
General Conference (Part B)

Refined Design of Random Early Detection Gateways
Haining Wang and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122

E-mail: {hxw, kgshin}@eecs . umich. edu

Abstract-Random Early Detection (RED) was proposed as an active
gateway queue-management mechanism. This paper proposes to alter the
RED design guideline that uncondirionully allows transient congestion, and
evaluates its impacts. This unconditional allowance of transient congestion
is shown to be harmful when the queue is near full, because it causes buffer
overflow at a gateway. Buffer overflow at a gateway leads to the global
synchronization and oscillation of trafficload on the network. To effectively
prevent buffer overflowat a gateway, the RED frameworkis refined in such
a way that the gateway can detect a transient congestion in a timely manner
and take actions to quench it when the queue is near full.

Based on our simulation results, two enhancements are made in esti-
mating average queue size. Equipped with these enhancements, the refined
RED can strike a good balance between the allowance of transient bursty
trafllc and the avoidance of huffer overflow. Using extensive simulations,
the refined RED is comparatively evaluated against and is shown to be su-
perior to the original RED.

I. INTRODUCTION

The explosive growth of the Internet [141 makes it essential
to devise and deploy effective congestion control at the trans-
port layer. Since most of the Internet traffic is transported by
the Transmission Control Protocol (TCP) [111, [131, TCP con-
gestion control [7] plays a key role in avoiding the congestion
collapse of the Internet. The current Internet architecture is fea-
tured by the end-to-end TCP congestion control, in which con-
gestion control is accomplished solely by end-hosts. However,
the gateway is recognized to be the most appropriate agent to
detect incipient congestion and ensure fair allocation of network
bandwidth [I] . The performance of end-to-end congestion con-
trol is expected to be greatly improved with the deployment of
advanced gateway congestion-control mechanisms. The FIFO
queueing with the drop-tail policy is widely employed in the
current Internet gateways, scheduling packets in a First-In-First-
Out (FIFO) manner and discarding those packets arriving when
the gateway buffer is full. The drop-tail gateway is simple, scal-
able and easy to implement. However, it is shown to distribute
packet losses arbitrarily among TCP connections and also tends
to penalize bursty connections [4]. The effects of global syn-
chronization are reported to have been found in both one-way
and two-way TCP traffic [12], [151, and thus lower aggregate
throughput.

To address the drop-tail gateway problems, an Early Random
Drop Gateway was proposed [6]. The Early Random Drop gate-
way drops arriving packets with a fixed drop probability if the
queue length exceeds a certain drop level. Based on the Early
Random Drop algorithm, the Random Early Detection (RED)

The work reported in this paper was supported in part by the U.S. Office of
Naval Research under Grant N00014-99- 1-0465.

algorithm was proposed by Floyd and Jacobson [5] . A RED
gateway detects incipient congestion based on the computation
of the average queue size, and randomly drops or marks arriving
packets before the gateway buffer gets full. It keeps the average
queue size low, while allowing fluctuations in the actual queue
size in order to accommodate bursty traffic and transient con-
gestion. To avoid a bias against bursty traffic and the global
synchronization that exists in drop-tail gateways, the RED gate-
way uses randomization to choose which arriving packets to
drop. The probability of dropping a packet from a particular
connection is roughly proportional to that connection's share of
the bandwidth through the gateway.

Lin and Morris [8] observed that RED allows unfair band-
width sharing when a mixture of different traffic shares a link.
Their key observation is that dropping packets from flows in
proportion to their allocated bandwidth does not ensure the fair-
ness in sharing bandwidth. The unfairness comes from the fact
that at any given time RED enforces the same drop rate upon
all flows regardless of their bandwidth shares. A modified ver-
sion of RED, called Flow Random Early Drop (FRED), was
proposed to handle this unfairness problem. FRED introduces
"per-active-flow accounting" to enforce a drop rate on each flow
that is dependent on the flow's buffer occupancy.

There are two functions of a congestion-avoidance mecha-
nism at a RED gateway: one is to detect incipient congestion,
and the other is to decide which connections to be notified of
congestion. FRED [8] focused on the second function, without
considering the first. They improved the fairness of RED by
modifying the way of notifying congestion at the gateway, but
did not address the problem of detecting incipient congestion.
The framework of FRED is the same as that of RED, and FRED
uses the same parameters configuration as RED, thus leaving
room for improvements.

This paper focuses on how to detect incipient congestion.
We modify the RED design guideline of unconditionally allow-
ing transient congestion (i.e., no negative feedback for transient
congestion). Our analysis of the dynamics of TCP traffic and
our simulation results show that transient congestion is harmful
when the queue is near full. The queue weight wq is used to
control the rate at which the estimated average queue size reacts
to the changing traffic load at gateways. In the original RED, wq
is preset and remains unchanged after its deployment. By con-
trast, in the proposed approach we monitor the dynamics of the
actual queue and dynamically change the value of w q according
to the change of actual queue size. By reconfiguring wq, we de-

Global Telecommunications Conference - Globecom'99
0-7803-5796-5/99/$10.00 0 1999 IEEE

769

General Conference (Part B)

tect transient congestion in a timely manner when the queue is
near full and take actions to quench it, thus effectively avoiding
buffer overflow.

In accordance with the reconfiguration of wq, the framework
of the RED algorithm is also refined. The congestion-avoidance
phase' is extended and divided into a number of sub-phases. In
contrast to the original RED in which the maximum drop proba-
bility is fixed, the refined RED dynamically adjusts the value of
maxp depending on which sub-phase the current average queue
length belongs to. Since muxp directly impacts the aggressive-
ness of the early detection mechanism and average queue build-
up indicates incipient congestion, we increase n u x p as the av-
erage queue length increases from a lower sub-phase to a higher
sub-phase. We used simulations to evaluate the performance of
the refined RED in comparison with the original RED.

The direct outgrowth of the simulation study is two enhance-
ments to the estimation of average queue size. One of the key
observations from the simulation study is that the "surplus" be-
tween actual queue size and average queue size indicates the
aggressiveness of traffic influx to the gateway. The higher the
surplus, the burstier the incoming traffic is. A sudden increase
in the surplus indicates that the incoming bursty traffic is be-
yond the capacity of the gateway and the buffer overflow is im-
minent. The first enhancement is to dynamically adjust wq with
the change in the surplus between actual queue size and average
queue size.

The second enhancement is to solve the remaining problem
in the original RED where the departure of a packet does not
cause any change to the average queue size. FRED proposed
a modification to correct it, but unfortunately, in some cases, it
makes the situation even worse.

Section 2 briefly outlines the RED algorithm and the design
guidelines for RED gateways. Section 3 describes the problem
with RED gateways which is caused by transient congestion.
Section 4 presents two enhancements to the estimation of the
average queue size based on the simulation study. Section 5
describes the refined RED algorithm and its simulation results.
Finally, the paper concludes with Section 6.

11. RED ALGORITHM

RED is to be deployed at a gateway for congestion avoid-
ance and randomly drops packets before the gateway buffer is
completely exhausted. RED aims to maintain high throughput
and low delay by controlling the average queue size, and avoid
global synchronization and a bias against bursty traffic.

The design idea of RED is very simple: two preset thresholds
are used to detect incipient congestion and control the average
queue size. Fig. 1 illustrates the general idea of RED. Accord-
ing to the estimated average queue length, a gateway operates in
one of three different working states. When the average queue
length is less than the minimum threshold, the gateway is in the
green state. All incoming packets are processed and forwarded
properly, and no packet is dropped. When average queue length
is between the minimum and maximum thresholds, the gateway
is in the yellow state. Arriving packets are randomly dropped
with a probability that is a function of the average queue length.

where avg is between minth and m4z:th.

C- A m Y l t l . W A n 9 Rod A m

/-----x-

EWY FUU

MI" Threhld M u T I m h o W

Fig. 1 . Illustration of the RED algorithm

When the average queue length is greater than the maximum
threshold, the gateway is in red state in which every arriving
packet is discarded. The behaviors of RED in green and red
states are the same as those of drop-tail. Yellow is the key state
in RED where the congestion-avoidance mechanism is imple-
mented.

The estimation of the average queue size and the calculation
of drop probability are two key components of the RED algo-
rithm. The success of RED depends on how to estimate the
average queue size and set the drop probability. The filter used
to compute the average queue size is an exponentially-weighted
moving average (EWMA) given by:

avg 4- (1 - wq)avg 4- wqq

where wq is a constant parameter preset by RED that deter-
mines the sensitivity of RED to the fluctuation of actual queue
size, and q is the actual queue size. As avg varies from minth
to maxth, the packet-drop probability ranges linearly from 0
to the fixed rnaep. The final packet-drop probability increases
slowly as the number of received packets increases since the last
markeddropped packet.

111. TRANSIENT CONGESTION CAN BE HARMFUL
A very important feature of the RED algorithm is the use of a

low-pass filter to estimate the average queue size, allowing occa-
sional congestion. Therefore, the RED algorithm is made non-
responsive to transient congestion. At a gateway, many flows
converge in, and the traffic seen by the gateway is a mixture
of various types. TCP traffic is the most dominant component in
the Internet [141. Basically, there are two kinds of TCP transmis-
sions: (1) long-lived bulk-data transmission: (2) interactive-data
transmission or short-lived bul k-data transmission.

If the transient congestion is caused by long-lived bulk-data
transmission, even in the absence of non-responsive or mali-
cious flows, due to the dynamics of TCP window size, the tran-
sient congestion is very easy to become persistent in the near
future if the RED gateway accommodates the transient conges-
tion without any negative feedback to traffic sources. In the fol-
lowing subsection, the dynamics of the TCP window size are
analyzed to verify this.

If the transient congestion is caused by short-lived transmis-
sions or interactive-data transmissions, it may not be harmful
when the queue is not near full. Because such a flow will ter-
minate or will soon become idle, transient congestion will not
sustain. If wq is set too high, the RED algorithm will react too
quickly and respond inappropriately to bursty traffic, resulting
in underutilization and a bias against bursty connections. Un-

770 Global Telecommunications Conference - Globecom'99

General Conference (Part 6)

fortunately, when the queue size is close to becoming full, the
aggregate short-lived or interactive traffic can also exhaust the
buffer. As soon as the buffer gets full, a RED gateway will de-
grade to a drop-tail gateway.

A. Analysis of the Dynamics of TCP Window Size
According to the TCP congestion-control scheme initiated

in [7], the TCP window size wnd is set to the minimum of the
congestion window size cwnd and the receiver advertised win-
dow size nvnd. Before the occurrence of packet loss, the dynam-
ics of a sender’s TCP window size could be in the Slow-Start or
Congestion-Avoidance phase:

Case 1 : The sender is in the Slow-Start phase and cwnd is
much smaller than rwnd. Since cwnd will be doubled per
round-trip time, wnd will grow exponentially in the subse-
quent R’ITs.

Case 2: The sender is in the Congestion-Avoidance phase
and cwnd is smaller than rwnd. Since cwnd will be in-
creased by one per R‘IT, wnd will grow linearly in the sub-
sequent RTTs.

Once cwnd gets larger than rwnd, wnd is set to rwnd. If tran-
sient congestion is allowed and no packet is dropped, the sender
will assume that there is no congestion at all. At least the same
amount of data will be sent in the subsequent Rl’Ts. In the worst
case where the sender is in the Slow-Start phase, the amount of
data transmitted grows exponentially in the subsequent RTTs.
The buffer overflow at a gateway becomes inevitable after the
elapse of several R n s . Once the buffer space is exhausted, the
RED gateway will degrade to a drop-tail gateway. The overhead
introduced by the RED gateway does not contribute any perfor-
mance improvement during the period of buffer overflow. The
simulation results in the next subsection confirm our analysis.

B. Simulation Setup and Results

The simulation experiments are conducted on the network in
Fig. 2 using the ns [91. The links in Fig. 2 are labeled with
their bandwidth and one-way propagation delay. A couple of
TCP connections (from Si to Ki) share a common bottleneck
of 1.5 Mbps. The packet size in our simulation is fixed, which
is set to 1 Kbytes. Each RED gateway has 25 packet buffers.
The parameters of RED are set as the original: minth = 5,
maxth = 15, wq = 0.002, maxp = 0.02. The version of TCP
used in the simulation is TCP Reno, because it is built on UNIX
BSD4.3 that is widely used but poor in recovering from multiple
packet losses.

For each graph that shows the traffic dynamics in this subsec-
tion, the x-axis represents the time in seconds and the y-axis is
the packet number mod 90. Marked on the graph are a packet’s
arrival and departure from the RED gateway R1. Each dropped
packet by the RED gateway R1 is marked by “x.” If there are n
connections, packets numbered 1 to 90 on the y-axis belong to
the first connection, packets numbered 101 to 190 on the y-axis
belong to the second connection, and so on. In the graphs that
show average queue size, the solid line represents the queue of
packets waiting to be transmitted on the link from R1 to R2. The
dotted line represents the average queue size calculated by the
RED gateway R1.

Fig. 2. The simulated network

In the first simulation scenario, three TCP connections com-
pete and all the TCP traffic is long-lived bulk-data transmission.
The TCP window size is set to 25. The simulation results in
Fig. 3 (a) and (b) show that under the original parameters con-
figuration and the framework of RED algorithm, the Slow-Start
or Congestion-Avoidance algorithm can easily transform tran-
sient congestion to persistent congestion and exhaust the buffer.

In the second simulation scenario, there are three short-lived
TCP transmissions. One long-lived bulk-data transmission is
used as the background traffic. The simulation result in Fig. 3 (c)
and (d) show that the aggregate short-lived traffic can also drive
the buffer to exhaustion when the queue is near full, thereby
causing a burst of packet losses. Since TCP Reno is poor in
recovering from multiple packet losses, timeouts occur and are
followed by a global synchronization.

We have attempted to use TCP New-Reno and SACK, in-
stead of Reno, to test the performance of the original RED.
Although TCP New-Reno and SACK have better capability to
recover from multiple packet losses without causing retransmis-
sion timeouts, they still suffer frequent buffer overflows due to
the inherent weakness of the original RED. Also, global syn-
chronization and traffic load oscillation still occur frequently
due to the frequent buffer overflows. The reason for this is that
TCP New-Reno and SACK reduce their congestion window size
to half after detecting packet losses, and hence, the buffer over-
flow at the bottleneck router drives all active TCP (New-Reno
or SACK) connections to reduce their transmission rate by half,
which leads to global synchronization. The only difference is
that the fluctuation of the traffic load is smaller in New-Reno
and SACK than Reno since fewer timeouts occur in New-Reno
and SACK. The simulation results of New-Reno and SACK are
not shown here due to the space limitation.

IV. ENHANCEMENTS TO THE DESIGN OF RED

To detect the initial congestion stage early, we could en-
large wq to increase the responsiveness of RED to bursty traffic.
However, a faster increase of wq could result in over-reaction
to short-lived bursty traffic even if its burstiness is within the
bound of the remaining free buffer space, biasing against short-
lived bursty traffic.

One key observation of the simulation study is that the surplus
of actual queue size over average queue size reflects the bursti-
ness of the incoming traffic. Based on the surplus, the gateway
can gain a useful hint about the incoming traffic. A large sur-
plus means bursty incoming traffic. The continuous growth of
the surplus indicates that the incoming bursty traffic is beyond

‘Global Telecommunications Conference - Globecom’99 771

General Conference (Part B)

old4 0.02
bufs buffer size
warnline half of the buffer size

actual queue size

surplus of actual queue size

,, q
. avg average queue size

diff

(a) traffic dynamics
.- m .- m ._I ,U_

(b) average queue size

,-t

a d -
.) ,.- ,. ,,_

(c) traflic dynamics
Fig. 3. Long-lived TCP transmissions: (a) and (b); Short-lived TCP transmissions: (c) and (d)

the gateway's buffer capacity and buffer overflow is imminent.
If the surplus is low, the incoming traffic is less bursty. The
transient congestion caused by small or short-lived bursty traffic
should be accommodated since it does not cause buffer overflow.

We propose two enhancements to improve the scalability of
the RED algorithm. The first enhancement dynamically adjusts
the value of wq with, the change of the surplus of actual queue
size over average queue size. The burstiness that the gateway
can accommodate is determined by the buffer size. The larger
the buffer size, the burstier traffic can be accommodated. The
surplus should be measured in the context of buffer size. The
metric used here is the ratio of surplus to buffer size. Depending
on the variations of this ratio, wq should be dynamically set.

The second enhancement is how to calculate the average
queue size when a packet leaves the gateway. The original RED
only estimates the average queue size upon each packet arrival;
so, when no packet arrives, the dequeue operation is not cap-
tured. To reflect the accurate queue variation, FRED calculates
the average queue size in case of both packet arrivals and depar-
tures. FRED'S calculation for a packet departure is the same as
that for a packet arrival. Unfortunately, in some cases this mod-
ification makes the situation even worse. Since the same low
filter wp is used to estimate average queue size when a packet
departs, it implies that if the actual queue size shrinks rapidly,
the average queue size slowly decreases. Thus, it is possible
that the actual queue size is small but the average queue size is
large. When the next-round traffic arrives, even though there is
enough buffer space in the queue, the very beginning of the in-
coming traffic will still suffer from random packet drops due to
the relatively high average queue size.

To correct this misadjustment, we propose a simple solution.
We first compare the actual queue size with the average queue
size. If the actual queue size is no less than the average queue
size, then a packet departure causes the same effect on the av-
erage queue size as FRED. However, if the actual queue size is
already smaller than the average queue size due to the speed dis-
parity between packet departures and arrivals,2 we need to use a
larger wq to calculate the average queue size in order to reflect
the rapid dequeuing. With decrease of the average queue size,
the drop probability is also reduced. When the next-round traffic
arrives, fewer packets are dropped.

2The disparity is caused by transient quiescence or large reduction of the in-
coming traffic.

U. U 0- I%_

(d) average queue size

v. REFINING THE RED ALGORITHM

The refinement of the RED framework includes three parts:
(1) the dynamic adjustment on the queue weight wq; (2) the
fine-grained setting of ma+,; and (3) the refined framework of
RED algorithm.

A. Dynamic Adjustment of Queue Weight

In the original RED, the queue weight wq that is used to con-
trol the rate at which the gateway reacts to the congestion in
the network, is preset to a low-pass filter. As shown in the pre-
ceding sections, the original RED cannot react to highly bursty
traffic fast enough to prevent buffer overflow. On the other hand,
if wq is set too high, the RED algorithm will react too quickly
to short-lived bursty traffic, causing bandwidth under-utilization
and biasing against bursty traffic.

Based on the first enhancement in Section IV, we propose a
simple mechanism to dynamically adjust the value of wq upon
each packet arrival. In the refined RED, the dynamics of the
actual queue size is monitored. We introduce a new threshold

TABLE I

0 Parameter I Meaninghahe of the parameters U

I1 I over average aueue size I I
U I U . U
11 ratio I ratio of sumlus over buffer size 11
[R I the integer uart of (10*ratio) n
U new-q 1 queueweight

called the warning line, when measuring the actual queue size
upon arrival of a packet. It divides the setting of wg into two
phases. If the actual queue size is below the warning line, wq
is set exactly the same as the original RED. However, as soon
as the actual queue size is on or beyond the warning line, wq is
set as follows: the higher the ratio of surplus to buffer size, the

112 Global Telecommunications Conference - Globecom'99

General Conference (Part B)

larger of the queue weight:

new, =

' old,, R E [O, 0.1)
R E [0.1, 0.2)
R E [0.2, 0.3)
R E [0.3, 0.4)
R E [0.4, 0.5)
R E [0.5,1]

old, x 4 ,
old, x 8 ,
old, x 1 2 ,
old, x 16,
old, x 20,

where R is the ratio of surplus to buffer size. We recommend
that the warning line be set to half of the buffer size.

Upon departure of a packet from the queue, w, is set accord-
ing to the second enhancement in Section IV. If the actual queue
size is smaller than the average queue size, w, is set to 0.2, in-
stead of 0.02, in order to be responsive to rapid dequeueing. A
detailed algorithm for computing w , is shown in Fig. 4, and the
meaning of the parameters is shown in Table I.

The key point here is to detect the initial stage of congestion
quickly when the queue is near full and the incoming traffic is
highly bursty, but still absorb short-lived or interactive traffic as
best as it can.

For each arriving packet P:
q ++:
if (q > avg)

diN= q - avg;
else

diN=o;

ratio = diff I buf-s:
R = inr (lO*mtio);

if (q < warn-line)
new-q = old-q:

switch (R) {
case 0 new-q = old-q;
case I : new-q = oldq 4;
case 2: new-q = old-q * 8;

. case' 3: new-q = ol&q * 11
case 4: n e w q = olhq * 16
default: new-q = old-q * 2C

el,= (

. .

I
I

For each departing packet P
q -_.
if (avg > q)

else.
new-q = old-q * 10:

new-q = oldq:

Fig. 4. Illustration of dynamic adjustments of queue weight

B. Fine-Grained Setting of Maximum Drop Probability

The performance of RED is very sensitive to the maximum
drop probability matp , which determines the aggressiveness of
RED towards incoming packets when it is in yellow state. The
motivation of varying matp according to the change of average
queue size is to lower queueing delay and avoid buffer over-
flow. Since the build-up of average queue size indicates the im-
minence of persistent congestion, the RED gateway should be
more aggressive when the average queue size increases.

The fine-grained setting of matp is closely related to the
refinement of the RED framework. The refined framework of
RED has salient features, including:

Decreasing minth and increasing maxth extends the
yellow area. The green and red areas are reduced to 15%
and 25% of the total buffer space, respectively, thus leaving
up to 60% of the buffer space for the yellow area. This in
turn enlarges the scope of congestion avoidance.
The yellow area is evenly divided into several sub-phases
in each of which the value of matp is different. As the

Global Telecommunications Conference - Globecom'99

average queue size increases, maxp is increased discretely.
The number of the sub-phases depends on the buffer space
covered by the yellow area and the buffer space per sub-
phase. We suggest that each sub-phase be assigned to 10%
of the buffer space. Since 60% of the buffer space belongs
to the yellow area, there are 6 sub-phases in the yellow
area of the refined RED.

Green A m Exhlded Ydlov Area Red Area
, I
, I

I !

Mi" nuuhold SUbphrre Max 'Ihrahdd

Fig. 5. Illustration of the refined RED algorithm

Note that matp in the original RED remains fixed regardless
of the estimated average queue size. The packet-drop probabil-
ity Pd is set to matp(avg - minth)/(matth - r n i n t h) . With
the change of average queue size, Pd varies linearly from 0 to
maxp. However, the fixed maximum drop probability of the
original RED does not work well for different traffic loads. In
the refined RED, the setting of the maximum drop probability
is fine-grained. With the change of average queue size, maxp
is dynamically switched to different settings. Within each sub-
phase, the value of matpi is also fixed and Pd varies linearly
from 0 to matp,. The dynamics of the maximum drop proba-
bilities in the refined RED is shown in Fig. 6. Note the figures
are not drawn to scale.

Prob (drop or m8rk) *___. ~ ... I
I
I

0 min-lh max-lh Avaage Queue She

Fig. 6. Illustration of dynamic adjustments of M a x p in refined RED

C. Discussion

Instead of continuous adjustments of w , and ,maxp, we dis-
cretely set w, and matp to different levels. At each level, w , or
maxp is fixed to absorb the disturbance caused by short bursty
traffic. However, if the burstiness of the incoming traffic lasts
long enough, the gateway should automatically push w , and
maxp to a more aggressive level in order to quench the bursti-
ness of the incoming traffic for the avoidance of buffer overflow.

D. Simulation Results

We use the same simulation setup in Section 3.2, and ten TCP
connections share the common bottleneck link. The first con-

773

General Conference (Part B)

(a) original RED (b) refined RED (c) original RED (d) refined RED
Fig. 7. Illustration of the dynamics of queue; without ECN: (a) and (b); with ECN: (c) and (d).

(a) without ECN (b) with ECN (c) original RED (d) refined RED
Fig. 8. Illustration of the dynamics of a TCP connection (a) and (b); Zoom-in without ECN : (c) and (d)

nection starts at time 0. Then, every 1.5 seconds, a new connec-
tion is started. Each simulation run lasts for 50 seconds. Among
the ten TCP connections, two of them have smaller windows and
longer RlTs than the others.

Figs. 7 (a) and (b) show the dynamics of the queue when Ex-
plicit Congestion Notification (ECN) is not used, while Figs. 7
(c) and (d) are for the cases with ECN.3 Buffer overflow is effec-
tively avoided in the refined RED, and hence no global synchro-
nization occurs and the fluctuation of the actual queue is greatly
reduced. Since the part of the network delay is determined by
the queueing delay experienced by the packets, the network de-
lay is also reduced. Moreover, the variation of the network delay
is mainly caused by that of the queueing delay, so the delay jitter
is greatly reduced.

Due to the effective avoidance of buffer overflow, all TCP
connections in the refined RED have higher throughput and
fewer packet drops and timeouts. If ECN is used, there is no
packet loss in the refined RED. Figs. 8 (a) and (b) show the
dynamics of the first TCP connection. To clearly show this,
the results without ECN are zoomed in Figs. 8 (c) and (d). In
Fig. 8 (c), bursty packet losses occur at the simulation time 25.1
seconds caused by buffer overflow. Eight incoming packets are
dropped consecutively, followed by a timeout. In contrast, in
Fig. 8 (d) a packet is dropped at the simulation time 24.6 seconds
warning the TCP source against an imminent buffer overflow, so
no bursty loss will be caused by the buffer overflow.

E. Bursty Tra$c
We now show that the refined RED does not have bias against

bursty traffic. We model the bursty traffic by using TCP connec-

3Note the buffer size at the RED gateways is set to 25. and rnazth is enlarged
to 18, instead of 15 in the refined RED.

tions with smaller windows (10 vs. 30) and longer RTTs (100
ms vs. 26 ms). Among the ten TCP connections in our simula-
tion, two of them are bursty flows. Fig. 9 shows the dynamics of
a bursty TCP. Clearly, the refined RED preserves one of the key
advantages of RED avoiding bias against bursty traffic. Further-
more, the bursty traffic in the refined RED also benefits from the
avoidance of buffer overflows. It has less timeouts and higher
throughput than the bursty traffic in the original RED.

VI. RELATED WORK

A self-configuring RED gateway was proposed in [3], which
adaptively changes the maximum drop probability maxp de-
pending on the variations in average queue size. However, only
mazp, which indicates the aggressiveness of RED, is adaptively
changed; w9, which indicates the responsiveness of RED, is still
kept constant. Also, the adaptive change of maxp is coarse-
grained, switching macp from normal to conservative or ag-
gressive.

Stabilized RED (SRED) was proposed in [lo], which statisti-
cally estimates the number of active flows and adjusts the drop
probability based on this estimation. Unlike in RED, there is no
computation of average queue size in SRED. The drop probabil-
ity depends upon the actual queue size and upon the estimated
number of active flows.

RED with IdOut bit (RIO) was described in [2]. By config-
uring two sets of RED parameters, one for In-packets and one
for Out-packets, RIO discriminates against Out-packets in case
of congestion. The IdOut bit is set selectively to control which
packets are favored during congestion. However, the two differ-
ent settings of RED parameters in RIO are still static, which do
not adaptively adjust to the change of the observed traffic load.

714 Global Telecommunications Conference - Globecom'99

General Conference (Part B)

[I31 W. R. Stevens, TCPflP Illustrared. volume I . Addison-Wesley Publishing
Company, 1994.

[I41 K. Thompson, G. J. Miller, and R. Wilder, ”Wide-Area Internet Traffic
Patterns and Characteristics”, IEEE Network, Vol. 1 I . No. 6, pp. 10-23.
NovemberiDecember 1997.

[I51 L. Zhang, S . Shenker. D. D. Clark, “Observations on the Dynamics
of a Congestion Control Algorithm: The Effects of Two Way Traffic”,
Proceedings of ACM SIGCOMM’91, Zurich, Switzerland, pp. 133-148,
September 1991.

0% (0 0 s o mo .a0 -0
Ik IS1

(a) without ECN (b) with ECN
.Fig. 9. Illustration of the dynamics of bursty traffic

VII. CONCLUSION

Transient congestion is shown to be harmful when the queue
of the gateway is near full. To prevent the buffer overflow, a
gateway must therefore be responsive to transient congestion
when the incoming traffic is highly bursty and the free buffer
space falls below the warning line. In such a case, uncondi-
tional accommodation of transient congestion causes frequent
buffer overflows and traffic load & delay oscillations.

We proposed a simple and efficient method to measure the
burstiness of incoming traffic. Based on this measurement, we
dynamically adjust the estimation of the average queue size. The
setting of the maximum drop probability is finer-grained than
the original RED. As the average queue size changes, the maxi-
mum drop probability is dynamically set to different aggressive-
ness levels. Our simulation results have shown the superiority
of the refined RED to the original RED. It effectively prevents
buffer overflow, reduces the oscillation of the network delay and
traffic load, yet accommodates bursty traffic as best as it can.

[5 1

REFERENCES
B. Braden, er al., “Recommendations on Queue Management and Conges-
tion Avoidance in the Internet”, Inremerdrafi, work in progress, 1998
D. D. Clark, and W. Fang, “Explicit Allocation of Best Effort Packet De-
livery Service” IEEELACM Transactions on Networking, V.6 N.4, pp. 362-
373, August 1998.
W. Feng, D. D. Kandlur, D. Saha. and K. G. Shin, “‘A Self-configuring
RED ’ Gateway”. Proceedings of IEEE INFOCOU‘99. New York, NY.

S. Floyd, and V. Jacobson, “On Traffic Phase Effects in Packet-Switched
Gateways”. Inremetworking: Research andfiperience. V.3 N.3. pp. 1 IS-
156, September 1992.
S. Floyd, and V. Jacobson, “Random Early Detection gateways for Con-
gestion Avoidance”. IEEELACM Transacrioru on Networking, V. 1 N.4,
pp. 397413,August 1993.
E. Hashem. “Analysis of Random Drop for Gateway Congestion Control”,

V. Jacobson, “Congestion Avoidance and Control”. Proceedings of ACM
SIGCOMM’88. Stanford. CA, pp. 314-329, August 1988.
D. Lin and R. Moms, “Dynamics of Random Early Detection” Proceed-
ings of ACM SIGCOMM’97, Cannes. France, pp. 127-137. September
1997.

pp. 1320-1328,M~ch 1999.

UITKS-TR-465.

(91 S. McCanne and S. Floyd, ns-LBNL Network Simulator. http://www-
nrg.ee.lbl.gov/ns/.

[IO] T. J. Ott. T. V. Lakshman. and L. Wong. “SRED: Stabilized RED’ Pro-
ceedings of IEEE INFOCOM’99. New York, NY, pp. 1346-1355. March
1999.

[I I] J. Postel, Transmission control protocol, Request for Comments 793, DDN
Network Information Center, SRI International. September 1981.

[I21 S. Shenker, L. Zhang, and D. D. Clark, “Some Observations on the Dy-
namics of a Congestion Control Algorithm”, ACM Computer Communi-
cation Review. Vol. 20. No. 4, pp. 30-39, October 1990

Global Telecommunications Conference - Globecom’99 775

http://www

