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Performance Guarantees for Web Server

End-Systems: A Control-Theoretical Approach

Tarek F. Abdelzaher, Member, IEEE, Kang G. Shin, Fellow, IEEE, and
Nina Bhatti, Member, IEEE

Abstract—The Internet is undergoing substantial changes from a communication and browsing infrastructure to a medium for
conducting business and marketing a myriad of services. The World Wide Web provides a uniform and widely-accepted application
interface used by these services to reach multitudes of clients. These changes place the Web server at the center of a gradually
emerging e-service infrastructure with increasing requirements for service quality and reliability guarantees in an unpredictable and
highly-dynamic environment. This paper describes performance control of a Web server using classical feedback control theory. We
use feedback control theory to achieve overload protection, performance guarantees, and service differentiation in the presence of
load unpredictability. We show that feedback control theory offers a promising analytic foundation for providing service differentiation
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and performance guarantees. We demonstrate how a general Web server may be modeled for purposes of performance control,
present the equivalents of sensors and actuators, formulate a simple feedback loop, describe how it can leverage on real-time
scheduling and feedback-control theories to achieve per-class response-time and throughput guarantees, and evaluate the efficacy of
the scheme on an experimental testbed using the most popular Web server, Apache. Experimental results indicate that control-
theoretic techniques offer a sound way of achieving desired performance in performance-critical Internet applications. Our QoS
(Quality-of-Service) management solutions can be implemented either in middleware that is transparent to the server, or as a library

called by server code.

Index Terms—Quality of Service, Web servers, control theory, performance guarantees.

1 INTRODUCTION

THE Internet has become an important medium for
conducting business and selling and buying services.
The Web presents a convenient interface for the emerging
performance-critical applications such as online trading and
e-commerce. These applications require stringent perfor-
mance guarantees from the Web server (e.g., that an online
trade will be executed in a timely manner to avoid potential
financial loss). Attainment of these guarantees is especially
difficult due to the unpredictable nature of the Internet and
server load. In this paper, we show how feedback control
theory can be used as an analytic engine to provide robust
performance guarantees in the presence of load and
resource uncertainty. Feedback control theory was origin-
ally developed for physical process control. Its use in the
context of software performance control is novel. Software
performance control presents a myriad of interesting
challenges such as selecting proper software sensors and
actuators, modeling the software process for the purposes
of control, and mapping computing problems such as
protection against overload into the feedback control
domain. Solutions to these challenges are presented in this
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paper. Experimental evaluation on a real server prototype
demonstrates the success of our approach.

We address three forms of performance guarantees
required by current Web applications. First, a Web server
may host several sites on behalf of parties with potentially
conflicting interests. Hence, it needs to protect each party
from possible overload or malicious behavior caused by
another party. We call this requirement performance isolation.
Second, the server may need to give preferential treatment
to more important clients, which we call service differentia-
tion. Third, the server may need to adapt its Quality of
Service (QoS) gracefully, for example, by adapting the
resolution of images, to avoid undesirable effects such as
unbounded delays and connection failures due to overload.
We call this requirement QoS adaptation.! In performance-
critical applications such as online trading, e-commerce,
and real-time databases, failure to meet the above perfor-
mance requirements may result in loss of customers, serious
financial damages, or legal liabilities.

We show that classical feedback control theory offers a
solution to the problem of achieving the aforementioned
performance guarantees in unpredictable environments
such as the Web, and discuss the challenges involved in
this approach. We demonstrate that a Web server can be
approximated by a time-varying linear model for purposes
of performance control, describe the needed software
actuators and sensors in the software system, and cast
server performance control as a classical feedback control

1. In this paper, we address QoS adaptation to server-side load
conditions. Adaptation to network conditions has been addressed in
previous literature, such as [28].
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problem. Experimental results derived from testing the
scheme on a widely-used Web server (Apache) illustrate the
potential of the approach. Real-time (deadline-monotonic)
scheduling theory [12] makes response-time guarantees
possible if server utilization is maintained below a pre-
computed bound. In the absence of exact knowledge of per-
client load, utilization can be maintained around the bound
via feedback control to enforce the specified response-time
bounds. Feedback control can also be used to guarantee
hosted sites a given throughput independently of load on
other sites, and to provide differentiated services.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 describes the computing
system being controlled. Section 4 presents the control
problem, the issues involved with sensors and actuators,
their modeling, and closing the feedback control loop
around a popular Web server. Section 5 describes how the
utilization control loop discussed in Section 4 can be used
for performance isolation and service differentiation. Sec-
tion 6 describes the implementation of a working prototype
using an Apache Web server. Section 7 evaluates the
performance of the prototype that implements the feedback
control loops on an experimental testbed. Section 8
concludes the paper with a summary of contributions and
suggests avenues for future work.

2 RELATED WORK

Despite the increasing need for QoS-aware server design,
most of today’s Web servers offer poor performance under
overload, provide no means for prioritizing requests, and
have few mechanisms for preallocating the end-system
capacity to a particular site or hosted service. Web admin-
istrators usually resort to overdesign [50] for overload
protection as well as for providing an “acceptable” level of
performance. As a result, performance guarantees cannot be
made for different clients or client categories. When the
server gets overloaded, all clients may suffer unacceptably
long delays and/or connection failures even if enough
resources may exist to serve a subset of clients efficiently.
Policies for quality differentiation among multiple
classes of service on the Web have been investigated in
recent literature. An important measure of quality is the
responsiveness of the server. In the simplest case, it is
desired to differentiate between two classes of clients,
premium and basic, such that premium clients receive better
service than basic clients in case of overload. For example,
the authors of [26] proposed and evaluated policies that
impose restrictions on the amount of server resources (such
as threads) available to basic clients. In [9], [1], QoS-aware
admission control and scheduling algorithms were pro-
posed to provide premium clients with better service.
Several efforts developed general architectures for tiered
services in a Web environment. In [17] a server architecture
is proposed which maintains separate service queues for
premium and basic clients. The architecture is independent
of a particular policy for discrimination among requests. It
enforces a differential treatment of choice after request
classification is performed. Scalability issues in implemen-
tations of tiered Web services are addressed in [35], where
the authors focus on high-performance servers. In [34], an

adaptive delay differentiated services architecture is de-
scribed that is based on performance isolation and admis-
sion control. Unlike these architectures, ours uses control
theory as a mathematical foundation for adaptation. User
studies are discussed in [19], [16] which analyze the
perceived quality of adaptation from a user’s perspective.
In [23], an architecture is proposed for online transcoding of
Web objects. Transcoding adapts to differences in client-
side resources, such as differences in resource capacity
between low-bandwidth wireless and high-bandwidth
wired clients. Transcoding can also adapt service quality
to variable network bandwidth. Unlike transcoding archi-
tectures which adapt to client-side and network resource
variability, we are motivated by the need for adaptation to
server-side load. If the server CPU is overloaded, transcod-
ing only imposes additional overhead and is therefore
inapplicable.

Application-level quality adaptation techniques were
investigated at length in the multimedia community, for
example, in the dynamic distillation architecture by Fox et al.
[28] and the active services framework for multimedia
transcoding [11], [10]. Adaptive QoS frameworks for multi-
media systems include the QoS-A framework [22], the
Heidelberg QoS model [53], V-net [27], NetWorld [25], the
QoS-adaptation model of [8], COMETS’ Extended Integrated
Reference Model (XRM) [37], the OMEGA end-point archi-
tecture [45], and the QoS Broker [44]. Odyssey [46], presents a
framework for experimenting with application-aware adap-
tation on mobile computing platforms. The AQUA system
[36] has developed QoS negotiation and adaptation support
for allocation of CPU and network resources. A good survey
of such architectures can be found in [13], [14].

Multimedia connections, such as streaming audio and
video, impose very different load characteristics on
servers compared to those imposed by Web traffic. Web
load is composed of a large number of inbound requests,
each for a small amount of data. Quality of service is a
discrete parameter with only a few possible settings. In
contrast, multimedia requests generate continuous streams
which persist for a prolonged time duration. Quality of
service is a continuous parameter which can be varied
smoothly such as adapting display resolution or the
quality of JPEG encoding. Due to these differences,
techniques developed in the multimedia community are
not applicable in our Web server context.

QoS adaptation was also addressed more generally in
the real-time systems community. Typically, the ap-
proach assumes that an application can tolerate multiple
levels of service which vary in their quality and resource
requirements. Given the requirements of different QoS
levels, an adaptation mechanism determine the right
QoS level depending on load conditions. Such QoS-
adaptive service models were presented in [32], [31],
[24], [4], [8]. Resource allocation mechanisms were
developed to take advantage of adaptation. For example,
the Q-RAM architecture [47] introduces QoS-sensitive
near-optimal resource allocation algorithms for applica-
tions with multiple resource requirements and multiple
QoS dimensions. FARA [49], [48] presents a hierarchical
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adaptation model for complex real-time systems and
algorithms for optimizing multidimensional adaptation
cost. An end-to-end QoS model is presented in [32] in
the context of a middleware approach to QoS manage-
ment that requires application cooperation. The approach
is extended in [21] to account for practical limitations
such as inaccuracies in estimating application resource
requirements. These architectures, however, generally
required a rather detailed model of the application,
which may not be available for Web servers.

Operating systems support for server QoS has been
addressed in prior research efforts. Much work focused
on CPU scheduling and resource allocation such as
Hierarchical scheduling [30], processor capacity reserves
[42], CPU reservations [33], and resource containers [15].
In contrast, we develop a resource management architec-
ture in middleware which can run on top of any standard
operating system, thereby creating a more portable
solution.

Our work [5], [6], [3], [40] differs from prior approaches
to middleware resource management, such as [21] in that it
offers performance guarantees that are based on well-
understood theoretical foundations derived from feedback-
control theory. Recently, there has been a lot of resurgent
interest in control theory as a vehicle for performance
control in distributed computing systems. For example, in
[41], elements of control theory are applied in a Web
caching context to guarantee a desired difference between
the hit ratio on different content classes. In [39], a feedback-
control model is used to design a relative delay controller
for Web servers. In [29] linear feedback control principles
are applied for controlling the queue fill levels of a
Lotus Notes server. Feedback-control theory is applied to
thread scheduling in [52] to improve pipeline performance
in multimedia applications. In this paper, we focus on
utilization control as a basic building block to achieve more
complex control objectives and satisfy a wide range of
performance requirements. We show that our scheme is
very versatile in that it can provide absolute guarantees on
both response time and throughput, as well as enable
performance isolation, service differentiation, and statistical
multiplexing (excess capacity sharing) in Web servers.

3 THE COMPUTING SERVER

We consider a distributed client-server system in which
clients send a succession of requests to the Web server
across a communication network. Each service request has
an implicit soft deadline by which it must be served
(perhaps determined from the importance, preferences, or
subscription fees of the client). The delay seen by the client
includes the time a request spends in the network plus the
time it spends on the server. Research in the networking
community addressed the problem of bounding network
delays, as in diff-serv [18] and int-serv [20] architectures.
We address the complementary problem of bounding the
server-side delay, and the problem of guaranteeing a given
throughput to individual hosted sites. With the dramatic
increase in the number of Internet clients, servers are
becoming potential bottlenecks.
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Serving a request consumes multiple server resources,
such as memory, disk bandwidth, communication band-
width, and CPU cycles. The capacity of the server is limited
by that of the bottleneck resource. In this paper, we assume
that a single bottleneck exists. In our experience, this
assumption is representative of the great majority of cases.
This is true partly because of the large disparity in the costs
of the different server resources. For example, Internet
connection bandwidth is usually much more expensive
than CPU power, causing the former to become a bottleneck
in a realistic server.

Our architecture is primarily geared for serving static
Web content. Dynamically generated content poses addi-
tional challenges that arise from the variability of the
execution times of the content-generating scripts which
makes it more difficult to predict service delays. Fortu-
nately, most server installations separate static and dynamic
content for performance reasons, serving each from its own
dedicated machines. The separation allows our results to be
applied directly to the static content servers. In [3], we
provide evidence of the applicability of our approach to
dynamic content as well. However, a full-fledged evalua-
tion of this approach in the presence of dynamically
generated content is outside the scope of this paper.

We consider QoS-sensitive workloads. We assume that
the ith request has a deadline D; and consumes an amount
C; of the bottleneck resource. Since each request must be
executed by its deadline, the utilization of the bottleneck
resource is U = ), C;/D;, where the summation is carried
out over all current requests. A request is said to be current
if it has arrived but its deadline has not yet expired.

4 THE CONTROL PROBLEM

The objective of our performance control loop is to 1) avoid
server overload and 2) meet the individual response time
and throughput guarantees. Several challenges present
themselves in addressing this problem. First, one must
develop the equivalent of sensors and actuators for
performance control of the Web server. The sensors should
use only readily measurable quantities in the Web
environment. The actuators should adjust the internal load
on the server given an uncontrolled amount of external
load (Web requests). Second, one must derive the Web
server model for the purposes of control. This involves a
combination of theoretical analysis to derive model
structure and experimental profiling to compute model
parameter values for the platform under consideration.
Third, one must establish the relation between meeting
individual response time deadlines and the settings of the
server control loop. Finally, one must verify that the
resulting design performs well and does not impose
unacceptable overhead. These difficulties are addressed as
described in the following sections: Section 4.1 reviews how
meeting individual time constraints is translated into an
aggregate utilization control problem. Section 4.2 describes
issues in designing the actuator. Section 4.3 describes
challenges in choosing the sensors. Section 4.4 discusses
system modeling for the purposes of feedback control and
presents the procedure we used for controller tuning.
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Fig. 1. The utilization control loop.

4.1 Meeting Time Constraints

Recently it has been proven [7] that a group of aperiodic tasks
with arbitrary arrival times, computation times, and relative
deadlines (i.e., maximum response times), scheduled by a
fixed-priority (deadline-monotonic) policy, will always meet
their deadline constraints as long as U < 0.58. This resultis a
generalization of the famous Liu and Layland’s schedulable
utilization bound of In 2 [38], derived for periodic tasks. The
new bound leads to a simple implementation of a server that
guarantees aperiodic request deadlines; the server simply
needs to ensure that its utilization does not exceed the
aforementioned bound. Since it is also desired to maximize
server throughput, the utilization should be maintained
exactly at the upper bound, if possible. The key difficulty in
implementing an algorithm that would observe the utiliza-
tion bound is the lack of proper estimates of resource load
imposed by an individual client.

A classical linear feedback control problem can be
formulated to keep server utilization at or below 0.58.
Server load can be approximated by a liquid flow model.
Since a typical server can handle thousands of clients
concurrently, each client contributes an unknown, but
small, amount to this flow, represented by a series of
requests. The control loop, depicted in Fig. 1, measures
server utilization and determines (based on load conditions)
a subset of clients that may receive service at the current
time. The size of this subset is adjusted to keep the
utilization at the desired level. As stated earlier, the three
main challenges in implementing the control loop are:

1. the choice of a proper actuator that can affect server
utilization,

2. the choice of a monitor that can measure current
utilization reliably, and

3. appropriate modeling and control of the server.

The above three challenges are elaborated upon below.

4.2 The Actuator

The actuator is the element responsible for translating
abstract controller output into physical action taken by the
Web server to change its load. In general, admission control
can be used as an actuator in computing servers. In the
simplest case, admission control limits the number of clients
who access the server concurrently.

Client rejection is undesirable but unavoidable because
no scheme can provide QoS guarantees to all Web clients,
unless it limits the total number of clients on the Internet to
the maximum number that can be served by a single server
concurrently. The challenge a control loop overcomes is that
of providing performance guarantees to the clients whom
the “actuator” chooses to admit.

As mentioned in Section 2, an extension of pure
admission-control schemes is the degradation of clients’
QoS. The actuator can offer “degraded” service levels in

addition to the nominal service level. Rejection can be
thought of as an extreme degradation point at which the
client receives no service. Degradation in Web servers can
be accomplished by content adaptation. The Web content
degradation approach (for server overload control) is
investigated in [5], where we survey an important category
of today’s e-commerce sites and present evidences of its
suitability for degrading content to reduce load. In our
study, GIF and JPG images alone were found to constitute,
on average, more than 65 percent of the total bytes
surveyed. In many cases, these images can be compressed
without an appreciable degradation in QoS. Reducing the
number of embedded objects per page (such as little icons,
bullets, bars, separators, and backgrounds) can result in
significant additional resource savings. Reducing local links
is another way of adapting site content. This reduction will
affect user browsing behavior in a way that tends to
decrease the load on the server as users access less content.
The latter approach is sometimes followed manually by
administrators of larger sites such as www.cnn.com of the
Cable News Network (CNN), e.g., upon overload caused by
important breaking news.

To achieve degraded levels of service, the content must be
preprocessed a priori and stored in multiple copies that differ
in quality and size. Since a typical Web site is usually in the
megabyte range, storing multiple copies is cheap in terms of
disk space. Multiple content trees, e.g., “/full_content” and
“/degraded_content” are populated with the appropriate
content off line. A URL, such as, “/my_picture.jpg” is then
served from either “/full content/my_picture.jpg” or “/
degraded_content/my_picture.jpg” depending on load con-
ditions. The actuator simply prepends the desired tree name
to each requested URL at run-time causing the request to be
served from a particular tree. The convention applies to
dynamic content as well, e.g., that generated by CGI scripts.
Multiple content trees may contain different versions of the
named CGI script that vary in resource requirements. The
different content trees correspond to different (discrete)
levels of quality that the Web service offers to its clients.

In general, let’s consider an actuator with M discrete
service levels (e.g., content trees). These levels are num-
bered 1,..., M from lowest quality to highest quality. The
level 0 is added to denote the special case of request
rejection. The actuator accepts as input the control variable
m in the range [0, M] and translates it into the fraction of
clients to be served at each service level.

If m is an integer, it uniquely determines the service
level to be offered to all clients. In general, m is a
fractional number composed of an integral part / and a
fraction F, such that m = I + F. If m is not an integer, we
let the two nearest integers (namely, I and [+ 1, where
I <m<I+1) determine the two most appropriate
service levels at which clients must be served under the
given load conditions. The fractional part F' determines
the fraction of clients served at each of the two levels. In
effect, m is interpreted to mean that a fraction 1 — F of
clients must be served at level I, and a fraction F at level
I + 1. This specification constrains only the total fraction
of clients to be served at each level without dictating
which clients they should be. The latter is a separate
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policy that may operate within the confines of the former.
For example, if all clients are equal, upon receipt of a
request, a pseudorandom value N € [0,1] may be com-
puted by hashing the received client’s id (e.g., its
IP address) into a number in the range [0, 1]. If N < F
the request is served from tree I+ 1. Otherwise, it is
served from tree I. A “good” hashing function will map
client IDs to the target range in a uniformly distributed
fashion. The policy ensures that for a given m the quality
level seen by each client is consistent and depends on the
client’s identity. Fig. 2 shows how a given value of m
determines both the trees from which requests are served
and the fraction of requests served from each tree.

Server utilization will increase, possibly nonlinearly,
when m is increased, and vice versa. At the upper extreme,
m = M, all requests are given highest quality service. At the
lower extreme, m = 0, all requests are rejected. The actuator
changes the amount of load on a server with discrete service
levels, depending on its input m.

4.3 The Monitor

The control loop manipulates the actuator input m based on
feedback (from the monitor) on current server resource
utilization. Most operating systems provide means for
monitoring utilization, such as percentage of consumed
CPU cycles, disk, and network bandwidth. Unfortunately,
utilization measurements in practical systems tend to be
extremely noisy. One option would be to use a filter to
smooth these measurements. However, the filter will
introduce an additional lag that may reduce the tightness
of utilization control.

In the case where the Web server deals mostly with static
files (i.e., if dynamic content is statistically insignificant or
served from a separate server), one can express server
utilization U as a function of the served request rate R and
delivered byte bandwidth V. Both of these variables can be
measured very accurately in a computing server. In [2], we
showed that bottleneck resource utilization is given by:

U=aR+ bW, (1)

where a and b are constants which can be computed by a
linear regression. The intuition behind (1) comes from the
fact that the resource requirements C; of serving a file are
composed from a fixed overhead plus a variable overhead
that depends on the length z; of the file. Thus, C; = a + bx;,
where a and b are constants that depend only on the type of
platform used. Aggregating resource consumption over
multiple requests and averaging over time we arrive at (1).
The expression gives a noise-free utilization estimate which
we use for feedback in the control loop of Fig. 1. If only a
fraction f of requests are admitted, server utilization is
given by:
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Fig. 3. Online estimation of Apache server model, low load. (a) Workload.
(b) CPU utilization. (c) Estimated model parameters.

U=aRf+bW +cR(1 - f), (2)

where ¢ is the cost of rejecting one request. In (2), R is
the total request rate received by the server (including
requests that will be rejected), f is the fraction of
admitted requests, and W is the total byte rate sent by
the server. To use (2), one must compute parameters a, b,
and ¢, and determine their sensitivity to variations in the
operating conditions of the computing system. In a
preliminary investigation, we compute ¢ experimentally
by instrumenting the server to reject all requests and
obtaining the reciprocal of the maximum attained rejec-
tion rate. This results in ¢ = 0.55ms. To estimate a and b,
we fit the Web server with a recursive least-squares
estimator that measures R, W, and U and infers the
coefficients of (1). In [3], we present an evaluation of this
estimator; a and b are computed using data collected in
real-time on an Apache Web server subjected to a varying
request rate. Fig. 3 illustrates the conversion of the
resulting estimates in a representative experiment. Fig. 3a
shows the workload that we applied to the server for
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parameter estimation purposes. In particular, it depicts
the request rate R on the server and the resulting
bandwidth W delivered as a function of time during
the experiment. Requests for short Web pages where
interleaved with those for long pages to offer load points
with different proportion of R to W. The horizontal axis
depicts the sampling count (one sample of R, W, and U
was taken every 3 seconds). Fig. 3b depicts the measured
CPU utilization, U, during this experiment due to the
applied workload. Fig. 3c depicts the output of the least-
squares estimator. In can be seen that the estimator
converges to the values a =830us, and b=33us/kB.
Thus, from (2), U =0.83Rf+ 0.035W + 0.55R(1 — f),
where R is in requsts/ms and W is in kB/ms. During
normal operation the monitor will use the above equation
to estimate utilization periodically at some period, T.

4.4 The Controller and System Model

Control theory offers analytic techniques for closing the
feedback loop from monitor to actuator in a way that
achieves performance specifications. As a first step towards
system utilization control, we use a digital approximation of
a linear continuous PI controller given by the equation
G(s) = K,(1+ K;/s). The controlled software system (in-
cluding the Web server, actuator, and monitor) is modeled
by a transfer function P(s). In the simplest case, we assume
that P(s) is a static gain, p (i.e,, process dynamics are
negligible). The gain is linearized by obtaining the
derivative of the output (utilization) with respect to the
input, m. Thus, p = dU/dm around the operating point
(which typically is U = 0.58). Intuitively, the maximum
gain, ppq., occurs when the range of m is minimum for the
same range in output U, i.e., when the actuator supports
only client rejection, but no intermediate service levels. In
this case, m = f, the fraction of admitted clients, and
Pmaz = AU /df. Let Uyeeepr be the utilization that would result
if all clients were admitted. If presently a fraction f of the
clients is admitted, the actual utilization is

U= ML(zccptf =+ C(l - f)R
Differentiating with respect to f, we obtain

Pmaz = Yaccept — cR.

It may be more convenient to express the gain in terms of
actual current utilization, U. Algebraic manipulation yields:

Designing the controller for the maximum process gain will
guarantee stability for all other gain values. While the
server has additional dynamics, they are of the order of
milliseconds and thus will be neglected given the range of
human perception. In addition to the gain, digital sampling
introduces an effective dead-time of half the sampling
period, T; = T'/2. Under the above general assumptions, the
simplified transfer function of the computing system, P(s),
is given by the Laplace transform:

P(s) = Prnaz-e 112 (4)

The natural frequency of oscillation of this loop, w, is
obtained by setting s = jw in the poles of the closed loop
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transfer function, where j is the imaginary unit vector. This
yields:

Pmaze PTPK,(1 4+ K; /jw) = —1. (5)

For stable control, a gain margin G is specified as a design
parameter. From (5), the closed loop gain and phase at the
natural frequency of oscillation are:

anaat‘ejWT/2|Kp|1 + Ki/ju)‘ = 1/G (6)
wT'/2 + tan " (K;/w) = . (1)

Incidentally, if the damped frequency of oscillation is not
far from w, successive peaks of the closed loop oscillations
will have a ratio of approximately 1/G2. It is a common
practice in industrial PI controller tuning to set the
controller phase to —n/6 [51]. In this case:

tan ' (K;/w) = 7/6. (8)

Equations (6), (7), and (8) are three equations in three
unknowns, K,, K; and w, two computed model para-
meters, pmq; and 7', and one design parameter, namely, the
gain margin G. They can be solved for K, and K; for a
particular gain margin to achieve a specified transient
response. The system is time-varying. Controller settings
depend on process gain which changes with the incoming
request rate, utilization, and fraction of admitted requests,
as seen from (3). For purposes of controller tuning,
utilization in (3) can be substituted by its set point value.

To evaluate the resulting control loop performance, we
consider controlling the utilization of an Apache Web
server on the Linux operating system. The combination of
Apache over Linux is representative of many Web server
configurations today. The experimental server platform was
an AMD-based PC connected via a local area network to
client machines. Several machines were used to run client
software that tests the server with a synthetic workload. We
used a Web-load generator, called httperf [43], on the client
machines to bombard the server with Web requests. The
server code was modified to implement the discussed
control loop.

Fig. 4 depicts the achieved utilization. In this experiment,
the request rate on the server was increased suddenly, at
time = 0, from zero to a rate that overloads the server. Such
a sudden load change approximates a step function. It is
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more difficult to control than small incremental changes,
thereby stress-testing the responsiveness of our control
loop. The target utilization, U;, was chosen to be just below
0.58 (preventing minor fluctuations from exceeding the
schedulable utilization bound). The actuator was using
admission control. Fig. 4 compares the open loop server
utilization to the closed loop utilization (with gain margin
values of G =4 and G =10). As shown in Fig. 4, the
controller was successful in reducing server utilization to
remain successfully around the target for the duration of the
experiment. Utilization control was achieved by admitting
the “right” number of clients. One can observe that the
exponential decay in tracking error follows a damped
profile that converges quickly to the set point. A zero steady
state error is achieved. With server utilization steadily
around 0.58, we were able to verify by instrumenting the
client software that individual request deadlines were met.
At the expense of rejecting excess clients, all admitted
clients received their requested pages within their respec-
tive timing constraints.

5 QoS MANAGEMENT

In this section, we describe how the general architecture
described in the previous section is extended to support the
following important features:

e  Performance isolation and QoS guarantees: A Web
server can host multiple independent sites. We
associate a virtual server with each hosted site. The
virtual server guarantees a maximum request rate
and maximum delivered bandwidth for the site
independently of the load on other sites thereby
achieving performance isolation.

e  Service differentiation: Clients may have different
priorities. In addition to achieving performance
isolation and QoS guarantees, each virtual server
supports request prioritization. Upon overload,
lower priority requests are degraded first.

e  Excess capacity sharing: While each virtual server
adapts content under overload to remain within its
individual capacity allocation, if some virtual server
does not consume all its allotted resources, the
excess capacity is made available to other virtual
servers allowing them to exceed their capacity
allocation if so needed to avoid client degradation.

5.1 Performance Isolation

We export the abstraction of virtual servers. A virtual server
is configured for a specified maximum request rate R,
and a specified maximum delivered bandwidth W;,,.
Together, these specifications constitute a throughput guar-
antee. Namely, the configuration expresses an agreement
whereby the server guarantees the ability to deliver an
aggregate bandwidth of up to W, as long as the aggregate
request rate does not exceed R.,. If the request rate
condition is violated (i.e., exceeds R,..) the bandwidth
guarantee is revoked. The virtual server may adapt
delivered content to achieve the maximum possible
bandwidth delivery for the given request rate without
overrunning its capacity allocation. The following provi-
sions in our architecture cooperate to export the virtual
server abstraction and achieve performance isolation:
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e  Capacity planning: The maximum maintainable re-
quest rate R,,q, and the maximum delivered
bandwidth W,,.,, specification of each virtual server
i are converted into a corresponding target capacity
allocation, U} = aRyaz, + 0Wines,- Setting aside an
amount U of the bottleneck resource for virtual
server ¢ will allow it to meet its throughput
guarantee. To meet service response time guarantees
of individual requests, the target utilization sum
>, Ur over all virtual servers residing on the same
machine should be less than 0.58 [7]. This is checked
each time the adaptation software parses its config-
uration file. If the administrator configures a new
virtual server that makes }. U > 0.58, a capacity
planning error is returned. Note that if only
throughput guarantees are required, we can allow
>; Ur to be higher than 0.58 (but less than 1).

e Load classification: A load classifier intercepts input
requests and classifies them to identify the virtual
server responsible for serving each request. Request
classification can be done based on the requested
content, addressed site, or other information depend-
ing on system administrator’s policy. If each virtual
server is associated with a hosted site, requests are
classified based on the site name embedded in the
URL string. Load classification allows proper load
bookkeeping for each virtual server independently to
achieve performance isolation.

e  Utilization control: When requests are classified, the
request rate R; and delivered bandwidth W; can
be computed individually for each virtual server ¢,
from which a corresponding utilization value,
U; = aR; + bW;, is obtained. The utilization U; of
each virtual server is controlled by a separate
instance of the utilization control loop described in
Section 4. Each control loop achieves the degree of
content degradation necessary to keep U; of its
virtual server at or below its target value, U,
thereby achieving the server’s individual perfor-
mance guarantees, while preventing overload. The
architecture is depicted in Fig. 5.
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5.2 Service Differentiation

In this section, we describe how service differentiation is
incorporated into our architecture for adaptive content
delivery. The goal is to support client prioritization such that
lower priority clients are degraded first. Consider a virtual
server that supports client prioritization. Let there be
m priority classes defined within that server, such that
priority 1 is highest and priority m is lowest. Collectively,
clients of the virtual server are allocated a target utilization U*
derived from a maximum rate and maximum bandwidth
specification for that server. This capacity should be made
available to clients in priority order. We allocate the entire
virtual server capacity to the highest priority class. The
unused capacity of each class is measured and allocated to
lower priority classes. If this capacity is not enough, these
clients will be degraded or rejected accordingly by the
utilization control loop. The following rule is used to degrade
clients:

e For each priority class j, the target utilization is
Ur=U" - Ei<j U;, where U; =aR; +bW; is the
current measured utilization of the (higher priority)
class i. A separate control loop is used for each class
to keep its utilization around the target.

e Given the target utilization of each class j, as well as
its measured utilization, U; = aR; + bW, the control
technique described in Section 4 is applied within
each control loop to compute the controller output
m; for this class.

e Service (e.g., content tree) for each class in decided
by the actuator in accordance with the value of its
specific m; as described in Section 4.

In the presence of low priority traffic, a higher priority class
should also account for the overhead it may take to reject
lower priority requests under overload. This can be figured
in the computation of U as follows:

U/* =U" - Z Ui - Z Urcjectm

i<j >j

where Upcjeety = cR; is the overhead of rejecting all current
requests of a lower priority class [, the overhead of rejecting
a single request being c. In out current implementation, we
support two priority classes, premium and basic. Premium
traffic is that governed by a guaranteed QoS contract. Basic
traffic has no guarantees. It is served using the leftover
utilization from premium clients. Note that, since basic
clients have no guarantees, the utilization restriction
>, Ur < 0.58 applies only to premium traffic.

5.3 Sharing Excess Capacity

An important advantage of grouping several virtual
servers on the same machine is the ability to better reuse
extra server capacity. Consider two physically separated
servers, each of capacity, C. If load on one exceeds
capacity while the other is underutilized, there is no way
to reroute extra traffic to the idling server (unless a
gateway is used in front of the server farm to balance
load). Idling resources may be wasted on one server while
requests are being rejected on another. A single server of
capacity 2C does not suffer this problem. We therefore

extend the preceding mechanisms to allow virtual servers
to exceed their contracted target utilization, U*, as long as
there is extra capacity on the machine. Since the virtual
server has no contractual obligation to provide the extra
capacity in the first place, extra request traffic for any
virtual server is uniformly treated on best-effort basis as
nonguaranteed. Nonguaranteed traffic is allowed to
occupy the excess capacity on the machine using a
mechanism similar to that of service differentiation
described in the previous section. This mechanism
requires a simple modification to the actuators of
premium traffic. Assume the controller output in the
utilization control loop of a premium virtual server i is
m;. Let the controller output of the utilization control loop
of best effort traffic be m;. A request for a given premium
virtual server ¢ will be adapted by the actuator of
premium traffic if m; > m;, and with the actuator of best
effort traffic otherwise. Thus, the request is handled
according to the higher of m; and m,. When the
individual virtual server is overloaded while the machine
as a whole is not, m; > m;. Consequently, incoming
requests are served with quality determined by m; which
is higher than that warranted by m, thus utilizing excess
machine capacity. On the other hand, if the machine is
overloaded, m; < m;. Consequently, the quality of content
delivered by virtual server i is determined by m;. Thus,
the individual virtual server is policed not to exceed its
capacity allocation. The mechanism allows smooth and
informed switching between a mode of operation where
an individual virtual server ¢ is allowed to exceed its
capacity allocation and a mode of operation where it is
policed to capacity. We present an evaluation of these
techniques in Section 7. Implementation details are
discussed next.

6 IMPLEMENTATION

The discussed software was implemented in C for a
UNIX platform. For the purpose of experimentation an
Apache Web server was used. In this section, we give more
details on software implementation, the testing environment
and evaluation of adaptation software.

6.1 Web Server Model

In order to improve concurrency, Web servers adopt either
a multithreaded or a multiprocess model. Multithreaded
Web servers keep common state in the same address space
which makes it easier to monitor it. In multiprocess servers,
such as Apache 1.3.0, used in our experiments, the absence
of a common address space complicates monitoring. Since
spawning a process is a heavy-weight operation, a static
pool of processes is usually created at server startup.
Independent processes listen on a common Web server
socket. A process that accepts a connection handles it until
it is closed.

The adaptation software is designed as a middleware
layer between the Web server and the underlying operating
system. The middleware API may be called directly from
the Web server if desired, in which case it is not transparent.
Alternatively, middleware calls may be made from the
socket library used by the server, in which case server code
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remains unmodified. We begin by describing the API of our
adaptation middleware.

6.2 Adaptation Software API

Adaptation mechanisms described in this paper require three
entry points. Namely, 1) an initialization point, 2) a request
preprocessing point, and 3) a request postprocessing point.
The first point is called once upon server startup. The latter
two are called upon the receipt of each request and after the
sending of each reply, respectively. The specific calls are as
follows. adaptsoft_init () is called from the main server
process before forking workers. The function will initialize
some global variables and fork off the utilization controller
which will implement the controllers in server utilization
control loops. adaptsoft_adapt (URL, client_IP) is called by
workers each time an HTTP request is received. It classifies
the client and implements the actuators that decide on the
service levels of individual requests, prepend the right
content tree name to the requested URL, and return the new
URL name to be served, or NULL if the request is to be
rejected. adaptsoft_log_size (URL_byte_size) is called by
workers when the function responsible for sending the reply
returns. The call updates transmitted bandwidth measure-
ments by the byte size of the served page.

6.3 Implementing Load Monitoring

When a request is first dequeued from the server socket’s
listen queue by some worker process, P, the function
adaptsoft_adapt () is called in the context of P;. This function
classifies the request as belonging to virtual server j. The
function then increments a counter, r;[j], that accumulates
the number of requests for virtual server j seen by worker
process P,. When P, has finished processing the request, it
sends out the response and calls adaptsoft_log_size() passing
it the number of bytes sent. The function adaptsoft_log_size()
updates a counter, b;[j], that accumulates the total bytes sent
by process P; on behalf of virtual server j.

Periodically, a call to adaptsoft_adapt () by process P,
also invokes the utilization monitor. The function com-
putes on behalf of each virtual server k the request rate
R;[k] = r;[k]/t that process P, has seen for the virtual
server within the last ¢ time units, and the bandwidth
Wilk] = b;[k]/t that process P, has delivered on behalf of
the virtual server within that time interval. Finally, it
computes the utilization U;[k] = aR;[k] + bW;[k] that pro-
cess P; consumed on behalf of each virtual server k, and
stores the respective values of U;lk] in shared memory.
All counters r;[k] and b;[k] are then cleared in preparation
for the next period. Note that the utilization measurement
function is invoked separately in each worker process P;
to compute its contribution to the utilization of
virtual servers.

6.4 Implementing Utilization Control

The utilization controllers are implemented in a separate
process forked off by adaptsoft_init() during startup. The
process executes a loop that wakes up periodically to
compute the extent of degradation for each virtual server
then sleeps until the next period. Upon waking up, the
controller computes the utilization, Uy, of each virtual server
k by aggregating the recorded contributions U;[k] of all
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worker processes, P;, towards Uy,. Thus, U, = ), U;[k]. This
utilization is then compared to the desired utilization for
the virtual server and the degree of degradation my is
computed accordingly as described in Section 4. The value
of my, for each virtual server k is stored in shared memory.

Each time adaptsoft_adapt (URL, IP) is invoked in the
context of a worker process upon the receipt of some new
request it will classify it and read from shared memory the
current value of my, for the corresponding virtual server.
The function will then determine which content tree to
serve the request from, and prepend the requested URL
name by the name of that tree. (For simplicity, we omitted
in this section the implementation details related to
performance differentiation among clients of the same
virtual server.)

7 EVALUATION

In this section, we present a performance evaluation of
the developed software. This software was tested on
multiple testbeds including a Linux platform (some test
results of which were presented in Section 4), a Solaris
platform and an HP-UX platform. The same performance
trends were observed on all three platforms. In this
section, we report on our HP-UX tests, which are more
comprehensive. In these tests, an Apache 1.3.0 Web server
was executed on a single-processor K460 (HP PA-8200
CPU) workstation running HP-UX 10.20, with 512MB
main memory and GSC 100-BaseT network connection.
To emulate a large number of Web clients we used
httperf [43], a testing tool that can generate concurrently a
large number of HTTP requests for specified URLs at a
specified rate. In order to overload the Web server,
httperf was run on four workstations collectively emulat-
ing the community of clients. The workstations were
connected to the server via a 100Mb switched Ethernet.

7.1 Baseline Performance

Fig. 6 compares the performance of a server that imple-
ments our extensions to that of a regular Apache server. It
plots the connection error probability versus request rate. In
this experiment, we generated requests for 64K images at an
increasing rate. An adapted 8K version of the images was
available in the degraded content tree. As shown in the
figure, the traditional server suffers an increasing error rate
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TABLE 1
Service Time versus Request Size
URL Size (KB) | Max Rate (reqs/s) | T ms/req
1 586 1.706
2 578 1.73
4 538 1.858
8 482 2.075
16 383 2.611
32 301 3.322
64 169 5917
128 85 11.76
256 42 23.81
512 21 47.62

when offered load exceeds capacity at about 160 reqs/s. In
contrast, the actuator in our adaptive server switches to less
resource-intensive content thus exhibiting almost no errors
up to about three times the above rate. In general, the extent
of performance improvement will depend on workload and
degree of content degradation available.

7.2 Estimating Service Time

In our first experiment, we profiled the Apache server to
determine the time, Ts(x), it takes to serve a URL of size z.
Measuring server response time was found not to be
indicative of service time T;(x) because the former includes
queuing time, network latency, etc. We therefore measured
service time by obtaining the inverse of the maximum
throughput. The idea is that if the server can serve no more
than n requests per second, then, for all practical purposes,
each request takes 1/n to serve. The experiment was
repeated for different sizes of the requested URL. Table 1
shows the maximum throughput and the corresponding
service time for each URL size.

Table 2 compares the measured service times to
service times computed using the linear approximation
T,(z) = A+ Bx, where z is URL size, A =1.604,
B =0.063. The constant A can be thought of as the
time it takes to serve a zero-size URL. The constant B
is the additional service time required per KB of URL
size. It can be seen that the quality of this approxima-
tion is very good for smaller URL sizes, but deteriorates
significantly as URL size increases. The reason is that
the service time computed from the linear expression
approximates the end-system’s service time. When the

TABLE 2
Simple Service Time Approximation
URL Sizc (KB) | Mcasured T, | A+ Bz | Error
1 1.706 1.677 -1.7%
2 1.73 1.73 0%
4 1.858 1.856 | -0.1%
8 2.075 2.108 1.6%
16 2.611 2.612 0%
32 3.322 3.62 8.9%
64 5917 5.636 -4.7%
128 11.76 9.668 -17.8%
256 23.81 17.73 | -25.5%
512 47.62 33.86 -28.9%

TABLE 3
Enhanced Service Time Approximation
URL Size (KB) | Measured 7y | A+ Bz | Error
1 1.706 1.667 -2.3%
2 1.730 1.730 0%
4 1.858 1.856 -0.1%
8 2.075 2.108 1.6%
16 2.611 2.612 0%
32 3322 3.62 8.9%
64 5917 5.952 0.6%
128 11.76 11.90 | 1.2%
256 23.81 23.81 0%
512 47.62 47.62 0%

retrieved URLs are small the maximum request rate is
determined by the end-system’s bandwidth (including
both CPU and disk access) making the approximation
accurate. As URL size increases, the bottleneck shifts
from the end-system to the network. Since the end-
system is no longer the bottleneck, the estimated service
time falls below the observed service time dominated
by that of the bottleneck resource.

In order to model service time more accurately we use a
composition of two linear approximations, one estimates
service time if the end-system is the bottleneck and the
other estimates service time if network bandwidth is the
bottleneck. While the former is given as before by
Ti(x) = 1.604 + 0.063z, Table 2 suggests that the latter be
given by T,(z) = 0.093z, which is equivalent to stating that
the network saturates at a transfer rate of approximately
86Mb/s. We then take the larger of the two service times to
account for the bottleneck resource. Thus, the combined
expression for T is:

Ts(z) = max{1.604 4+ 0.063x,0.093x}.

The accuracy of the above approximation is shown in Table 3.
We can see that the approximation is accurate over most of the
range of URL sizes. The larger error at size 32K is due to
particulars of the OS implementation. It appears that HP-UX
is optimized for long TCP transfers, making CPU service time
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Fig. 7. Comparing the approximations.
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increase sublinearly with transfer size thus falling below the
linear estimate. Fig. 7 compares the approximations shown in
Tables 2 and 3, respectively.

The total service time Ty of N requests is > .,y T5 (z:),
where z; is the requested URL size in the ith request, and
T;.(z;) is the service time of that request. Substituting for

T;.(z;) we get:

Ty = max{1.604N +0.063

Z z:,0.093 Z m}

1<i<N 1<i<N

where Y, .y 2; is the total bytes requested. Let us denote it
by S. Thus, Ty = max{1.604N + 0.0635,0.093S5}. If N re-
quests were served by the server within some time interval T,
system utilization is

U = Ty/T = max{1.604N /T + 0.063S/T,0.0935/T}.

Note in this expression that N/T is the observed request
rate R, and S/T is the delivered bandwidth BW. Thus:

U = max{1.604R + 0.063BW,0.093BW}. (9)

In practice, requests for URLs above 64KB will constitute only
a small fraction of all requests on the server. Thus, it is
probably safe to assume that the first term will usually
dominate in the above expression. This reduces it to the linear
approximation U = aR + bBW we described earlier, where
a = 1.604 and b = 0.063. Similar results where obtained via
least-squares estimation.” Note that in (9), U is expressed ona
scale from 0 to 1, R is expressed in req/ms and BW is
expressed in ms/kB. It is more natural to expressed R in
reqs/s and BW in Mb/s. After the appropriate conversion of
units we get the more natural expression:

U = 0.001604 R(regs/s) + 0.007875 BW (Mb/s). (10)

The a and b parameters are robust to changes in workload
(e.g., changes in request rate and requested URL size).
However, since they represent, in part, the computational
overhead of TCP/IP connections, these parameters might
change depending on the average number of retransmis-
sions and the number of segments required to send a given

2. If this approximation is poor for a given workload, (9) should be used.
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amount of bytes. Thus, for example, the a and b parameters
might be smaller for clients accessing the server locally via a
high bandwidth LAN and larger for clients accessing the
server across a congested or lossy wide area network. In the
preceding experiments, clients were accessing the server via
a LAN. We have not experimented with server access over a
wide area network to estimate parameter robustness under
these conditions. We expect, however, that a and b will
remain stable enough in the face of gradual client
population changes for the automated profiling to update
them in a timely and accurate manner.

7.3 Measuring Response Time

In our experiments, we found that Apache server response
time when measured across a fast network (or from a client
residing on the same machine with the server) has two
important properties. First, it is essentially bimodal. It
remains low until the server becomes overloaded, at which
time it increases dramatically. Second, the vertical
magnitude of the “knee” in response time seen at overload
is roughly equal to the product of service time, T, and the
maximum length of the listen queue configured for the
server. For example, Fig. 8 plots server response time versus
request rate when the listen queue was configured for
maximum length of 48, 192, and 768, respectively. In this
experiment, all requests were for URLs of size 64KB. The
sudden increase in server response time when the request
rate increases beyond 160 reqs/s makes a clear overload
indicator. Fig. 9 plots response time versus request rate
when the URL size is changed. In this experiment, the listen
queue was configured for a maximum length of 48. The
requested URL size was 8KB in one experiment, and 64KB
in another. As before, a clear rise in response time was
observed when server capacity was exceeded. Note that
reducing server utilization below 0.58 guarantees that the
server will operate below the overload threshold.

7.4 Adaptation at Overload

Content adaptation reduces the load on the server thereby
avoiding connection failures. As request rate increases on
the server a threshold, Rgcgrqde, is reached where content has
to be degraded in order to prevent overload. As request rate
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continues to increase beyond Ricgrqq., more clients must be
degraded until, eventually, a point R,j. is reached where
no further degradation is possible. If request rate increases
beyond R, some clients must be rejected to prevent
indiscriminate connection failures. An actuator with no
support for degradation exhibits connection failures or
client rejection starting at rate Rjegrqq., While an actuator
with adaptive content will continue to serve all requests up
to the higher rate R,.j.:. As shown in Fig. 6, we conducted
an experiment where the request rate on the Apache server
was increased for URLs of size 64KB. An adapted 8K version
of the same URL was used for degraded content. In this
experiment, we found, approximately, that Rjegrqqe = 160
and Ryejeq = 460. The ratio Ryeject/Ricgrade i the the
maximum sustainable request rate of an adaptive server
as compared to the maximum sustainable request rate of a
nonadaptive server. The value R,¢ject/Riegrade — 1 is the net
improvement in the maximum sustainable request rate due
to adaptation. This improvement depends on the requested
URL size. Fig. 10 plots the net improvement (in percents)
versus the average requested URL size, . The degraded
content, in all cases, was eight times smaller in size than the
full-length content, but the required number of server
accesses was the same. The percentage improvement in
maximum sustainable rate is illustrated both when the
accessed URL is a static file of size z, and when it is a
CGI script returning a URL of size z. In the latter case, a
static memory buffer of the specified size was returned by
the script with no initialization and no meaningful content.
The CGI scripts were written in C. Results for interpreted
Perl scripts were slightly lower (not shown in Fig. 10).

It can be seen that the percentage improvement in
sustainable rate decreases as the requested URL size
decreases. This is because the smaller the requested URL
the more dominated is service time by the fixed size-
independent processing overhead, rather than the size-
dependent data transfer cost. The rate improvement
achieved by compressing the URLs is relatively insignif-
icant (less than 100 percent) for URL sizes below 32K.
Thus, content dominated by smaller objects should be
degraded by reducing the number of embedded objects
per page, rather than reducing the bytes per object. Also,
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Fig. 11. Server underutilization.

note that CGI scripts are not amenable to degradation by
reducing the size of generated content. The fixed over-
head involved in invoking the script is so great that the
additional data-size dependent costs are insignificant
unless the returned data volume is substantial. We
therefore suggest that dynamic content be degraded by
converting it to static whenever possible.

7.5 Rejection Overhead

As a last resort, our actuator rejects clients to control
utilization when no further degradation is possible. The
server can either silently close a client’s connection, or
return an error message such as “Service not Available.” In
either case some processing occurs on the end-system
before the request is rejected (e.g., protocol processing). To
quantify the amount of time spent in processing an
eventually rejected request, we instrumented the server to
reject all requests by closing the connection as soon as the
request is read off the server socket. The request rate on the
server was then increased, and the maximum response rate
was recorded. The maximum rate was found to be around
900 reqs/s, which is the maximum rate at which rejection
can be processed. The time wasted on each rejected request
(the inverse of the maximum rejection rate) is thus
approximately 1.1 ms/req. This is to be compared with
1.604, the time it takes to serve a zero-size URL (denoted by
constant A in Section 7.1). The difference is believed to be
due to file system access associated with serving the URL. It
appears that this difference is not substantial. More than
one millisecond of processing time is wasted on each
request even if it is rejected. Request classification and
rejection should thus be done at the earliest point possible
upon request reception in order to conserve end-system’s
resources. One suitable place for this mechanism is at the
bottom of the protocol stack in the operating system’s
communication subsystem. The difficulty in performing
classification at the bottom of the protocol stack lies in the
necessity to violate protocol boundaries and peek into
headers of higher-level protocols such as HTTP.

It is interesting to compare the aforementioned rejec-
tion overhead to the overhead wasted on each failed
connection in a server that does not support rejection. Let
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Fig. 12. Performance isolation in adaptive server.

us denote it by Ty. To compute T}, consider the Fig. 11
which depicts the delivered bandwidth in a regular
(unmodified) Apache server subjected to an increasing
request rate. The maximum delivered bandwidth (of
about 84Mb/s) occurs at the overload threshold (at rate
160 reqs/s). Onset of overload indicates that the server is
unable to serve successfully more than 160 reqs/s.
Substituting in (10), the following equation holds:

160a + 84b = UIYL(I.’L‘7 (11)

where U,,., is the maximum server utilization at overload.
As overload continues to increase, the delivered bandwidth
declines to only 36 MB/s at rate of 600 reqs/s. For the
worst-case estimate of Ty, assume that the decline in
bandwidth is attributed solely to the overhead of handling
failed requests. Since the server cannot serve more than
160 requests successfully out of the 600 it receives every
second, the number of failed requests is at least 440 reqs/s.
The following equation holds:

160a + 36b + 4407 = Uppqs. (12)

By subtracting (11) from (12), solving for T, then substitut-
ing for the value of b (as determined in Section 7.1,
b =0.007875s/Mb), we get Ty = 0.86ms in the worst case.
Note that this number is less than the 1.1 ms request
rejection overhead.

The implications of the above are interesting. User-level
admission control mechanisms trivially require that all
requests be seen by the actuator (so that an admission
control decision can be made for each). This implies that
each request, whether it ends up being rejected or not, will
have to consume platform resources up to the point where
it leaves the kernel and is inspected by the server or
middleware. As shown above, each request rejected by the
server consumes 1.1ms, on average.

A best-effort server, on the other hand, will serve
requests in a FIFO order. As a result, under overload, its
socket’s listen queue will overflow in the kernel. Many
client connections will time out and fail early in the OS
before being seen by the server. As shown, a request
failed in the kernel consumes only 0.86ms. As a result,
the resources wasted per failed request are less (about
22 percent less on our platform). The remaining capacity
available to requests that do get through is therefore
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higher in a best effort server. Thus, while a user-level
admission control mechanism will improve the average
response time of requests that are not rejected, it will
necessarily increase the average rejection rate over the
failure rate of a server with no such mechanism. This fact
motivates using user-level adaptation instead of rejection
as a way to control server overload whenever possible.
Content adaptation is especially suited for alleviating
light to moderate overload conditions when the server
has enough capacity to serve a fraction of, but not all,
requests. In cases of severe overload, the server may
suffer the receive livelock problem which may preclude
serving any requests at all. Methods for resolving the
receive livelock problem such as kernel level classification
and admission control are beyond the scope of this paper.

7.6 Performance Isolation

We described a performance isolation mechanism that allows
creating multiple adaptive virtual servers with individual
rate and bandwidth guarantees. The mechanism provides
protection among individual virtual servers, as well as
protection between the virtual servers and the nonguaran-
teed best-effort traffic. Fig. 12 demonstrates these features. In
this experiment, all requests were for 32KB URLs.” A
background best-effort load of 300 reqs/s was applied to
overload the machine (see Table 1 for maximum sustainable
rate of 32KB requests). In addition, two adaptive virtual
servers, V; and V3, were configured. Server V; was configured
for a maximum guaranteed bandwidth of 13 Mb/s, and a
maximum guaranteed rate of 50 reqs/s. During the experi-
ment, a constant load of 50 reqs/s was applied to that server
requiring a bandwidth of 12.8 Mb/s, i.e., just within the
allocated server capacity (note that bandwidth in Mb/s is
32KB/req times 8 b/B times 50 reqs/s). Server V, was
configured for a maximum guaranteed bandwidth of 27 Mb/
s, and a maximum guaranteed rate of 100 reqs/s. The load on
server V5 was increased gradually from 0 to 100 reqs/sec,
giving rise to a bandwidth requirement of up to 25.6 Mb/s,
which is also within server capacity. It is important to note
that, while each virtual server in isolation was loaded within
its individual capacity limit, the aggregate load on the
machine (including nonguaranteed traffic) was well above
the overload threshold because of best-effort load. Fig. 12
depicts the offered load on each virtual server (in terms of
bandwidth in Mb/s assuming no content degradation), as
well as the actual bandwidth delivered by each server. Both
are plotted versus the aggregate request rate. For clarity, the
best-effort load is not shown. It can be seen that the actual
bandwidth delivered follows closely the offered load on each
virtual server. Thus, despite server overload, virtual servers
V1 and V; achieve their performance guarantees and suffer no
content degradation. Furthermore, variations in load on
virtual server V; do not affect virtual server V,. Performance
isolation is thus achieved in the sense of maintaining the QoS
guarantees independently for each virtual server regardless
of other load.

For comparison, we repeated the experiment using a
regular Apache server that does not use our adaptation
extensions. As before, a best-effort load of 300 reqs/s was
applied in addition to a 50 reqs/s load on server V; and an
increasing 0 to 100 reqs/s load on server V5. Fig. 13 depicts

3. In a real-life situation the workload is likely to be less severe.
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the results of this experiment. It can be seen that the
delivered bandwidth of both virtual servers falls short of
the offered load. The difference reflects the fraction of
connections that fail and don’t get served due to overload.
Note also how the increase in delivered bandwidth of
server V) results in a decrease in delivered bandwidth of
server V5. No performance isolation is observed. The
comparison of Figs. 12 and 13. illustrates the advantage of
the developed adaptation software.

7.7 Service Differentiation

Adaptation software allows defining multiple priority
classes of requests. In this section, we experiment with
defining two priority classes, namely a basic class B and a
premium class P. Requests of class P are treated as higher
priority than those of B. In the experiment, we offered a
constant load of 100 premium class requests per second. We
then gradually increased the rate of basic class requests.
Fig. 14 plots the delivered premium and basic bandwidth
versus request rate. It also shows the offered load of both
premium and basic clients. Note that when the server
becomes overloaded, basic clients are degraded before
premium clients thus achieving service differentiation.

7.8 Policing versus Excess-Capacity Sharing

As we argued earlier, an important advantage of colocating
several adaptive virtual servers on the same machine is the
ability to utilize unused capacity of one virtual server by
another that is overloaded. The overloaded server should be
allowed to exceed its individual capacity allocation when
extra capacity is available, as long as it does not affect other
virtual servers. When the machine is overloaded, however,
each virtual server should be policed to its individual
capacity allocation in order to achieve performance
isolation and overload control. These two features are
provided by the excess capacity sharing mechanism. To
evaluate the efficacy of this mechanism we conducted two
experiments. In the experiments a virtual server V; is
created whose offered load at run-time exceeds its capacity
allocation. Low background load is used in the first
experiment. As a result, virtual server Vi overruns its
capacity allocation utilizing the excess capacity on the
machine. In the second experiment, high background load
is applied. As a result, the virtual server is policed to its
individual capacity limit. Moreover, in both experiments a
second virtual server, V5, is also used. Server V,, which
operates within its capacity limit at all times, is shown to
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Fig. 14. Service differentiation.

deliver its offered load without degradation despite the
(controlled) capacity overrun of server Vj, and the back-
ground load. Excess-capacity sharing is thus shown not to
interfere with performance isolation.

Fig. 15 depicts the results of the first experiment. It
shows the contracted as well as the actual bandwidth of
servers Vi and V. Server V) is configured for maximum
bandwidth of 13Mb/s, and maximum request rate of
100 reqs/s. Server Vs is configured for maximum band-
width of 27Mb/s and maximum request rate of 100 reqs/s.
At run-time, the request rate of V5 is held constant at 100,
offering a total bandwidth requirement of 25.6Mb/s, i.e.,
just within its capacity limit. The request rate on server V; is
increased gradually from 0 to 250 reqs/s. The aggregate rate
of both servers is shown on the horizontal axis. It can be
seen that server V» overruns its capacity allocation deliver-
ing a peak of about 35Mb/s at a rate of 140 reqs/s (at which
the aggregate rate is 240 reqs/s in Fig. 15). This is to be
compared with its guaranteed maximum bandwidth of
27Mb /s and maximum request rate of 100 reqs/s. Server V;
remains unaffected, since the excess capacity sharing
mechanism ensures performance isolation.

The experiment is repeated with a background load of
100 reqs/s, as shown in Fig. 16. It can be seen that V; is
made to deliver exactly its maximum guaranteed band-
width (27Mb/s) when its rate reaches the maximum
guaranteed rate (100reqs/s). This is equivalent to traffic
policing, except that in adaptive virtual servers it is
achieved via content degradation. The bandwidth con-
sumed by V; drops below its guarantees value when the
maximum rate guarantee is violated by the community of
clients. This is to ensure that the total system capacity
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utilization of that virtual server remains constant. Similarly,
the server is allowed to deliver more than its maximum
guaranteed bandwidth when its rate is below the maximum
guaranteed rate. This is an optimization that makes use of
the capacity allocated to the server to deliver more
bandwidth when the request rate hasn’t reached its
maximum value. Again, server V5 is not affected due to
correct performance isolation.

8 CoNcLUSIONS AND FUTURE WORK

In this paper, we demonstrated the application of control
theory to Internet server performance control. We presented
a QoS-management architecture that relies on adapting the
delivered content to control server utilization. Unlike
contemporary nonadaptive servers, and unlike servers that
implement “binary”—accept or reject — admission control,
content adaptation enables a server to provide a smooth
range of client degradation, thereby handling overload
gracefully. We proposed in Section 4, the design and
implementation of a utilization control loop that regulates
the extent of degradation (in the service level and number of
clients) so as to satisfy a prespecified utilization bound in the
presence of variable server load while virtually eliminating
connection errors. In Section 4.4, we have shown how
utilization control may be used to satisfy individual time
constraints. We demonstrated several extensions to this
mechanism that provide performance isolation, service
differentiation, excess-capacity sharing, and QoS guarantees.
The mechanisms described in this paper are largely
independent of workload assumptions, and can be easily
applied to different platforms by appropriately tuning a
small set of parameters using well-founded analytic techni-
ques. The architecture can be implemented in a middleware
layer transparently to existing server and browser code
thereby facilitating its deployment.

We have shown that Internet servers can be modeled by
a time-varying linear transfer function for purposes of
performance control, and demonstrated how feedback
control can be applied to ensure meeting service timing
constraints. All measurements in this paper were made on
an experimental platform running the popular Apache Web
server which we have modified to incorporate the proposed
control loop. The paper also provides a proof of concept of
the utility of control theory to managing the resource
allocation of an end-system for improving quality of service
when the bottleneck resource is under server control.
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There are several remaining issues and challenges that
warrant further research. Handling and adapting dynamic
content is an interesting issue. The inherent unpredictability
of CGI script execution times offers new challenges to load
characterization. The experiments reported in this paper
used the HTTP 1.0 protocol. It is interesting to see whether
the same results will hold for HTTP 1.1. While some aspects
of client classification may be simplified, persistent
TCP connections may impose less predictable server load
characteristics that are more sensitive to client-side band-
width. The approach of storing multiple copies of content is
affordable for the typical size of a Web site. In video servers,
however, an important issue to investigate is scalable video
encoding schemes that avoid storing multiple copies of the
content. We also need appropriate content authoring and
management tools to preprocess Web content in a way that
preserves enough information, yet consumes a minimal
amount of resources.

From the perspective of control theory there are several
additional issues that we would like to address. For
example, how to determine the set point and parameters
of a controller in order to guarantee that utilization is
maintained below the schedulable bound a certain percent
of the time (given statistical input load characteristics such
as standard deviation, or maximum burst), how to model
nonlinearities peculiar to computing systems? How can
these nonlinearities be accounted for in controller tuning?
How efficient are adaptive control and robust control
techniques in dealing with parameter variations and load
uncertainties (e.g., when the statistical model of the load is
unknown or nonstationary)? Can automatic identification
and estimation techniques be applied to model servers,
software sensors, and actuators? How to implement
control-theoretical resource management in the operating
system? Examples, theoretical foundations, experimental
evidence, and practical experience are needed in applying
feedback performance control to different computing
systems. This is an important focus of our current research.
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