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Abstract 

I n  contemporary machine control systems, the mon- 
itoring functions are developed and tested separately, 
requiring additional t ime and effort f o r  their integra- 
tion into a machine control system. Also, the software 
for most contemporary controllers is fixed and very 
application-dependent, so the system m a y  not run cor- 
rectly after such integration since the algorithms are 
time-sensitive. I n  this paper, we show how to modular- 
ize machine tool control systems with object-oriented 
concepts. We  define a set of software components and 
system services for reuse, present some system guide- 
lines based on simulations and test analyses to  help 
users implement controllers that satisfy real-tame con- 
straints. 

We  present the integration of broken tool detection 
functionality into an existing three axis motion con- 
troller, and demonstrate that the integration requires 
minimal effort and skill, and that the hard real-time 
constraints f o r  broken tool signal processing can be 
satisfied with our software architecture. 

Key Words: Machine tool monitoring, real- 
time control, software architecture, open architecture 
controller 

1 Introduction 

Machine tool monitoring improves economy and 
safety when used on-line to monitor run-time status. 
To facilitate integration of machine tool monitoring, 
the machine control systems software must be well 
modularized [12], have public interfaces to system in- 
ternal information [4,6], and have the ability to specify 
control flow [6, lo]. Integration of machine tool mon- 

itoring is difficult in current machine control systems 
since the software modules are designed for specific ap- 
plications and implemented so that no internal compo- 
nent, variable or algorithm is accessible [4,8]. While 
such isolation has advantages, the machine tool mon- 
itoring modules cannot work with other modules to 
control a machine correctly without exchanging some 
internal information. Fixed software also reduces the 
flexibility and portability of a system, and makes it 
difficult to change the control flow after integration. 
Currently, all the control flow information is embed- 
ded in the application code, and such information can 
be extremely hard to understand [6]. 

Machine tool monitoring applications also have 
stringent hard real-time constraints. Since most con- 
trol algorithms are sensitive to time variations [2,7], it 
is important to sample, process and pass data around 
the system in a timely fashion. Such constraints may 
include bounds on signal passing delays and on the 
variances of execution intervals of real-time execution 
modules [5,11,12]. No previous research in this do- 
main addresses this problem at the software architec- 
ture level. 

It is widely agreed that open architecture con- 
trollers can help solve the above problems and en- 
able quick and easy integration of new functionality 
[6,8,12]. But the open architecture controller prod- 
ucts currently in use have very limited capabalities, 
mainly because they only provide ad-hoc openness [9]. 
The software is usually application-specific, and has to 
be modified after integrating machine tool monitoring 

Our software architecture includes components to 
describe machines, infrastructures to define execution 
environments, and mechanisms to specify the control 
flow. These features distinguish our research from oth- 
ers’ in this domain. 

[4,6,81. 
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The rest of this paper is organized as follows: Sec- 
tion 2 describes our software architecture and its or- 
ganization. Section 3 presents how machine tool mon- 
itoring can be integrated into a system with our soft- 
ware architecture. Section 4 provides a detailed exam- 
ple implemented on The University of Michigan Open 
Architecture Controller (UMOAC) testbed. Finally, 
we give our conclusion in Section 5 .  

Figure 2: Hierarchical organization of software classes 

2 Software Architecture 

The software components in our architecture can 
be classified into two categories: generic components 
for machine definitions and standard sys tem services 
for platform descriptions. 

Figure 1 shows relationships among these software 
sets, machines, platforms and applications. 

Application Application P Application Programming Interfaces 

Generic Components Standard system 
for Machines Services 

I \ 

Figure 1: Relationship between software, application, 
machine and platform 

2.1 Generic Components 

A machine control system can be subdivided into 
many smaller components such as axes, spindles and 
sensors. Each component can be represented as an ob- 
ject with the appropriate functionality. A generic com- 
ponent can execute operations defined as its member 
functions to drive a machine component. Machine op- 
eration is a matter of the order these functions will be 
called. We can thus separate the definition of the be- 
havior of a machine from its functionality, and change 
its operation without changing its control software. 

Our generic components are organized hierarchi- 
cally. Blocks on the left in Figure 2 describe the 
hierarchical organization of these generic components. 

2.2 Standard System Services 

Standard system services define a virtual execution 
environment where a generic component can run as de- 

sired, and meet its real-time requirements. Our stan- 
dard system services include definitions of execution 
units, communication mechanisms, and real-time ser- 
vices. 

Execution units. An execution unit is a container 
in which generic components can reside and execute as 
separate processes or threads on a processor. Execu- 
tion units are classified into periodic tasks, aperiodic 
tasks and pseudo-periodic tasks. 

Communication mechanisms. Communication 
mechanisms define how a component exchanges infor- 
mation with other components. We define three kinds 
of basic communication services: shared memory, mes- 
sage passing and signals. 

Real-time related services. Real-time services 
include timing and scheduling services, which pro- 
vide a high-resolution timer and mechanisms for defin- 
ing the scheduling policy (e.g., preemptive or run-to- 
complete, FIFO or Round-Robin) and priority man- 
agement. The platform specifications determine which 
services are available and how they are implemented. 

The blocks on the right of Figure 2 present the or- 
ganization of standard system services in our architec- 
ture. 

2.3 Control Flow Specifications 

Control flow defines how to sequence the operations 
or commands that a machine control system will exe- 
cute at runtime. In many cases, integration of machine 
tool monitoring will not change the setup of the exist- 
ing machine, but only the control flow. The definition 
of appropriate generic components makes it possible 
to specify control flow separately. A Finite State Ma- 
chine (FSM) based mechanism is used as an engine 
to execute a user-specified control flow. A user can 
define and modify the system control flow using this 
mechanism without changing source code. A user can 
also split the FSM for a complex system into several 
small FSMs for subsystems, define and test the control 
flow specifications for each subsystem and put them 
together. Details are available in [lo] 
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3 Adding Monitoring F'unctions 

The open architecture software described above 
provides modularity and openness for machine 
tool controllers, and enables machine tool moni- 
toring software to be integrated into an existing 
control system at different levels. This section de- 
scribes how the machine tool monitoring is integrated. 

Defining Functionality. To integrate machine 
tool monitoring, both new and current functionality 
for machine tool controllers must be defined with 
generic components. The machine tool monitoring 
modules can either be built from scratch using the 
generic components and services, or purchased as a 
software package. 

For existing control software, we assume that the 
interfaces to  exchange information with the machine 
tool monitoring module are present. These interfaces 
enable the machine tool monitoring module to read 
the necessary internal states and data from the 
system and send its commands. 

Defining Execution Model on a Platform. 
To execute the machine controller on the selected 
platform, the modules in the system are grouped 
into one or more execution units, and mapped to an 
implementation on the platform. 

Timing services are also defined with the execu- 
tion units. Users can select a timer for each execution 
unit o r  for a set of closely-coupled units to obtain bet- 
ter performance. Scheduling parameters for execution 
units must also be assigned if the platform supports 
multiple choices. 

Communication channels are created to support 
information exchange both within a single execu- 
tion unit and across different execution units. The 
selection of a communication mechanism depends 
on both system time constraints and the execution 
environment. 

Changing Control Flow Changing the control 
flow involves defining new events for machine tool 
monitoring, modifying the state table of FSM, and 
invoking corresponding the member functions of 
generic components. 

The new events serve to notify the control system 
of abnormal tool states that a tool monitoring module 
may detect, such as tool wear or breakage. A user de- 
fines a new event by giving it a global unique identifier 
(for example, a name or a number). A control module 
to react to the event may have its own definition of 
the same event, called a local event.  

The FSM state table specifies how to map an 
event to member functions of the generic components. 
Integration of machine tool monitoring may require a 
machine to operate in a different way, which implies 
changing state table. 

Verifying Real-Time Constraints. Real-time 
constraints must be verified after the machine control 
modules are defined and allocated to  a selected 
platform. 

Two parameters of each execution unit must be 
checked: execution interval consistency and confor- 
mance t o  deadlines. Consistent execution intervals en- 
sure that information on systems and environmental 
states is collected at the right time. Deadline checking 
ensures that an execution unit can finish the compu- 
tation within the given time slot. 

Time delays for data transfer also must be veri- 
fied. Time delays for message passing are determined 
mainly by three factors: number of execution units in 
the message-passing path, the scheduling parameters 
for these execution units (periods, priorities, etc.), and 
the communication mechanisms used. 

Real-time performance must be verified both for 
the newly-integrated machine tool monitoring mod- 
ules and for old software modules. After integration, 
the behavior of existing modules may have changed 
due to the increased workload and communication in 
the system. 

4 A Case Study 

To demonstrate that our open architecture software 
meets the requirements of machine tool monitoring in- 
tegration, we integrated a broken tool detection mod- 
ule into a motion controller on the UMOAC testbed. 
We study and analyze the effort for integration as well 
as system performance after integration. 

4.1 UMOAC Testbed 

UMOAC testbed is built on a three-axis milling ma- 
chine. The controller software runs in a distributed 
environment on three computers connected point-to- 
point with 10-Base T Ethernet, as shown in Figure 
3. Two Intel/386-based VME machines run the real- 
time operating system QNX, and the third Pentium 
machine runs Windows NT. The existing motion con- 
troller software consists of force acquisition, force su- 
pervisory control and motion control modules. Mo- 
tion control consists of four execution units: the Ax- 
isGroup Control unit to coordinate the motion of the 
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three axes, and one Axis unit each for controlling mo- 
tion of X, Y and Z axis. The execution units of each 
module and their allocation are shown in Figure 4. 

(Tasks) 
Force Acquisition 
Force Supervisory 
Motion Control 
AxisX Control 
AxisY Control 
AxisZ Control 

Figure 3: UMOAC testbed 

m.) 
Periodic 1 20 V M E l  
Periodic 40 16 VME a 
Periodic 10 a0 VME 2 
Periodic 10 21 VME 2 
Periodic 10 21 VME 2 
Periodic 10 21 VME 2 

4.2 Requirements and Design 

The broken tool detection algorithm uses force val- 
ues to determine the status of a tool. A tool breakage 
signal is sent to the motion control module to trigger a 
timely stoppage when an abnormal value is detected. 
The broken tool signal is a real-time signal subject to 
the constraints that the signal passing delay be within 
two execution cycles of motion controller. 

A new module with two execution units is added 
to process the force values and generate a broken tool 
signal. The control flow of the motion controller is 
changed to react the broken tool signal. 

To evaluate performance with different integration 
granularities and accessibility, we integrate the broken 
tool detection module at two different levels. In the 
case of motion control level integration, the signal is 
sent to motion controller. In the other case, the signal 
is sent to each axis control module. 

4.3 Implementation 

Figure 4 shows the modules, execution units and 
the communications in our testbed. 

1 - 1  
VMEZ Penlium I 

Figure 4: Execution units in the experimental system 

Table 1 describes characteristics of execution units. 
Since non-real-time modules are allocated on a sepa- 

rate computer and do not effect the performance of 
real-time modules, we exclude them from the analy- 
sis. 

Execution Unit I Type I Period I Priorityl Location 

Task Coordinator I Aperiodic I N/A I 17 I VME 2 

Signs1 Procc.. I Periodic 1 10 I 18 I VME 1 

New execution unit. for broken tool detection 

Ti01 Status 1 Periodic 1 10 I 18 1 VME 2 

Table 1: Execution units 

The execution units that interact with the external 
world (including force acquisition and Axis  X ,  Y,Z con- 
trol)  and running control algorithms to generate com- 
mands (include force supervisory control, AxisGroup 
Control, signal process, and tool s ta tus)  execute peri- 
odically. Execution units are scheduled using the rate- 
monotonic algorithm [5]. Units with the same priority 
are scheduled and executed first-in-first-out. 

A new event, Ebroken,  is introduced into the sys- 
tem to represent a tool breakage status. This event 
is generated by the tool status to the motion control 
module. 

A new state, bstop, and a transition from the mov- 
ing state to bstop are added into the machine control 
FSM. Figure 5 shows the state diagram changes before 
and after integrating broken tool detection module. 

Figure 5: Simple state diagrams before and after in- 
tegration 

Only the FSM specifications for the machine con- 
trol FSM in the motion control module need changes. 
Other FSM specifications, including the higher level 
and lower level of the machine control FSM, need no 
changes. 

4.4 Experimental Results 

We no discuss the effort needed to integrate the 
broken tool detection module, and examine real-time 
performance of individual execution units, signal pro- 
cessing, and message passing. 
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Building a system with our proposed software ar- 
chitecture reduces the skill and effort required. Ac- 
cording to our experience from graduate students and 
undergraduate students, integrating a simple machine 
monitoring function, such as broken tool detection as 
described above, using our open architecture software 
takes significantly less time than using unstructured 
software. For instance, it took tens of hours less to in- 
tegrate a broken tool detection module into a motion 
control system using our proposed open software ar- 
chitecture than to integrate the broken tool detection 
in a traditional way. 

We analyze real-time performance in terms of two 
parameters: stability of execution intervals and per- 
centage of missed deadlines, both before and after in- 
tegration. We also examine the time delay for passing 
and processing an emergency message, such as a bro- 
ken tool signal. We use a special hardware device, the 
VME Stopwatch, to collect the elapsed time of each 
execution. 

Communication 
From I T o  mechaninm 

Elapsed 
time 

Execution Average 

Unit Execution 
(Task) Interval 

(m.) 
Force Acquisition 0.998 
Force Supervimory 39.976 
AxisGroup Control 9.976 
AxiiX Control 9.965 
AxisY Control 9.943 
Axin2 Control 9.971 

Worst- Standar Deadline 
Ca.= 
Execution Deviation Missing 
Interval (%) 
(m. 
2.182 0.085 0.11 
42.365 0.132 0.35 
14.668 0.186 0.27 
12.384 0.085 0.24 
14.132 0.068 0.11) 
12.379 0.073 0.21 

Table 3: Performance of units after integration 

Signal pansing path 
From I T o  

We observe no significant difference between aver- 
age execution intervals for execution units before and 
after integration. Similarly, there is no significant dif- 
ference observed for missed deadlines. But both the 
worst-case execution times and standard deviations of 
intervals are slightly increased after the broken tool 
detection modules are integrated. 

Communication Elrpred 
mechanism t ime(ms) 

Based on these observations and real-time schedu- 
lability analysis [ 5 ] ,  we can ensure that whenever new 
execution units integrated into our system are schedu- 
lable, their real-time constraints can be satisfied. The 
operating system overheads can be assumed to be con- 
stant. However, the execution intervals become in- 
consistent as the number of execution units increases. 
Thus, if a module assigned to a processor requires 
more consistent execution intervals, the number of ex- 
ecution units on that processor should be reduced. 

Average Worst- 
Ca.= 

Execution Execution Execution 
Unit Interval Interval 

Force Acquisition 0.998 2.834 
ms (m. 

Force Sunervisorv 39.961) 48.766 

4.4.2 Signal processing and transportation 

Tables 4 and 5 shows the signal passing times in our 
experimental system. 

Standard Deadline 

Dcviaticn Miming 
(X) 

0.332 0.33 
0.086 0.15 

Axi*Group Control 
AxisX Control 
AxiiY Control 
AxisZ Control 
Signal Proces. 
Tool Stat-. 

Case Force Acquisi- Signal Process 0.357 

Signal Proce.. Tool Status as78 

Total 14.3~8 

6.176 Tool Statu. 
Motion Control Aixs Control 5.217 

0.675 

Signal Process Tool Statu. MQ 3.152 
Tool Statu. Motion Control MQ 8.157 
Motion Control Axis Control MQ 7.392 
Total 18.896 

Table 4: 
whole) 

Signal passing time (Motion controller as a 

9.972 16.731 0.241 0.29 
9.965 16.925 0.133 0.15 
9.958 15.332 0.12s 0.21 
9.971 15.784 0.142 0.21 
19.963 25.429 0.103 0.35 
19.974 27.471 0.177 0.18 

S i p s 1  Process 
Tool Statu. 

Tool Statu. 1 1 2.762 
7.r16a Axis Control 
10.71 

Signal Proce.. 0.584 

Tool Status 2.835 
Axim Control 9.073 

12.492 

Table 5: Signal passing time (Axis controller is accessible) 

Comparing cases 1 and 2 in Tables 4 and 5, the 
time cost of communication using shared-memory is 
shown to be less than that using message queues. This 
is because the message queue mechanism invokes more 
service calls of the operating system, introducing more 
unpredictability and delay. Therefore, shared-memory 
should be preferred when a short delay is required 
and the receiver needs to access the message imme- 
diately. The most significant disadvantage of using 
shared-memory mechanism is that it can only be used 
within the same node. If the communication is across 
computers, other communication mechanism has to be 
used. 

Another observation from Tables 4 and 5 is that 
a finer granularity of accessibility increases message 
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passing times. The total elapsed times are much 
shorter in Table 5 than in Table 4 for both cases. 
This shows that fewer execution units on the com- 
munication path will shorten the signal passing time. 
Thus, better accessibility will help satisfy real-time 
constraints. However, a better accessibility may in- 
volve more execution units in the system, which will 
also increase the overheads of the whole system and 
make executions of each unit inconsistent. 

5 Conclusion 

Integrating process monitoring functionality into an 
existing controller requires more effort and skill in cur- 
rent manufacturing practice. In this paper, we pro- 
pose PC-based open architecture software that can 
make this integration easier. The software consists 
of building blocks with standard interfaces that are 
used to define the machine, the execution platform, 
and the control flow. We also describe how to in- 
tegrate process monitoring at different system levels 
with different granularities. Our software is shown to 
be flexible enough to support integration with vari- 
ous kinds of controllers. Our case study of integrating 
broken tool detection into a motion controller on the 
UMOAC testbed demonstrates t h a t  our software can 
be used to integrate process monitoring functionality, 
satisfying openness and real-time requirements. 
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