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Abstract—A large number of Internet applications are sensitive
to overload conditions in the network. While these applica-
tions have been designed to adapt somewhat to the varying
conditions in the Internet, they can benefit greatly from an
increased level of predictability in network services. We propose
minor extensions to the packet queueing and discard mechanisms
used in routers, coupled with simple control mechanisms at
the source that enable the network to guarantee minimal levels
of throughput to different sessions while sharing the residual
network capacity in a cooperativemanner. The service realized by
the proposed mechanisms is an interpretation of the controlled-
load service being standardized by the Internet Engineering
Task Force. Although controlled-load service can be used in
conjunction with any transport protocol, our focus in this paper
is on understanding its interaction with Transmission Control
Protocol (TCP). Specifically, we study the dynamics of TCP
traffic in an integrated services network that simultaneously
supports both best-effort and controlled-load sessions. In light
of this study, we propose and experiment with modifications to
TCP’s congestion control mechanisms in order to improve its
performance in networks where a minimum transmission rate is
guaranteed. We then investigate the effect of network transients,
such as changes in traffic load and in service levels, on the
performance of controlled-load as well as best-effort connections.
To capture the evolution of integrated services in the Internet, we
also consider situations where only a selective set of routers are
capable of providing service differentiation between best-effort
and controlled-load traffic. Finally, we show how the service
mechanisms proposed here can be embedded within other packet
and link scheduling frameworks in a fully evolved integrated
services Internet.

Index Terms— Differentiated services, integrated services,
queue management, TCP.

I. INTRODUCTION

A LARGE CLASS of Internet applications, referred to as
tolerant playback applications in [1] and [3] can greatly

benefit from an increased level of predictability in network
services. These applications typically buffer a portion of the
data on the client before starting the playback, and then operate
in a streaming mode to prevent buffer underflow. Examples
include increasingly popular applications such as PointCast,
RealAudio, and VDOnet, which stream text/image, audio,
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and video data over the Internet. The quality of playback
for each of these applications can vary from excellent to
intolerable, depending on the network load. These applica-
tions can benefit tremendously from a network service that
guarantees a minimum level of throughput at all times, but
allows for the possibility of higher throughput during periods
of light loads. Such a service is also useful to more traditional,
elastic applications [1], [3], such as ftp and telnet. Tasks
such as booting a diskless workstation over the network,
backing up remote files, and synchronizing web proxies can
be performed with more predictability and within a bounded
time by guaranteeing a minimal bandwidth to the underlying
sessions. This service can also be used to set up a virtual
overlay network in the Internet, connecting business-critical
servers and clients with virtual links of a minimum guaranteed
bandwidth.

The controlled-load service [21] currently being standard-
ized by the Internet Engineering Task Force (IETF) fits very
well into the scenarios sketched above. It is part of an
ambitious goal of defining a service architecture that is suitable
for a diversity of applications. Our objective in this paper has
been to follow an evolutionary path toward this goal. That is, to
enhance network services within the framework of the IETF-
defined service architecture, but with minimal enhancements
to the network infrastructure, especially the routers.

We propose one possible implementation of controlled-load
service using a simple extension to the queueing mechanisms
in today’s routers coupled with modifications to Transmission
Control Protocol’s (TCP’s) congestion control mechanisms.
These modifications allow the network to guarantee a minimal
level of end-to-end throughput to different network sessions. In
addition, any residual network capacity is shared in a socially
cooperative fashion, in a manner similar to the one in use in
the Internet today by applications using TCP. In this scheme,
each reserved session is associated with a traffic envelope.
Traffic is policed at the source and packets conforming to the
envelope are marked. Nonconformant traffic and best-effort
traffic are injected into the network unmarked. At the routers,
we use an enhanced random early detection (RED) [7] and
discard mechanism. Both marked and unmarked packets share
the same first in first out (FIFO) queue. When the queue
length at the router exceeds a certain threshold, packets are
dropped randomly as done in RED gateways. However, unlike
standard RED gateways where all packets have the same drop
probability, in the enhanced RED (ERED) gateway, marked
packets have a lower drop probability than the unmarked
packets.

1063–6692/99$10.00 1999 IEEE
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The service realized by the mechanism described above is
an interpretation of the controlled-load service. By definition,
traffic belonging to a controlled-load session and conforming
to the associated traffic envelope sees very little loss and
very little queueing delay through the network. Nonconfor-
mant controlled-load traffic is treated as best-effort traffic.
By using a common queue for best-effort and conformant
controlled-load traffic, we essentially relax the recommended
delay targets for conformant controlled-load traffic. This laxity
not only simplifies the implementation and reduces packet
handling overheads at the routers, but also helps maintain
packet ordering. Note that ERED ensures a low loss rate
to conformant controlled-load traffic. We argue that elastic
and tolerant playback applications can withstand a reasonable
amount of queueing delay and can fully exploit the guarantees
on throughput to improve performance.

We note that the controlled-load service or an equivalent
service providing minimum rate guarantees can be realized
using various alternative queueing mechanisms. Similarly,
applications using transport protocols other than TCP may
make use of such a service. In this paper, we focus on ERED
queueing, primarily because: 1) it does not require per-flow
queueing, which may not scale well and 2) it maintains FIFO
ordering of packets which is important to TCP’s congestion
control mechanisms. We examine TCP because an overwhelm-
ing number of applications use TCP as the transport protocol of
choice, and TCP has a well-developed congestion and flow-
control mechanism that makes it an interesting case study.
While some of the tolerant playback applications may not use
TCP, the mechanisms described here can easily be applied to
other transport protocols, such as RTP.

Our objective in this paper is to understand and to mod-
ify the end-to-end control mechanisms used in TCP in an
integrated services Internet that supports both best-effort and
controlled-load services. While the analysis of the behavior
of unmodified TCP over a network which supports priority
marking and handling has particular relevance to Differentiated
Services (DIFFSERV) proposals, we note that the proposed
TCP modifications are made assuming that the network sup-
ports minimum rate guarantees and should only be deployed
in this environment in order to prevent possible congestion
collapse.

Integrated services in the Internet is a relatively new area
of research. To the best of our knowledge, no published work
addresses the specific issues discussed in this paper. In a more
general sense, studies on supporting TCP over ABR/UBR
services in ATM networks [11], [17] address similar issues.
However, due to significant differences between the service
architectures of ATM and the Internet, the nature and the focus
of these studies are quite different. In [11], the authors propose
using a modified switch buffer allocation policy in order to
obtain peak throughput and fairness among TCP connections
over ATM. In particular, each connection is effectively pro-
vided with a weighted fair share of the buffers in the switch.
The switch uses per-connection accounting to determine which
connections are overloading their allocation and drops cells
accordingly. In contrast, most of the modifications we propose
are with TCP’s congestion control algorithm. This is in line

with the Internet design philosophy of providing sophisticated
end-to-end control in end hosts, coupled with a relatively
simple control inside the network. Moreover, since these
modifications are required only for senders, they may be
deployed incrementally.

The rest of the paper is organized as follows. In Section II,
we briefly describe the proposed service architecture and
the ERED mechanism. Performance of TCP in an integrated
services environment and the effects of different service pa-
rameters are investigated in Section III. In Section IV, we
propose simple modifications to TCP’s transmission and win-
dowing mechanisms to exploit reservations in the network.
Section V examines the overhead such modifications incur and
the benefits which they provide. In Section VI, we study the
impact of network transients, such as changes in service levels
and changes in traffic loads on the end-to-end performance of
controlled-load and best-effort sessions. Section VII considers
network scenarios in which a subset of the routers are ERED-
capable in order to capture the path of evolution of integrated
services in the Internet. Finally, Section VIII presents a dis-
cussion and preliminary experimental results on the possible
integration of the ERED mechanism into a more elaborate
packet and link scheduling architecture, such as class-based
queueing. We conclude in Section VIIII.

II. NETWORK AND SERVICE MODELS

The RSVP and the Integrated Services (INTSERV) working
groups in the IETF are responsible for defining protocols and
standards to support integrated services in the Internet. In
this section we briefly review the relevant aspects of these
standards and show how the proposed enhancements fit into
the IETF-defined framework.

A. Policing and Marking

To avail itself of a reservation, a connection has to specify a
traffic envelope, calledTspec. The Tspec includes a long-term
average rate a short-term peak rate and the maximum
size of a burst of data generated by the application. For
example, for an application generating MPEG-encoded video,
the average rate could be the long-term data rate, the peak
rate could be the link bandwidth at the source, and the burst
size could be the maximum size of a frame. The Tspec also
specifies the maximum and minimum packet sizes to be used
by the application. Connections are monitored and policed at
the network entry points. This could be either at the source, or
at the boundary between the corporate or campus intranet and
the Internet. Packet classification and service differentiation
also takes place at the routers. The service priority given
to a packet is a function of the Tspec, and in the case of
some service classes, a separate service specification known
asRspec. For controlled-load service, no Rspec is specified.

In order to police traffic at the source, we use token
buckets [18]. The token generation process follows the Tspec
advertised by the source. That is, the long-term average rate
of token generation is the short-term peak rate of token
generation is and the depth of the token bucket is. Each
time a packet is injected into the network, if sufficient tokens
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are available, an equivalent number of tokens are considered
consumed. If there aren’t enough tokens present at the time of
transmission, the packet is treated as nonconformant.

In addition to policing, we also propose to mark packets at
the network entry point. Conformant controlled-load traffic is
marked before being injected into the network. Nonconformant
controlled-load traffic and best-effort traffic is injected into
the network unmarked. Although marking is not currently
supported in Internet Protocol (IP) networks, there are suf-
ficient hooks (specifically, the type of service bits) in the IP
header to add this feature easily. Note that marking is not a
mandatory requirement, it just facilitates traffic classification at
the routers. In the absence of a marking facility, IP datagrams
have to be passed through a classifier at the source, as well as
at the routers, to determine which flows they belong to and to
determine whether they are in violation of, or in conformance
with, the advertised Tspecs of the flows. In the presence of a
marking facility, classification is only required at the network
entry point and not at interior routers. In the rest of the paper,
we assume that a marking facility is available.

B. Packet Handling

The routers perform admission control for controlled-load
connections. Admission control algorithms are not discussed in
this paper, but, for the purpose of the experiments, we assume
that the aggregate reservation levels at the routers are within
their capacities.

In addition to performing admission control, the routers
also need to support service differentiation between marked
(conformant controlled-load) and unmarked (nonconformant
controlled-load and best-effort) packets. One obvious approach
to providing different services to marked and unmarked pack-
ets is to maintain separate queues for each class and serving
them according to their scheduling priority. However, we
propose to use a common queue for both compliant and
noncompliant traffic and serve them in FIFO order. A common
FIFO queue not only simplifies the scheduling functionality at
the router, it also helps maintain packet ordering in controlled-
load connections. Although maintaining packet ordering is not
a requirement, failure to do so may have serious performance
impacts on transport protocols such as TCP.

Our approach to service differentiation between marked
and unmarked packets relies on a selective packet discard
mechanism. We use an enhanced version of the RED (random
early detection) algorithm for this purpose. In classical RED
routers, a single FIFO queue is maintained for all packets.
Packets are dropped randomly with a given probability when
the average queue length exceeds a certain minimum threshold
( ). The drop probability itself depends on the average
queue length and the time elapsed since the last packet was
dropped. When the average queue length exceeds a maximum
threshold ( ), all arriving packets are dropped.

ERED is a minor modification to the original RED
algorithm. In ERED, the thresholds only apply to unmarked
packets. Unmarked packets are randomly dropped when
the average queue length exceeds unmark and
are all dropped when the average queue length exceeds

unmark. Marked packets are only dropped when the
queue is full. In order to ensure low loss of marked packets,

and values should be set appropriately. For
example, in a system with controlled-load sessions with
peak rates of a service rate of and
a buffer of length the thresholds must be set so that they
can roughly ensure that no marked packets are dropped.1 In
particular, the following equation should hold:

Note that the maximum number of unmarked packets that
can be in the queue at any time is around [ ].
It takes at most to completely drain the
queue of unmarked packets. Given the maximum aggregate
arrival rate of marked packets and the service rate

, the rate of increase of the queue occupancy
.2 Hence, the amount of excess buffer space needed to

ensure no marked packets are dropped is the product of
( ), the rate of increase in queue occupancy and

, the time needed to drain the unmarked
packets. Unfortunately, since the thresholds such as are
triggered by an average queue length calculation, these settings
can still lead to unnecessary losses in compliant packets.
For example, additional queueing work [2] has shown the
use of absolute thresholds for limiting unmarked packets can
effectively prevent loss of marked packets. While ERED works
well for the experiments in this study, a queue management
algorithm which reserves a portion of the queue for marked
packets while performing RED on the remaining portion might
be ideal for controlling congestion while effectively supporting
the priority marking.

An appropriately parameterized ERED queue can guarantee
low loss rate to conformant controlled-load traffic. However,
since it uses a common FIFO queue, the delay experienced by
the conformant controlled-load traffic and best-effort traffic
are the same. It is possible to parameterize ERED queues
to control the queue size, and hence, the queueing delay.
However, a small queue size may lead to high loss rates
for unmarked packets. An alternative approach is to maintain
separate queues for controlled-load and best-effort traffic.
Separation of traffic classes is likely to improve the delay
performance of controlled-load traffic. However, it complicates
bandwidth sharing between nonconformant controlled-load
and best-effort traffic. The router would have to use weighted
fair queuing to ensure equal-fair share of excess bandwidth to
nonconformant controlled-load and best-effort traffic. Conse-
quently, it has to monitor the number of active connections in
the controlled-load and best-effort classes and has to adjust the
weights dynamically depending on the number of connections
in each class.

Finally, there are many other ways of realizing controlled-
load service. Some of these mechanisms, such as class-based

1We assume that the duration of bursts is the same for all sources. This
assumption can be relaxed for more precise admission control.

2Transmission of an unmarked packet makes room for an incoming marked
packet.
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Fig. 1. Network topology. Each link has a 10 ms transmission delay.

queueing [8] and weighted fair queueing [1], [3], [5], [9], [10],
[19], [20], can be used to accurately implement controlled-load
and other service classes defined by the INTSERV working
group. However, as mentioned earlier, the primary focus of
this paper is not to propose and analyze packet queueing
and scheduling mechanisms to realize integrated services on
the Internet. Our objective is to study how we can offer a
particularly useful network service with minimal changes to
the routers and the end-hosts. We show that the proposed
simple enhancements can benefit a large class of elastic and
tolerant playback applications that can withstand a reasonable
amount of queueing delay and can really exploit the guarantees
on throughput to improve performance. Although ERED by
itself may not be used to realize other classes of service,
such as guaranteed delay, it can be easily integrated into more
general service architectures. In Section VIII, we discuss how
it can be embedded in a class-based-queueing framework.

III. U NDERSTANDING TCP DYNAMICS

This section is devoted to the study of TCP dynamics
in an integrated services environment. For the purpose of
the experiments, we modified the NS [16] simulator.3 The
NS simulator has been used extensively in a number of
studies reported in the literature. While the simulator does
not use production TCP code, it implements congestion and
error control algorithms used in different implementations of
TCP with remarkable accuracy. For most of the experiments
reported here, we use a Reno-variant of TCP [12]. We modified
the simulator by adding policing and extending the RED
queueing discipline.

For the experiments in this section, we consider a simple
network topology shown in Fig. 1. The capacity of each bi-
directional link is labeled and has a transmission delay of 10
ms. Connections requesting a reservation specify a peak and
a mean rate of service, and the maximum size of a burst.
At the source, tokens are generated at the service rate and
are accumulated in a token bucket. The depth of the token
bucket is the same as the maximum burst size specified by
the source. Throughout this paper, the token bucket size is
measured in units of time. In units of tokens, it is equivalent
to token generation rate times the bucket size in units of time.
The peak rate is set to the link speed by default. TCP segments
belonging to reserved connections are transmitted as marked
datagrams if there are sufficient tokens available in the token
bucket at the time of transmission. Otherwise, they are sent as

3The NS simulator is Version 1.1.

unmarked datagrams. TCP segments belonging to best-effort
connections are sent as unmarked datagrams. We assume that
sources are greedy, that is, they always have data to send.

A. Effect of Service Rate

This experiment is designed to investigate the effect of
service rate on end-to-end throughput. For the purpose of
this study we ran three connections with reservations of
1, 2, and 4 Mb/s, and three best-effort connections from
node n0 to n5. Each controlled-load source used a token
bucket of depth 50 ms and each node has a 100 kB ERED
queue with of 80 kB of 20 kB. The maximum
drop probability of the unmarked packets for this experiment
was 0.02. This probability is chosen in order to make early
detection aggressive enough to control the length of the queue.
Note that a drop probability which is too small makes the
early detection mechanism ineffective while a drop probability
which is too large can lead to under-utilization of the link.

Fig. 2(a) shows the throughput seen by each connection.
Throughput is computed by measuring the data received at
the receiver over an observation period and dividing it by the
observation interval. Fig. 2(b) plots the compliant throughput
seen by connections with reservations. This is the portion of
the throughput that is contributed by marked packets. Ideally,
it should be equal to the reserved rate of service. From
Fig. 2(a), we observe that connections with higher reservations
generally see better throughput than connections with lower or
no reservations. However, from Fig. 2(b) we observe that the
compliant portions of the bandwidth received by all reserved
connections are less than their respective service rates.

The explanation for the observations from Fig. 2 lies in
the flow and congestion control mechanisms used by TCP.
The TCP sessions with reservations exercise their flow and
congestion control mechanisms in the same way as best-
effort connections. However, they have a lower probability
of losing a packet at the routers since their marked packets
have lower (in this case close to zero) probability of getting
dropped. Because connections with higher reservations mark
their packets at a higher rate, they have a decreased probability
of having a packet dropped. This is why connections with
higher reservations see higher throughput than connections
with lower or no reservations. However, as observed from
Fig. 2(b), TCP fails to fully exploit the benefits of the reser-
vation. The compliant part of the throughput is less than the
reservation levels in all cases. Since marked packets are not
dropped by the network it is apparent that the source is not
generating sufficient number of marked packets to keep the
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(a)

(b)

Fig. 2. Effect of reservation on end-to-end throughput.minth = 20 K,
maxth = 80 kB, Qsize = 100 kB, BucketDepth= 50 ms. (a) Aggregate
throughput. (b) Compliant throughput.

reserved pipe full. Since the sender is a greedy source, it is
the TCP congestion control mechanism that is responsible for
throttling the source. The tokens, however, are generated at a
rate commensurate with the reservation. If the source does not
have enough or is unable to transmit packets, the token bucket
fills up and ultimately overflows. We refer to this phenomenon
as token loss. The rate of token loss is a good measure of loss
of transmission credits wasted due to undesirable side-effect
of TCP congestion control.

Fig. 3 shows the packet trace of the connection with 4 Mb/s
reservation over a five-second interval. The plot shows the
sequence number4 (modulo 200), the congestion window of
the sender, and the number of lost tokens (given in packets
modulo 200) for the connection. A positive slope of the lost
token curve indicates a nonzero token loss rate throughout the
observation period. The windowing mechanism used by TCP
is partly responsible for this phenomenon.

4We use segments of size 1 kB. The sequence number is the sender’s packet
sequence number.

Fig. 3. Packet trace of the connection with 4 Mb/s reservation.

TCP uses two windows for the purpose of flow and conges-
tion control. The receiver maintains and enforces an advertised
window (AWND) as a measure of its buffering capacity. The
sender enforces a congestion window (CWND) as a measure
of the capacity of the network. The sender is prohibited from
sending more than the minimum of AWND and CWND worth
of unacknowledged data. When the loss of a segment is
detected, TCP reduces the congestion window and initiates
a fast recoveryor a slow start phase. For the fast recovery
phase, the congestion window is cut to half of its original size
while in the slow start phase it is set to one. For connections
with reservations, this is an overly conservative behavior since
it is insensitive to the reservation that a particular connection
may have. Thus, even when tokens are present, and the sender
is eligible to transmit a new segment, it may be throttled by
the congestion window. As shown in Fig. 3, the rate of token
loss increases (as indicated by the change in slope in the lost
token curve) significantly when a packet loss is detected (as
indicated by the decrease in congestion window), and slowly
decreases as the congestion window opens up.

Another cause for token loss is the presence of persistent
gaps in the acknowledgment stream. Such gaps are part of a
phenomenon commonly referred to as ack-compression [22].
Since TCP uses acknowledgments to trigger transmissions,
any significant time gap between the receipt of successive
acknowledgments causes the token bucket to overflow and
results in a loss of transmission credits. The effects of these
gaps can be seen in many places in the trace where the
sequence number is frozen. There are several ways in which
these gaps can develop. One is through the recovery process
after a loss is detected using TCP’s fast recovery and fast
retransmit mechanisms. After detecting a loss (by the receipt of
a given number of duplicate acknowledgments), TCP cuts its
congestion window in half by halting additional transmissions
until one half of the original window’s packets have cleared
the network. Freezing the sender for this period of time
causes the token bucket to overflow, but more importantly,
puts a gap in the data stream which results in a gap in the
acknowledgment stream during the next round-trip interval.
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Gaps in the acknowledgments cause the token bucket to
overflow and cause gaps in the data stream once again. Another
way gaps can form is through the normal dynamics of network
traffic. Congestion on the forward and/or reverse path, as well
as additional queueing delays and jitter experienced as new
connections come on-line, can also create significant gaps in
the stream.

B. Effect of Token Bucket Depth

One way to alleviate the problem of token loss is to
use a deeper token bucket. To investigate the impact of the
token bucket depth on compliant throughput, we repeated the
experiment described in the last section across a range of
token bucket depths. Fig. 4(a) shows the compliant throughput
seen by the connection with a 4 Mb/s reservation for token
bucket sizes of 50, 100, 200, 400, and 800 ms using the
same network topology and traffic. Increasing the token bucket
depth improves the compliant throughput seen by a connection.
However, it is only when the token buckets are very large (400
and 800 ms in this case) that the compliant throughput seen
by a connection remains at the reserved rate. Unfortunately,
for a 4 Mb/s connection, this bucket depth corresponds to
a maximum burst of compliant packets of up to 200 kB. In
order for the network to ensure that compliant packets are not
dropped, it must have the capacity to buffer such bursts. With-
out sufficient buffer space, a significant amount of burst losses
can occur, causing the performance of the TCP connection to
deteriorate. To see the effect of this, we increased the traffic
going through the network by adding identical traffic going in
the reverse direction. That is, all connections are bidirectional.
Adding traffic has several effects. One effect is that it spaces
out acknowledgments even further. Another more problematic
effect is that it adds more congestion to the network, which
causes queues to be fully occupied. Without sufficient buffer
space to handle large token buckets worth of priority packets,
reserved connections experience a substantial amount of burst
losses. This causes the connection to eventually freeze since
recovering from multiple losses using Reno TCP in particular
requires multiple round-trip times. Because of this the source
eventually runs out of room under the advertised window of
the receiver and must stop sending until the lost packets are
successfully retransmitted [6]. Note that as the bandwidth-
delay is increased, the advertised window becomes a limiting
factor in the performance of the source. If the advertised
window is not large enough, whenever a single packet is
lost, the source must freeze until the packet is successfully
retransmitted. Fig. 4(b) shows the result of this experiment.
In contrast to Fig. 4(a), large token buckets do not give any
additional performance improvement. The connection never
receives a compliant throughput more than half of its 4 Mb/s
reservation.

The use of large token buckets allows large bursts of
marked packets into the network which can result in loss
of marked packets, thus defeating the service differentiation
mechanism provided by ERED. In a WFQ implementation of
controlled-load service, this is akin to overflowing a flow’s
queue by allowing it to burst at a rate greater than the queue

(a)

(b)

Fig. 4. Compliant throughput of the 4 Mb/s connection over varying token
bucket sizes.minth = 20 kB, maxth = 80 kB, Qsize = 100 kB. (a)
One-way traffic. (b) Two-way traffic.

length. As with any service differentiation, in order to ensure
correct behavior, admission control must be done with the
sources to guarantee performance. For ERED queues, this
essentially means that the and values must be
set appropriately so that marked packets are not dropped due
to an over-occupation of unmarked packets. For a given queue
size there is some flexibility in terms of setting the thresholds
depending on the traffic load. As the load due to controlled-
load traffic increases, the and values can be
lowered to ensure low or no loss of conformant controlled-
load traffic. As the controlled-load traffic load decreases, the

and values can be set higher to improve the
throughput of best-effort traffic. However, the extent to which
this flexibility in setting the queue thresholds can be used to
ensure correct behavior is limited. As discussed in Section II,
for a given queue size and link speed, the aggregate controlled
load traffic that can be admitted into the system is limited by
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The above condition guarantees zero loss of conformant
controlled-load traffic in the worst case scenario where all
controlled-load sources burst traffic at the highest rate at the
same time. In the rest of the discussion in this paper, we
assume that the above condition is satisfied at every node
and marked packets are never dropped. However, we note
that the scenario captured in the above inequality is very
pessimistic. It is extremely unlikely for all controlled-load
sources to burst at the same time. Also, guaranteeing zero loss
of conformant traffic is not a requirement for controlled-load
service. Consequently, it is possible to relax this condition and
admit more controlled-load sessions than deemed possible by
the above inequality. We believe that empirical and statistical
admission control mechanisms, such as measurement based
admission control [15], can be used to operate the network at a
high utilization and maintaining a low loss rates of conformant
controlled-load traffic.

IV. TCP ADAPTATIONS

In this section we propose and experiment with modifica-
tions to TCP’s control mechanisms. These refinements can
help TCP adapt better in an integrated services environment.

A. Timed Transmissions

Since deeper token buckets require larger buffers in routers
and allow less flows to be admitted, it is desirable to keep
the size of the token buckets small. To alleviate the effects
of persistent gaps in acknowledgment without increasing the
token bucket depth significantly, we experimented with two
different schemes,delayed and timed transmissions. These
mechanisms better adapt the acknowledgment-based transmit
triggers to the rate-based reservation paradigm. In the delayed
transmission mechanism a segment is held back for a random
amount of time when there are not enough tokens to transmit it
as a marked packet. This, in effect, adds randomization to the
data stream of the connection which can potentially eliminate
persistent gaps in the acknowledgment stream. In addition, this
scheme reduces the probability of the packets getting dropped
inside the network since holding back packets increases the
probability that they are sent as marked packets. While the
delayed transmissions work reasonably well when the reverse
path is lightly loaded [6], additional experiments have shown
that it is not very effective in the presence of reverse path
congestion.

The second mechanism we examine involves the use
of a periodic timer. In this scheme, we augment TCP’s
acknowledgment-triggered transmissions with a timer-
triggered transmission mechanism. This timer-based triggering
ensures that transmission opportunities are not lost while
the connection is waiting for an acknowledgment. In the
timed transmission mechanism, each reserved connection
uses at most one timer which can have an interval
which is customized. Connections can also share a single
timer depending on the overhead on the end-host. In
the timed transmission scheme, the acknowledgment-clocked
transmission algorithm is left unmodified. However, whenever
a periodic timer expires, the connection examines the tokens

Fig. 5. Timed transmission algorithm.

in the token bucket. If there are sufficient tokens available
in the token bucket and there is room under the advertised
window of the receiver, the sender sends the packet as
marked, ignoring the value of the congestion window. The
timer is then reset to wake up another timer interval later.
Fig. 5 presents the algorithm formally.

The intuition behind timed transmission is very simple. If
there are enough tokens in the bucket, as per contract with
the network, the sender is eligible to inject new data in the
network. Hence, we temporarily disregard the congestion
window under such circumstances. Note that it is also
possible to disregard the congestion window for conformant
sends triggered with an acknowledgment. However, the use
of the timers helps prevent sending back-to-back packets,
making the resulting traffic stream slightly smoother and
more network-friendly. Regardless of how compliant sends
are triggered, the connection still adheres to the advertised
window constraint to avoid overflowing the receiver’s buffers.
In case of network disruption, the sending TCP freezes
when the number of unacknowledged packets reaches the
advertised window. Thus, the time-triggered sends do not
continue to occur in the presence of network failure. Having
a timer trigger transmissions alleviates the problem of lost
tokens caused by gaps in the acknowledgments. In order to
guarantee zero token loss, the timer interval should be equal to
[TokenBucketDepth(PacketSize )]/TokenBucketRate. This
takes care of the worst case where there are (PacketSize )
tokens in the bucket when a timer interrupt occurs.

Using this timer mechanism, we reran the same experiment
described earlier. For the experiment, we used token buckets
of depth 50 ms, and a timer granularity of 20 ms. Fig. 6(a)
plots the total bandwidth received by all connections and
the compliant bandwidth received by the connections with
reservations. As shown in the figure, each connection gets its
reserved rate and a share of the excess bandwidth.

While the timed transmissions allow for temporary viola-
tions of the congestion window to occur, noncompliant packets
are sent only when there is room under the congestion window.
Thus, this mechanism does not alter the way TCP’s congestion
window is calculated. Using TCP’s windowing algorithm can
be a problem since upon detection of a loss, the congestion
window is cut in half or reduced to one regardless of a con-
nection’s reservation. Thus, although the timed transmission
mechanism allows the connection to receive its reserved rate,
TCP’s windowing mechanism can restrict the controlled-load
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(a)

(b)

Fig. 6. Throughput with timer-triggered transmissions.minth = 20 kB,
maxth = 80 kB, Qsize = 100 kB, BucketDepth= 50 ms, TimerInterval
= 20 ms.

connections from competing for the excess bandwidth5 in the
network. Fig. 6(b) plots the throughput seen by a best-effort
connection and the noncompliant throughput seen by each
of the reserved connections using timed transmissions. The
plots show that connections with reservations receive a smaller
share of the residual capacity when compared to the best-
effort connection. The connections with larger reservations
are penalized to a greater extent since halving the congestion
window of a connection with a 4 Mb/s reservation has a more
drastic impact than halving the congestion window of a 1 Mb/s
connection.

B. Rate Adaptive Windowing

For reserved connections, the swings in the congestion
window should always be above the window guaranteed by
the reserved rate. To account for and exploit the reservation,
we modified TCP’s windowing algorithm. The key idea behind

5Nonconformant controlled-load traffic is treated as best-effort traffic.
Hence, residual network capacity should be fairly shared between best-effort
traffic and nonconformant controlled-load traffic.

this modification is that for reserved connections, CWND
consists of two parts: a reserved part equal to the product of the
reserved rate and the estimated round-trip time, and a variable
part that tries to estimate the residual capacity and share it
with other active connections. Note that the reserved part of
CWND is a function of the round-trip time. While we currently
use the common TCP round-trip measurements to estimate
this, measurements using the proposed TCP timestamps option
(RTTM) [14] can provide a more accurate estimate.

Let us assume that the size of the reservation window is
RWND. Hence, the size of the variable window is CWND-
RWND. In the modified scheme, we adjust the size of the
variable window using the traditional TCP windowing mech-
anism and simply add it to the calculated value of RWND.
Specifically, instead of reducing CWND by half at the be-
ginning of the fast recovery, the sender sets it to RWND
(CWND RWND)/2. At the beginning of a slow start after
detection of a lost segment through the retransmission timeout,
it sets CWND to RWND instead of 1. In both cases,
SSTHRESH is set to the minimum of RWND (CWND
RWND) and AWND instead of the minimum of CWND/2
and AWND. Finally, because packets sent under RWND
should not clock congestion window increases, we scale all
window increases by (CWND RWND)/CWND. Note that
even with these modifications to the windowing algorithm, the
sender must still adhere to the AWND restriction. That is, it
is prohibited from sending more than the minimum of AWND
and CWND worth of unacknowledged data. Because of this,
the size of the receiver’s buffer must be at least the size of the
reservation window in order to sustain the reserved rate using
TCP. This control algorithm has been summarized in Fig. 8.

We repeated the experiments described in the last section
with the windowing modifications in place. Fig. 7(a) shows
the aggregate and compliant throughput seen by each reserved
connection after modifications to the windowing mechanisms.
It also shows throughput seen by a best-effort connection
between the same source and destination. As seen in the figure,
all connections perform as expected. Fig. 7(b) plots the amount
of excess bandwidth received by each reserved connection, as
well as the bandwidth received by the best-effort connection.
When compared to Fig. 6(b), the reserved connections obtain
a fairer share of the excess bandwidth.

A common concern with any modification to TCP’s win-
dowing mechanism is that the change may be too aggressive,
and thus, cause unnecessary congestion. The experiments we
have conducted so far, including the ones reported in this
paper, show no bias toward connections using the modified
windowing mechanism. We experimented with different fla-
vors of the windowing algorithm. They differ in the way
RWND is computed and CWND is clocked. We compute
RWND by multiplying the reserved rate with the estimated
round-trip time. Depending on how conservative we want the
windowing mechanism to be, we can use different estimates of
round-trip time. We experimented with both best and average
estimates of round-trip times. In all the experiments we have
conducted, they perform equally well. However, in times of
congestion, the estimated round-trip time tends to be large,
and thus, the rate-based window can also grow large during a
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(a)

(b)

Fig. 7. Throughput and packet trace after windowing modification.
minth = 20 kB, maxth = 80 kB, Qsize = 100 kB, BucketDepth= 50ms;
TimerInterval= 20ms. (a) Aggregate and compliant throughput. (b) Share
of excess bandwidth.

Fig. 8. Rate adaptive windowing algorithm.

period of time when the network needs a respite. Using the best
observed round-trip time in this case allows the connection
to be on the conservative side in calculating its rate-based
window.

Another concern in deploying the modifications is that it
may potentially lead to congestion collapse since the modified
TCP sources maintain minimum transmission rates at all times.

TABLE I
TIMER OVERHEADS (AIX 4.2 KERNEL)

Although we assume that the network supports a minimum rate
of service, the presence of legacy equipment may make such
a promise difficult to honor. If the lack of network support
for minimum rate guarantees go unnoticed by the source,
the proposed modifications may lead to congestion collapse.
Fortunately, preventive measures can be taken to avoid such
mishaps. For example, the TCP source can and should turn off
both the timer and window modifications whenever it detects
any loss of marked (compliant) packets.

V. FINE-GRAINED TIMERS

This section explores the cost associated with deploying
fine-grained timers into TCP as well as the benefits of using
such a timer for sending data.

A. Timer Overheads

In our description of the timed transmission algorithm,
we have assumed the existence of connection-specific timers.
However, it is possible, and desirable, to use a common
timer shared amongst all reserved connections. Such optimiza-
tions can be easily incorporated using techniques such as the
protocol timer services in the BSD-style TCP/IP stack. One
of the common criticisms against the use of timers is the
overhead associated with handling timer interrupts. For that
reason, TCP uses coarse-grained (typically 200 and 500 ms)
timers. However, the state of the art in processor technology
and operating systems has advanced considerably since the
first design and implementation of TCP. Processors and timer
implementations today are much faster, and consequently, the
overheads of handling timer interrupts are much lower [4].

Table I shows the overheads of setting, canceling, and
handling timers in two IBM RS/6000 machines running AIX
4.2, one equipped with a 33-MHz POWER CPU and the
other with a 133-MHz POWERPC CPU. We observe that
the overheads of timer operations in modern systems (133
MHz POWERPC) are quite small. Even when older systems,
such as the 33-MHz RS/6000, are considered in this study,
the overheads are well within acceptable limits. Note that
these measurements were taken without any optimization to
the timer data structures in the AIX kernel. In AIX 4.2, timer
blocks are arranged in a linear array. The overhead of timer
operations are expected to be even lower if the timer blocks
are stored as a hash table. However, at this point such an
optimization is not deemed necessary.

B. Buffer Requirements

While there are concrete costs associated with using fine-
grained timers, there are also significant benefits. One ben-
efit in using these timers is that it reduces the size of the
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(a)

(b)

Fig. 9. Aggregate throughput of 4 Mb/s connection over various timer
interrupt granularities.minth = 20 kB, maxth = 80 kB, Qsize = 100 kB,
BucketDepth= TimerInterval+30 ms. (a) 80-kB buffers. (b) 160-kB buffers.

token buckets used for each application. From the calcula-
tions in Section IV, given a certain timer interval, the token
bucket depth should be at leasttimer interval token bucket
rate+(packet size ) to prevent token loss. Because the token
bucket size grows linearly with the timer interval, using fine-
grained timers allow applications to request smaller token
buckets. Because each router must be able to buffer a burst the
size of the entire token bucket for each application, the size
of these buckets has a direct impact on the amount of buffer
space required in network routers.

Fig. 9 shows the impact that the timer-interval has on the
throughput of the 4 Mb/s connection using the same multihop
network setup. The simulations were run using both the
timer and windowing modifications as described in Section IV.
Fig. 9(a) shows that as the timer interrupt interval increases,
the throughput of this connection drops considerably. The
reason why this drop is so dramatic is that the lack of buffer
space in the network causes a significant amount of burst
losses. Burst losses severely limit the throughput of Reno TCP-

variants since it takes one round-trip time to recover from
each loss. This causes the sending TCP to degenerate into
a stop-and-wait protocol. Fig. 9(b) shows the results of the
same experiment using buffers which are twice the size (160
kB). With significantly larger buffers, the connection is able
to get its share of the bandwidth over a larger range of timer
interrupt intervals.

VI. TRANSIENT BEHAVIOR

To take a closer look at the transient behavior, we took a
controlled-load connection and varied its reservation in the
presence of several best-effort connections. In particular, a
controlled-load connection which toggled its reservation from
0.5 to 6 Mb/s every 20 s was run between n0 and n5. Four pairs
of best-effort connections were also run between these two
nodes. Fig. 10(a) plots the total throughput of the controlled-
load connection using unmodified TCP. This connection uses
a token bucket depth of 800 ms in order to prevent a large
amount of token loss.6 The plot also shows the reservation
that the connection has over time. As shown in the figure,
the bandwidth received by the connection reacts slowly to
increases in the reservation while it reacts quickly to the
decrease in reservation. This is directly attributed to the
additive increase/multiplicative decrease property of TCP’s
windowing algorithm [13]. Fig. 10(b) shows the congestion
window trace for the normal TCP source. The graph shows
the congestion window linearly increasing in response to an
increase in reservation level at times s, s,
and s. Thus, by the time the window size reaches
a size which can support the size of the reservation, almost
the entire 20 s interval has elapsed. This is why the total
throughput of this connection lags behind the reservation
change.

Fig. 11(a) shows the same experiment, but with the reserved
connection using the timer and windowing modifications de-
scribed earlier. Note that the throughput of the connection
immediately reacts to both the increase and decrease in reser-
vation levels. We have also plotted the congestion windows of
the controlled-load connection for each experiment over the
same time periods. Fig. 11(b) shows the congestion window
trace of the connection. The window size in this case reacts
more quickly to the change and thus allows the connection to
get its reserved rate. One advantage of rate-based windowing is
that the congestion window immediately reflects any changes
in reservation level, especially when the level is increased.
For TCP-variants which use fast retransmit and fast-recovery,
the connection is often in a state where it is increasing its
congestion window additively in order to find a congestion
window that indicates the amount of bandwidth available to it
in the network. Thus, when the reservation for these sources
is increased, the congestion window reacts by additively
increasing itself to a new window which will support the
reserved rate. With a large change in reservation, this can
take a fairly long time, especially for connections with large
round-trip times.

6Note that the size of the buffers on each interface is 100 kB, which is
enough to absorb the large bursts that are caused by the deep token bucket.
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(a)

(b)

Fig. 10. Dynamics of unmodified TCP.BucketDepth = 800 ms.
(a) Throughput. (b) Congestion window trace.

VII. PATH OF EVOLUTION

For the experiments reported in previous sections, we have
assumed that all routers on the path of a connection employ the
ERED mechanism. While this is desirable, modifications to the
Internet infrastructure will be incremental and evolutionary.
To understand the impact of this heterogeneity in the network,
we consider scenarios where none or only a selective subset
of routers are ERED-capable.

The purpose of the first experiment is to examine the
impact of non-ERED gateways on reserved connections. In this
experiment, we have two TCP connections with reservations of
1 and 4 Mb/s as well as a best-effort connection between nodes
n0 and n5. Pairs of best-effort connections run between nodes
n6 and n7 and between n8 and n9. Plots in Fig. 12(a) show the
throughput seen by these connections when all the routers are
drop-tail routers which do not distinguish between marked and
unmarked packets. The connections with reservations use the
timed transmission mechanism and the modified windowing
scheme. Note that while no service differentiation is being
done on the links, it is assumed that adequate admission control

(a)

(b)

Fig. 11. TCP with timer and windowing modifications.Bucket depth= 50

ms, TimerInterval= 20 ms. (a) Throughput. (b) Congestion window trace.

and provisioning is being done in order to ensure that the
offered load does not overwhelm network links and cause
congestion collapse.

As shown in Fig. 12(a), the reserved connections indeed see
higher throughput than the best-effort connection between the
same nodes. However, the absence of ERED mechanisms in
routers adversely impacts the performance of the connections
with reservation. This situation worsens with the increase in
the reservation level. This is because a connection with a
higher reservation transmits a larger amount of data and thus,
the number of packet drops it experiences is proportionally
higher. In addition, the connection with a larger reservation
transmits data in larger bursts and is susceptible to burst losses
in the drop-tail queues. This is reflected in the oscillation
in the bandwidth curve for the connection with a 4 Mb/s
reservation. Burst losses, as described earlier, interact poorly
with Reno sources since it takes a full round-trip time to
recover from each loss. This freezes the sender and prevents it
from getting its reserved rate. A packet trace of this connection
verifies this behavior. Fig. 12(b) shows the same experiment
with the reserved connections using SACK TCP. As shown



184 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

(a)

(b)

Fig. 12. All nodes use drop-tail queues.Qsize = 100 kB. (a) Reserved
connections using Reno variant. (b) Reserved connections using SACK TCP.

in the figure, despite the absence of ERED queueing, all
connections manage to achieve aggregate throughputs close
to their respective desired levels.

From the results of these experiments, it is fair to conclude
that even without sophisticated scheduling mechanisms it
may be possible to extend the paradigm of equal sharing of
network capacity to one where it is shared in accordance with
allocations. Note, however, that in the experiments here, the
aggregate reservation is lower than the network capacity. We
also assume cooperation among different TCP connections.
This means that admission control and voluntary adherence
to the socially cooperative congestion control is still re-
quired. The ERED mechanism provides additional protection
to compliant controlled-load traffic against best-effort and
noncompliant controlled-load traffic.

To examine the impact of ERED-capable routers at selected
places, we repeated the experiments described above using
Reno sources with only a few selected routers employing
ERED. Fig. 13(a) shows the throughput of the same set
of connections when interfaces only at the bottleneck links
between n1 and n2 and between n3 and n4 employ ERED

(a)

(b)

Fig. 13. Effect of selective reservation.minth = 20 kB, maxth = 80 kB,
Qsize = 100 kB. (a) Bottleneck links (n1�n2) and (n3�n4) using ERED.
(b) Non-bottleneck links (n0� n1) and (n4� n5) using ERED.

queues while the rest of the interfaces use drop-tail queues. As
the plot shows, placing ERED queues at bottleneck points in
the network is sufficient to provide connections their allocated
share of the bandwidth. However, as shown in the figure, the
connection sometimes dips below its reservation level due
to burst losses which can occur in the presence of drop-tail
queues. Fig. 13(b) shows the throughput of the connections
when the ERED queues are placed on non-bottleneck links. As
with the drop-tail experiments in Fig. 12(a), the performance
of the high bandwidth connection suffers throughout.

The results from these experiments demonstrate that there
is an effective path of evolution of integrated services in
the Internet. For the integrated services to be useful, it is
not required to upgrade the entire infrastructure at the same
time. There is substantial value in following an evolution-
ary path where at first the control mechanisms at the end-
hosts are modified and routers support admission control.
Enhanced queuing mechanisms, such as ERED, can then be
deployed at observed bottlenecks and then gradually through-
out the network. In the next section, we discuss how this
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evolutionary approach can be continued beyond the ERED
mechanism.

VIII. CBQ AND ERED

The experiments in this paper have shown how to effectively
provide minimal bandwidth guarantees in the network using
ERED gateways. While this service may be useful to a large
class of applications, in a fully-evolved integrated services
Internet, such a mechanism must coexist with other mecha-
nisms for providing a range of alternative services. This will
allow applications written using such a service, to continue
to work as the Internet infrastructure is upgraded and more
sophisticated packet and link scheduling support is put into
place.

The ERED mechanism can be easily embedded into
more sophisticated scheduling disciplines, such as class-
based queueing (CBQ) [8]. CBQ is one of the more popular
mechanisms proposed for packet and link scheduling in an
integrated services Internet. In CBQ, datagrams belonging to
different classes are put in different queues in the routers. The
queues are serviced in different priority order based on the
allocation given to the associated traffic class. Embedded as
a class in CBQ, this ERED can be used to provide weighted
bandwidth sharing between connections of a class. By
aggregating connections with varying bandwidth requirements
in one class, we reduce the total number of classes in a class-
based queue, and thus, the overhead in the link scheduling.
To examine this possibility, we embedded the ERED queue
into the CBQ implementation of the NS simulator. We then
examined its performance in the network shown in Fig. 14(a).
This network consists of two agencies, A and B, who share
a common link (between nodes C and D) to a provider’s
network. In this setup, agency A is entitled to 20% of the
link’s bandwidth while agency B is entitled to the remaining
80% of it. Node C uses CBQ with 20% of the link share
allocated to traffic from agency A, and 80% allocated to
traffic from agency B. Note that while either one of the two
agencies is idle, the other, active agency, is entitled to use
the entire link for itself. In addition, since the allocation
is relative, admission control must assume the worst case
scenario in admitting flows to a class. That is, it must assume
all other classes are using their share of the link. Both queues
within the CBQ system use the ERED mechanism to share
bandwidth between individual connections.

Fig. 14(b) shows the throughput seen by connections orig-
inating from A and B and traversing the link between C and
D. Connections A1 and A2 originate from agency A and have
reserved rates of 0.5 and 1 Mb/s, respectively. They start at
times 0 and 100 s. Connections B1 and B2 originate from
agency B and have reserved rates of 1 and 2 Mb/s. These
connections start at times 200 and 300 s, respectively. As the
graph shows, between 0 and 100 s, connection A1 gets all of
the bandwidth since it is the only active connection. Between
100 and 200 s (after connection A2 starts) the link’s bandwidth
is shared between connections A1 and A2. However, since
A2 has a 1 Mb/s reservation, it gets slightly more total
bandwidth than A1. When B1 starts at 200 s, it is the only

(a)

(b)

Fig. 14. CBQ experiment. (a) Network topology. (b) Throughput.

active connection from agency B. Hence, it receives the entire
80% of the link’s bandwidth (8 Mb/s). The two connections
from agency A then share the remaining bandwidth (2 Mb/s)
according to their reservations. Finally, at 300 s, connection
B2 starts and the 8 Mb/s allocated to agency B is split between
connection B1 and B2 in accordance with their reservations,
that is, B2 gets approximately 1.0 Mb/s more than B1. What
happens throughout the course of this experiment is that when
the class is allowed to be overlimited, the ERED queue is
drained at a sufficient rate so as to support higher rates of
input data. As soon as the class becomes regulated, the queue
builds up, the ERED queue drops unmarked packets and the
connections in the class resumes sending at a lower rate.

IX. CONCLUSION

We have examined ways of providing a large class of
overload-sensitive Internet applications with a useful service
using minimal enhancements to the network infrastructure.
Toward this end, we have proposed a simple extension to
the packet queueing and scheduling mechanism at the routers.
Assuming that the network supports minimum rate guarantees,
we have also proposed and experimented with modifications
to TCP’s congestion control algorithm. The proposed modi-
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fications allow connections with reservations to obtain their
reserved rates and share the residual unreserved bandwidth
with the best effort connections. It is important to note that
the modified congestion control algorithm should be exercised
if and only if the network supports minimum rate guarantees
through end-to-end signaling, admission control, and resource
reservation. Without such mechanisms in place, the use of
modified TCP sources may cause congestion collapse in net-
works.

The study reported in this paper can be extended in many
ways. We are working on implementing and experimenting
with the mechanisms proposed here in a network testbed.
We are also considering applications of this work in the
context of other transport protocols, especially RTP and UDP.
Many multimedia applications do not require the reliable
delivery that TCP provides. While this study focuses on TCP,
implementing a similar scheme using RTP and UDP fitted with
TCP’s flow-control mechanism is possible.

Another key area of future work is the admission control
policies for such a service. While we have not addressed this
aspect here, we plan on using our observations on token bucket
depths, router buffer sizes, source burstiness, and ERED-
parameterization to develop admission control policies for this
service.

We also plan on examining the effect of round-trip time
on end-to-end throughput. A number of studies have shown
that relative throughput seen by best-effort connections shar-
ing a common bottleneck link has a strong dependence on
their round-trip times. Preliminary results (not reported here)
from our experiments show that the compliant throughput
of connections with reservations is largely independent of
their round-trip times. However, the noncompliant part of the
throughput and the throughput seen by best-effort connections
are sensitive to round-trip time. A thorough investigation is
underway to explore this aspect in more detail.

On a final note, any allocation-based sharing of network
capacity has to be associated with a policy and/or pricing
scheme. We believe that the proposal of prioritizing a part
of a traffic stream with marking and competing with best-
effort traffic for sharing the residual capacity fits in very well
with pricing schemes which are currently being considered
for the Internet. Users paying for a certain level of marking
see incrementally better performance over those who do not.
During times of light loads, when the incremental costs of
congestion are low, the user can decrease his/her level of
bandwidth reservation and costs until an acceptable level of
aggregate throughput is observed.
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