, and to avoid communicat-
ing with agents known to be unhelpful. In order to contact first
those agents most likely to help, an agent needs information
about which agents are likely to help, and which are not. In
this tool scheduling problem, a task with an earliest time slot
on a tool is more likely to be able to reschedule than a task
with a later time slot, because the later task is more likely to
have been unable to schedule earlier and thus is likely to have
fewer alternative possible time slots. Sen’s work in distributed
meeting scheduling [9] shows how search bias determining

Fig. 6. Simulation results: task rescheduling.

scheduling preferences can affect communication costs and
iterations required for a solution. Here, the same is true when
agents are competing for individual time slot reservations,
rather than trying to find a common acceptable time slot for
a common meeting objective. This early-first preference is
equivalent to Sen’sLinear early search bias, and depends
upon agents having common initial scheduling preferences.
Similar reasoning can be used if some characteristics about
task arrival order is known, though arrival order is random in
these examples.

In order to avoid communicating with agents known to be
unhelpful, an agent needs information about which agents are
not helpful. One possibility is to decide that any agent that
was unhelpful in the past will be unhelpful in the future.
While this assumption may not hold when agents’ situations
are frequently changing, in this simple problem, it is a very
good assumption. If a task cannot currently change its time
slot on a tool, it is unlikely that it will ever be able to do so in
the future. Thus, the tool manager for each tool can keep track
of which task managers were unable to reschedule on that tool,
and inform a requesting task manager only of those other tasks
managers which have not yet been unable to reschedule.

Fig. 7 shows the advantages of these methods of reducing
message traffic. The graph shows the number of messages
between task managers versus, where two tools are required
by each task. In thelate-first method, a negotiating task
manager contacts other task managers in latest-first order, with
regard to the time slot in question. Theearly-first method does
so in earliest-first order. Theavoid-unhelpful method does
so in earliest-first order, and avoids contact with unhelpful
task managers as described above. The figure also shows that
the number of messages falls asis increased, even though,
with a greater , each task manager can negotiate with more
task managers; the explanation is that the problem is less
constrained and requires less rescheduling with a larger.
Likewise, the advantage of avoiding unhelpful task managers

TSUKADA AND SHIN: DISTRIBUTED TOOL SHARING IN FLEXIBLE MANUFACTURING SYSTEMS 385

Fig. 7. Simulation results: task rescheduling.

is less with greater , because fewer task managers are likely
to be unhelpful when the problem is less constrained.

B. Discussion

These results show that, in the incremental scheduling
of tasks, polite methods using only local knowledge gained
through negotiation with a small subset of agents has perfor-
mance close to that of optimal for maximizing the number
of tasks accepted, at lower cost in terms of the number of
tasks rescheduled. This is particularly true when inter-agent
constraints are limited to the sharing of one tool; as more inter-
agent constraints are added with the sharing of more tools, the
polite method performance in terms of the number of tasks
accepted degrades relative to optimal methods, though the
problem size for optimal solutions grows exponentially with
the number of tools. This problem, while simple, provides a
useful domain in which to study aspects of polite replanning
and negotiation as applied to scheduling, particularly because
it allows comparison with optimal methods. Our results also
provide a basis for our investigation of a more realistic
tool allocation and scheduling problem discussed in the next
section.

IV. A T OOL BORROWING PROBLEM

If a tool is frequently moved among several cells, much
potential utilization of the tool will be wasted in transport,
given nonnegligible transport times. Tool setup times should
similarly be considered, as should the resources required for
moving the tool. Thus, some balance should be maintained
between moving tools among cells to allow sharing, and
keeping the tool in one place to allow efficient utilization.

The tool sharing strategy described previously, in which
tools are exchanged between (but not during) production
cycles, provides this balance. This strategy is similar to
using batch scheduling to reduce machine setup costs. In this

strategy, a tool is allocated to only one cell during a production
cycle (an 8-h shift, for example). The operations at that cell
which require use of the tool are scheduled during one such
production cycle.

Tool sharing, however, does not address the problem of
unexpected tooling requirements, due to a new job arrival,
longer-than-expected processing of existing tasks, or machine
breakdown. Due to such circumstances, a cell may require
a tool during a production cycle during which the tool has
been allocated to another cell. Allowingtool migration (i.e.,
exchange of tools during production cycles) during such
exceptional circumstances may permit handling of these un-
expected events. Using a tool when it is scheduled for use at
another cell, however, should not be done haphazardly. Here
again negotiation can be useful; the cell which needs the tool
can negotiate with the cells which will have the tool, and
determine whether and from whom the tool can be obtained.

A. Problem Description

We shall investigate how negotiation can allow useful tool
migration, or tool borrowing, when unexpected tool require-
ments arise, but first we should discuss what kind of schedules
and assumptions are involved in this problem. For simplicity,
we assume here that there are a fixed number of manufacturing
cells which share a small set of tools; here we shall consider
just one tool. A similar approach should effectively handle
situations in which more than one tool is being shared, but
will require more complex handling of job sequencing.

Each of these cells has a set of jobs to process. Here, we do
not deal with the routing problem in which jobs are assigned
to cells. The assumption is that this assignment has been made
according to the nonidentical capabilities available at each cell.
This job set changes as jobs arrive or are completed. A job may
require use of the tool, and can be of high priority (e.g., it is
being processed to fulfill a particular order) or of low priority
(e.g., it is being processed to build inventory). We assume that
the production cycle in this problem is a shift, and that jobs
have release times and due times which indicate during which
shift a job can begin processing and by which shift a job must
complete processing, respectively. Here we assume jobs have
no precedence constraints, and each job can thus be scheduled
any time between its release time and its due time.

The scheduling goal here is to schedule as many jobs as pos-
sible, taking into account the priority levels; scheduling more
high-priority jobs is always better. A schedule is constructed
for a scheduling horizon; shifts beyond the scheduling horizon
are not considered in the schedule. Given a scheduling horizon,
a schedule is a set of assignments: an assignment of the tool
to one cell for each shift within the scheduling horizon, and
for each cell, an assignment of its jobs to shifts within the
scheduling horizon. In this problem, we are unconcerned how
the jobs are sequenced within a shift; we only require that
every job assigned to a shift can be processed during that
shift. Unassigned jobs in a schedule can be processed after the
scheduling horizon, or may be rejected.

We are interested in finding an effective and efficient way
to respond to unexpected tooling requirements during schedule

386 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998

execution. Given a schedule for a particular job set and sched-
uling horizon, and an unexpected demand for the tool (e.g.,
an unexpected “rush” priority job which requires the tool), the
objective is to meet the new tooling requirement if possible
without completely rescheduling all the cells, without requiring
use of a centralized scheduling agent, with as little disruption
as possible to cell schedules which must be changed, and
without having to reject other already scheduled priority jobs.

For constructing the initial schedule, we use a method which
first allocates the tool among the cells by considering aggregate
potential demand for tool use (as in “texture”-based resource
allocation of Fox [5] and Sycaraet al. [12]), and then assigns
jobs to shifts using a knapsack packing algorithm which
propagates unassigned jobs forward in the schedule, and which
performs close to optimal without exhaustive search. Different
weights assigned to jobs in for the knapsack packing problem
can be used to represent different priorities among jobs. This
initial method can also be used to produce a new schedule in
response to unexpected tooling requirements, but it requires a
centralized scheduler with global knowledge about tasks and
tooling requirements. Here, we do not consider precedence
constraints, but were these jobs to have such constraints, jobs
with unscheduled successors can be propagated forward along
with other unassigned jobs.

B. Handling “Rush” Jobs

In order to investigate how unexpected tooling requirements
may be handled, we consider how to handle unexpected
“rush” jobs, which arrive at a cell after the schedule has been
constructed. Such a job has a due date sometime within the
horizon of the schedule; thus, if this new job is to be accepted,
either a new schedule must be constructed, or the new job
must be fit into the initial schedule. As mentioned previously,
making a new schedule from scratch is undesirable. Here we
assume that the rush job can only be processed by the cell at
which it arrives.

A rush job which requires use of a tool may be harder to
fit into the schedule, because tool availability is limited. If
there is no tool borrowing, the new job can only be scheduled
during shifts before its due date and during which the tool is
allocated to the cell. For handling the rush job locally (without
tool borrowing), we consider three different methods, among
which there is a trade-off between accepting the new job, and
modifying the initial schedule as little as possible.

1) LOCAL A: in which the job is scheduled during the
latest possible shift in which there is enough idle time to
accommodate the new job without rescheduling anything
else. It is rejected if no such shift exists.

2) LOCAL B: in which the job is scheduled during the
latest possible shift in which there is enough idle time
to accommodate the new job without considering the
processing time requirements of low priority jobs. Low
priority jobs may be rescheduled, but high priority jobs
may not be moved.

3) LOCAL C: in which the job is scheduled during the
latest possible shift for which rescheduling does not
result in any high priority jobs being removed. Low

priority jobs may be moved and removed; high priority
jobs may be moved.

If tool borrowing is allowed, the cell may ask other cells if
it may borrow the tool, if it determines that the job cannot be
handled without borrowing the tool. The cell can determine
for each shift whether the job can be scheduled in that shift,
were the tool available, and then can ask to borrow the tool
from the cell which has the tool during that shift. A request
to borrow the tool should indicate how long the tool will be
needed, including any tool transport time needed. For the cell
from which the tool is requested, we consider three possible
ways of handling these requests, which are similar to the above
local methods, and which have the same tradeoff.

1) BORROW A: in which the tool is lent if the tool idle
time during the shift is greater than or equal to the
requested time. Thus, lending the tool during this time
will not require any rescheduling at the lending cell.

2) BORROW B: in which the tool is lent if the tool idle
time, not counting processing time requirements of low
priority jobs, is sufficient for the requested time. Low
priority jobs may be rescheduled as above; high priority
jobs may not be moved.

3) BORROW C: in which the tool is lent if the cell can
give up the tool for the requested time, and reschedule
without having to remove any high priority jobs. Low
priority jobs may be moved and removed; high priority
jobs may be moved.

All these “local” and “borrow” methods reschedule or
remove jobs using a similar capacity constraint propagation
algorithm as the initial scheduling method. The difference is
that a multi-capacity knapsack packing algorithm is used to
“pack” each shift with tasks, where each tool corresponds
to one additional capacity constraint in the knapsack. Like
the traditional knapsack packing problem, this multicapacity
problem has a psuedo-polynomial time solution of ,
where is the number of discrete time units in a shift, is
the number of tools, and is the number of jobs. Thus, for a
given , this problem can be solved reasonably quickly.

A final option for handling a rush job is to reschedule
all cells completely, using global knowledge of all job re-
quirements, with tool migration allowed between two cells for
one shift (as in the tool borrowing case). In this method, all
scheduled jobs are unscheduled, the rush job is added to the job
set, and the tool is reallocated. Then all possible tool migration
between two cells sharing one shift evenly are explored, and
the initial capacity constraint propagation method is used
to assign jobs to shifts. This does not provide an optimal
solution; any meaningful problem in this domain is too large
for an optimal solution, but this method does use the initial
scheduling method of assigning jobs to shifts, which performs
well. This GLOBAL method would not require cooperation
per se, but it would require all cells to submit to rescheduling
at the same time.

C. Simulations

We performed several simulation experiments to investigate
the performance of these methods. For each simulation, a

TSUKADA AND SHIN: DISTRIBUTED TOOL SHARING IN FLEXIBLE MANUFACTURING SYSTEMS 387

Fig. 8. Rush job handling versus load.

random job set was created using the following parameters:
the mean number of jobs per shift per cell (), the probability
that a job required use of the tool (), the probability that
a job was a priority job, and the mean job processing time.
The actual number of jobs for each shift of each cell was a
Poisson random variable, which determined the number of jobs
for which that shift was the due date; this was not necessarily
the number of jobs scheduled at that shift, as a job can be
scheduled before its due date. Processing time for each job
was a uniform random variable. Each simulation point on the
graphs represents the results averaged from 100 job sets. Four
separate rush job simulations were run for each job set. One
more parameter for rush job simulations was the latency of
the rush job, how many shifts in advance it was due.

The simulations were for a system of four cells with a
scheduling horizon of eight shifts, and sharing the use of one
tool. For each of these simulations, the probability that a job
was a priority job was set at 0.5, and the mean job processing
time was set at 0.25 the length of a shift. The time required
for tool transport from one cell to another in the middle of
a shift was arbitrarily fixed at 0.05 the length of a shift. If
a shift is 8 h, then this tool transport time is 24 min. Unless
otherwise specified, each rush job had a latency of three shifts.
Where not specified, 4 and 0.20. For a system with
batch jobs and numerically controlled machines, these numbers
are on a realistic level, but are not derived from any one actual
manufacturing example.

1) Results: Figs. 8–10, show the performances of the vari-
ous methods for handling rush jobs. The success axis indicates
how often each method was able to schedule the rush job
without having to remove any other important jobs. Fig. 8
demonstrates that the requirement not to move any job is very
constraining; both LOCAL A and BORROW A, which have
this requirement, perform much worse than their less restrictive
counterparts. It should also be noted that the flexibility of

Fig. 9. Rush job handling versus load (continued).

Fig. 10. Rush job handling versus tool requirements.

BORROW C, which is allowed to move important jobs, allows
it greater advantage as the problem becomes more constrained.

Figs. 9–11 show the performance of the most effective
BORROW and LOCAL methods versus the GLOBAL method
which constructs a new schedule using global information.
As the problem becomes more constrained, with more jobs
per shift or more jobs requiring tool use, the tool borrowing
method degrades relative to the GLOBAL method. Never-
theless, when the problem is constrained little enough to
allow a good chance of success for the GLOBAL method,
the BORROW method using only local information gath-
ered through tool borrowing requests performs close to the
GLOBAL method. Fig. 11, showing rush job handling versus
rush job latency, also indicates the advantage of tool borrowing

388 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998

Fig. 11. Rush job handling versus rush job latency.

as the problem is less constrained. In all cases, the BORROW
method greatly outperforms the LOCAL method.

As in the previous tool scheduling problem, two measures
of the cost of handling an unexpected job are the number of
jobs which have to be rescheduled in order to accommodate
the new job, and the number of message exchanges which
are required to borrow the tool. Fig. 12 shows the number of
jobs that are moved to different shifts when an urgent job
is successfully scheduled. (The LOCAL A and BORROW
A methods do not move any jobs.) These results show that,
while the flexibility to move important jobs (as in LOCAL
C and BORROW C) has a higher cost, the flexibility of tool
borrowing does not seem to have a significantly higher cost in
terms of rescheduling jobs. LOCAL C and BORROW C move
roughly the same number of jobs per rush job acceptance.
Thus, tool borrowing itself does not necessarily entail greater
disruption, when measured by jobs moved, than local handling
methods. Using the GLOBAL method, however, results in
many more jobs being moved to different shifts, as might be
expected, due to potentially different tool allocations.

Fig. 13 shows the number of message exchanges required
by the three tool borrowing algorithms per success, including
those exchanges which do not result in successful scheduling
of the rush job. The most successful algorithm, BORROW
C, also requires the fewest message exchanges, as its flexi-
bility allows both more successful local scheduling, and more
successful negotiations. The two other negotiation algorithms
require more communication because negotiation with any
given cell is less likely to be successful.

Thus, the tradeoff between the local handling and tool
borrowing methods is between message exchange (which local
methods do not require) and rush job acceptance, while the
tradeoff between the tool borrowing methods and the method
using global information is between disruptiveness and rush
job acceptance. Where current workload is such that rush job
acceptance is likely using the GLOBAL method, the most

Fig. 12. Jobs moved to handle rush job versus load.

Fig. 13. Number of message exchanges versus job load.

flexible borrowing method accepts the rush job almost as
often as the GLOBAL method, moving fewer jobs from their
scheduled shifts, and without need for global knowledge. This
borrowing method also far outperforms nonborrowing local
method, without moving more jobs than its corresponding most
flexible nonborrowing local method. Thus, where collection
of global information is not convenient, and especially where
tool sharing (rather than tool migration) is the desired policy
for routine tool scheduling, local rescheduling in response to
unexpected tooling requirements is a good method, given the
performance and cost measures.

V. CONCLUSION

In this paper, we have proposed and evaluated tool borrow-
ing protocols, which require an agent to reason about its pri-

TSUKADA AND SHIN: DISTRIBUTED TOOL SHARING IN FLEXIBLE MANUFACTURING SYSTEMS 389

orities and capacities when considering a request from another
agent to borrow a tool. We have shown that, for unexpected
tooling requirements, polite scheduling and rescheduling, us-
ing only local information gained through negotiation with
a small subset of agents, has performance close to good or
even optimal methods using global information, in terms of
accepting tasks to be scheduled. Such polite methods also incur
smaller costs in terms of the rescheduling of already scheduled
tasks. In addition, polite methods show a clear performance
advantage over local methods which do not use negotiation.
These methods allow many disruptions to be handled locally
by one agent, in communication with others, without requiring
an appeal to a higher level authority or beginning the resource
allocation problem from scratch. Thus, where collection of
global information is not convenient, polite scheduling or
rescheduling of tools and tasks is a good approach given the
performance and cost measures discussed.

We would like, as future work, to integrate the problem
of reallocating tools and rescheduling jobs. As mentioned
previously, when more than one tool is shared, sequencing of
jobs within a shift must be considered when tools can migrate.
Likewise, precedence constraints require more sophisticated
management of job sequencing. Adding job constraints and
allowing multiple tools will necessarily make the reallocation
problem harder; however, we are encouraged by the results
presented here that this approach to reallocation can be real-
istically useful.

ACKNOWLEDGMENT

The authors would like to thank S. Birla and D. Ong,
General Motors, for their input to the formulation of the tool
management problem described in this paper.

REFERENCES

[1] S. Balasubramanian and D. H. Norrie, “A multi-agent intelligent design
system integrating manufacturing and shop-floor control,” inProc. 1st
Int. Conf. Multi-Agent Syst., 1995, pp. 3–8.

[2] M. Drummond, K. Swanson, and J. Bresina, “Robust scheduling and ex-
ecuting for automatic telescopes,” inIntelligent Scheduling, M. Zweben
and M. S. Fox, Eds. San Mateo, CA: Morgan Kaufmann, 1994, pp.
341–370.

[3] N. A. Duffie et al., “Fault-tolerant heterarchical control of heterogeneous
manufacturing system entities,”J. Manuf. Syst., vol. 7, no. 4, pp.
315–328, 1988.

[4] K. Fischeret al., “A model for cooperative transportation scheduling,”
in Proc. 1st Int. Conf. Multi-Agent Syst., 1995, pp. 109–116.

[5] M. S. Fox et al., “Constrained heuristic search,” inInt. Joint Conf.
Artificial Intell., 1989, pp. 309–315.

[6] A. L. Lansky, “Localized representation and planning,” inReadings
in Planning, J. Allen, J. Hendler, and A. Tate, Eds. San Mateo, CA:
Morgan Kaufmann, 1990, pp. 670–674.

[7] W. W. Luggen,Flexible Manufacturing Cells and SystemsEnglewood
Cliffs, NJ: Prentice-Hall, 1991.

[8] H. V. D. Parunak, “Distributed artificial intelligence systems,” inArti-
ficial Intelligence Implications for Computer Integrated Manufacturing,
A. Kusiak, Ed. IFS Ltd., 1988, pp. 225–251.

[9] S. Sen and E. H. Durfee, “Unsupervised surrogate agents and search
bias change in flexible distributed scheduling,” inProc. 1st Int. Conf.
Multi-Agent Syst., 1995, pp. 336–342.

[10] R. Sikora and M. J. Shaw, “Manufacturing information coordination
and system integration by a multiagent framework,” inProc. 13th Int.
Distributed AI Workshop, 1994, pp. 335–362.

[11] K. Sycaraet al., “An investigation into distributed constraint-directed
factory scheduling,” inProc. IEEE AI Appl., 1990, pp. 94–100.

[12] K. Sycaraet al., “Distributed constrained heuristic search,”IEEE Trans.
Syst., Man, Cybern., vol. 21, pp. 1446–1461, Nov. 1991.

[13] T. K. Tsukada and K. G. Shin, “PRIAM: Polite rescheduler for intelligent
automated manufacturing,”IEEE Trans. Robot. Automat., vol. 12, pp.
235–245, Apr. 1996.

Thomas K. Tsukada (S’91–M’96) received the
B.A. degree in economics from Haverford College,
Haverford, PA, in 1987, the B.S. degree in electrical
and computer engineering from the State University
of New York at Buffalo in 1989, and the M.S.
and Ph.D. degrees in computer science from the
University of Michigan, Ann Arbor, in 1991 and
1996, respectively.

He is a Senior Software Engineer at Lockheed
Martin Management and Data Systems, Valley
Forge, PA. His research interests include scheduling

and distributed artificial intelligence.

Kang G. Shin (F’92) received the B.S. degree in
electronics engineering from Seoul National Uni-
versity, Seoul, Korea, in 1970, and the M.S. and
Ph.D. degrees in electrical engineering from Cornell
University, Ithaca, NY, in 1976 and 1978, respec-
tively.

He is Professor and Director of the Real-Time
Computing Laboratory, Department of Electrical
Engineering and Computer Sciences, the University
of Michigan, Ann Arbor. From 1978 to 1982, he was
on the faculty of Rensselaer Polytechnic Institute,

Troy, NY. He has held visiting positions at the U.S. Air Force Flight Dynamics
Laboratory, AT&T Bell Laboratories, Computer Science Division, Department
of Electrical Engineering and Computer Science, University of California,
Berkeley, and International Computer Science Institute, Carnegie Mellon
University, Pittsburgh, PA. In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are investigating various issues
related to real-time and fault-tolerant computing. He has authored or co-
authored more than 450 technical papers (about 170 of these in archival
journals) and numerous book chapters in the areas of distributed real-
time computing and control, fault-tolerant computing, computer architecture,
robotics and automation, and intelligent manufacturing. He has co-authored
the textbookReal-time Systems(New York: McGraw-Hill, 1997).

Dr. Shin received the Outstanding IEEE TRANSACTIONS ON AUTOMATIC

CONTROL paper award in 1987 for a paper on robot trajectory planning
and the Research Excellence Award from the University of Michigan in
1989. He chaired the Computer Science and Engineering Division, University
of Michigan, 1991 to 1993. He was the Program Chairman of the 1986
IEEE Real-Time Systems Symposium (RTSS), the General Chairman of the
1987 RTSS, the Guest Editor of the 1987 August special issue of IEEE
TRANSACTIONS ON COMPUTERSon Real-Time Systems, a Program Co-Chair
for the 1992 International Conference on Parallel Processing, and served
numerous technical program committees. He also chaired the IEEE Technical
Committee on Real-Time Systems from 1991 to 1993, was a Distinguished
Visitor of the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED COMPUTING, and an Area Editor of the
International Journal of Time-Critical Computing Systems.

