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Abstract lenges in meeting their stringent QoS requirements, such as
bounded cell-delivery delay and cell-loss ratio, while han-
Unlike deterministic real-time communication in which dling the burstiness of their traffic.

excessive resources may be required for absolute per- Real-time communication can be classified into two cat-
formance guarantees, statistical real-time communicationsgories according to QoS requirementieterministicand
seeks to achieve bothgbabilistic performance guaran-  statistical[1]. In the former, QoS requirements are spec-
tees and efficient resource sharing. In this paper, we proified in deterministic terms and no cell losses or deadline
pose a framework for statistical real-time communicationmisses are allowed. In order to satisfy its absolute QoS re-
in ATM networks that provides delay-guaranteed transporigyirements, each deterministic real-tinemaection requires

of MPEG-coded video traffic with a statistically-guaranteedesource reservation based on the worst-case source traffic-
cell-loss ratio. In order to provide delay-guaranteed com- generation behavior, thus resulting in severe underutilization
munication service, we employ a modified version of Trafficof network resources when source traffic is bursty. In order
Controlled Rate-Monotonic Priority Scheduling (TCRM). to make more efficient use of network resources, statistical
We multiplex a set of statistical real-time channels that shargeg|-time communication specifies QoS requiremenssan

(i) similar traffic characteristics into a common channel tjstical (instead of deterministic) terms, thus tolerating a cer-
called a macro-channel and (ii) the resources of the macrotajn percentage of cell losses and deadline misses. Such a
channel. Individual statistical real-time channels are givenspeciﬁcation allows for overbooking network resources and,
timeliness and probabilistic cell-loss guarantees. A macro-at the same time, enhancing the multiplexing gain. Statisti-
channel is serviced by the modified TCRM which improvegg| real-time communication is useful to those applications
link utilizationand makes channel management simpler. Us¢j) that can tolerate a portion of cell losses and deadline
ing the analysis of an M/D/1/N queueing system, we promjsses and (i) whose traffic is bursty. The statistical mul-
pose a procedure for determining the transmission capacityip|exing gain is substantial, especially in Variable-Bit-Rate

of a macro-channel needed to statistically guarantee a cell{yBR) applications such as MPEG-coded video.
loss ratio bound. Simulation results have shown our frame-

work to work well as compared to the other approaches.
The overall cell-loss ratios for multi-hop statistical real-time

channels are shown to be smaller than the pre-determinei
bounds.

Many studies on supporting statistical performance guar-
antees in a WAN environment have been reported in the lit-
rature [7, 12, 31]. In particular, Zhargy al. [31] derived
statistical bound on the end-to-end delay by applying the
Exponentially-Bounded Burstiness (E.B.B.) process model
1. Introduction [30] to Generalized Processor Sharing (GPS) networks. Al-
though their work is theoretically elegant, it assumes an in-
Providing integrated services in high-speed store-andfinite buffer at eacmode. Moreover, the implementation
forward networks like ATM is difficult because of the wide Comp|exity of PGPS must be resolved before it can be used
range of traffic patterns and quality of service (QoS) requirefor high-speed networks like ATM [20].Effective band-
ments to support. Real-time communication services such agidth has been investigated in order to provide statistically-
video & audio conferencing, video-on-demand, and remotgyuaranteed QoS in ATM networks [7, 12]. This approach is
medical services in an integrated network pose serious chalased on the large deviation theory and often employs an on-
The work reported in this paper was supported in part by the National Sci-Of-f proces.s as a source traffic mo.del' In particular, E""’f"’"'q
ence Foundation under Grant MIP-9203895 and the Office of Naval Re@l- [7] derived the worst-cast traffic parameters for achieving
search under Grant NO0014-99-1-0465. lossless multiplexing and used them in order to extract mul-




tiplexing gains from the statistical independence of trafficwe describe the MPEG video source model and analytically
processes subject to the constraint of a small buffer-overflowderive the cell-loss ratio ratios of a set of real-time channels
probability. They employed the leaky-bucket-regulated pefor both single-hop and multi-hop cases. Section 4 presents
riodic on-off process as their input traffic model to this end.a simulation study with real MPEG video data and compares
In order to calculate the overflow probability in the buffered our approach with the effective bandwidth approach. The
multiplexing system like an ATM multiplexer, they devel- paper concludes with Section 5.

oped a virtual buffer/trunk system. This model enabled them

to transform the two-resource (buffer and link bandwidths)2- Background

reservation problem into a single-resource reservation prob- p . iging statistical real-time communication service re-

lem. By using this model, they were able to use the Chemoff, i.aq source-traffic modeling, resource reservation, and
bound as a buffer-overflow probability estimate. Althoughan appropriate scheme for cell-multiplexing and buffer-

their approach is mathematically elegant, the estimate basgfl,nagement.  This section describes the cell-scheduling
on the extremal on-off process is quite pessimistic as W& heme employed in our approach.
shall see in Section 4.2. We first define astatistical real-time channeis a uni-

~ In this paper, we propose a framework to provide statisyjrectional virtual circuit that guarantees the probability of

ATM networks based on Traffic-Controlled Rate-Monotonic -

Priority Scheduling (TCRM) [20]. The TCRM was origi- Pr(end-to-end cell l09s< 7. (1)
nally proposed as a cell-multiplexing scheme for realizinga|though a statistical real-time channel can also be defined
deterministic real-time communication in ATM networks. in terms of delay as was done in [5], we consider only
While itis simple to implement, the TCRM achieves a goodthe cell losses due to buffer overrun, because the modified
channel accommodaity. The TCRM, however, does not TCRM used in our scheme can guarantee the delivery dead-

allow statistical multiplexing among real-time connections.jine of every cell as long as it is not lost due to buffer over-
We make a slight modification to the TCRM so that it may ryn. (More on this will be discussed in Section 3.4.2.)

allow statistical multiplexing among a set of real-time con-
nections. The modified TCRM retains the property of pro—z-l TCRM

viding a CBR (Constant-Bit-Rate) pipe to each individual The TCRM [20] is a cell-scheduling scheme for output-
virtual channel. Therefore, every cell of each virtual Chan'queueing ATM switches in order to provide a guaranteed
nel is guaranteed to be delivered within a certain bound aghroughput to individual deterministic real-time channels
long as itis not lost due to buffer overrun. By employing the sharing a common outgoing link. It emulates circuit switch-
histogram-based model [29] as the input traffic specificationng during a period longer than the cell inter-arrival time
for video traffic data along with the modified TCRM, we of each real-time channel. The TCRM consists of a set
analytically derive a statistical bound for the average cell-gf traffic controllersand arate-monotonic priority sched-
loss ratio of each statistical real-time channel. The TCRM'syjer. A traffic controller is assigned to each individual real-
ability to provide CBR pipes is crucial to our analysis. Sim- time channel and the rate-monotonic priority scheduler is
ulation results are shown to support our analysis. shared by all the real-time channels running over the link.

Our approach differs in several aspects from the effectiverhe function of a traffic controller is to keep the cell-arrival
bandwidth approach [7, 12] in providing statistical real-timerate at the scheduler below the pre-specified throughput,
communication services. First, our approach can providg,, by holding early-arrived cells until their expected ar-
a framework that can control the capacity of a trunk overrival times. The rate-monotonic priority scheduler trans-
which statistical real-time channels are multiplexed usingmits cells according to the priies of real-time channels
the TCRM. Therefore, it can be used not only for a largeto which the cells belong. Priorities are assigned in the or-
ATM network but also for a small system that multiplexes der of throughputp;, requested by the end-users. That is,
only dozens ofeal-time channels. Second, compared to theeal-time channels that request higher throughputs are as-
effective bandwidth approach, ours provides much tightesigned higher priorities. With the schedulability test in [20],
cell-loss estimates that can be used for channel-admissiafe rate-monotonic priority scheduler guarantees minimum
control. Lastly, we can reduce the complexity of channelthroughpup; to real-time channel Assuming that an iden-
admission control by adjusting the number of bins in the his+ical bandwidth/throughput is reserved at every link along
togram while the Chernoff bound approach requires solvinghe path, the traffic controllers need buffer space for only
non-linear equations in calculating cell-loss estimates. one cell for each channel.

The remainder of this paper is organized as follows. Sec- The deterministic real-time communication service pro-
tion 2 defines a real-time connection with statistical perfor-vided by TCRM has two disadvantages due to its strict sep-
mance guarantees (i.e., a statistical real-time channel) araftation among real-time channels. The first is inefficient uti-
reviews the the characteristics of the TCRM. In Section 3 Jization of link bandwidth and buffer, and the second is the



many multimedia systems. How to characterize MPEG-
coded video streams has been investigated by several re-
searchers [16, 24, 15, 18, 19]. They addressed the model-
ing of MPEG streams using a model fitting or an analytic
approach. However, none of them presented an analytic so-
lution to the bandwidth-allocation problem for multiplexed
video streams. For instance, in [18], Kruetzal. character-
ized a video stream using its frame-size histogram and gen-
erated synthetic streams possessing the same characteristics
as the original stream. These synthetic streams are then used
for a simulation study of bandwidth-allocation and buffer-
R TS dimensioning problems. Compared to the analytic approach
) considered in this paper, their approach doesn't scale well
i ) . (i.e., has a limitation in dealing with a large number of mul-
Figure 1. Arrival rate of MPEG-coded video se- tiplexed video streams).
quence: Starwars Skelly et al. [29] proposed a histogram-based model in
order to describe a slow-varying VBR video traffic source
complex channel management that results from the requirdike a motion JPEG video. In their model, the traffic-
ment of monitoring each individual real-time channel sepa-generation rate from a video source is assumed to be con-
rately. By allowing real-time channels to be multiplexed sta-stant during a fairly long period since the bit rate of a mo-
tistically, our new framework for statistical real-time com- tion JPEG video changes very slowly. Based on this as-
munication utilizes network resources more efficiently and sumption, Shroff and Schwartz [28] derived an analytic so-
at the same time, provides simpler channel management Hytion to the bandwidth-allocation problem for multiplexed
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monitoring asetof statistical real-time channelsgether video streams which were deterministically smoothed at
o . their sources.

3. A Framework for Statistical Real-Time The bit rate changes more rapidly in an MPEG video than

Communication in a motion JPEG video, but this change can still be consid-

Using the guaranteed throughput service provided by théared slow compared to a cell’s worst-case link delay if the

TCRM, we now build the framework for statistical real-time ratio of buffer size to the output rate is sufficiently small.

L : . If video frames are decomposed into ATM cells for trans-
communication on ATM networks. We first describe the ." . - . .
) . mission and cells are injected into the network after being
model of MPEG video traffic sources.

deterministically smoothed within each frame period, then
3.1 The Histogram-Based Model for MPEG Video the cell-arrival rate remains constant in each frame period.
Traffic Sources For example, if a video buffer can hold 100 cells and the
: . output rate of the buffer is 2000 cells/frame, the worst-case
) In order to.reduce the large amognt of multimedia traf- ell delay at the buffer is 1/20 of a frame periddnd thus,
fic such as V|d.eo, audlq and graphical data, a number he bit-rate change is slow relative to the worst-case cell link
data compression techniques have been proposed and usq lay.

Compression attempts to keep the quality of played-back Under this assumption, we can derive the cell-loss be-

data at the receiving end constant at the expense of Chanf‘:‘kavior of aggregated video streams using a similar approach

ing the bit rate. Consider an MPEG-coded movie Sequence, -+ in [28]. To this end, we extend the use of the
Starvyarsl in Figure 1. The sequence .ShOWS extrgmely highhistogram—based video modell for an MPEG-coded video as
burstiness as (Intra-coded) /> (Predictive) and3 (Bidirec- follows. Let's assume that all the video streams have the

tional) frames alternate. Accurate characterization of thesg me frame period;, and that transmissions of ATM cells

compressed data streams is essential for real-time transp%lrre randomly scattered within a frame period, i.e., random
of such data over ATM networks.

M del ious| d for VBR vid smoothing at the source. The cell-arrival rate is measured in
un dearm\ya:?:use(?ovrﬁeprreespsri%\go:cshira?sp([)ge 8 iro 14 \;'9 eg ach frame period. We can then think of the arrival process
rerm S 72 formed by a video stream as a modulated Poisson process
15, 16, 22, 23, 24, 25, 29, 18, 19]. Since the VBR be y P

"whose modulating process is the cell-arrival rate sequence

havior of a video stream strongly depends on the COMPTeS5t the entire stream. Since the cell-arrival rate changes

sion technique used, many of these models do not char-
acterize MPEG-coded video which is widely accepted as  2yge that this is acell link delay bound. To calculate the end-to-

a standard for transmission and storage of video data iend frame delay bound, we should consideritmioal delays such as
source/destination processing delays and smoothing delay at the source
1The original sequence was generated by Garrett and Vetterli [9]. since we assumed source smoothing.
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frame-by-frame, the modulating process keeps it constant
during a certain frame period. The probability mass of a
certain cell-arrival rate can be obtained from the histogram
of frames’ cell-arrival rates. When multiple video streams
are multiplexed, the input process of the aggregate traffic
can also be modeled as a modulated Poisson process if all
the component streams are synchronized frame-by-frame,
i.e., frame-transition times of all the component streams
are synchronized. The frame-transition time is defined as
a time at which the transmission of a new frame starts, and
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denoted bykT" wherek = 0,1,2,.... During a time in-
terval, (kT', (k + 1)T1], each comonent stream generates o ‘HHI_H_M—M—\”—‘ L
a Poisson traffic. Since the superposition of Poisson pro- ~ ° % % 0 A e tncesinamey o 1% 10 %%

cesses forms another Poisson process, the aggregate traffic
becomes a Poisson process during this interval. Consider-
ing full-length videos, the aggregate traffic becomes anothegommon “macro” real-time channel which is guaranteed to
modulated Poisson process. In this case, the modulating preeceive the minimum tlmughput provided by the TCRM. A
cess has the same form as that of a single video stream, angacro-channel is defined as a single-hop real-time channel
the probability mass function (pmf) of the cell-arrival rate with parametersg( V) over a link wherg is the bandwidth
of the aggregate traffic — called thate pmf— determines  (in bits/sec) guaranteed to this channel by the TCRM &ind
the probability masses of cell-arrival rates in the modulateds the size of buffer needed at the traffic controller of this
Poisson process. The rate pmf of the aggregate traffic is olzhannel. Recall that the buffer space for only one cell is re-
tained by taking the convolution of the rate pmfs of all com- served for each real-time channel at its traffic controller in
ponent streams. the original TCRM. In this paper, we change the TCRM'’s
The modulated Poisson process model described abouguffer size from 1 taV in order to reduce the cell-loss prob-
may appear unrealistic due mainly to the condition that allability when multiple cells arrive at the macro-channel in a
the component streams are synchronized frame-by-frameery short time. The cell-drain rate from the buffer is en-
However, it can be shown that the synchronized traffic-sured to bep/ L using the cell logical arrival times. Since
arrival scenario is the worst case of cell losses for multi-the admission control in [20] requires onfyas a parame-
plexed video stream$One can then obtain an upper boundter, the change of the buffer size does not require any other
of cell-loss ratio for any frame synchronization scenario us-modifications in the structure of the TCRM.

ing the modulated Poisson process model. Within a macro-channel, we do not differentiate statis-
When a large number of video streams are multiplexedijca| real-time channels from one another. All the cells
the assumption of using random smoothing at the source cagyriving at this macro-channel are transmitted on a FIFO
be relaxed since a large number of similar and independentirst-In-First-Out) basis. This policy simplifies signifi-
sources can be considered as a Poisson process [4]. Thygntly channel management within a macro-channel com-
as long as the cells of a frame do not arrive in burst as gared to the case of treating individual statistical real-time
result of some form of smoothing— whether it is random orchannels separately. Note, however, that the cells of a
deterministic — at the source, we can model the cell arrivalgnacro-channel are serviced separately from those of the
of the aggregate video as a modulated Poisson process.  other macro-channels, deterministic real-time channels, and
Figure 2 shows the histogram of the traffic-generationpest-effort traffic. Since all statistical real-time channels
rate of the sequence in Figure 1. The MPEG sequence isharing a common macro-channel are teatqdallyon a
IBBPBBPBBPBBIBB.... Sincel frames appear once F|FQ basis, all cells in the macro-channel are given the
every 12 frames, the frequency of large frames in the hissamdoss probability irrespective of the cell’s channel mem-
togram is very low compared to that of small frames. bership. This implies that individual statistical real-time
3.2 Macro-Channel channels sharing a common macro-chann.el have the same
cell-loss ratio of the macro-channel. That is, the statistical
In our approach, a QoS guarantee is given se@f sta-  |oss guarantee of a macro-channel implies that of each of
tistical real-time Channels, rather than to a Single real-timQtS Component Channe|s’ hence a”owing us to focus on the

channel as in the deterministic approach. Specifically, wenacro-channel (or a “bundle” of statistical real-time chan-
use a statistical real-time channel to transport a video streamgls).

These statistical real-time channels are multiplexed onto a Gjyen input traffic specifications of all of its component

Figure 2. Arrival rate histogram of  Starwars

3Because of space limitation, we @tad the proof. For the details, see  Statistical real-time channels, we can derive the Parameters
[21]. (p, V) of a macro-channel based on its QoS requirement, or
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Figure 4. An M/D/1/N queueing system.

\ convolution of the rate pmfs of component sources, as dis-
cussed in Section 3.1. We also assume that all the statistical
real-time channels multiplexed are synchronized frame-by-

frame.
Aem— Macro-Channel According to the MPEG video source model in Section

. 3.1, an aggregate of multiple video streams has a constant
Figure 3. Macro-channel cell-arrival rate during a frame period, and the cell-arrival
its cell-loss ratio bound. process during this period forms a Poisson process. Dur-
Figure 3 shows a scenario in which various statisticaind the next frame period, the cell-arrival process forms an-
real-time communication services are provided. Macro-Other Poisson process. Suppose a macro-channel is fed with
channels with different parameters, (V) are established such a modulated Poisson process. Then, the buffer of the
in order to provide different QoS guarantees in a singlemnacro-channel can be considered as a queueing system with
ATM network. Although Figure 3 shows one macro-channel@ modulated Poisson process input. Once a new frame pe-
per link, one can establish an arbitrary number of macroliod started, after some transient period, the queueing system
channels with different cell-loss ratios over a link as long ageaches the steady-state during which the arrival process is a
there are sufficient resources. Poisson process with a certain rate. During the transient pe-
A statistical real-time channel’ may run through a fiod, the queueing system either serves cells arrived during
(fixed) multi-hop path between its source and destinationthe previous frame period or spends time reaching a steady-
In such a case, since a macro-channel is established ovéfate queue level. If we assume the smalll ratio of buffer to
eachhop, we need to concatenate a series of “appropriate®utput rate discussed in the previous section, the transient
macro-channels each of which is selected from the macroPeriod can be considered negligible compared to the length
channels established over each link along the path, and mu®f the steady-state, and thus, the cell-loss behavior of the
tiplex the statistical real-time channél into them. By an  queueing system can be approximated using the steady-state
“appropriate” macro_channeL we mean that it must guarananalySiS. The small ratio aSSUmption isvalid in a Variety of
tee the cell-loss ratio required for this statistical real-timeapplications since most real-time video communications re-
channelC'. We will discuss how to choose macro-channelsduire a very small link delay bound. Under this assumption,
when we consider admission control later in this section. the cell-loss behavior of a macro-channel can be analyzed in
Given the above setting, the problem is how to determindWo steps as follows. First, we fix cell-arrival rate to a con-
the bandwidttp and the buffer spac# needed to meet the Stant, saya (cells/frame), and analyze the cell-loss behavior
given delay and cell-loss requirements. Since the TCRMf the system with a Poisson arrival input whose ratg.is
bounds the de|ay overach link when the buffer siz& and Then, USing the rate pmf, we calculate the Welghted sum of
the minimum throughput are fixed, we will first concen- ~ Cell-loss ratios in order to obtain the cell-loss statistics of the
trate on the cell-loss ratio. overall system.
Assume that the throughput guaranteed to macro-channel
Jj is p and that the buffer space reserved at the traffic con-
We want to derive the cell-loss ratio of a macro- troller for macro-channel is V. Then, the buffer of macro-
channel using the histogram-based model for aggregatehannelj can be seen as aW/D/1/N queueing system
video sources. For now, we consider only the case in whiclsince the cell inter-transfer time from the traffic controller’s
all statistical real-time channels are established over only &uffer to the rate-monotonic priority scheduler is constant,
single hop, so that all the cell streams are fed into a macrowhich is L/p. Thenu = p/L is the service rate (in
channel directly from external sources. We will in Sec-cells/frame) of the queueing system as illustrated in Figure
tion 3.4 relax this assumption. 4. Although there can be multiple queueing systems when
In order to determine the cell-loss ratio of a macro- multiple macro-channels run through a link, we specify only
channel, we need the input traffic specification of the ag-a single macro-channel since different macro-channels are
gregate of statistical real-time channels multiplexed over theirtually isolated from one another, thanks to the TCRM’s
macro-channel. Since the histogram-based model is chosdrirewall property [20].
for source traffic, we need the rate pmf of the aggregated sta- When the cell-arrival rate i8 inan M /D/1/N system,
tistical real-time channels. It can be obtained by taking thehe cell-blocking probability?;(A) can be calculated using

N\
//—

3.3 Cell-Loss Ratio within a Macro-Channel



the followingO(N'?) algorithm [6]: 3.4.1 Effects of Switching

o =1 As cells are switched and routed from one macro-channel
0= to another, the traffic pattern may change depending on the

k traffic condition ateach macro-channel. This raises two
Shyr = a5 (8h — > djar—jp1—ar), 0 < k<N —1, questions on our assumptions about the traffic from ag-
j=1 gregate sources in a single hop. One is #oeuracy of
n -1 the Poisson-arrival assumption on the traffic from aggregate
bo,n = (Z ¢r) , n=0,... N sources. The other is the derivation of the new cell-arrival
k=0 rate histograms at intermediate nodes;duse the histogram
PN =1—(don+M)Y, n=0,.. N defined at the source may change depending on the condi-

tions of the intermediate nodes. That is, if other statistical

Py(A) = By n(A), real-time channels sharing the same macro-channel at the

where upstream nodes have large amounts of traffic, a statistical
_ (M w)* e real-time channel may lose a large portion of its cells at those
k k! ' nodes and the rate pmf at the downstream links may change.

®o,n represents the probability that a departing customer For the time being, let's assume that the histogram de-
finds anM/D/1/n system empty [6]. The computation fined at the source node remains unchanged at all intermedi-
time of this recursion increases with the buffer sixe,For  ate nodes. In general, the output process oD /1/N
fast admission control, it is critical to reduce this time. For-queue is not a Poisson process and cell inter-departure times
tunately,? »(A) converges taP;(A) rapidly asn increases  are correlated [11]. This poses difficulty in analyzing a
towardN except when\/ is close to 1. For example, when multi-hop statistical real-time channel. This is also the case
AMp=2andN = 100, ¢o,0, ¢o,1, 0,2, $03, andgos  in an M/M/1 system analysis. In th@//M/1 system,
are, respectively, 0.5317,0.5062,0.5012,0.5003, and 0.500¢he packet inter-arrival and service times are correlated. To
Therefore,¢, . converges rapidly t@o 100 = 0.5000. In-  handle this difficulty, Kleinrock proposed to use “Indepen-
tuitively, when /i << 1, the cell-blocking probability of  dence Approximation” in analyzing a communication net-
anM/D/1/N approaches zero rapidly as the buffer size in-work using a general queueing network like the Jackson net-
creases. When/u >> 1, ¢o » approaches zero rapidly as work [17]. It asserts that, in af//M /1 system, merging
the buffer size increases. SB,(A) is given byl — /X, several cell streams on a transmission link has an effect akin
In addition, sinceg), is non-negative [6]¢o ., iS @ NON-  to restoring the independence of inter-arrival times and ser-
decreasing sequence for akyyu. Therefore P, ,(A) upper-  vice times. In particular, he emphasized the independence
bounds?;(A) forn = 0, ..., N. Using these properties, one of service times of a packet at different nodes, which is not
can obtain an upper bound & () which is very close to  true in real communication networks. Since the length of a
Py(A) within a reasonable amount of time except whgp  cell is fixed in ATM networks, the correlation of cell-service
is close to 1. time is not important in our problem. What matters in the
The cell-loss ratio of the macro-channgl,..,., isgiven A1/ D/1/N analysis is the independence of cell inter-arrival
as the weighted sum of cell-loss ratios where weights aréimes. As with Kleinrock's independence approximation,
given by the rate pmf of the aggregated video sources. Thusve assume that the cell inter-arrival time at a macro-channel
ZJ'\Q PoOA) fihe at an intermediate link is exppnentially-distributed if multif
Praero = Si=L_ R0 (2)  plecell streams routed from different macro-channels on dif-
Zf‘il Jii ferent links and externally-fed cell streams are merged into
this macro-channel. Then, the new aggregate traffic arriving
at this new macro-channel can be approximated as a Pois-
son process, thus enabling the application ofkheD/1/N
analysis result at any macro-channel as long as the number
of multiplexed real-time channels are large enough and the
3.4 Cell Losses in an End-to-End Connection routing processes are uncorrelated. Our simulation study in
In Section 3.3, we considered only the single-hop case irpection 4.2 confirms the validity of this assumption.
which the Poisson-arrival approximation holds. However, in  Next, let's consider the rate-histogram of a video stream
general point-to-point networks, cell streams take multipleSwitched and routed inside the network. As the traffic
hops before arriving at their destination nodes. In our framefraverses downstream nodes, the original traffic pattern at
work, a statistical real-time channel is multiplexed oveea  the source node will change and may, in general, become
ries of macro-channels on the links along the channel pathburstier. However, in the rate-histogram model, we assumed
We first describe our assumptions on the traffic switched anéhat the cell-arrival process is a Poisson with a certain rate,
routed via multiple hops and then derive the cell-loss ratioSay;, during a single frame period. During the same period,
bound for the end-to-end connection.

where M is the number of intervals (bins) in the histogram
and f; is the probability mass of arrival ratg which is ob-
tained from the histogram of the cell-arrival rate of the ag-
gregate traffic.



this cell stream is multiplexed with streams of other statisti-where/ is the number of hops the statistical real-time chan-
cal real-time channels onto a macro-chaniél, After de- nel takes andP,q.r.; is the cell-loss probability of the
parting from macro-channélf,, the cell stream is separated macro-channel at th&" hop. Notice that althougB,, a0 ;
from the other statistical real-time channels and then multiis the cell-loss ratio of the macro-channel at §#e hop, it
plexed onto a new macro-channéf;,. While being multi- is also the cell-loss ratio of individual statistical real-time
plexed atM,, some cells of this stream may be lost due tochannels multiplexed onto the macro-channel.

buffer overrun. Therefore, the number of cells of the stream  Although we focused on deriving a cell-loss ratio bound,
at M, cannot be larger than that af,. Over the frame it must be stressed that our approach also guarantees sta-
period considered, the arrival rate of this streandfat de- tistically each real-time cell’s delivery delay. That is, the
noted by/(}), cannot be larger than that &,, A. That  probability thata cell is dellvered to its destination before its
is, I(A) < A. Now, let’s consider the entire stream which deadline is larger thaﬁ[ L(1 = Prgero ) This is because
was modeled as a modulated Poisson process in Section 3d.cell which has “survwed” buffer overruns on its way to the
Let the rate pmf of the process be givendy, fi}i=1, receiver is guaranteed to be delivered withioainded time
wherel is the number of bins anfi is the probability mass because buffer size is fixed and the minimum buffer drain
of arrival rate);. Let A, andA, denote the arrival rates of rate is guaranteed at each link by the TCRM. The end-to-

the stream ai/, andM,, respectively. Then, end delay bound of the statistical real-time channel is given
M as:
Pr{idy>I()} = D I(A)-fi K
i=k Dend—to—end = Z(N] + 1)L/p] (7)

j=1

M
< D> Ak
— where N; and p; are the buffer size (in number of cells)
= PriA, > A} (3)  and the bandwidth of the macro-channel at fHehop, re-
) spectively, andV; L is the maximum backlog at the macro-
Sincel(Ax) < Ak, channel upon arrival of a cell. The reason for adding 1 to the
Pr{iAy > A} < Pri{Ay > I(Xp)}. (4)  buffer size is to account for the delay at the rate-monotonic

riori h ler n be seen in Figure 4.
Thus, priority scheduler, as ca g

Pri{dy > Ap} < Pri{la > Ar}. (5 3.5 Admission Control for Channel Establishment
This relation shows that the rate pmf of a video stream at Requests
intermediate nodes igrobabilistically boundedrom above
by the rate-histogram at the source node. That is, When the establishment of a statistical real-time chan-
nel is requested, the network service provider must execute
channel-admission control in order to guarantee the QoS
promised to a new channel as well as existing real-time
In terms of QoS guarantees, it is still effective to use thechannels. One approach to channel admission control is to
traffic characteristics calculated at the source nodes in omse a set of pre-established macro-channels. Each local link
der to calculate the convolution of the rate pmfs of com-has its own set of pre-established macro-channels. Each
ponent video streams at intermediate nodes since the celnacro-channel’s buffer size and bandwidth are fixed, and
loss probability can still be bounded by using the same trafits QoS parameter (i.e., cell loss ratio bound) is also fixed.
fic characteristics. It allows for simple run-time channel-When a new channel request arrives, the network service
establishment at the expense of slightly conservative reprovider selects a macro-channel for each local link from the
source reservation. The amount of over-reservation of repre-established macro-channels such that the end-to-end de-
sources at intermediate nodes is negligible when the cellay and cell-loss bound given by Eq. (7) and Eq. (6), respec-
loss probability is quite small, which is the case of most statively, are smaller than the user-requested bounds. Then,
tistical real-time applications, as will be discussed in Sectiorat each local link, the rate pmf of a new aggregate stream
4.2. consisting of existing channels multiplexed onto the chosen
) , macro-channel and the requested channel is derived using
3.4.2 Cell-Loss Ratio Boundin an End-to-End Connec- o, 01ution. Using Eq. (2), one can calculate the maximum
tion cell-loss ratio of the aggregate stream. If the maximum cell-
Based on the abqvg arguments, the enq-to-_end Ce"'loﬁass ratio is less than, or equal to, the pre-specified cell loss
probability of a statistical real-time channel is given by ratio bound of the macro-channel, the requested channel is
K accepted. Otherwise, the request is denied. Forl&-imp
Pr(end-to-end cell I03s< 1 — J[(1 = Pnacro), (6)  statistical real-time channel, such an admission test must be
i=1 executed at every node along the path.

Pr(cell-arrival rate at the source notex) >
Pr(cell-arrival rate at the intermediate nodest).



4. Simulation and Discussion

In order to demonstrate the usefulness of the histogram- .
based model for statistical real-time communication, we c o .
have conducted an in-depth simulation study using MPEG- 3 4 O
coded video traces. Since every cell which survives buffer 7
overruns is delivered in time by the TCRM, we will consider
only the cell-loss ratio as the QoS parameter. . / erow A ¢
Group2: A= C—=D—=E
4.1 Simulation Model Group3: B~ C~D
Group4: B= C
Figure 5 shows the topology of an ATM network used Group5: C> D> E
for the simulation study which consists of 5 nodes and 4 Group6: D~ E

links. All the links are simplex, and thus, cells are trans-
mitted only in the direction of arrows shown in the figure.
Also, for the sake of simplicity, we assume that there exists
only one macro-channel over each link. That is, there is no
deterministic real-time traffic, and other statistical real-time
traffic or non-real-time traffic except for the statistical real-
time traffic is multiplexed over the macro-channel @sch
link. Since the TCRM provides a virtual circuit with a guar- %/
anteed throughput over an ATM link, a macro-channel can oy
be considered as a CBR pipe with throughpahd the input 002
buffer of sizeN. 0.015
In this network, we multiplexed 20 statistical real-time oot
channels on each link. The starting frames of each statisti- o.0s|
cal real-time channel are randomly selected fromthe clipsof CN
movie Starwarsin Figure 1, and 17 different MPEG-coded oI IO e ansramey (0 %0 1000
video clips? The length of each stream 1800 frames, and
each run lastskaut 50 seconds since we set one frame in-
terval to 1/24 second. First, we conducted an experiment
using streams only from th&tarwarssequence in order to
study cell-loss ratios in a homogeneous-traffic environment. ) ) i
Using convolution, we derived the pmf of the arrival rate &€ transm!tted, but oply external input traffic from node A
of the aggregate of 20 streams in Figure 6. We derived re transmitted. On _Ilnk 3, group 2 anq 3 are routed from
20-bin histogram from the sequence, which requires simpl nk 1 and 2, respectively, and group 5 is directly fed from
operations for the convolution. The average ceII-generatior'i‘Ode C ) , .
rate of the aggregate traffic is about 822 cells/frame and the PUring the simulation, the cell transmission from each
maximum cell-generation rate is about 9,000 cells/frame. Source is randomly distributed over one frame duration,
Next, in order to investigate the heterogeneous-traffic®"d all the cells belonging to a frame must be transmitted
case, we have conducted a similar experiment using 17 diffom the source within one frame duration. At intermediate

ferent sequences. We selected as many streams as nee&‘&ﬁjes’ cells are transmitted on a FIFO basis regardless of

for the simulation from these sequences. In particular, Wéhewchannel identities.

chose 14 streams once and the other streams twice in ord4r2 Simulation Results

to feed 20 channels which are multiplexed over link 1. In , . - .

this case, the average cell-arrival rate of the aggregate of 2 In order to investigate the validity of our assumption on

streams was 988 cells/frame and the maximum was abotf€ Poisson arrival process at intermediate nodes, we have
12.000 cells/frame considered a case in which some links, in addition to the

rsouted traffic from upstream links, are fed with external in-
puts. We have assigned 13 channels to group 1, 6 to group

Figure 5. For example, group 2 consists of channels whos§g’ 7o group 3, 13 to group 4, 6 to group 5 and 7 FO group
sources (destinations) are node A (node E), and that pa SO that 20 streams traverse each link. Note that link 1 and

through node C and D. Only the channels of group 1 and nll<:2 E}[re not fed \{\gth an);]routed traffic. traff . i
traverse link 1. As a result, through link 1, no routed ceIIsi IFSt, we consiger a homogeneous traffic environmen

n which we multiplex only streams from tHétarwarsse-
4These sequences were generated by Rose [27]. guence. We have varied the bandwidth assigned to a macro-

Figure 5. The network topology for simulation

Figure 6. Probability mass function of arrival
rate of an aggregate of 20 statistical real-time
channels of Starwars

To investigate the various cases, the multiplexed stream
are groupeaccording to their paths: sixgups are shown in




N more detailed informatior.g, the rate histogram as used in
ST | our approach, it only considers an unbuffered multiplexing
T system. We also show the approximation by a Gaussian dis-
tribution, which is based on Central Limit Theorem (CLT)
1 [12]. Both approaches employed the buffer-overflow prob-
Leos |- | ability as a QoS parameter while ours uses the cell-loss ra-
bssins tio. For the purpose of comparison, we derived the cell-loss
ted0 | e ik 1 estimates from the buffer-overflow probability obtained by
both methods [26]. The parameters of the on-off process de-
rived from theStarwarssequence are as follows. The peak

le-02 -

le-04 -

1e-06
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le-12 - Gaussian approximation ----+---

ety 1000 ot a2 ot 2000 2500 rate is 230 cells/fram®, the mean rate is 41 cells/frame,
and the bucket size of the leaky-bucket regulator is 462,858
Figure 7. Cell-loss ratio in all external input cells. The on and off periods derived from the parameters
case — homogeneous traffic are 2,450 frame intervals and 11,256 frame intervals, re-

spectively. By substituting these parameters into the Cher-
. ) noff bound estimataccording to the stepuggested in [7],
channel established over each link from 700 cells/frame Qe plotted the result in Figure 7. In addition to the Cher-
2,300 cells/frame. The buffer sizé is 50 (cells), and thus, ¢ bound, Figure 7 shows a moeecurate refined Cher-

the worst-case cell delay in a single hop is 1/20 frame pe; o hound by Bahadur and Rao [2]. Compared to our anal-

riod, i.e., 2.1 msec if the throughput guaranteed to a Macroysis result based on the the/D/1/N system, both the

channel is 1000 cells/frame. This is small enough to satisffsparnoff bound and the refined Chernoff bound estimates
the steady-state condition presented in Section 2.1. The Cel.lire too pessimistic. Considering the fact that Elwalid’s ap-

loss ratios are compared to the analysis of\dAD/1/N  r540h is based on the extremal traffic description, one can
system in Figure 7. We only show the average cell-0ss razniicinate the pessimistic result in Figure 7. In contrast, the

tios pecgqse thelo§s guarantees provided to a macro-chan /D/1/N analysis based on the rate histogram provides
and individual statistical real-time channels are the same, very accurate cell-loss estimate with only a 20-bin his-

When utilizations of macro-channels are low, the cell-l0ssq 4 for which it is not difficult to compute convolutions.
ratios of all links for the two systems do not show any NO-gpecifically, when the cell-loss ratio bound is setl o

table difference. All the cases simulated show that the cellg,r scheme requires reservation of 1,712 cells/frame while
loss ratios are bounded by tié/D/1/N result® On the

NG . Bahadur and Rao’s approach requires reservation of 2,650
other hand, when utilizations of macro-channels are high

cells/frame.
the cell-loss ratios of link 3 and link 4 are smaller than the . . L
bounds while those of link 1 and link 2 match the bound al- In the CLT approximation, buffer size is ignored and only

) ; . .. . bandwidth is considered as a reservable resource. Ignor-
most exactly. As we mentioned in Section 3.4, the tail distri- 9

buti fh te traffic at link 3 and link 4 d ing buffer size may result in pessimistic cell-loss estimates.
utions ot the aggregate traftic at fink 5 and in ecreas owever, as argued in [12], the CLT approximation is shown

because of the cell losses at the upstream links, despite tfgg b LS A
; L ' e too optimistic in estimating cell losses for very burst
fact that the decrease is negligible when the cell-loss prob; b 9 y y

o ) . i traffic like MPEG since it tends to ignore the long tail of
ability is small. This explains the smaller cell-loss ratios at g g

. : . the rate distribution of a bursty source. By contrast, the
I!nk 3 and link 4 which have the routed .(?elllstreams from M/D/1/N analysis provides a reasonable cell-loss ratio
links 1 and 2, when the cell-loss probability is large. From

this ob i lude that if h ound that lies between the Chernoff bound estimate and
is observation, we conclude that if we use a macro-channg} .~ \ssian approximation,

with a high cell-loss ratio bound, our scheme will result . . .

) . We have conducted the same experiment using 17 differ-

in over-reservation of network resources. However, for a

. . ent video clips in order to study the validity of our model in
macro-channel with a very small cell-loss ratio bound (e.g., ) )
_4 . . a,heterogeneous-traffic environment. We followed the same
10~%), our scheme provides accurate cell-loss estimates, and -
o procedure as before and plotted the result in Figure 8. The

thus, enables efficient use of network resources.

: . nly difference is choice of the peak rate of the on-off pro-
In Figure 7, we also show the Chernoff bound estimate quess. Instead of 99.9 percentile, we used the average cell-

the cell-loss ratio which is calculated using the derived perl-generation rate of frames as a peak rate in order to favor

odic on-off random process suggested by Elwalidl. [7]. Elwalid et al's approach, but it is not justifiable in a strict

This approach was chosen since it a!lowg us to analyze thgense since the original peak cell-generation rate is neces-
cell-loss behavior of a buffered multiplexing system. Al-

though the Chernoff bound estimate can be derived using 6o iginally, the peak rate for achieving lossless multiplexing was 483

cells/frame, but it resulted in too pessimistic a cell-loss ratio estimate. So,
5In all the cases in this simulation, 99 % confidence-level intervals arewe instead choose the 99.9 pertlerfrom the cell-arrival rate histogram
10—*, so any value below0—* is considered to be noisy. as a peak rate.
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Figure 8. Cell-loss ratio in all external input
case — heterogeneous traffic

Figure 9. Cell-loss ratio in no external input
case — homogeneous traffic

sary to obtain the parameters for a lossless multiplexing sys- =
tem [7]. Figure 8 shows the simulation result on link 1 only

since each link has a different trunk capacity depending on te01
the characteristics of the aggregate traffic. However, we ob-
tained similar results on the other links. In the figure, the ro2 |
M/D/1/N analysis provides a good estimate of cell-loss
ratios as in the homogeneous-traffic case, as compared to
the Chernoff bound estimate and the CLT approximation. Fay
The Chernoff bound estimate is a little closer to the simula- [og s

Loss
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tion result than the homogeneous case due to the choice ofa ™| [ siler 10 eSS
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Next, we considered the case in which there exists only o2 o4 os oo s 1
routed traffic without any external input traffic at interme-
diate nodes: we disabled group 5 in Figure 5 and changed
the number of channels in each group accordingly. We aseases, and thus, the histogram-based model satisfies our re-
sign 10 channels to each ofayps 1, 2, 3, 4 and 6. Note quirements regardless of the number of statistical real-time
that the number of channels multiplexed oeach macro- channels multiplexed. Moreover, the statistical multiplex-
channel on each link is kept at 20. In this case, there is ning gain is shown to increase with the number of channels
external input traffic at the macro-channel on link 3. In Fig- multiplexed. However, in order to establish a macro-channel
ure 9, we only show the homogeneous-traffic case using theith the cell-loss probability of0~*, we need to reserve the
Starwarssequence. The loss at the macro-channel on linkbandwidth which is twice the average cell-generation rate.
3 does not make any difference from that on links 1, 2 andrhis results from the high burstiness of MPEG data and is
4 when the cell-loss probabilities are small. When the cellinevitable in order to satisfy the QoS requirement. Although
loss probability is large (i.e., the reserved bandwidth of thethe macro-channel’s utilization is about 0.5, it does not nec-
macro-channel approaches the average cell-generation raggsarily mean the waste of bandwidth since the unused band-
of the aggregate channel), the cell loss of the macro-chann&lidth by the macro-channel can be used for transmission of
on link 3 is smaller than others. However, the trend is cleabest-effort traffic, as in the case of real-time channels [20].
that the cell-loss probability is bounded by the analysis resul .
and that the difference between the simulation and analysié' Conclusion
results is small when the cell-loss ratio is small. Thus, the |n this paper, we have proposed a framework for statisti-
Poisson-arrival assumption can be applied even when theigl real-time communication in ATM networks. To quantify
is no external input traffic at the intermediate nodes. the cell-loss ratio of a set of statistical real-time channels, we
The statistical multiplexing gain achieved by increasinghave proposed to use a histogram-based model for the input
the number of channels multiplexed is shown in Figure 10 irtraffic specification of MPEG video sources. The histogram-
which the cell-loss ratios are plotted against link utilizationbased model specifies an MPEG video source with the his-
when 5, 10 and 20 channels are multiplexed. The link utitogram of time-sampled traffic-generation rates. Using this
lization is normalized against the average cell-arrival rate oimodel, we have shown that the cell-loss behavior of a set
the aggregate sources. We show onlythéD/1/N bound.  of statistical real-time channels can be characterized by an
One can see that the loss ratios are bounded for all threk//D/1/N system. The simulation results have reasonably

0.6
Link Utilization

Figure 10. Statistical multiplexing gain



well matched the analysis that is based on the assumptioria6] B. Jabbari, F. Yegengolu, Y. Kuo, S. Zafar, and Y.-Q.
including the histogram-based modeling and Poisson arrival
at each link, ahough, in some cases, over-reservation of
network resources has been observed.

[17]
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