
QoS Provisioning withqContracts in Web and Multimedia Servers�

Tarek F. Abdelzaher
Department of Computer Science

The University of Virginia
Charlottesville, VA 22903

zaher@cs.virginia.edu

Kang G. Shin
Real-Time Computing Laboratory

Department of Elec. Engr. and Comput. Sci.
The University of Michigan
Ann Arbor, Michigan 48109

kgshin@eecs.umich.edu

Abstract

The advent of performance-critical services such as online
brokerage and e-commerce, as well as QoS-sensitive ser-
vices such as streaming multimedia, makes existing FIFO
servers incapable of meeting application QoS requirements.
Re-designing server code to support QoS provisioning, on
the other hand, is costly and time-consuming. To remedy
this problem, we propose a new QoS-provisioning approach
that does not require modification of server and OS code.
We develop a middleware, calledqContracts, that can be
transparently interposed between the server process and
the operating system to achieve performance differentiation
and soft QoS guarantees. The middleware enables reuse
of existing legacy software in QoS-sensitive contexts, and
off-loads QoS management concerns from future real-time
service programmers. As an example, we show how the
Apache [9] web server is endowed with QoS support us-
ing qContracts on UNIX. Experimental results show the ef-
ficacy of the middleware in achieving the contracted QoS,
while imposing less than 1% overhead.

1 Introduction

This paper presents a middleware layer, called the
qContracts, that exports a novel programming abstraction
for building future performance-assured services. Program-
ming withqContracts allows for creating, manipulating and
terminating QoS contracts with clients or client categories
to achieve performance guarantees. The middleware en-
forces the contracted QoS on behalf of the service program-
mer, thus off-loading a substantial responsibility from de-
signers of real-time services. Adoption of new, more con-
venient, programming abstractions has potential to reduce
future programming efforts and development costs of QoS-
sensitive software. However, new abstractions and APIs

�The work reported in this paper was supported in part by the National
Science Foundation under Grant EIA-9806280.

raise questions regarding their utility for legacy code. In
order to address this issue as well, we describe how to use
our QoS extensions transparently within the socket library,
while exporting a standard socket API to the server.

To demonstrate the relevance of our work to existing
practical applications, we motivate our middleware in the
context of performance-assured web and multimedia ser-
vices. Contemporary web and multimedia servers treat all
clients equally and serve them on a first-come-first-served
basis. A server saturated by user requests will become non-
responsive, thus creating the perception of service outage.
Client requests for the server accumulate in the operating
system in a FIFO queue (e.g., the server’s TCP socket listen
queue). In case of overload, the request queue overflows,
exhibiting a drop-tail behavior that affects indiscriminately
all clients irrespective of their importance (to the service
provider).

The advent of critical applications such as e-commerce
as well as QoS-sensitive applications such as multimedia
necessitates improvement of traditional server design to
support QoS provisioning and performance differentiation.
QoS provisioning refers to providing guarantees on deliv-
ered QoS, such as service rate and bandwidth, to selected
clients. Performance differentiation refers to giving prefer-
ential treatment to some clients over others. While oper-
ating system extensions such as capacity reserves [21] and
QoS-aware sockets [35] would simplify the problem of de-
veloping QoS-sensitive services, in this paper we take an al-
ternative approach of developing middleware support. The
chief advantage of using middleware lies in its portability.
Our middleware is usable on most UNIX variants with lit-
tle or no customization. The disadvantage of a middleware
approach lies in its insufficient control over OS resource al-
location precluding hard real-time guarantees. We will de-
scribe in this paper how this insufficient control is reme-
died to achieve “approximate” QoS guarantees suitable for
a large class of soft real-time applications, such as web ser-
vices and e-commerce. We will show that the cost of the

middleware layer is insignificant.
QoS provisioning must account for platform speed in or-

der to perform appropriate resource allocation and manage-
ment. Characterization of platform speed and application
requirements is generally a non-trivial process. This pro-
cess must be repeated every time the platform or software
is upgraded. TheqContracts middleware saves the cost of
repeated manual profiling by adapting to platform capac-
ity and server resource demands using an automated self-
profiling approach.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the tar-
get server architecture and the QoS-contract model. Sec-
tion 4 elaborates on resource management to achieve trans-
parent QoS provisioning and performance differentiation.
Section 5 presents an example application. Section 6 dis-
cusses lessons learned, and Section 7 concludes the paper.

2 Related Work

Recently, QoS provisioning for multimedia and soft real-
time applications has received considerable attention [4].
Since QoS provisioning is closely related to proper resource
allocation and scheduling, many research efforts have fo-
cused on operating system design. Research operating sys-
tems such as Rialto [15], Dreams [29], Nemesis [19], and
Real-Time Mach [32], are just a few examples of kernels
with real-time support.

Many kernel extensions have been proposed to provide
real-time guarantees for QoS-sensitive applications. For ex-
ample, capacity reserves [21] have been used in Mach to al-
locate processing capacity for multimedia applications [17],
and flexible CPU reservation was used in Rialto for efficient
scheduling of time-constrained independent activities [14].
Resource shares have been suggested as another mecha-
nism for performance isolation. Examples include hierar-
chical CPU scheduling [11], proportional-share lottery and
stride scheduling [34], and proportional-share allocation for
time-shared systems [31]. Proportional-share scheduling
has also been used to schedule system services [13]. Other
notable multimedia-oriented kernel extensions include the
SMART scheduler in Solaris [25], a real-time scheduler for
Linux [30], and the concept of resource-centric kernels [26].

Multimedia applications are generally communication-
intensive. Several communication-related architectures
have therefore been proposed to support multimedia QoS
guarantees. Examples include the QoS-A framework [6],
the Heidelberg QoS model [33], V-net [8], NetWorld [7],
the QoS-adaptation model of [3], COMETS’ Extended In-
tegrated Reference Model (XRM) [16], the OMEGA end-
point architecture [24], and the QoS Broker [23]. The
design of QoS-sensitive operating system communication
subsystems has been investigated in [20, 18, 35]. QoS-

guaranteed protocol stack implementation in the user space
has been proposed in [10, 19].

Recent research efforts also considered general adap-
tive resource management frameworks for real-time appli-
cations with elastic QoS constraints. The Q-RAM architec-
ture [27] introduces QoS-sensitive near-optimal resource al-
location algorithms for applications with multiple resource
requirements and multiple QoS dimensions. FARA [28]
presents a hierarchical adaptation model for complex real-
time systems. An end-to-end QoS model similar to ours is
presented in [12] in the context of a middleware approach
to QoS management that requires application cooperation.
The approach is extended in [5] to account for practical lim-
itations such as inaccuracies in estimating application re-
source requirements.

In [2] we presented a QoS negotiation framework that
attempts to maximize system utility and extended it to an
architecture for OS communication subsystems [3]. In con-
trast to OS solutions, the work presented in this paper relies
on portable middleware. We explicitly target server plat-
forms. Since such platforms typically run a single applica-
tion (the server), we do not deal with issues of trust among
independent applications with conflicting requirements for
which kernel-level enforcement solutions are more suitable.
Unlike previous middleware approaches [5, 12] which in-
troduced QoS extensions for applications with per-flow QoS
constraints, we extend QoS specification and resource man-
agement mechanisms of [2] to traffic aggregates. These
extensions are crucial to applications such as web-servers
and differentiated services that deal with multiple aggre-
gated flows. We pay particular attention to re-using legacy
software.qContracts is designed for proper per-traffic-class
QoS management even when used by legacy servers in
which a single pool of identical same-priority threads (or
processes) serves all traffic classes in FCFS order. Thus,
while qContracts introduces new programming abstractions
that encourage QoS-sensitive application design, it does not
preclude using existing mainstream server code while pro-
viding QoS guarantees.

3 The Model

Our middleware is targeted for contemporary mainstream
web and multimedia servers. In a typical multithreaded
server, worker threads execute a sequence of clients’ re-
quests. Each thread implements a loop that processes in-
coming requests and generates responses. We assume that
requests and responses are read from, and written to, the
machine’s communication subsystem via theread() and
write() socket library calls or their equivalents in non-
UNIX operating systems. In our model,qContracts API
may be called either directly by the server, or transparently
to the server by instrumenting the aforementioned socket li-
brary calls. Worker threads are created either dynamically

for incoming requests as they arrive, ora priori as a static
pool. Our middleware makes no assumptions regarding the
way server code assigns threads to requests or clients. The
absence of restrictions on thread-to-client mapping sepa-
rates our QoS-provisioning solution from earlier general
mechanisms for performance isolation and QoS guarantees,
such as [17, 14, 20, 2], that typically map threads to clients
in a static fashion.

QoS requirements must be knowna priori in order to
provide performance assurances. We therefore require a
separatecontract creationstage to request QoS guarantees.
This requirement does not entail changes to the current
server code or service protocols. A process separate from
the server, running on the server’s machine, establishes QoS
contracts on behalf of the server. We call it thesubscription
agent. In our current implementation, the contracts created
by the subscription agent are stored in a configuration file
accessed by the middleware.

For example, consider a web hosting service. Businesses
outsource their web site management to the web-hosting
service provider at which time a contract is created and
stored by the subscription agent between the outsourcing
party and the web-hosting service provider. The contract
may specify QoS requirements such as the maximum ag-
gregate request rate and average URL size the server will
serve for the outsourced site. The middleware will apply
admission control and, if successful, will allocate enough
resources to satisfy the contracted QoS. As end-users re-
quest URLs from the server, the middleware will infer for
each request the applicable contract from the requested site
ID and will use resources allocated to that contract to serve
the request. If the accessed site has no QoS contract, it is
served at a lower priority. In the rest of this paper we use
the term “client” to denote the party that signs the contract
with the service provider and the term “user” to denote the
party that connects to the server at run-time.

In our model, a QoS contract,Qi, between the middle-
ware and the client specifies a QoS-violation penaltyVi
(which represents the “undesirability” of failure to deliver
the contracted QoS), and declares one or more alternative
QoS levels,Li[k], that the client accepts to receive from the
server, and the reward or utility,$i[k], of each level. In prac-
tice, contracts can be “prepared” by the service provider,
giving the client a simple pre-arranged choice of service
levels (and presumably the corresponding prices). Given
the set of QoS contracts, the middleware allocates a QoS
level k�i to each client,i, such that the sum of rewards
$i[k�i] for served clients less the sum of violation penal-
tiesVi for rejected clients is maximum. We use the optimal
pseudo-polynomial-time dynamic programming algorithm
we presented in [3] for QoS-level selection. The algorithm
maximizes total reward. For web and multimedia services
qContracts describes a QoS level,k, of contractQi by the

following QoS parameters:

� Service Rate,Ri[k]: expressed asMi[k] units of
service per specified periodPi[k], i.e., Ri[k] =
Mi[k]=Pi[k]). The units of service are arbitrary, but
all contracts with a particular server must use the same
units. Examples of service rate are:Mi[k] served
URLs per period (e.g., in web hosts),Mi[k] served
packets per period (e.g., in communication subsys-
tems), orMi[k] served frames per period (e.g., in au-
dio/video servers), the units of service being URLs,
packets and frames in these examples, respectively.

� Aggregate Data Bandwidth,Wi[k]: specifies the ag-
gregate bandwidth in bytes per second to be allocated
for the client.

Service rate and data bandwidth are very useful QoS pa-
rameters because resource consumption at the end-system
typically has two components: (i) a fixed per-unit-of-service
overhead (such as per-packet protocol-processing cost), and
(ii) a data-size-dependent overhead (such as data copying
and transmission cost).

We do not deal with jitter and end-to-end response-time
constraints in this paper, since their satisfaction depends on
network support that cannot be guaranteed by the server
alone. Next we discuss mechanisms for enforcing the de-
sired QoS.

4 QoS Provisioning

Once the “optimal” QoS level has been selected for each
contracted client, using the algorithm in [3], this level of
QoS must be guaranteed regardless of the load imposed on
the server by other clients. We call this requirementper-
formance isolation. Non-contracted clients may be served
at a lower priority whenever spare resources are available.
We call this requirementperformance differentiation. The
novelty of qContracts lies in designing these two mecha-
nisms in a way that can be implemented bothtranspar-
ently to the server, if desired, andwithout operating system
support. Section 4.1 describes the resource-management
mechanisms used for performance isolation. Section 4.2 de-
scribes transparent performance differentiation.

4.1 Performance Isolation

In order to guarantee contracted QoS, a resource-
management mechanism must perform several functions.
First, QoS mappingmust be invoked to compute the re-
source requirements of each contract.Contract admission
controlmust be performed to admit only as many contracts
as would ensure that overload is avoided.Per-contract
policing must be used to make sure that no QoS contract
utilizes more resources than allocated to it and that mali-
cious, misbehaving or greedy best-effort code serving a par-
ticular client does not infringe on the resources allocated to

other clients of the same or higher priority. Finally, since
the server may run on platforms of different speed and re-
sources,service profilingis needed on each target platform
to estimate its aggregate resource capacity. In what fol-
lows, we elaborate on the aforementioned components of
QoS provisioning inqContracts.

4.1.1 QoS Mapping
QoS mapping is performed upon activation of a new con-
tract. In general, QoS mapping is complicated due to the
need to consider multiple resources when QoS specifica-
tions are translated into resource requirements. To simplify
QoS mapping, we take advantage of the fact that our QoS
contracts specify only QoS parameters with rate semantics.
Unlike response times, for example, rates are constrained
solely by the capacity of the bottleneck resource. To de-
termine the bottleneck resource, we consider the resource
consumption at both the end-system and the network. End-
system resource consumption per service unit is approxi-
mated by a fixed overhead component plus another com-
ponent that depends on served data size. In [1] we ana-
lyze this approximation in the context of web servers and
show that it is accurate in describing server load. Thus,
the time for the end-system to process a unit of service
is a + bx, wherea and b are constants, andx is the size
of data served. Aggregating the end-system capacity con-
sumed by processing a sequence of service units during
some observation period, the consumed end-system utiliza-
tion isU = aR+ bW , whereR is the service rate andW is
the served byte-rate. The consumed network utilization, on
the other hand, depends only on the byte rate and is there-
fore given byUn = cW . The utilization of the bottleneck
resource ismax(aR + bW; cW). Thus, to satisfy the QoS
specification of contractQi, we logically allocate for the
contract a bottleneck resource utilization budget equal to:

Ui = max(aMi=Pi + bWi; cWi) (1)

whereMi=Pi andWi are the service rate and bandwidth
parameters of the QoS level at which the contract is served.
This logical allocation does not require OS calls. It simply
quantifies the bottleneck resource capacity needed to satisfy
the QoS requirements so that it is accounted for in contract
admission control. Note, from Equation (1), that the bot-
tleneck resource is the network if the average byte size per
unit serviceWi=Ri > a=(c�b), whereRi = Mi=Pi, and is
the end-system otherwise. We have seen that the bottleneck
resource is largely independent of the individual client, but
mainly is a function of the service platform. This is because
the average size,Wi=Ri, of a unit of service does not vary
considerably from one client to another. For example, the
average video frame size does not depend considerably on
the particular movie. Having computed the required bottle-
neck resource utilization,Ui, the identity of the bottleneck

resource is no longer relevant, which simplifies admission
control and policing.

4.1.2 Overload Protection and Admission Control

Overload is avoided by ensuring thatU =
P

i
Ui for all cre-

ated contracts does not exceed100%. When a new contract,
Qi, is created its required utilization,Ui, is computed using
Equation (1) and added toU . If the new utilization sum ex-
ceeds100%, the new contract is rejected. Note that keeping
required utilization below 100% guarantees eventual com-
pletion of all periodic tasks within one common multiple
of their periods. It does not guarantee completion of each
task invocation by its period unless EDF scheduling is used.
However, since we do not deal with hard deadlines in our
model, we do not require EDF scheduling. For web applica-
tions, the aforementioned utilization condition is sufficient
to ensure a small response time on average compared to the
bandwidth of human perception.

4.1.3 Policing

At the beginning of every periodPi, an execution budget
of PiUi is allocated byqContracts for each admitted con-
tractQi, whereUi is given by Equation (1). Policing must
ensure that no contractQi exceeds its allocated execution
budget. The middleware executes policing code in the con-
text of the server’s worker threads.qContracts exports the
contractChargeBudget(contract id; x) primitive for the
purpose of policing. The primitive is called upon execution
of each service unit, wherex is the byte size of the served
unit. The call reduces the budgetUiPi bymax(a+bx; cx),
the bottleneck resource processing attributed to the served
unit. If the budget expires the call either blocks or, in its
non-blocking version, returns an error. To describe how to
achieve policing with this mechanism, we make distinction
between two general types of servers:
Servers with long-lived flows: A server is said to have
long-lived flows if the single connection’s flow lasts much
longer thanPi. In that sense, servers with persistent HTTP
1.1 connections, for example, do not necessarily belong to
the long-lived flow category since their connections may
be idle most of the time with only sporadic bursts of short
flows. Video servers, on the other hand, are a good exam-
ple of this type. Service rate,Ri = Mi=Pi, in this case
is typically the rate at which the single request is served,
e.g., the frame rate at which the movie is transmitted. In
servers with long-lived flows, the server’s worker thread
or the write() library call that sends the frames out to
the client is instrumented to call the blocking version of
contractChargeBudget(contract id; frame size) upon
each frame transmission. The call will block inqContracts
when the execution budget expires, and will unblock when
it is replenished. Since the budget is replenished toUiPi

every periodPi, the average utilization due to request exe-
cution on behalf of thei-th client cannot exceedUi.
Servers with short-lived flows: a server is said to have
short-lived flows if a large number of server responses can
be sent to completion withinPi. This, for example, is
true of web servers which typically have the capacity to
process hundreds of requests per second. In servers with
short-lived flows, contracts are typically defined on flow
aggregates. Service rate,Ri = Mi=Pi, in this case, defines
the aggregate request rate (e.g., the hit rate on a particular
web site). BandwidthWi defines the aggregate delivered
byte rate. In this case, the use of the blocking version of
contractChargeBudget(contract id; x) is inappropriate
for policing because,upon budget expiration, the call blocks
only the calling thread. It leaves it possible for a different
thread to pick another request whose processing is charged
to the same contract. In the worst case, all server threads
may encounter, during some periodPi, requests charged to
a contract whose budget has expired. All these threads will
thus block oncontractChargeBudget(contract id; x),
bringing the entire server to a halt until that budget
is replenished. To avoid this problem, in servers with
short-lived flows, theread() library call is instrumented to
call contractCheckBudget(contract id) as each request
is read in. The latter call returns an error if the budget
has expired, in which case the instrumentedread() will
discard this request (for violation of the contracted rate)
and read the next. Thewrite() library call that sends the
response to the client is instrumented to call a nonblocking
contractChargeBudget(contract id; response size)
upon response transmission to update the budgetaccord-
ingly. (Note that if server source is available, it may be
easier to callcontractCheckBudget(contract id) and
contractChargeBudget(contract id; response size)
directly from the server’s worker thread.) Since no requests
are served after theUiPi budget expires, and since the bud-
get is replenished every periodPi, the average utilization
by thei-th client cannot exceedUi.

4.1.4 Profiling

The goal of profiling is to estimate the parametersa, b
and c, introduced in Section 4.1.1, that describe the dif-
ferent overhead components per service unit (i.e., a unit
of Mi), so that QoS mapping can translate QoS specifica-
tion correctly into bottleneck resource utilization. During
profiling, the middleware estimates overall server utiliza-
tion, U , by computing the fraction of time the server was
busy processing requests. In addition, the middleware com-
putes the aggregate load executed within some intervalT
by counting the total number of times, sayN , that the prim-
itive contractChargeBudget(contract id; x) was called
within that interval (for any contract), and aggregating the
sumS of x values with which the primitive was called. The

independently-measured utilizationU within some period
T should be equal tomax(aR+bW; cW) whereR = N=T
andW = S=T . The profiling measuresU;R andW in
successive periodsT and uses a regression analysis to re-
fine the estimate ofa, b and c online to fit the equation
U = max(aR + bW; cW). Profiling stops when a stable
estimate is reached. The parametersa, b andc are platform-
independent and need to be re-evaluated only when the plat-
form is upgraded.

� Client Class A

 Client Class B

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|
45

|
50

|0

|25

|50

|75

|100

|125

|150

|175
|200

|225

|250

|275

|300

|325

|350

|375

|400 |0 |5 |10 |15 |20 |25 |30 |35 |40 |45 |50

| 0

| 25

| 50

| 75

| 100

| 125

| 150

| 175

| 200

| 225

| 250

| 275

| 300

| 325

| 350

| 375

| 400

 Time (in seconds)

 M
ea

su
re

d
C

lie
nt

 P
ac

ke
t R

at
e

(p
kt

/s
)

 Time (in seconds)

 M
ea

su
re

d
C

lie
nt

 P
ac

ke
t R

at
e

(p
kt

/s
)

� � � � �
�

� � �
� �

Figure 1. Performance isolation

To assess the goodness of our QoS-provisioning mecha-
nism, we present the results of a sample experiment. We
wrote a “dummy server” and created two contracts,QA

andQB, for client classesA andB respectively. The con-
tracts specified the maximum aggregate service for each
class. We set the aggregate rates to be 250 pkts/s forQA

and 150 pkts/s forQB . Data was sent to each class via a
persistent infinite loop, simulating an overload condition.
Data received by each class was collected on a destination
machine (for simplicity we sent all data belonging to the
same class to the same destination). Figure 1 shows the
delivered packet rate of each class, measured at their re-
spective destinations. It can be seen that the rate follows
the contracted specification exactly. Although two data
streams were generated by instantiations of the same infi-
nite loop,each stream was policed by our middleware to a
different rate as specified in its QoS contract. The exper-
iment demonstrates the middleware’s success in achieving
per-class QoS provisioning and performance isolation. In
Section 5 we present a similar experiment using a real web
server.

4.2 Performance Differentiation
QoS-guaranteed clients need to receive preferential treat-
ment over non-guaranteed clients in case of overload. In
a real-time system, priorities are a commonly-used mech-
anism for performance discrimination on the basis of im-
portance. However, in contemporary mainstream multi-
threaded servers (e.g., web and video servers) all worker

threads have the same priority. Performance differentiation
requires that requests whose processing is charged to a guar-
anteed contract be served first. A straightforward approach
is to alter server thread priorities in middleware (e.g., in
the read() call when a request is read) such that the pri-
ority depends on the request being served by the thread.
The approach works well when the CPU is the bottleneck
resource. Unfortunately, web and multimedia servers also
consume memory buffer and network bandwidth, which
may become bottlenecks, thus making thread priorities in-
effective. One may argue that due to the extremely low cost
of processing power (e.g., PCs) relative to that of dedicated
communication links, the latter is likely to be the bottle-
neck in most server installations. Thus, to design a proper
performance-differentiation scheme, we first investigate the
effects of non-CPU bottlenecks. We artificially create a net-
work bottleneck by introducing a low-bandwidth link (10
Mb/s Ethernet) at server egress. We constrain ourselves to
differentiation between two traffic classes; guaranteed and
non-guaranteed and present a middleware solution for such
performance differentiation that does not require OS mod-
ification. Extensions to multiple priority levels and their
performance analysis is left for future work.

4.2.1 The Memory Buffer Effect

An internal communication data buffer is associated in the
OS with each outgoing connection. When the network is
slow, the server causes these communication buffers to sat-
urate with the server’s outgoing data awaiting transmission.
Figure 2 plots the observed ratio of bandwidth delivered by
the server to two client classes,A andB, versus the buffer
size ratio of their respective connections when the aggregate
data sent to the clients saturates the server’s 10 Mb/s Eth-
ernet link causing an overload. In the experiment, classA
has a QoS contract for a packet rate ofRi = Mi=Pi = 600
pkts/s (1500 bytes/pkt). ClassB is not-guaranteed. The
figure shows both (i) the case where the server threads serv-
ing the two classes have the same priority and (ii) the case
where the thread serving the guaranteed class has higher
priority. It can be seen that regardless of thread priority,
the delivered bandwidth ratio followed closely the connec-
tion buffer-size ratio showing a strong correlation between
outgoing buffer size and connection bandwidth. Note that
the buffers are in the OS, and, as such, are inaccessible to
the middleware. Throughput dependency on buffer size is
the first problem we need to overcome in order to allow
a higher-priority service thread to take resources from a
lower-priority one even when the network is the bottleneck.
A solution is described in Section 4.2.3.

4.2.2 The Semaphore Effect

Semaphores are often used by the operating system to
block kernel threads, e.g., when accessing common data

 Buffer Length Ratio
� Delivered Bandwidth Ratio (same priority)

 Delivered Bandwidth Ratio (higher/lower priority)

|
0.2

|
0.5

|
1.0

|
2.0

|
4.0

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

|2.0

|3.0

|4.0

|5.0 |0.2 |0.5 |1.0 |2.0 |4.0

| 0.3

| 0.4

| 0.5

| 0.6

| 0.7

| 0.8

| 0.9

| 1.0

| 2.0

| 3.0

| 4.0

| 5.0

 Link Buffer Length Ratio

 D
el

iv
er

ed
 B

an
dw

id
th

 R
at

io

 Link Buffer Length Ratio

 D
el

iv
er

ed
 B

an
dw

id
th

 R
at

io

�

�

�

�

�

�

�

Figure 2. Bandwidth and buffer size

structures while performing I/O operations. Most non-
real-time operating systems do not ensure that when a
semaphore is signaled, the highest-priority thread waiting
on the semaphore gets the CPU. Instead, a waiting thread
is often awakened in FIFO or LIFO order. This deficiency
poses a difficulty when implementing service differentia-
tion. For example, when the network device driver becomes
saturated, threads may be blocked when they attempt to de-
posit data into its full buffer. These threads may later be
unblocked in an order that does not respect their priority.

The solid lines in Figure 3 show the packet rate received
from the server by classesA andB on their respective ma-
chines (each class of traffic is sent to a different machine)
when the server generates data for each class at the rate
shown by the dotted line. In the experiment, classA is guar-
anteed while classB is not. It can be seen that each class
receives all server data up until the aggregate packet genera-
tion rate at the server increases beyond700pkt=s (i.e., until
Ri = 350pkt=s for each class). This aggregate rate satu-
rates the 10Mb/s ethernet. The server then fails to deliver
packets of both classes even although there is enough band-
width to serve the guaranteed class alone. We conclude that
traffic is not served in priority order.

In order to verify that the semaphore implementa-
tion is the cause of the observed priority-inversion prob-
lem, we changed the semaphore implementation such that
the highest-priority waiting thread is resumed when a
semaphore is signaled. The above experiment was repeated.
Figure 4(a) shows that the higher-priority class can now
achieve its ideal service rate,Ri, much more closely at the
expense of the lower-priority class when the network sat-
urates. Note, however, that we are looking for solutions
where the OS internals are not touched. Such solution is
described next.

4.2.3 A Middleware Solution to Service Differentiation

The problems mentioned above pose a significant challenge
to implementing proper service differentiation without ac-

� High Priority Class

 Low Priority Class

 Per-client Rate, Ri

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|
1000

|
1100

|
1200

|0

|50

|100

|150

|200

|250

|300

|350

|400

|450

|500

|550

|600 |0 |100 |200 |300 |400 |500 |600 |700 |800 |900 |1000 |1100 |1200

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

| 450

| 500

| 550

| 600

 Aggregate Specified Packet Rate (pkt/s)

 A
ch

ie
ve

d
P

ac
ke

t R
at

e
(p

kt
/s

)

 Aggregate Specified Packet Rate (pkt/s)

 A
ch

ie
ve

d
P

ac
ke

t R
at

e
(p

kt
/s

)

�

�

�

�

�

�

�

�

�

� � � �

Figure 3. Priority-insensitive semaphores

cessing server and OS code. We noticed, however, that
these problems arise only under overload. In the absence of
overload, the system performs to specification, e.g., as seen
in Figure 3, for aggregate packet rates below 700 pkts/s.
We, therefore, utilized our performance-isolation mecha-
nism to “emulate” priorities. A utilization budget is created
for lower-priority clients. Its value is set to the remaining
system capacity left unused by guaranteed clients, i.e., to
100% �

P
i
Ui. The budget is treated as yet another QoS

contract. The contract is policed not to over-draw its allo-
cated resources, as described in Section 4.1. Server thread
priorities are not altered, nor are OS communication buffers
and semaphores. Worker threads execute client requests at
the same machine priority. Performance differentiation is
achieved by means of policing the non-guaranteed clients to
prevent them from over-drawing those resources logically
allocated to guaranteed ones.

Figure 4(b) illustrates the goodness of this approach at
mimicking the thread prioritization effect. The experiment
of Section 4.2.2 was repeated with one guaranteed and one
non-guaranteed client class. The non-guaranteed traffic was
now policed to prevent overload. When the network is sat-
urated, the data rate of the non-guaranteed class is forced
to decline, via policing, with the increase in the contracted
rate of the guaranteed class to keep their sum constant at
the maximum network bandwidth. It can be seen from Fig-
ure 4(b) that the guaranteed class is now able to receive its
contracted service rate. By adding the received packet rates
of the two classes in Figure 4(b) we can see that the maxi-
mum achieved rate is about 720 pkts/s. The corresponding
maximum network bandwidth is approximately 8.64 Mb/s
(we send 1500 byte packets on a 10 Mb/s Ethernet). The
results shown in this subsection demonstrate that perfor-
mance differentiation can be achieved with the middleware
without modifying actual thread priorities, semaphore im-
plementation, and communication buffer size. Together,
our implementation of performance isolation and prioriti-
zation allows for augmenting the original server software

� High Priority Class

 Low Priority Class

 Aggregate Per-Class Rate, Ri

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|
1000

|
1100

|
1200

|0

|50

|100

|150

|200

|250

|300

|350

|400

|450

|500

|550

|600 |0 |100 |200 |300 |400 |500 |600 |700 |800 |900 |1000 |1100 |1200

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

| 450

| 500

| 550

| 600

 Aggregate Specified Packet Rate (pkt/s)

 A
ch

ie
ve

d
P

ac
ke

t R
at

e
(p

kt
/s

)

 Aggregate Specified Packet Rate (pkt/s)

 A
ch

ie
ve

d
P

ac
ke

t R
at

e
(p

kt
/s

)

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) Fixing the semaphore problem

� High Priority Class

 Low Priority Class

 Aggregate Per-Class Rate, Ri

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|
1000

|
1100

|
1200

|0

|50

|100

|150

|200

|250

|300

|350

|400

|450

|500

|550

|600 |0 |100 |200 |300 |400 |500 |600 |700 |800 |900 |1000 |1100 |1200

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

| 450

| 500

| 550

| 600

 Aggregate Specified Packet Rate (pkt/s)

 A
ch

ie
ve

d
P

ac
ke

t R
at

e
(p

kt
/s

)

 Aggregate Specified Packet Rate (pkt/s)

 A
ch

ie
ve

d
P

ac
ke

t R
at

e
(p

kt
/s

)

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) Prioritization via policing

Figure 4. Performance differentiation

with QoS-provisioning and performance-differentiation ca-
pabilities. An example with a real server is presented in the
following section.

5 Web Server Application

We now describe an application of the proposed middle-
ware. In particular, we show how to endow an Apache web
server with QoS-guaranteed behavior. Apache implements
the server side of the HTTP protocol to retrieve and manip-
ulate web content upon client requests. Ordinarily, no sub-
scription to the service is required. For better concurrency,
the server implements multiple worker threads (e.g., on a
Windows NT platform) or processes (e.g., on a UNIX plat-
form) which together listen on a common TCP socket for
client requests. All requests are queued FIFO in the com-
mon socket queue. Once a request is dequeued by some
thread or process, a TCP connection is established with the
corresponding client, and the request is handled.

We compiled an Apache 1.3.3 server on an Ultra Spark
workstation running Solaris. The workstation was con-

nected via a 10Mb/s ethernet to three other machines which
together simulated the end-user community. We used the
web load generation tool, httperf [22], on each of these
three machines to generate load on the server. The tool
generated a sequence of requests for 10KB URLs. The
maximum achieved request rate was about 100 reqs/s, mak-
ing a data throughput of about 8Mb/s. We created two
sites on the Apache server. A QoS contract was estab-
lished with one of the two sites viaqContracts. The con-
tract specified a guaranteed maximum service rateRi of
30 URLs/second with a10KB average URL size. The
other site was not guaranteed. The QoS contract was stored
in a configuration file accessed by the middleware. The
Apache server already parses incoming HTTP requests,
and determines the accessed site specified in the request
header. We therefore callcontractsCheckBudget() when
Apache’sap read request() returns, passing it the site ID.
If contractsCheckBudget() returns an error indicating
that the site’s budget has expired we discard the request by
closing its TCP connection (using Apache’sap bclose()).
Similarly, when Apache’sap process request() function
returns indicating that a reply was sent, we call a non-
blockingcontractsChargeBudget() with the length of the
served URL.

Figure 5 demonstrates both QoS provisioning and per-
formance differentiation thus achieved. In this experiment,
the number of requests for the guaranteed site was kept con-
stant at 25 reqs/s, while that for the non-guaranteed site
was increased, causing the server to be overloaded. Once
the system was overloaded, an increasing fraction of non-
guaranteed connections were rejected. Figure 5 shows the
rate at which requests are served for both the guaranteed
and non-guaranteed sites. It can be seen that while all re-
quests for the guaranteed site are served successfully, the
other site’s service rate declines. The decline (as opposed
to saturation) in service rate seen by the non-guaranteed site
is due to the increase in resource consumption wasted on re-
jected connections which reduces the remaining server ca-
pacity and throughput of the machine. Note, from Figure 5
that (i) the guaranteed site receives its contracted QoS, and
(ii) the non-guaranteed site is served at a “lower priority”
under overload so that it does not infringe on the resources
assigned to the guaranteed site. Thus, the middleware is
successful in achieving its goals.

The maximum throughput of the server was compared
to that without the middleware present. The difference was
in the range of the measurement noise, which was less than
1%. The low overhead of the middleware is attributed to
several factors. First, it executes in user space in the con-
text of server threads. Thus,qContracts calls are local func-
tion calls in the same address space. To regulate aggre-
gated flows, the middleware relies totally on monitoring and
admission control. Monitoring overhead is that of manip-

ulating the rate and bandwidth counters whenwrite() is
performed. Admission-control overhead is that of check-
ing the counter values. Based on these values, admis-
sion control either does nothing (the default), or closes the
present TCP connection (to reject a request). Its overhead
on admitted requests is therefore minimal. In our tests, re-
quest classification is already performed by Apache in the
standardap read request() call which determines the ac-
cessed URL. Classification overhead is therefore the same
whetherqContracts are present or not. The middleware im-
poses no overhead components other than those mentioned
above, which explains its low cost.

� Site A (high priority, guaranteed)

 Site B (low priority, non-guaranteed)

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|
110

|
120

|
130

|
140

|
150

|0

|10

|20

|30

|40

|50

|60

|70
|80

|90

|100 |0 |10 |20 |30 |40 |50 |60 |70 |80 |90 |100 |110 |120 |130 |140 |150

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

 Time Offered Non-guaranteed Request Rate (pkt/s)

 M
ea

su
re

d
R

eq
ue

st
 R

at
e

(p
kt

/s
)

 Time Offered Non-guaranteed Request Rate (pkt/s)

 M
ea

su
re

d
R

eq
ue

st
 R

at
e

(p
kt

/s
)

� � � � � � � � � � � � � � � �

Figure 5. QoS provisioning

6 Discussion

We have developed and evaluated new middleware for fu-
ture performance-assured services. The middleware intro-
duces programming abstractions and mechanisms that re-
alize soft QoS guarantees. It employs transparent self-
profiling mechanisms to decouple application code from
assumptions on the underlying platform speed which im-
proves portability of QoS-sensitive applications. Not sur-
prisingly, our experiences with this middleware indicate ex-
istence of a significant difference in the means of enforcing
QoS contracts depending on flow length. For example, mul-
timedia applications are dominated by long-lasting connec-
tions of considerable bandwidth delivered to the client. QoS
enforcement is best achieved by policing individual out-
bound server flows. A bursty flow-generation process may
be smoothed by blocking the generating server thread when
it exceeds its maximum contracted rate. This approach does
not work for controlling aggregated short-lived flows such
responses of web servers. As shown in Section 4.1.3, polic-
ing aggregated outbound flows from a site by blocking the
sending server threads may cause the entire server to halt
unless different thread pools serve different sites. Assigning
different server thread pools to different traffic categories
is therefore essential for proper QoS management of ag-

gregate flows whenever the underlying OS mechanisms or
network traffic shaping mechanisms impose upper bounds
on aggregated flow bandwidth. Examples of such mech-
anisms include proportional share OS resource allocation,
and weighted fair queuing.

To reuse today’s best-effort server code, where a single
pool of threads or processes serves all requests, our solu-
tion is to resort to request admission control to make the
outgoing aggregate flow bandwidth conform to specifica-
tions. Since the resource requirements imposed by a sin-
gle service request are often unknown,measurement-based
admission control is needed to regulate the fraction of ad-
mitted requests based on bandwidth measurements. In web
servers, for example, the length of requested URLs can dif-
fer by a couple of orders of magnitude from one request to
another. Measurement-based admission control will be ef-
fective as long as the resource requirements of the largest
request are a small fraction of total server capacity, making
it possible to apply the laws of large numbers to aggregated
flows and use a fluid flow model.

An important question with admission control is which
requests to reject. One might argue that indiscriminate re-
jection is acceptable within the same traffic class. This,
however, is not always a good policy. If clients’ sessions
are comprised of multiple requests, all clients are likely to
see rejections during the session, unless admission control
is adjusted such that a subset of clients are rejected con-
sistently under overload, while others see consistently good
service (i.e., actually complete their sessions). In [1] such
an admission control mechanism is described to ensure QoS
consistency to served clients.

Both policing and measurement-based admission control
can be used to implement service differentiation. A low-
priority aggregate flow is forced (by either method) to fit
within the bandwidth left unused by higher-priority flows.
This mechanism successfully “fakes” priorities in middle-
ware, even when identical same-priority threads handle dif-
ferent traffic classes in the server. It requires an estimate of
aggregate server capacity as well as a measurement of the
bandwidth used by each priority class. While the approach
works well for a limited number of classes, it is unclear if
can scale up to a large number of priority levels because
admission control in each level depends on measurements
of all higher priority levels, and measurement accuracy de-
creases with the granularity of a traffic class.

Another important problem that arises with flow prioriti-
zation is that of consistent flow-priority management across
multiple resources. Unless the CPU is the bottleneck re-
source, threads will block waiting on the real bottleneck
which must then be allocated in the same priority-sensitive
fashion. An example of priority-insensitive behavior when
the bottleneck resource (a memory buffer) isn’t allocated
properly is shown in Section 4.2.1.

Finally, classification of requests into one of several
flows poses a particularly important concern. Such classifi-
cation is often dependent on application-specific data (e.g.,
the site named in the HTTP header). Implementing request
classification in the socket library transparently to the server
may result in a large run-time overhead since it will require
parsing all requests and interpreting their content (such as
the HTTP header fields) in the context ofread() calls. Clas-
sification, however, is already performed in the context of
usual server execution, so it is advantageous to have access
to server code. Unfortunately, performing classification in
user space (i.e., in the server or middleware) is not efficient
for another reason. Since admission control is performedaf-
ter classification (to discriminate among different classes),
rejected requests will have consumed a substantial amount
of resources in the kernel by the time they are rejected by
the server. A substantial amount of execution resources can
thus be wasted on eventually rejected connections. This
concern calls for OS support for early classification in the
kernel. Such OS mechanisms are outside the scope of this
paper.

7 Conclusion

We presented a new resource-management mechanism for
web and multimedia servers to achieve service rate and
bandwidth guarantees. The mechanism is embedded in a
middleware layer interposed between a standard best-effort
server and a non-real-time OS. It provides support for man-
aging QoS contracts that implements QoS provisioning and
performance differentiation. QoS contracts are specified
in platform-independent QoS parameters, leaving it to the
underlying system to translate these parameters into host-
dependent resource requirements and account for those re-
quirements to achieve performance isolation and differenti-
ation. The use of the middleware requires no architectural
modifications to existing server design and request handling
mechanisms, and imposes no special-purpose requirements
on the operating system. The middleware was shown to be
effective in achieving the desired QoS for soft real-time ap-
plications.

References

[1] T. Abdelzaher and N. Bhatti. Web server QoS management
by adaptive content delivery. InInternational Workshop on
Quality of Service, London, UK, June 1999.

[2] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS nego-
tiation in real-time systems and its application to automated
flight control. InIEEE Real-Time Technology and Applica-
tions Symposium, Montreal, Canada, June 1997.

[3] T. F. Abdelzaher and K. G. Shin. End-host architecture for
qos-adaptive communication. InIEEE Real-Time Technol-
ogy and Applications Symposium, Denver, Colorado, June
1998.

[4] C. Aurrecoechea, A. Cambell, and L. Hauw. A survey of
QoS architectures. In4th IFIP International Conference on
Quality of Service, Paris, France, March 1996.

[5] S. Brandt and G. Nutt. A dynamic quality of service mid-
dleware agent for mediating application resource usage. In
Real-Time Systems Symposium, pages 307–317, Madrid,
Spain, December 1998.

[6] A. Cambell, G. Coulson, and D. Hutchison. A quality of ser-
vice architecture.ACM Computer Communications Review,
April 1994.

[7] D. Chen, R. Colwell, H. Gelman, P. K. Chrysanthis, and
D. Mosse. A framework for experimenting with QoS for
multimedia services. InInternational Conference on Multi-
media Computing and Networking, 1996.

[8] B. Field, T. Znati, and D. Mosse. V-net: A framework for a
versatile network architecture to support real-time commu-
nication performance guarantees. InInfoComm, 1995.

[9] R. Fielding and G. Kaiser. The apache HTTP server project.
IEEE Internet Computing, pages 88–90, July 1997.

[10] R. Gopalakrishnan and G. Parulkar. Efficient user space pro-
tocol implementations with qos guarantees using real-time
upcalls.IEEE/ACM Transactions on Networking, 1998.

[11] P. Goyal, X. Guo, and H. Vin. A hierarchical cpu scheduler
for multimedia operating systems. InProceedings of Second
Usenix Symposium on Operating System Design and Imple-
mentation, Seattle, Washington, October1996.

[12] M. Humphrey, S. Brandt, G. Nutt, and T. Berk. The DQM
architecure: middleware for application-centered QoS re-
source management. InProceedings of IEEE Workshop on
Middleware for Distributed Real-time Systems and Services,
San Francisco, California, December 1997.

[13] K. Jeffay, D. Smith, A. Moorthy, and J. Anderson. Propor-
tional share scheduling of operating system services for real-
time applications. InReal-time Systems Symposium, pages
480–491, Madrid, Spain, December 1998.

[14] M. Jones, D. Rosu, and M.-C. Rosu. CPU reservations and
time constraints: Efficient, predictable scheduling of inde-
pendent activities. In16th ACM Symposium on Operating
Systems Principles, Saint-Malo, France, October 1997.

[15] M. B. Jones and P. J. Leach. Modular real-time resource
management in the rialto operating system. Technical Re-
port MSR-TR-95-16, Microsoft Research, Advanced Tech-
nology Division, May 1995.

[16] A. Lazar, S. Bhonsle, and K. Lim. A binding architecture for
multimedia networks.Journal of Parallel and Distributed
Computing, 30:204–216, Nevember 1995.

[17] C. Lee, R. Rajkumar, and C. Mercer. Experiences with pro-
cessor reservation and dynamic QoS in real-time mach. In
Proceedings of Multimedia, Japan, March 1996.

[18] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar. Predictable
communication protocol processing in real-time Mach”. In
Proceedings of the Real-time Technology and Applications
Symposium, June 1996.

[19] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications.JSAC, June 1997.

[20] A. Mehra, A. Indiresan, and K. G. Shin. Structuring com-
munication for quality of service guarantees. InIEEE Real-
Time Systems Symposium, pages 144–154, Washington, DC,
December 1996.

[21] C. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: Operating system support for multimedia applica-
tions. InProceedings of the IEEE International Conference
on Multimedia Computing and Systems, May 1994.

[22] D. Mosberger and T. Jin. httperf: A tool for measuring
web server performance.Performance Evaluation Review,
26(3):31–37, December 1998.

[23] K. Nahrstedt and J. Smith. The QoS broker.IEEE Multime-
dia, 2(1):53–67, 1995.

[24] K. Nahrstedt and J. Smith. Design, imlementation, and ex-
periences with the OMEGA end-point architecture.IEEE
JSAC, September 1996.

[25] J. Nieh and M. S. Lam. The design, implementation, and
evaluation of SMART: A scheduler for multimedia applica-
tions. In16th ACM Symposium on Operating System Prin-
ciples, pages 184–197, Saint-Malo, France, October 1997.

[26] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source kernels: A resource-centric approach to real-time
systems. InProceedings of the SPIE/ACM Conference on
Multimedia Computing and Networking, January 1998.

[27] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Prac-
tical solutions for qos-based resource allocation problems.
In Real-time Systems Symposium, pages 296–306, Madrid,
Spain, December 1998.

[28] D. Rosu, K. Schwan, and S. Yalamanchili. FARA - a frame-
work for adaptive resource allocation in complex real-time
systems. InReal-time Technology and Applications Sympo-
sium, pages 79–84, Denver, Colorado, June 1998.

[29] S. Sommer and J. Potter. Operating system extensions for
dynamic real-time applications. InIEEE Real-Time Sys-
tems Symposium, pages 45–50, Washington, DC, December
1996.

[30] B. Srinivasan, S. Pather, F. Ansari, and D. Niehaus. A firm
real-time system implementation using commercial off-the-
shelf hardware and free software. InReal-time Technology
and Applications Symposium, pages 112–120, Denver, Col-
orado, June 1998.

[31] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke,
and C. Plaxton. A proportional-share resource allocation
algorithm for real-time time-shared systems. InReal-Time
Systems Symposium, pages 288–299, Washington, DC, De-
cember 1996.

[32] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: To-
wards a predictable real-time system. InProceedings of the
USENIX Mach Workshop, pages 73–82, October 1990.

[33] C. Volg, L. Wolf, R. Herrwich, and H. Wittig. HeiRAT
– quality of service management for distibuted multimedia
systems.Multimedia Systems Journal, 1996.

[34] C. Waldspurger. Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management. PhD thesis,
Massachusetts Institute of Technology, September 1995.

[35] D. K. Y. Yau and S. Lam. Migrating sockets for networking
with quality of service guarantees. InInternational Confer-
ence on Network Protocols, Atlanta, Georgia, October 1997.

