
Web Server QoS Management by Adaptive Content Delivery

Tarek F. Abdelzaher Nina Bhatti
Real-Time Computing Laboratory

EECS Department, University of Michigan
Hewlett Packard Laboratories

1501 Page Mill Road
Ann Arbor, Michigan 48109-2122

zaher@eecs. umich. edu

Abstract
The Internet is undergoing substantial changes from
a communication and browsing infrastructure to a
medium for conducting business and selling a myr-
iad of emerging services. The World Wide Web pro-
vides a uniform and widely-accepted application in-
terface used by these services to reach multitudes of
clients. These changes place the web server at the
center of a gradually emerging e-service infrastructure
with increasing requirements for service quality, reli-
ability, and security guarantees in an unpredictable
and highly dynamic environment. Towards that end,
we introduce a web server QoS provisioning architec-
ture for performance differentiation among classes of
clients, performance isolation among independent ser-
vices, and capacity planning to provide QoS guaran-
tees on request rate and delivered bandwidth. We
present a new approach to web server resource man-
agement based on web content adaptation. This ap-
proach subsumes traditional admission control based
techniques and enhances server performance by selec-
tively adapting content in accordance with both load
conditions and QoS requirements. Our QoS manage-
ment solutions can be implemented either in middle-
ware transparent to the server or by direct modifica-
tion of the server software. We present experimental
data to illustrate the practicality of our approach.

1 Introduction
The Internet is gradually becoming a medium for
conducting business and selling services. The web
presents a convenient interface for the emerging
performance-critical applications, placing more strin-
gent QoS requirements on the web server. A web
server today might host several sites on behalf of par-
ties with potentially conflicting interests, and may
need to protect each party from possible overload or
malicious behavior caused by another. We call this

Palo Alto, CA 94304
ninaahpl. hp. com

requirement performance isolation. In addition, the
server may need to give preferential treatment to more
important clients, which we call sererice diflerentia-
t ion. Unfortunately, today’s web servers offer poor
performance under overload, have no means for pri-
oritizing requests, and have no mechanism for pre-
allocating end-system capacity to a particular site or
hosted service. Web administrators usually resort to
overdesign [l] to achieve overload protection. How-
ever, if the aggregate request rate increases beyond
total capacity, server response-time and connection er-
ror rate deteriorate dramatically, indiscriminately af-
fecting all clients. This paper proposes web content
adaptation as a new approach to control server re-
sources, prevent overload, and achieve performance
isolation and service differentiation. As a first step
towards a more general scheme, we concern ourselves
with adapting static web content only. For specificity
we offer web hosting as an example of a web service
that requires QoS guarantees.

Load balancing [2, 3, 41 and admission control [5]
have often been used for overload protection. While
admission control improves server performance by pre-
venting overload, it offers no service to rejected con-
nections, and cannot recover the resources wasted in
the communication protocol stack on client requests
eventually rejected by the server. This wasted kernel
overhead may be significant at overload. Our experi-
ences with Apache on an HP-UX platform show that
as much as half of the end-system’s processing capac-
ity is wasted on eventually rejected requests when the
load is only 3 times the server capacity.

As an alternative to rejection by admission control,
web server load can be reduced by using multicast to
distribute commonly requested pages [6]. A different
approach is investigated in [7], where we survey an
important category of today’s e-commerce sites and
present evidence of its suitability for content adapta-

0-7803-5671 -3/99/$10.00 0 1999 IEEE 2 16

tion to reduce overload. GIF and JPG images alone
constitute, on average, more than 65% of the total
bytes surveyed. In many cases, these images can be
significantly compressed without an appreciable de-
crease in quality. Reducing the number of embedded
objects per page on those sites (such as little icons,
bullets, bars, separators, and backgrounds) can result
in significant additional resource savings. Reducing
local links is another way of adapting site content.
This reduction will affect user browsing behavior in a
way that tends to decrease the load on the server as
users access less content. The latter approach is some-
times followed manually by administrators of larger
sites such as www.cnn.com of the Cable News Net-
work (CNN), e.g., upon overload caused by important
breaking news.

When the server is overloaded adapted content
must be available at no extra cost. Thus, in this
paper we assume that content is preprocessed a
priori and stored in multiple copies that differ in
quality and size. Since a typical web site is usu-
ally in the megabyte range, storing multiple copies
is cheap in terms of disk space. Multiple content
trees, e.g., “/full-content” and “/degraded-content”
are populated with the appropriate content off line.
A URL, such as, “/mypicture.jpg” is then served
from either “/full-content/mypicture.jpg” or “/de
graded-content/my-picture.jpg” depending on load
conditions. The convention applies to dynamic con-
tent as well, e.g., that generated by CGI scripts. Mul-
tiple content trees may contain different versions of the
named CGI script that vary in resource requirements.

In the rest of this paper, we describe how the
“right” content tree is selected. Section 2 describes
the main adaptation architecture that allows content
to be adapted in accordance with load conditions. Sec-
tion 3 describes QoS management extensions, such as
performance isolation and client prioritization made
possible by the mechanism presented in Section 2. Im-
plementation details are discussed in Section 4. The
presented architecture is evaluated in Section 5 using a
working prototype. The paper concludes in Section 6
with a summary of contributions and suggestions for
future work.

2 QoS Adaptation Architecture
We propose to control web server load via content
adaptation. In order to do so, we interpose a software
layer between the server processes and the communi-
cation subsystem. The layer has access to the HTTP
requests received by the server and the responses sent.
It intercepts each request and prepends the requested

URL name by the name of the “right” content tree
from which it should be served in accordance with
load conditions. To decide on the “right” content
tree for each client the interposed content adaptation
layer must measure the current degree of server uti-
lization, and decide on extent of adaptation that will
prevent underutilization or overload. We call these
functions server load monitoring and server utilization
control respectively. These components are described
in the following subsections for the simple case when
all clients have the same priority. Issues of QoS man-
agement in the presence of multiple hosted sites, or
clients of different priority are discussed in Section 3.

2.1 Load Monitoring
The objective of load monitoring is to quantify server
utilization with a single value that summarizes re-
source consumption on the scale described above. We
noticed that the service time of a request can be de-
composed into a fixed overhead component and data-
size-dependent overhead component. Thus, if a URL
of size x is requested, the request service time can
be approximated by T(x) = a + bx, where a and b
are platform constants. Summing the service times of
all requests in a particular observation period and di-
viding by the length of the period we obtain system
utilization, U. Using some algebraic manipulation we
can prove that:

U = aR+ bW. (1)
where R is the observed request rate, and W is the
aggregate delivered bandwidth. The load monitor pe-
riodically measures R and W online, and returns the
corresponding utilization value. The constants a and b
in Equation 1 are independent of workload and as such
can be determined for the server platform a priori .

To compute a and b the server must be profiled.
A simple way of profiling the server is to subject it
to an increasing request rate and estimate its max-
imum processing capacity. Let us fix the requested
URL size x and increase server request rate gradually
until connection errors are observed. The maximum
achievable request rate, &,, , for which no connection
errors occurs1 is recorded, as well as the correspond-
ing total delivered bandwidth, W,,,. Let us repeat
the experiment with a different requested URL size,
and record the new maximum rate and bandwidth.
In every case the maximum request rate corresponds
(for our purposes) to a fully utilized server, i.e., U
= 100%. Thus, each experiment yields a different
data point (La,, W,,,,,) that satisfies the equation

We take “no errors’’ to mean an error rate of less that 0.1%

2 17

http://www.cnn.com

100 = aR,,,or+bWmoz in the unknowns Q and b. Using
linear regression coefficients Q and b are found. In our
implementation, these constants are obtained off-line
and written into a configuration file used at run-time
by the load monitor to substitute in Equation 1.

2.2 Utilization Control
Ideally, when server utilization is low, all clients re-
ceive the best available content. When server utiliza-
tion approaches saturation a fraction of clients must
be degraded (i.e., will be delivered degraded content)
in order to avoid server overload and connection fail-
ures. The fraction of clients affected and the adapta-
tion action taken on them are determined by a self-
regulating utilization control loop. The utilization
control loop determines the severity and scope of the
adaptation action required, and implements the action
on the clients’ requests. The following subsections de-
scribe its two main components; the content adaptor
which causes content adaptation, and the utilization
controller which tells the adaptor how much to adapt
by selecting one of a range of content trees.

2.2.1 The Content Adaptor
Let there be M content tress, numbered from 1 to M
in increasing order of quality. (For a typical adaptive
server we expect that M = 2.) We use an abstract
parameter G to represent the severity of the adapta-
tion action required from the adaptor. The adaptor
accepts input G in the range [O,M]. The upper ex-
treme, G = M , indicates that all requests are to be
served the highest quality content (i.e., served from
tree M) . This is the nominal operating mode of the
server. The lower extreme, G = 0, means all requests
must be rejected. The content adaptor, thus, super-
sedes and extends admission control by offering adap-
tation as an additional alternative, hopefully minimiz-
ing the need for rejection. The parameter G controls
server load, where lowering G reduces the the load on
the server. A non-zero integer value of G, say G = I ,
indicates that all requests must be served from tree I .
In general, G may be a fractional number. Let I be
the integral part of G, and F be the fractional part.
The following rules are used by the content adaptor
to determine which tree to serve an incoming request
from:

0 If G is an integer (i.e., G = I, F = 0), the request
is served from tree I .

0 If G is not an integer, a pseudo-random value N is
computed by a hashing function H () that hashes
the client’s id (e.g., its IP address) into a number
in the range [0, 11 upon the receipt of the request.
If N < F the request i s served from tree I + 1.
Otherwise it is served from tree I .

The second rule ensures that when G increases, the
likelihood of serving a client from a “better” tree in-
creases, and vice versa. As mentioned above, choos-
ing the non-existing tree 0 means that the request is
rejected. Figure 1 illustrates the achieved degrada-
tion spectrum (shown as a horizontal slide-bar). It
ranges from serving all requests from the highest qual-
ity content tree to rejecting all requests, as specified
by the continuous tunable parameter, G . The Fig-
ure 1 shows how a given value of G determines both
the trees from which requests are served and the frac-
tion of requests served from each tree. All requests
originating from the same client must be served from
the same tree whenever possible. For that purpose,
the hashing function, H () , maps a given client id to
the same number every time. Thus, all requests from
the same client will always be served from the same
tree for the same load conditions.

Figure 1: The Degradation Range

2.2.2 The Utilization Controller
This section presents how the parameter G is tuned
dynamically in a self-regulating fashion to achieve con-
stant maximum server utilization in the presence of
variable load. The maximum server utilization is an
arbitrary specified bound that we do not wish server
utilization to exceed. A good value would be 85%. Let
U’ be the desired “optimal” utilization of the server.
Let U be the current utilization computed by the load
monitor as described in Section 2.1. Let E be the
“utilization error”, E = U* - U . The adaptation con-
troller samples the current utilization U , and com-
putes the corresponding error E at k e d time inter-
vals, then produces an output, G, that regulates the
extent of adaptation. We use the well-known integral
controller to produce the control output. The basic
integral controller produces an output that is propor-
tional to the sum of the observed input samples since
system startup. At each sampling time the controller
performs the following computation:

G = G + hE; If (G < 0) then G = 0; If (G > M)
then G = M ; where k is a constant.
Intuitively, if the server is overloaded (i.e., U > U *)
the negative error E results in a decrease in G. As a re-
sult the fraction of degraded requests increases which
decreases server utilization (and vice versa). When

2 18

the server reaches target utilization (i.e., U = U*),
the error E becomes zero, and this G is fixed.

Classic control literature proposes analytic tech-
niques to tune the integral controller, i.e., set the value
of k in the above equation for best convergence. More
sophisticated versions of that controller include the
proportional integral (PI) controller and the propor-
tional integral differential (PID) controller. We use
a PI controller in our loop, tuned for quarter ampli-
tude damping, which is a traditional industrial control
practice. The controller is modeled by the differential
equation characterizing the PI control action [8]. The
controlled process is modeled as a dead time element of
value equal to half the sampling time of the controller.
For space limitations, we omit the details of controller
tuning in this paper. An interested reader is referred
to any of several classic control theory textbooks [SI.

The control loop is depicted in Figure 2. The fig-
ure summarizes the elements of our content adapta-
tion architecture and their interaction; The load mon-
itor measures current request rate and delivered band-
width, and translates them into a single utilization
value, U. The utilization controller compares U to the
specified desired server utilization, U* , and computes
the required extent of adaptation G. The content
adaptor interprets G and degrades or rejects a fraction
of requests accordingly by modifying their requested
URL names. The server serves the URL names modi-
fied by the content adaptor. The load monitor updates
its load estimate thereby closing the control loop.

Requests
I

Estmated Utilization
U

Figure 2: The Utilization Control Loop

Figure 3 depicts the efficacy of the control loop to
achieve a desired target server utilization. In this ex-
periment, the request rate on the server was increased
suddenly, at t i m e = 13, from zero to a rate that offers
a load equivalent to 300% of server capacity. Such a
sudden load change is much more difficult to deal with
than small incremental changes, thereby stress-testing
the responsiveness of our control loop. The target uti-
lization, U*, was chosen to be 85%. As shown in Fig-
ure 3, the controller was successful in finding the right
degree of degradation such that measured server uti-
lization remains successfully around the target for the
duration of the experiment. The experiment demon-
strates the responsiveness and efficacy of the utiliza-

tion control loop.

Time (sec)
0 i o 2p 3p 4p 50 sp 70 sp ql iw l!O 1 3 13Oin

> 1 . 0 1 I , I , I I I I I I I 1 3

6 0.9 0.9 8
0.8 os
0.7 0.7

6 1 !I! ! ! !I ! ! ! ! ! ! 1
0.3

0.2 Achieved Utilization 09

0.1

0.0

-E- Desired Utilization
0.1

0.0 o i o 20 30 40 50 80 m 80 BO io0 i i o 120 130

Figure 3: Utilization Control Performance
Time (sec)

3 QoS Management
In this section we describe how the general architec-
ture described in Section 2 is extended to support the
following important features:

e Performance isolation and QoS guarantees: A
web server can host multiple independent sites.
We associate a virtual server with each hosted
site. The virtual server guarantees a maximum
request rate and maximum delivered bandwidth
for the site independently of the load on other
sites thereby achieving performance isolation.

e Service dinerentiation: Clients may have different
priorities. In addition to achieving performance
isolation and QoS guarantees, each virtual server
supports request prioritization. Upon overload,
lower priority requests are degraded first.

e Excess capacity sharing: While each virtual
server adapts content under overload to remain
within its individual capacity allocation, if some
virtual server does not consume all its allotted re-
sources, the excess capacity is made available to
other virtual servers allowing them to exceed their
capacity allocation if so needed to avoid client
degradation.

3.1 Performance Isolation
We export the abstraction of virtual servers. A virtual
server is configured for a specified maximum request
rate R,,, and a specified maximum delivered band-
width W,,, . The configuration expresses an agree-
ment whereby the server guarantees the ability to de-
liver an aggregate bandwidth of up to w,,, as long
as the aggregate request rate does not exceed &a,.

2 19

If the request rate condition is violated (i.e., exceeds
the bandwidth guarantee is revoked. The vir-

tual server adapts delivered content to achieve the
maximum possible bandwidth delivery for the given
request rate without overrunning its capacity alloca-
tion. The following provisions in our architecture co-
operate to export the virtual server abstraction and
achieve performance isolation:

e Capacity planning: The maximum maintainable
request rate kaXi and the maximum delivered
bandwidth Wmax, specification of each virtual
server i are converted into a corresponding tar-
get capacity allocation, U: = a&ax, + bWmaxi.
The target utilization sum xi U: over all virtual
servers residing on the same machine should be
less than 100% for the guarantees to be realiz-
able. This is checked each time the adaptation
software parses its configuration file. If the ad-
ministrator configures a new virtual server that
makes xi U? > loo%, a capacity planning error
is returned.

e Load classification: A load classifier intercepts in-
put requests and classifies them to identify the
virtual server responsible for serving each request.
Request classification can be done based on the
requested content, addressed site, or other infor-
mation depending on system administrator’s pol-
icy. If each virtual server is associated with a
hosted site, requests are classified based on the
site name embedded in the URL string. Load
classification allows proper load bookkeeping for
each virtual server independently to achieve per-
formance isolation.

e Utilization control: When requests are classified,
the request rate and delivered bandwidth Wi
can be computed individually for each virtual
server i, from which a corresponding utilization
value, Ui = aR, + bWi, is obtained. The uti-
lization Ui of each virtual server is controlled
by a separate instance of the utilization control
loop described in Section 2.2. Each control loop
achieves the degree of content degradation nec-
essary to keep Ui of its virtual server at or b e
low its target value, U:, thereby achieving the
server’s individual performance guarantees, while
preventing overload. The architecture is depicted
in Figure 4.

3.2 Service Differentiation
In this section we describe how service differentiation
is incorporated into our architecture for adaptive con-

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

Modify URI
I

Requests

Figure 4: Architecture for Performance Isolation

tent delivery. The goal is to support client prioritiza-
tion such that lower priority clients are degraded first.
Consider a virtual server that supports client prioriti-
zation. Let there be rn priority classes defined within
that server, such that priority 1 is highest, and priority
rn is lowest. Collectively, clients of the virtual server
are allocated a target utilization U* derived from a
maximum rate and maximum bandwidth specification
for that server. This capacity should be made avail-
able to clients in priority order. We allocate the entire
virtual server capacity to the highest priority class.
The unused capacity of each class is measured and al-
located to lower priority classes. If this capacity is
not enough, these clients will be degraded or rejected
accordingly by the utilization control loop. The fol-
lowing rule is used to degrade clients:

For each priority class j , the target utilization is
Uj’ = U* - Vi, where Ui = a& + bW; is
the current measured utilization of the (higher
priority) class i.

Given the target utilization of each class j , as
well as its measured utilization, U, = aR, + bWj,
the control technique described in Section 2.2.2
is applied to compute the extent of adaptation
required for this class. Let us denote it by G,.

Each class in adapted in accordance with the
value of its specific Gj as described in Sec-
tion 2.2.1.

In the presence of low priority traffic, a higher priority
class should also account for the overhead it may take
to reject lower priority requests under overload. This
can be figured in the computation of U,? as follows:

U? 3 = U* - Ci<, Vi - Cl>, Urejectl.

220

where U r e j e c t , = a r e j e e t R l is the overhead of reject-
ing all current requests of a lower priority class I , the
overhead of rejecting a single request being a r e j e c t .

3.3 Sharing Excess Capacity
An important advantage of grouping several virtual
servers on the same machine is the ability to better
reuse extra server capacity. Consider two physically
separated servers, each of capacity, C. If load on one
exceeds capacity while the other is underutilized, there
is no way to reroute extra traffic to the idling server
(unless a gateway is used in front of the server farm
to balance load). Idling resources may be wasted on
one server while requests are being rejected on an-
other. A single server of capacity 2C does not suf-
fer this problem. We therefore extend the preceding
mechanisms to allow virtual servers to exceed their
contracted target utilization, U*, as long as there is
extra capacity on the machine. Since the virtual server
has no contractual obligation to provide the extra ca-
pacity in the first place, extra request traffic for any
virtual server is uniformly treated on best-effort basis
as non-guaranteed. Non-guaranteed trafEc is allowed
to occupy the excess capacity on the machine using a
mechanism similar to that of service differentiation de-
scribed in the previous section. Specifically, the degrai
dation level G, of non-guaranteed trafEc is computed
from G, = G, + k(100 - U) , where U = Q R + bW
is the current aggregate utilization of the computed
from the aggregate request rate and bandwidth. We
present an evaluation of these techniques in Section 5.
Implementation details are discussed next.

4 Implement at ion
The adaptation software was implemented in C for a
UNIX platform. The software was tested on a single
processor K460 (HP PA-8200 CPU) workstation run-
ning HP-UX 10.20, with 512MB main memory and
GSC 100-BaseT network connection. For the purpose
of experimentation an Apache 1.3.0 web server was
used. In this section we give more details on software
implementation, the testing environment and evalua-
tion of adaptation software.

4.1 Web Server Model
In order to handle a large number of clients concur-
rently, web servers adopt either a multithreaded or a
multi-process model. Multithreaded web servers re-
quire kernel thread support. Such support is provided
in most modern operating systems, e.g., Solaris and
Windows NT. A separate kernel thread is assigned by
the server to each incoming HTTP request. Threads

can share common state in global memory. In a multi-
process model, common to UNIX implementations, a
separate process is assigned to each incoming request.
Since spawning a process is a heavy-weight opera-
tion, a pool of processes is usually created at server
startup. Created processes listen on a common web
server socket, and may communicate via shared mem-
ory. A process that accepts a connection handles it
until it is closed. Apache 1.3.0, used in our experi-
ments, subscribes to this model.

The adaptation software is designed as a middle-
ware layer between the web server and the underly-
ing operating system. The middleware API may be
called directly from the web server if desired, in which
case it is not transparent. Alternatively, middleware
calls may be made from the socket library used by the
server, in which case server code remains unmodified.
We begin by describing the API of our adaptation mid-
dleware.

4.2 Adaptation Software API
Adaptation mechanisms described in this paper re-
quire three entry points. Namely, (i) an initialization
point, (ii) a request pre-processing point, and (iii) a re-
quest post-processing point. The first point is called
once upon server startup. The latter two are called
upon the receipt of each request and the sending of
each reply respectively. The specific calls are as fol-
lows. adaptsoft init () is called from the main server
process before forking workers. The function will ini-
tialize some global variables and fork off the U t d Z Z Q -

tion controller which will implement server utilization
control loops. adaptsoft adapt (URL, client 1P)
is called by workers each time an HTTP request is re-
ceived. It classifies the client and returns the actual
URL name to be served, or NULL if the request is to
be rejected. adaptsoft logsize (URLhytesize)
is called by workers to update transmitted bandwidth
measurements by the byte size of a served URL.

4.3 Implementing Load Monitoring
When a request is first dequeued from the server
socket’s listen queue by some worker process, Pi, the
function adaptsoft-adapt () is called in the context of
Pi. This function classifies the request as belonging
to virtual server j . The function then increments
a counter, rib], that accumulates the number of re-
quests for virtual server j seen by worker process Pi.
When Pi has finished processing the request, it sends
out the response and calls adaptsoft-log-size() pass-
ing it the number of bytes sent. The function adapt-
soft_logsize() updates a counter, bib] , that accumu-
lates the total bytes sent by process Pi on behalf of

2 21

virtual server j .
Periodically, a call to adaptsoft-adapt () by pro-

cess Pi also invokes a utilization measurement func-
tion. The function computes on behalf of each virtual
server k the request rate &[k] = r i [k] / t that process
Pi has seen for the virtual server within the last t time
units, and the bandwidth W i [k] = b i [k] / t that process
Pi has delivered on behalf of the virtual server within
that time interval. Finally it computes the utilization
Ui[k] = ol%[k] + b W i [k] that process Pi consumed on
behalf of each virtual server k, and stores the respec-
tive values of Ui[k] in shared memory. All counters
ri[k] and bj[k] are then cleared in preparation for the
next period. Note that the utilization measurement
function is invoked separately in each worker process
Pi to compute its contribution to the utilization of
virtual servers.

1 4.4 Implementing Utilization Control
Utilization control is implemented in a separate pro-
cess forked off by a d a p t s o f t h i t () during startup. The
process executes a loop that wakes up periodically to
compute the extent of degradation for each virtual
server then sleeps until the next period. Upon waking
up, the controller computes the utilization, Uk of each
virtual server k by aggregating the recorded contri-
butions U j [k] of all worker processes, Pi, towards uk.
Thus, uk = ci U i [k] . This utilization is then com-
pared to the desired utilization for the virtual server
and the degree of degradation G g is computed accord-
ingly as described in Section 2.2.2. The value of Gk
for each virtual server k is stored in shared memory.

Each time adaptsoftadapt (URL, IP) is in-
voked in the context of a worker process upon the
receipt of some new request it will classify it and read
from shared memory the current value of Gk for the
corresponding virtual server. The function will then
execute the algorithm in Section 2.2.1 to determine
which content tree to serve the request from, and
prepend the requested URL name by the name of that
tree. (For simplicity, we omitted in this section the
implementation details related to performance differ-
entiation among clients of the same virtual server.)

5 Evaluation
In this section we present a performance evaluation of
the developed adaptation software. To emulate a large
number of web clients we used httperf [9] , a testing
tool that can generate concurrently a large number of
HTTP requests for specified URLs at a specified rate.
In order to overload the web server, httperf was run on
4 workstations collectively emulating the community

1.706 1 1.677 I -1.7%

of clients. The workstations were connected to the
server via a lOOMb switched Ethernet.

5.1 Estimating Service Time
In our first experiment, we profiled the Apache server
to determine the time, T , it takes to serve a URL
of size x . Measuring server response time was found
not to be indicative of service time T , because the
former includes queuing time, network latency, etc.
We therefore measured service time by obtaining the
inverse of the maximum throughput. The experiment
was repeated for different sizes of the requested URL.
We found approximately that T (z) = a + b z , where
a = 1.604 and b = 0.063. Table 1 shows the quality of
this approximation.

2
4
8

1.73 1.73 0%
1.858 1.856 -0.1% ‘
2.075 2.108 1.6%

16
32

2.611 2.612 0%
3.322 3.62 8.9%

I
.~ I I I I

Table 1: Approximating Service Time

5.2 Request Rejection Overhead
We mentioned in the introduction that rejection of
client requests wastes a lot of server resources with
no benefit to the rejected client. To quantify the r e
jection overhead, we instrumented the server to reject
all requests by closing the connection as soon as the
request is read off the server socket. The request rate
on the server was then increased, and the maximum
response rate was recorded. The maximum rate was
found to be around 900 req/s, which is the maximum
rate at which rejection can be processed. The rejection
overhead (the inverse of the maximum rejection rate)
is thus approximately 1.1 ms/req. This is to be com-
pared with 1.604, the time it takes to serve a “very
small” URL (denoted by constant a in Section 5.1).
The difference is believed to be due to file system ac-
cess associated with serving the URL. It appears that
this difference is not substantial. Rejecting a set of
requests will consume almost 70% of the resources it
would take to serve them a short URL. Request rejec-
tion, therefore, should be avoided whenever possible,
which we believe is achieved in our content adapta-
tion scheme. For better efficiency, request classifica-
tion and rejection, when necessary, should be done in

22 2

the kernel at the earliest point possible upon request
reception in order to conserve end-system's resources.

5.3 Performance Isolation
In this paper, we described a performance isola-
tion mechanism that allows creating multiple virtual
servers with individual rate and bandwidth guaran-
tees. The mechanism provides protection among in-
dividual virtual servers, as well as protection between
the virtual servers and the non-guaranteed best-effort
traffic. Figure 5-a demonstrates these features. In
this experiment a best-effort background load of 300
req/s (for 32KB URLs) was applied to overload the
machine. In addition, two virtual servers, VI and VZ,
were configured. Server VI was configured for a max-
imum guaranteed bandwidth of 13 Mb/s, and maxi-
mum guaranteed rate of 50 req/s. Server VZ was con-
figured for a maximum guaranteed bandwidth of 27
Mb/s and a maximum guaranteed rate of 100 req/s.
Each virtual server was associated with a different
hosted site. A constant load of 50 req/s (with a total
bandwidth requirement of 12.8 Mb/s) was applied to
the first site (VI) . The load on the second (V2) was in-
creased gradually from 0 to its maximum specification.
The aggregate load on the machine was well above the
overload threshold due to the existence of background
best effort traffic (for other non-guaranteed sites).

Figure 5-a depicts the offered load on each of VI and
V2 (i.e., the total requested bandwidth), as well as the
actual bandwidth delivered. Both are plotted versus
the aggregate request rate on the server. For clarity,
the best effort load is not shown. It can be seen that
the actual bandwidth delivered by each virtual server
follows closely the offered load. Thus, despite server
overload, due to background best-effort traffic, virtual
servers VI and V2 attain the contracted performance
guarantees for their respective sites, and suffer virtu-
ally no content degradation. Furthermore, variations
in load on virtual server VZ do not affect virtual server
VI. Performance isolation is thus achieved in the sense
of maintaining the QoS guarantees independently for
each virtual server regardless of other load.

For comparison, we repeated the same experiment
using a regular Apache server that does not use our
adaptation extensions. Figure 5-b depicts the results
obtained. It can be seen that the delivered bandwidth
of both sites falls short of the offered load. The differ-
ence reflects the fraction of connections that fail and
don't get served due to overload. Note also how the
increase in delivered bandwidth of one site results in
a decreases in delivered bandwidth of another. No
performance isolation is observed. The comparison of

..)(... Site 1: Offered Load
-6- Site 1 : Delivered BW
.+.. Site 2: Offered Load
- e - Site 2: Delivered BW

Total Request Rate

Total Request Rate
(a) Performance Isolation

- P 3o 370

m ..x... Site 1: Offered Load
-6- Site 1: Delivered BW D P ..+. . Site 2: Offered Load e!

.- 9 .- - 930 - E - Site 2: Delivered BW -
d 0"

....'
10 10

0 0
950 380 370 380 390 400 410 420 430 440 450

Total Request Rate
(b) Regular Apache

Figure 5: Performance Isolation

Figure 5-a and Figure 5-b illustrates the advantage of
the developed adaptation software.

5.4 Service Differentiation
Adaptation software allows defining multiple priority
classes of requests. In this section we experiment with
defining two priority classes, namely a basic class B
and a premium class P . Requests of class P are
treated as higher priority than those of B. In the ex-
periment, we offered a constant load of 100 premium
class requests per second. We then gradually increased
the rate of basic class requests. Figure 6 plots the de-
livered premium and basic bandwidth versus request
rate. It also shows the offered load of both premium
and basic clients. Note that when the server becomes
overloaded, basic clients are degraded before premium
clients thus achieving service differentiation.

5.5 Excess Capacity Sharing
As we argued earlier, an important advantage of colo-
cating several adaptive virtual servers on the same
machine is the ability to utilize unused capacity of
one virtual server by another that is overloaded. The

223

2
E.
2

"t t

-6- Delivered Premium Bandwidth - A - Basic Class Bandwidth
++ Offered Premium Load (Bandwidth)

--.a

t"

Figure 6: Service Differentiation

overloaded server should be allowed to exceed its indi-
vidual capacity allocation when extra capacity is avail-
able, as long as it does not affect other virtual servers.
When the machine is overloaded, however, each vir-
tual server should be policed to its individual capac-
ity allocation in order to achieve performance isolation
and overload control. These two features are provided
by the excess capacity sharing mechanism described in
Section 3.3. To evaluate the efficacy of this mechanism
we conducted two experiments. In the experiments a
virtual server VI is created whose offered load at run-
time exceeds its capacity allocation. Low background
load is used in the first experiment. As a result, virtual
server VI is allowed to overrun its capacity allocation
utilizing the excess capacity on the machine. In the
second experiment, high background load is applied.
As a result, the virtual server is policed to its indi-
vidual capacity limit. Moreover, in both experiments
a second virtual server, Vz, is also used. Server V2,
which is loaded within its capacity limit at all times,
is shown to exhibit no degradation despite the (con-
trolled) capacity overrun of server VI , and the back-
ground load. Excess capacity sharing is thus shown
not to interfere with performance isolation.

Figure 7-a depicts the results of the first experi-
ment. It shows the contracted as well as the actual
bandwidth of servers VI and Vz. Server fi is config-
ured for maximum bandwidth of 13Mb/s, and maxi-
mum request rate of 100 req/s. Server Vz is configured
for maximum bandwidth of 27Mb/s and maximum re-
quest rate of 100 req/s. At run time, the request rate
of V- is held constant at 100, offering a total band-
width requirement of 25.6Mb/s, i.e., just within its
capacity limit. The request rate on server VI is in-
creased gradually from 0 to 250 req/s. The aggregate
rate of both servers combined is shown on the hori-
zontal axis. It can be seen that server Vz overruns its

capacity allocation delivering a peak of about 35Mb/s
at a rate of 140 req/s (at which the aggregate rate
is 240 req/s in Figure 7-a). This is to be compared
with its guaranteed maximum bandwidth of 27Mb/s
and maximum request rate of 100 req/s. Server VI
remains unaffected, since the excess capacity sharing
mechanism ensures performance isolation.

The experiment is repeated after adding a back-
ground load of 100 req/s to overload the server. The
results are shown in Figure 7-b which depicts the con-
tracted as well as the actual bandwidth of servers VI
and VZ in new the case. While the contracted band-
width is the same as in Figure 7-a, we can see that
the actual bandwidth differs. For ease of comparison
with Figure 7-a, the horizontal axis, as before, rep-
resents the aggregate request rate of VI and Vz com-
bined. It can be seen that VI in the second experiment
is made to deliver exactly its maximum guaranteed
bandwidth, 27Mb/s, when its rate reaches the maxi-
mum guaranteed rate, 100req/s (at which the aggre-
gate request rate on the server is 200 in Figure 7-b).
That is, in the absence of excess capacity on the ma-
chine, the virtual servers are policed to their capacity
allocation. Note that request rates higher than 100 on
VI result in a bandwidth lower than 27Mb/s and vice
versa. This is an effect of content adaptation to keep
V1s utilization constant once it reaches V1s allocated
utilization limit.

6 Conclusions
In this paper we presented a QoS management ar-
chitecture that relies on adapting delivered content.
Unlike present day non-adaptive servers, and unlike
servers that implement binary admission control, con-
tent adaptation enables a server to provide a smooth
range of client degradation thereby coping with over-
load in a graceful manner. We described the design
and implementation of a utilization control loop that
adapts delivered content in a way that respects a speci-
fied utilization bound in the presence of variable server
load while virtually eliminating connection errors. We
demonstrated several extensions to this mechanism
that provide performance isolation, service differen-
tiation, sharing excess capacity, and QoS guarantees.
The mechanisms described in this paper are largely in-
dependent of workload assumptions, and can be easily
applied to a different platform by appropriately tuning
a small set of parameters using well-founded analytic
techniques. The architecture can be implemented in a
middleware layer transparently to existing server and
browser code thereby facilitating deployment.

There are several outstanding issues and challenges

224

Total Premuim Rate (WS)

--st Vitlual Sewer 1 : Contracted Maximum BW

Total Premuim Rate (req/s)

(a) No background load

- s o ’
E

E

a si

0

.- - 9 3 0
d

rWs
(b) High background load

Figure 7: Sharing Excess Capacity

in this context that can be subject of future research.
Handling and adapting dynamic content is one inter-
esting issue. The inherent unpredictability of CGI
script execution times offers new challenges to load
characterization. The experiments reported in this pa-
per used the HTTP 1.0 protocol. It is interesting to
see whether the same results will hold for HTTP 1.1.
While some aspects of client classification may be sim-
plified, persistent TCP connections may impose less
predictable server load characteristics that are more
sensitive to client-side bandwidth. The approach of
storing multiple copies of content is affordable for the
typical web site size. In video servers, however, an im-
portant issue to investigate is scalable video encoding
schemes that avoid storing multiple copies of the con-
tent. Finally, an interesting research area is that of
investigating appropriate content authoring and man-
agement tools to preprocess web content in a way that
preserves enough information, yet consumes a minimal
amount of resources.

Acknowledgment - 2 The authors wish to thank Rich F’riedrich, Gita Gopal,
and Kang Shin for their valuable suggestions and com- 5 ments on earlier manuscripts of this paper.

.- 9
2

E References
[l] S. Schechter, M. Krishnan, and M. D. Smith, “Us-

ing path profiles to predict http requests,’’ in 7th
International World Wide Web Conference, pp.
457467, Brisbane, Qld., Australia, April 1998.

[2] M. Colajanni, P. S. Yu, V. Cardellini, M. P. Papa-
zoglou, M. Takizawa, B. Kramer, and S. Chan-
son, “Dynamic load balancing in geographically

2 distributed heterogeneous web servers,” in Pro- : ceedings of 18th International Conference on Dis- c tributed Compvting Systems, pp. 295-302, Amster-
5 dam, Netherlands, May 1998.
8
.- -

[3] D. Andersen and T. McCune, “Towards a hier-
archical scheduling system for distributed www
server clusters,” in Proceedings The Seventh In-
ternational Symposium on High Performance Dis-
tributed Computing, Chicago, IL, July 1998.

[4] A. Vahadat, T. Anderson, M. Dahlin, E. Be-
lani, D. Culler, P. Eastham, and C. Yoshikawa,
“Webos: operating system services for wide area
applications,’’ in Proceedings The Seventh Inter-
national Symposium on High Performance Dis-
tributed Computing, Chicago, IL, July 1998.

[5] A. Iyengar, E. MacNair, and T. Nguyen, “An anal-
ysis of web server performance,” in GLOBECOM,
volume 3, pp. 1943-1947, Phoenix, AZ, Nov 1997.

[6] P. White and J. Crowcroft, “Www multicast delib-
very with classes of service,” in HIPPARCH, Uni-
versity College, London, June 1998.

[7] T. Abdelzaher and N. Bhatti, “Web content adap-
tation to improve server overload behavior,’’ in
submitted to International World Wide Web Con-
ference, Toronto, Canada, May 1999.

[8] T. Kaczorek, Linear control systems, John Wiley,
New York, 1992.

[9] D. Mosberger and T. Jin, “httperf A tool for mea-
suring web server performance,” in WISP, pp. 59-
67, Madison, WI, June 1998, ACM.

225

