
ABSTRACT
Scheduling periodic hard real-time tasks is of great

importance to many real-time applications, such as open-
architecture machine tool controllers and avionics sys-
tems. The rate-monotonic scheduling algorithm has been
proven to provide an optimal static-priority assignment
under idealized conditions. However, some of these condi-
tions are not met in a real computer system. In particular,
the release times of tasks can deviate from the specified
time instants because of operating system software timer
unpredictability. In this paper, we investigate the timer
behaviors in three commercial real-time operating sys-
tems, VxWorks, QNX and pSOSystem. Based on our find-
ings, we propose an empirical task schedulability model,
called RMTU (Rate-Monotonic in the presence of Timing
Unpredictability), to augment the rate-monotonic schedul-
ing theory in order to handle timing unpredictability. We
then design an approach to systematically derive the
model parameters by measurements. With RMTU, task
deadlines can be empirically guaranteed. The validity of
RMTU is supported by our measurement data. These
results are useful not only to control application develop-
ers, but also to real-time practitioners at large.

1 Introduction

Scheduling periodic hard real-time tasks is of great
importance to many real-time applications [20], such as
open-architecture machine tool controllers [16] and avion-
ics systems. For a set of independent, preemptive, and
periodic tasks, whose hard deadlines are the same as their
respective periods, Liu and Layland [14] proved that the
rate-monotonic (RM) priority assignment is an optimal
static-priority scheduling algorithm. A scheduling algo-
rithm is said to be static if the priorities are not changed
once they are assigned to the tasks; otherwise, it is
dynamic.

However, this result was derived under idealized con-
ditions, some of which do not hold in a real computer sys-
tem. In particular, we observe that the intervals of periodic
tasks may vary because the timers that realize the periodic-
ity are not perfect [25]. The precise times of operating sys-
tem (OS) timer firings can deviate from the nominal time
instants, thus introducing variation in actual task periods.
This can adversely affect the performance of scheduling
algorithms in terms of deadline miss ratios.

To address this problem, we propose an empirical task
schedulability model, called RMTU (Rate-Monotonic in
the presence of Timing Unpredictability), to augment the
original RM scheduling algorithm to handle timing unpre-
dictability. In particular, we introduce two parameters to
capture the timer delay and the CPU utilization by the OS.
These model parameters are determined empirically and
systematically for each target system by measuring the
execution of a set of predetermined tasks. The model is
empirical in the sense that its parameters are derived from
measurement data and validated experimentally. We char-
acterize timer behaviors on three commercial real-time
operating systems (RTOSs), VxWorks, QNX and pSOSys-
tem, and validate RMTU in a VxWorks testbed.

The remainder of the paper is organized as follows.
Sections 2 describes our findings of timer characteristics
in three commercial RTOSs—VxWorks, QNX and pSOS-
ystem. In Sections 3 and 4, we describe RMTU and a sys-
tematic approach to derive model parameters, respectively.
We discuss the results in Section 5. Finally, we present
related work and conclusions in Sections 6 and 7, respec-
tively.

2 Software timer characteristics

The RM scheduling theory [14] is very simple and
elegant. However, not all its assumptions hold in real-
world computer systems. In particular, we notice that, in a
multi-tasking environment, periodic tasks rely on the OS
timer to realize the periodicity. The timer service typically
consists of one or more functions, such as the POSIX [4]

Rate-Monotonic Scheduling in the Presence of Timing Unpredictability

Lei Zhou, Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, Michigan 48109-2122
{LZHOU, KGSHIN}@EECS.UMICH.EDU

Elke A. Rundensteiner
Department of Computer Science

Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280
RUNDENST@CS.WPI.EDU

This research was supported in part by the National Science Foundation
under Grants DDM-9313222 and IRI-9309076, and the Engineering
Research Center for Reconfigurable Machining Systems.

functions timer_create(), timer_delete(), timer_gettime()
and timer_settime(). A task uses a software timer to gener-
ate an event periodically. After each invocation of the task
is completed, the task goes into sleep until the timer wakes
it up with the next timer event.

Clearly, the characteristics of the OS timer service
have potentially significant impact on the performance of
periodic tasks. We now present the experiments to mea-
sure the timer behaviors of three commercial RTOSs—
VxWorks, QNX and pSOSystem.

2.1 VxWorks timer

Our first set of timer experiments is conducted on a
Motorola MVME147 board. This is a VMEbus-based pro-
cessor board with a Motorola 30 MHz 68030 CPU and
4 MB of RAM. It runs VxWorks (version 5.1.1) [24].
VxWorks is a development and execution environment for
real-time and embedded applications on a wide variety of
target processors. It includes a high-performance scalable
RTOS which executes on a target processor. The system
clock resolution of the VxWorks kernel is 1ms (1000
ticks/second).

The VME StopWatch [3] is used for timing measure-
ment. It is a board that is plugged into the VME chassis
and time-stamps bus events. These events are reads or
writes to specific VME extended addresses. In our experi-
ments, a simple inline function call is used to generate the
events. The internal clock resolution of the VME Stop-
Watch is 25ns.

We use the POSIX timer to periodically trigger a sim-
ple task τ which consists of two consecutive function calls
that generate events E1 and E2, respectively. There is no
other code between the function calls. Therefore, the
elapsed time between E1 and E2 is the execution time of
one function call, while the elapsed time between two con-
secutive E1 (or E2) events is the task interval (or timer
interval, i.e., the interval between two consecutive timer
firings). Table I lists the statistics of the task τ with a
10ms period using the POSIX timer, while Figures 1 and
2 show the histograms of the measured timer intervals and
event-generating function execution times, respectively.

From the measurements, we have two important
observations about timer characteristics. First, timer inter-
vals vary around the nominal period (see Fig. 1). This is
because there are other OS activities besides the user task
that consume CPU cycles. Many OS tasks run at higher
priorities than user tasks. For example, the VxWorks pro-
cess manager tExcTask runs at the highest priority. The
hardware interrupts generated by devices (e.g., network

devices) are also serviced at higher priorities by the OS
kernel. All these inevitably cause fluctuations in the timer
firings as well as task execution times (see Fig. 2).

Second, timers have “memory” behavior. By examin-
ing the actual measurement data (not shown here) [27], we
observe that whenever an interval deviates from the nomi-
nal period by at least one or two percentage points, the
next interval almost always swings in the opposite direc-
tion by roughly the same amount. For example, the longest
interval of 11,964.9µs in Table I is followed immediately
by the shortest interval of 7,716.3µs, which is in turn fol-
lowed by a slightly longer interval of 10,316.9µs. This
can be explained by the use of absolute time inside the OS
kernel. What happens is that one timer firing is late (hence
the longer interval) because of other higher-priority sys-
tem activities. The RTOS still tries to fire the timer at its
next originally scheduled time. Therefore, the interval
immediately following the longer one is shorter than the
nominal period. In this example, the second timer firing is
slightly early, which further shortens the second interval.
The third firing is on time. The average of these three
intervals is 9,999.4µs, which is very close to the nominal
period of 10ms.

The nature of these two timer characteristics, varia-
tion and “memory” behavior, suggests that they are
generic phenomena of RTOSs. To validate this, we con-

Execution Time Interval

Sample Size 963 962

Mean (µs) 1.90 9999.9

Standard Deviation (µs) 0.0383 202.7

Min (µs) 1.85 7716.3

Max (µs) 2.20 11964.9

Table I. VxWorks POSIX timer statistics.

Figure 1. Histogram of VxWorks timer intervals
(bin width: 100 µs)

Figure 2. Histogram of VxWorks event-generating
function execution times (bin width: 0.1 µs)

8 10 12
Interval (ms)

0

20

40

60

80

100

%

(bin size: 100 us)

0 1 2 3 4 5
Execution Time (us)

0

20

40

60

80

100

%

duct similar timer experiments using two other RTOSs—
QNX and pSOSystem.

2.2 QNX timer

QNX is a commercial, micro-kernel, POSIX-compli-
ant RTOS [17]. It uses a priority-based, preemptive kernel
scheduler. Our experiments are conducted on a XYCOM
XVME-674/16 board running QNX version 4.22. This
board is a VMEbus PC/AT processor module with an Intel
66 MHz 80486DX2, 32 Mbytes dual-access DRAM,
SVGA and IDE controllers. The QNX system clock reso-
lution is set to 50µs and the VME StopWatch is used for
the timing measurement.

For the simple task τ with a 10ms period (same as
that in the VxWorks experiments) using POSIX timer
functions, Table II gives measured task execution time and
interval statistics. The QNX POSIX timer also exhibits
interval variation. The timer “memory” behavior is present
as well, which can be illustrated by the following sequence
of six consecutive timer intervals extracted from the mea-
surement data: 9974.3, 9976.9, 10257.5, 9782.0, 9966.4,
and 10005.0µs. The first two intervals are close to the
nominal period. The third interval is abnormally long,
which is compensated by the next abnormally short inter-
val. The fifth and sixth intervals are again close to the
nominal period.

2.3 pSOSystem timer

The pSOSystem is another commercial modular high-
performance RTOS designed specifically for embedded
microprocessors [5]. It includes a real-time multi-tasking
kernel pSOS+. Though the pSOSystem (version 1.1) is not
POSIX-compliant, it has system calls similar to POSIX
timer functions. We substitute the POSIX timer functions
with pSOSystem-specific functions in our experiments.

We use a setup similar to that for VxWorks and QNX,
where pSOS+ runs on a VMEbus-based processor board—
Ironics IV3207 (Motorola 25 MHz 68040 with 4 MB
RAM). The system clock resolution of pSOS+ is 10ms
(100 ticks/second). Again, timer interval variation
(Table III) and “memory” behavior are observed in the
measurement data.

2.4 Timer delay factor

Suppose there is a set of m independent preemptive
periodic tasks, τ1, τ2, …, τm, with periods T1, T2, …, Tm,
deadlines D1, D2, …, Dm, and worst-case nominal execu-
tion times C1, C2, …, Cm, and initial release times I1, I2,
…, Im, respectively. For each task τi, i=1,2,…,m, its dead-

line is assumed to be equal to its period, i.e., Di=Ti. With-
out loss of generality, the task periods are assumed to be
sorted in a non-decreasing order: .

Figure 3 illustrates the effect of the timer “memory”
behavior on task schedulability. The initial timer firing is
on time at time I, the second is late by v time units at
I+T+v, and the third is again on time at I+2T. The net
effect is a longer interval of T+v, followed by a shorter
interval of T-v. We call the parameter v timer delay factor.
If v > T-C, the job in that period will miss its deadline.

Considering that the timer delay is caused by higher-
priority OS activities, it should be independent of nominal
timer intervals. To verify this, we measure the variation of
timers with different nominal intervals. We use the
VxWorks setup to run 8 periodic tasks, one at a time, and
measure their periods. The nominal periods of these tasks
range from 5 ms to 200 ms. The typical range of control
task periods is from 1 ms to 100 ms. Since the tick size is
1 ms, it is inappropriate to run tasks with a period that is
very close to, or less than, 1 ms.

Table IV summarizes the measurement results. The
mean, minimum and maximum periods in the table are
normalized by their respective nominal task periods so that
it is easier to compare the measurements of tasks with dif-
ferent periods. For example, for the 10 ms task (the second
row in the table), the actual mean, minimum and maxi-
mum intervals are 10000.38, 8391 and 11487µs, respec-
tively. We can see that the worst-case timer deviations are
between one and two milliseconds and have no linear rela-
tionship with nominal timer periods.

Execution Time Interval

Sample Size 1950 1949

Mean (µs) 4.27 9996.3

Standard Deviation (µs) 4.82 30.9

Min (µs) 1.45 9739.1

Max (µs) 16.00 10257.6

Table II. QNX POSIX timer statistics.

Execution Time Interval

Sample Size 999 998

Mean (µs) 0.68 10000.2

Standard Deviation (µs) 0.011 82.5

Min (µs) 0.65 9764.2

Max (µs) 0.78 10244.8

Table III. pSOSystem timer statistics.

Figure 3. Task execution with timer variation.

Task
Period
(ms)

Sample
Size

Interval
Mean
(µs)

Standard
Deviation

(µs)

Interval
Min
(µs)

Interval
Max
(µs)

5 1213 1.26 132 -1669 1544

10 802 0.38 175 -1609 1487

20 607 -0.33 196 -1653 1385

30 539 -0.71 247 -1373 1393

50 394 0.42 254 -1060 1156

70 522 1.40 224 -1185 1264

100 417 3.54 150 -1425 1608

200 510 1.06 133 -1565 1540

Table IV. Statistics of timers with different nominal
periods.

T1 T2 … Tm≤ ≤ ≤

C

T+v

I I+T

T-v

I+2T

v
time

T

3 RMTU: an empirical schedulability model

As described in the previous section, we have
observed the timer variation and “memory” behavior in
three popular commercial RTOSs. The nature of such tim-
ing unpredictability leads us to believe that they are
generic phenomena. In [25] and [26], we further show that
timing unpredictability has an adverse impact on schedul-
ing algorithm performance in terms of deadline miss
ratios. For example, some task deadline guarantees that
would have been provided by RM under idealized condi-
tions may no longer be possible due to timing unpredict-
ability. Therefore, it is important to take timing
unpredictability into account when checking the schedula-
bility of tasks. Specifically, we propose an empirical task
schedulability model, called RMTU (Rate-Monotonic in
the presence of Timing Unpredictability), which extends
the original RM scheduling theory to handle timing unpre-
dictability. By empirical, we mean that the model parame-
ters reflect some specific properties of the target system
and thus are experimentally derived from the measurement
data of the target system.

RMTU quantifies the effect of timing unpredictability
on task schedulability by extending the RM scheduling
theory with the following sufficient condition:

(EQ 1)

where Us is a constant representing the CPU utilization of
OS activities, such as the OS kernel scheduling and inter-
rupt handling; and v is the worse-case timer delay factor,
which is a constant, independent of task periods Ti. RMTU
uses Us and v to capture the unpredictability of RTOS.
These two parameters can be determined empirically as
described in the next section.

Once we obtain the parameters Us and v and know the
task characteristics Ci and Ti, we can use EQ 1 to deter-
mine if all the hard deadlines can be met. This model
results in a tighter upper bound of CPU utilization for RM
task scheduling in the presence of RTOS unpredictability
than the original RM.

4 Derivation of model parameters

Now that we have introduced the empirical task
schedulability model RMTU, we will describe a system-
atic approach to deriving model parameters.

4.1 Assumptions and derivation

To apply RMTU, we need to know all the parameters
in EQ 1. T1, T2, …, Tm are the task periods, which are real-
ized using OS timers in applications. In an actual imple-
mentation of tasks, the periods could differ from the
specified values. Since timers can deliver mean periods
very close (typically, within 0.1%) to their respective task
periods (see also the timer measurement data in Section 2),
we will use the task periods as given in our schedulability
analysis.

Theoretically, the worst-case nominal task execution

times C1, C2, …, Cm may be obtained by analyzing the
task code, assuming that the task execution times are
bounded. In a real system, however, the same OS activities
that cause timer glitches can affect task execution times as
well. Any CPU time used by OS activities during the exe-
cution of a user task increases the task response time.
Since this increase is not caused by other user tasks, it
effectively increases the task’s execution time. Therefore,
the measured worst-case execution times reflect more
accurately the actual system performance than those
obtained from code analysis and should be used in deter-
mining task schedulability. Finally, the worst-case timer
delay factor v can only be obtained experimentally.

Our systematic approach to parameter derivation
includes experiments using a single task, in which case
RMTU can be written as EQ 2. For simplicity, the task
subscript and the less-than sign are dropped. This simplifi-
cation is acceptable because the derived model parameters
will be plugged back into EQ 1.

(EQ 2)

We define the available CPU utilization (Uavail) as the
percentage of CPU cycles that is available to user tasks,
which is equal to 1-Us. We further define the achievable
CPU utilization (Uachiev) as the summation of the worst-
case execution time to period ratios of individual tasks,
which implies the maximal CPU utilization by user tasks
without missing any deadlines. Uachiev has the same value
as the CPU utilization in the original RM theory.

In EQ 2, the task period T is given, while the worst-
case execution time C can be measured. The available
CPU utilization 1-Us and the timer delay factor v can be
derived by using the approach we will describe next.

4.2 Systematic approach to parameter derivation

Based on EQ 2, we design the following systematic
approach to determining the model parameters empiri-
cally:
1. Run a task with a fixed period and an adjustable

execution time at the highest priority allowed by the
RTOS.

2. Measure the start and completion time of each task
invocation to check if it misses its deadline. The
number of measured task invocations should be as
large as possible and no less than a few hundreds for a
given task execution time.1

3. If the task misses its deadline, decrease the task
execution time and repeat Step 2; otherwise, increase
it. Adjust the task execution time until the task does
not miss its deadline and a small2 increase in its
execution time would cause it to miss its deadline.

4. Record the worst-case execution time3 C and the

1. Density estimation techniques may be used to determine the number of
measurement and confidence level of the results [21].
2. In our experiments, a small change is typically less than 1% of total
task execution time.

τi∀ 1 i m Us

C1

T1
------ …

Ci

Ti
----- v

Ti
----+ i 2

1
i

1–
 
 
 

≤+ + +,≤ ≤,

C 1 Us–()T v–=

corresponding task period T.
5. Repeat Steps 1-4 for several (e.g., five or more)

different task periods in the range of the target
application task periods.4

6. After obtaining (C, T) value pairs from Steps 1-5, use
linear regression to derive the available CPU
utilization (1-Us) and the timer delay factor v.

4.3 Experimental results

We conducted the experiments described above on the
computer system running VxWorks described in
Section 2.1. Fig. 4 shows the relationship between the
measured achievable CPU utilization and the task period.
While the RM scheduling theory predicts that the achiev-
able CPU utilization should be 1 regardless of different
periods in the single-task case, Fig. 4 clearly shows an
upward trend in achievable CPU utilization as the task
period increases (as indicated by EQ 2). This is because of
the period-independent timer delay factor in RMTU.

Table V lists the measurement and computation
results. The first eight rows of the table show the data for
the tasks whose periods range from 5 to 200 ms. The last
three rows are the results of linear regression. Using the
measured maximum execution times, linear regression
produces a timer delay factor v of 1.802 ms and an avail-
able CPU utilization (1-Us) of 1.0016 (fourth column in
the table). We will discuss why Uavail could be greater
than 1 in Section 5. The correlation coefficient is very
close to 1, indicating a strong positive correlation between
the task period and measured worst-case execution time.

4.4 Model validation

To validate the empirical model, we have run several
sets of three and five independent tasks in the same

3. This is actually the worst-case response time, i.e., the elapsed time
between the start and the finish of the task. With our approach, the effect
of OS activities on task execution time is also factored into our empirical
schedulability model.
4. This is intended to improve the precision of linear regression.

VxWorks setup where the model parameters were derived.
Tasks are scheduled using the RM priority assignment.
RMTU provides tighter upper bound on CPU utilization
than RM. We show that no tasks missed their deadlines
when the CPU utilization is less than, or equal to, the
schedulability threshold given by RMTU.5 This indicates
that the model is effective as a sufficient condition for task
schedulability with the RM priority assignment in the
presence of timing unpredictability in these experiments.

5 Discussion

There are a few important observations from our
experimental measurements in Section 4. First, RMTU
gives a tighter upper bound of the achievable CPU utiliza-
tion than the original RM scheduling theory. Second, the
tasks can typically reach better achievable CPU utilization
than predicted by either RM or RMTU, because most task
executions take less time than the worst case.

Third, the available CPU utilization (1-Us) could be
greater than one. At the first glance, it appears inappropri-
ate that the available CPU utilization can be greater than
one. However, the available CPU utilization is not the
actual CPU utilization. When the worst-case task execu-
tion times are used in EQ 2 to derive model parameters,
the available CPU utilization can be over-estimated (thus
resulting in a value larger than one). This is because only a
very small number of task invocations actually take that
much time to complete.

RMTU is premised on that the system characteristics
revealed by single-task experiments are applicable to mul-
tiple tasks. However, we found that the presence of other
tasks does have an effect on the variation of task execution
times, even if the task has the highest priority [27]. It was
also observed that a single application can receive periodic
callbacks or timer notifications every 1 ms, for instance,
with a high degree of precision. But when two or more
applications try to do this simultaneously, there are outli-
ers lasting tens of milliseconds that never appear in the
single application case. This happens even though the sys-
tem is essentially completely idle [7]. While RMTU (or

5. Measurement results [27] are omitted due to space limit.

Figure 4. Single-task achievable CPU utilization
versus task period.

1 10 100 1000
Period (ms)

0.60

0.70

0.80

0.90

1.00

A
ch

ie
va

bl
e

C
P

U
 U

til
iz

at
io

n
Task

Period T
(ms)

Sample
Size

Achiev.
CPU

Utilization

Max
Execution

Time C
(ms)

Mean
Execution

Time
(ms)

Min
Execution

Time
(ms)

5 1214 0.688 3.438 2.771 2.695

10 803 0.831 8.314 7.726 7.650

20 608 0.898 17.954 17.672 17.588

30 540 0.939 28.184 27.700 27.583

50 395 0.972 48.597 48.002 47.962

70 523 0.970 67.920 67.395 67.259

100 418 0.983 98.347 97.694 97.651

200 511 0.993 198.606 197.698 197.586

timer delay factor v (ms) 1.802 2.271 2.350

available CPU utilization 1-Us (ms) 1.0016 0.9996 0.9995

regression correlation coefficient +1.00000 +1.00000 +1.00000

Table V. Single task experiment results.

any empirical models) cannot theoretically provide hard
guarantees, it works well for practical purposes as shown
by our experiments. For applications that require deadline
guarantees but not necessarily hard, we instead propose
probabilistic deadline guarantees [27].

6 Related work

RM has been extended for the cases with
[8, 10, 11, 12], with deadlines being an integral multiple of
periods [11, 13], and with [19]. Rajkumar et al.
[18] and Lortz and Shin [15] studied scheduling issues for
periodic tasks with blocking due to non-preemptive criti-
cal task sections or mutually exclusive access to shared
resources. All of the above extensions of the RM schedul-
ing algorithm assume ideal timers.

Kettler, Katcher and Stronsnider [9] proposed an
engineering methodology that allows users to accurately
model and evaluate RTOSs, thus providing a framework to
account for implementation costs in real-time scheduling
theory. Their approach requires a high degree of expertise
to create a valid model for any given RTOS. Such exper-
tise may be scarce among users. Furthermore, as RTOSs
become more sophisticated and new releases come out
once or twice a year, modeling them becomes more diffi-
cult. Instead, we design a set of systematic experiments to
characterize the underlying RTOS and provide a simple
empirical sufficient condition for applying the RM sched-
uling theory to practical systems.

Audsley et al. [1, 22] extended static-priority schedul-
ing techniques to address timer jitter. Their solution is to
use a non-preemptive approach trying to avoid or at least
minimize the problem. Baruah et al. [2] provided a formal
feasibility analysis of dynamic-priority systems exhibiting
jitter. However, we observe that the overhead of run-time
priority change can be prohibitively expensive (e.g.,
QNX’s setprio() system call takes more than 100µs). A
custom-built scheduling system is not always a viable
alternative either. We instead address the problem by
incorporating jitter effects in static-priority systems using
commercial RTOSs.

Jeffay and Stone [6] studied the feasibility and sched-
ulability problems for periodic tasks in the presence of
interrupt handlers. While their solutions are computation-
ally feasible, some of their assumptions are overly-sim-
plistic. For example, they assume that interrupt handlers
are strictly periodic, which is rarely the case in practice.

7 Conclusions

Many scheduling algorithms, e.g., rate-monotonic,
may not work well in practice because some of their ideal-
ized assumptions do not hold in a real computer system. In
particular, we observed timer period variations in three
commercial RTOSs—VxWorks, QNX and pSOSystem. In
order to handle such timing unpredictability, we proposed
an empirical model—RMTU—to extend rate-monotonic.
We further designed a set of systematic experiments, from
which the model parameters can be empirically derived.
Our experiments verified the validity of RMTU.

References

[1] N.C. Audsley, I.J. Bate, and A. Burns, “Putting Fixed Priority
Scheduling Theory into Engineering Practice for Safety Critical
Applications,” RTAS’96, pp. 2-10, 1996.

[2] S. Baruah, D. Chen, and A. Mok, “Jitter Concerns in Periodic Task
Systems,” RTSS’97, pp. 68-77, 1997.

[3] S. Han, K.G. Shin, and J. Park, “A Non-intrusive Distributed Moni-
toring Support in Fault Injection Experiments,” 4th IEEE Interna-
tional Workshop on Evaluation Techniques for Dependable
Systems, 1995.

[4] IEEE, IEEE Guide to POSIX Open System Environment, 1995.
[5] Integrated Systems Inc., pSOSystem/68K User’s Manual, 1992.
[6] K. Jeffay, and D.L. Stone, “Accounting for Interrupt Handling Costs

in Dynamic Priority Task Systems,” RTSS’93, pp. 212-221, 1993.
[7] M. Jones, private communications, 1998.
[8] M. Joseph, and P. Pandya, “Finding Response Times in a Real-Time

System,” The Computer Journal, Vol. 29, No. 5, pp. 390-395, 1986.
[9] K.A. Kettler, D.I. Katcher, and J.K. Strosnider, “A Modeling Meth-

odology for Real-Time/Multimedia Operating Systems,” RTAS’95,
pp. 15-26, 1995.

[10] M.H. Klein, A Practitioner’s handbook for real-time analysis guide
to rate monotonic analysis for real-time systems, Kluwer, 1993.

[11] M.H. Klein, J.P. Lehoczky, and R. Rajkumar, “Rate-Monotonic
Analysis for Real-Time Industrial Computing,” IEEE Computer,
January 1994, pp. 24-32.

[12] J.P. Lehoczky, et al., “Fixed Priority Scheduling Theory for Hard
Real-Time Systems,” A.M. van Tilborg and G.M. Koob, eds., Foun-
dations of Real-Time Computing: Scheduling and Resource Man-
agement, Kluwer Academic Publishers, pp. 1-30, 1991.

[13] J.P. Lehoczky, “Real-Time Resource Management Techniques,” J.J.
Marciniak, ed., Encyclopedia of Software Engineering, John Wiley
and Sons, pp. 1011-1020, 1994.

[14] C.L. Liu, and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” Journal of the ACM,
Vol. 20, No. 1, January 1973, pp. 46-61.

[15] V.B. Lortz, and K.G. Shin, “Semaphore Queue Priority Assignment
for Real-Time Multiprocessor Synchronization,” IEEE Trans. on
Software Engineering, Vol. 21, No. 10, October 1995, pp. 834-844.

[16] Open-Architecture Controls Team, Developer’s Guide for Open-
Architecture Control of the Robotool, Dept. of Electrical Engineer-
ing & Computer Science and Dept. of Mechanical Engineering &
Applied Mechanics, U. of Michigan, November 1995.

[17] QNX Software Systems Ltd., QNX 4 Operating System: System
Architecture, 1993.

[18] R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchroniza-
tion protocols for multiprocessors,” RTSS’98, pp. 259-269, 1998.

[19] W.K. Shih, J.W.S. Liu, and C.L. Liu, “Modified Rate-Monotonic
Algorithm for Scheduling Periodic Jobs with Deferred Deadlines,”
IEEE Transactions on Software Engineering, Vol. 19, No. 12,
December 1993.

[20] K.G. Shin, and P. Ramanathan, “Real-Time Computing: A New
Discipline of Computer Science and Engineering,” IEEE Proceed-
ings, Vol. 82, No. 1, Jan. 1994, pp. 6-24.

[21] B.W. Silverman, Density Estimation for Statistics and Data Analy-
sis, Chapman and Hall, 1986.

[22] K.W. Tindell, A. Burns and A.J. Wellings, “An Extendible
Approach for Analyzing Fixed Priority Hard Real-Time Tasks,”
Real-Time Systems, 6, 1994, pp. 133-151.

[23] S. Vestal, “On the Accuracy of Predicting Rate Monotonic Schedul-
ing Performance,” Tri-Ada, December 1990.

[24] Wind River Systems, VxWorks Reference Manual 5.1, 1993.
[25] L. Zhou, K.G. Shin, E.A. Rundensteiner, and N. Soparkar, “Proba-

bilistic Real-Time Data Access with Interval Constraints,”
RTDB’96, pp. 15-22, 1996.

[26] L. Zhou, M.J. Washburn, K.G. Shin, and E.A. Rundensteiner, “Per-
formance Evaluation of Modular Real-Time Controllers,”
IMECE’96, DSC-Vol. 58, pp. 299-306, 1996.

[27] L. Zhou, “Real-Time Performance Guarantees in Manufacturing
Systems,” Ph.D. Dissertation (draft), U. of Mich., 1998.

Di Ti≤

Di Ti>

