
Proceedings of the 2001 IEEE
International Conference on Robotics & Automation

Seoul, Korea· May 21-26, 2001

Model-based Control for Reconfigurable Manufacturing Systems

Kazushi Ohashi
'j and Kang G. Shin

'2

*1: Industrial Electronics & Systems Laboratory
Mitsubishi Electric Corp.
8-1-1 Tsukaguchi-Honmachi
Amagasaki, Hyogo 661-8661, Japan
ohashi@fas.sdl.melco.co.jp

.

*2: Real-Time Computing Laboratory
Eelectrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122, U.S.A.
kgshin@eecs.umich.edu

Abstract: The manufacturing industry cannot stay competitive and survive in today's market without agile adaptation to
rapidly changing customers' demands. This in tum requires manufacturing systems to be reconfigurable for timely
introduction of new products in the market. Unfortunately, at present, the system designers cannot systematically and
completely manage their design data, because manufacturing systems have gradually become too large and too
complicated to manage. In order to reconfigure and reuse H/W and S/W components in manufacturing systems, and
improve the engineering environment of system control design, we propose a model-based control design using state
transition diagrams and a general graph description, while taking reconfiguration and reuse of design data into account.
We demonstrate the utility of the proposed approach using a real application.

1. Introduction
User demands for products tend to change rapidly. To

respond to such demands, manufacturers must modify the
design and functions of products, and change their
production schedule to be competitive. This in tum
requires to quickly reconfigure their manufacturing
systems like a cell or line. It is, however, difficult and
time-consuming to change system control programs due
mainly to their ad hoc, and sometimes proprietary, nature.
Especially, many parts of the System Control Design
(SCD) data are inter-related to one another, thus requiring
significant time and effort to identify and determine
which parts to be modified. As a result, it is very costly to
modify the control programs, or sometimes costlier than
re-developing them from scratch.

Since graphs are very useful to represent data relations,
many researchers attempted to model manufacturing
systems using various graph descriptions, such as state
transition diagrams (STDs) [2,3,4,6,7] and IDEF [5]. For
accurate system descriptions, however, these models
usually consist of an excessive number of states when
they are llsed to model realistic (large) systems. To cope
with this difficulty, some of these models adopt a
hierarchical stmchlre, but they have not taken into
account system reconfiguration and reuse of H/W, S/W
and SCD data, while its unit of reconfiguration is coarse
in others. The authors of [3] and [4] presented a model
based on CIM-OSA, which is composed of event flow
and resource behaviors at a control specification level,
and described with an object diagram and a Petri-Net.

The work repolied in this paper was done during K.
Ohashi's visit to RTCL and supportcd in part by DARPA
under Grant F33615-00-1706 administered by the US
Airforce Wright Laboratory.

0-7B03-647S-9/01/$10.00© 2001 IEEE 553

This model is decomposed according to manufacturing
system functionalities. Researchers have taken into
account reconfiguration of a manufacturing systcm and
reuse of components of SCD data. But the unit of
replaceable parts is a resource object. [5] provided a
model consisting of message flows based on IDEF3 and a
resource configuration graph. In this model sequence
control flows and synchronization between resources in
the message flow can be understood easily, but it didn't
consider data reconfiguration. [6] presented a model
consisting of a manufacturing system's stmcture graph
and production routes based on Colored Petri-Nets. This
model adopts templates and allows use of variables. It
includes the concept of time to estimate mntime, but it is
difficult to identify synchronization parts between
resources when system size is large. [7] proposed a
cooperation model between resource behaviors and a
system control model using hierarchical Petri-Nets. The
authors demonstrated the use of the analysis tools to
verify the properties of their models, and analyzed them
both quantitatively and qualitatively. Their concept is
similar to ours in terms of a cyclic description of resource
behaviors, synchronization descriptions and their
compositions. However, in their model it is difficult to
detcct the boundaries between resource behaviors in the
final composed model.

We previously attempted to model manufacturing
systems with a cyclic STD model [2]. Each equipment
behavior is described with a cyclic STD, and the model of
a target system is configured to connect synchronized
transitions between STDs of resources. This modeling
method is very simple, but the definitions of system
sequence control are included implicitly, and hence, it is
difficult to modify part of the control. Moreover, the
number of redundant descriptions explodes when the

number of combinations between resourccs increases in
workpiece path. Neither did it give any information about
the redundancy in behavior descriptions.

In this paper we propose a modd-based control design
method in which one can build a control system easily
and efficiently using a reconfigurable SCD data model.
We (I) make the SCD data model r,�configurable from the
designers' standpoints and (2) reduce redundant state
descriptions. This model is descrih�d by combining three
sub-models corresponding to process flow, workpiece
path, and resource behavior. Each cfthem is a cyclic STD
or a graph description, and is hierarchically-structured.

The papcr is organized as follows. Section 2 describes
the architecture of reconfigurable manufacturing systems.
Section 3 introduces the notation in graph descriptions,
and Section 4 presents a real application example. Section
5 describes data structures, and th(� paper concludes with
Section 6.

2. Architecture
We will focus on how to change the type, number and

location of resources, and process flow in SCD as casily
as possible for designers who do not completely manage
the SCD data. Such a robust model requires the following
basic functionalities:

(1) Data definition from designer's viewpoints,
(2) Hierarchical and componemial model structures.

The main objects in system control design are:
(1.1) Manufacturing (M-) proct:ss flow,
(1.2) Selection of resources,
(1.3) Workpiecc path/flow bctwcen resources,
(1.4) Resource behavior (e.g., sequence of parts of a

motion or process control program),
(1.5) Collaboration and synchronization (C&S)

between resources,
(1.6) Layout (resource and workpiece base locations).

The model is composed of the following functionalities:
(2. 1) Hierarchal skeleton structure of SCD data,
(2.2) Parameterized descriptions of motion or process

behavior,
(2.3) Variable and parameter list.
Fig. 1 shows the proposed SCD model which consists

of three sub-models and combinat:lOns thereof:
• M-process flow (for (1.1»
• Workpiece path (for (1.2), (1.3) and (1.5»
• Resource behavior (for (1.4) and (1.5»

M-process 110w and resourcc behavior arc described with
STD and workpiece path using a. graph description. The
behaviors of each resource are described with a cyclic
STD and can be understood easily. Parts of data in these
models can be linked to each other at a low level (e.g., a
place, transition or node, which is an element of each
graph description). These parts together form a SCD
model, but these graph descriptions only show the data

554

structure of SCD. Actual process or motion data are
linked to places or nodes. Moreover, process and motion
data are decomposed into parameterized descriptions, and
variable and parameter list. This way, redundant
descriptions are reduced in decomposing the SeD data
into components at lower levels than a resource, and
sharing the same parts. As a result, the local data can be
reconfigured easily.

Fig. I The proposed model configuration

3. Notation and Modeling
3.1 M-process flow and resource behavior

M-process flow and resource behavior are described
with STDs. A STD is constructed with a set of places,
transitions and arrows. Graph models are constructed by
connecting places and transitions with arrows. A place
represents a part of manufacturing process and can have a
hierarchical structure, and designers define and expand
SCD data from an upper level to a lower level. Also, a
place itself has data objects as shown in Fig. 2 where the

line ended with a circle means a reference to another data

object .

Fig. 2 Data structure of a place

A place only represents a node in graph descriptions. A
combination of state, variable and parameter list
represents the actual context of place, and finally
identifies the place. "Variable list" means a list of
variables defined by the user and can be defined locally,
and "parameter list" means a list of resource variables
obtained from the profiled data of resources. Also, a state
is composed of action and state type data. Action data is
motion or process execution data like a program and is
parameterized. State type includes the data related to
execution type of resources (type of M -process, execution
code type of action, and so on). Likewise, SCD

configuration and its actual detailed context arc separatcd.
State is reused at other places in the same SCD or other
SCDs. M-process flow and resource behavior are
represented below as a flow of such places.

M-proccss flow
The M-process flow shows a sequential flow of M­

processes for each workpiece as shown in Fig. 3.

�:p�ocess �_w _____________________ _

C place! r�(. . ��.ace:� plac�3)-+-C�ce4�

link /' Resource behavior _.�L __________ _ _____ _

placc5 2nd lev�I(C&S)

__ Synchroniza�i_�� ___________ "_._

Fig 3 M-process flow and resource behavior

Each M-process is described by a place and can bc
defined hierarchically. All terminal places, which are
elementary M-processes, can be linked. to any place of
any resource behavior. But on this phase of M-process
flow definition, actual resources are not decided exactly
until it is linked to resource behaviors, and state and
variable lists are defined. Then the M-process flow itself
is independent of resources. lJsers can reuse the M­
process flow for a system that has the same M-process
flow by modifying the context of places.

Resource behavior
The resource behavior represents a sequence of

resource actions and is shown in Fig. 3. The resource
behavior is defined based on the cyclic STD of the upper­
most level. The cyclic STD is a conceptual behavior
described with basic actions like "Loaded", "Unloaded"
and "Processing." Some resources can use the same cyclic
STD at this level, and we can provide a certain basic
cyclic STD as a template. A resource can own multiple
STDs each of which corresponds to a motion or process
control program. Cyclic STDs, which are not independent
within a resource, share a start place, which is called the
"Idle" place. Upon completion, every resource behavior
always returns to the "Idle" place. A place can be
described hierarchically in the same way as an M-process
flow. The difference between M-process flow and
resource behavior is that all cyclic STDs have more than
onc collaboration and synchronization (C&S) place,

555

which is represented by a thick-lined oval, at the top level
of a resource behavior. A C&S place represents
collaboration or synchronization with any C&S places of
other resources (e.g., "Loaded" and "Unloaded" place) as
shown in Fig. 6. There always exists a C&S place next to
the "Idle" placc, becausc one behavior is selected by one
of transitions between the "Idle" place and the activated
place. If multiple actions need to be executed in parallel
within a resource, it needs to own multiple behaviors,
which do not share the "Idle" place.

Lower-level places of a C&S place are defined here or
in the connection node of workpiece path. Details of
collaboration and synchronization are defined at the
second level of resource behavior as shown in Fig. 6.

3.2 Workpiece path
A workpiece path is specified with a graph descrip­

tion, and uses 4 types of nodes and 2 types of arrows as
shown in Fig. 4.

o
(l)Resource (2)Collaboration (3)Swltch

& synchronization

• ---+
(4)Virtual (S.l)Arrow

-

(5.2)Arrow for
synchronization

Fig. 4 Nodes in workpiece path

A resource node represents a real or conceptual
resource and each small circle corresponds to the C&S
place of a resource behavior. When the node represents a
conceptual resource, it can be expanded hierarchically.
Then, small circles mean C&S places of a complex
behavior to the outside world. In case of an actual
resource, it corresponds to a resource behavior.

A C&S node is linked to the C&S places of
collaborating or synchronizing resource behaviors. The
nomlal arrow of (5.1) in Fig. 4 is used for collaboration to
link nodes, and the diamond-shape arrow of (5.2) is used
for synchronization. Designers can define C&S conditions
between resource behaviors at a lower level through this
node as shown in Fig. 6.

A switch node represents the branch or join of
resource nodes, and is linked to the designer-defined
conditions.

A virtual node is used in the "detailed" connection
node and represents real input and output places of
approximate resource nodes locally. Usually, a connection
between resources is described conceptually at the upper­
most level, and all actual connection nodes don't appear
at the upper level of workpicce path. But when a
conceptual resource node is expanded, the number of
connection nodes is not restricted to one (e.g., when
multiple resources are used in one process as shown in
Fig. 5). As an example, a workpiece path among resource

nodes and the lower level of connection node C02 are
given in Fig. 5. Two resource nodes are sensors, and three
virtual nodes are C&S places of the equipment in the
expanded node C02. Also "PMll.l. Loaded" means
<Resource name>.<Behavior number>. <Place name> in
this figure.

The relation between workpiece path and resource
behavior is shown in Fig. 6. Details of synchronization
can be defined through a connection node.

Buffer! COl Transfer! C 02 PVlI

[}-::,::-rr>��

i O· PMl!.l.,
: PMl2i

T"n'f"I.�[:�.�lto i : 0 I
Unloaded I ...

P\1 12. I. 1

.�o.ed I
C022 ___ J

Fig. 5 An example of workpiece flow

I3eh"iocC .� Workpiece path
Op]'Ce12

placeJ3 .J place23
O-�

�ehav!or A Behavlo)f B

Resource behavior t
BehavwrA HehavlOrC

I cvr3D I Gl'F
I � @� -'(-I , I (placeI11)

Gl'�

I
I r I L�! (��e234

ll11d..:

_ :Synchronization
Fig. 6 Relation between workpiece path and resource

behavior

4. An Example Application
The above model is applied to the SCD of a Plasma

Display Panel (PDP) transfer cell as an example. This cell
consists of elements of panels, three cassettes storing
panc1s, two typcs of robots (GTR and RH-L3), two
positioning tables (PT) (one of which is PTI for input and
the other is PT2 for output), and process machine (PM)
evaporating MgO on panels. The graphical scene of this
cell is given in Fig. 7 and its layout in Fig. 8. One cassette
stores 15 panels. The types of work are to transfer panels
from a cassette to PM, perfonn a ehemical process on PM,
and restore the panels to a cassette. PM draws in a carrier

556

and 2 panels can be placed on the carrier each time. The
workpiece path is cyclic as shown in Fig. 8. On PTs, the
workpiece position is corrected. But position control is
omitted to simplify the presentation. Each robot, PTs and
PM have sensors, which check the existence of panels.
The actual definition of each sub-model is explained
below using the cell, and details are given using GTR and

PTL

Fig. 7 PDP transfer cell (CG screen)

I "lv' orkpiece flow

Cassette
j GTR

InputJT(PTl)
j

RH·L3
1

PM
I RH-L3
I OutputPT(PT2)
t

UTR

4.1 M-process flow and resource behavior

(Input * Processing >+c Out�ut)
y �CTra�Sfer4)1

Fig. 9 M-process flow

This cell's process consists of transfer processes and a
chemical process, and a process flow is described as
shown in Fig. 9. The "Input" place shows how to transfer
from buffer to PM, and the "Output" place represents a
reverse-process for it. Each basic resource behavior can
be described as shown in Fig. 10 where thick-lined ovals
represent C&S places. The resource behavior is described
with <Resource name>.<Behavior number> and *
represents the corresponding resource or behavior number.
"Wait*" or "Passive*" places denote the action of
previous state being finished. An example of a place list

of resource behaviors is shown in List I. States can be
shared by these multiple places.

(2) GTR.*, RH-L3.*,

PositioningTable*1

(3) Pruco"Machinel(or 2).1

�
bD

(I) Cassette*' I (4) Process (5) * Sensor' .1
Machine3.1

Fig. 10 Resource behaviors

List I Place list of GTR and PT I
Behavior PI<lce

Levdl Levd2 Leve13
GTR TlJPM Idle

(GTR.1) Loaded Movel Movell(1-3)

(ToBuffer) Movc 12 (! 15
Approachl
Absorb !

Leavel
Passive!

Unloaded Move2

(ToPTI) Approach2
Releasel
Le:we2
WaHl

Positioning TorM Idle
Table! (Positioning Loaded Wait!

lable!.l) HotateU
PlJ�iliurtill

Unloaded Wait2

Rotate�U
4.2 Workpiece path

r . Ciil.l -; i " ,p,�����;--" ,:�� rp������" .. -
�·c" ' .

.

• 1 .

.

. 1 1.--10=: •
.

Maclune.l' 'Machine.3 , .,ilsse !�.: !-i . • I
- -- _______ J

; CS2 I : , (CarrierA) PM L1 ..

: . '1 '0=:" .'i C09.� n :Casselle2.1,,<III(, .. -. '--- 6� --- - i -- I Process PM] I ! CSJ.! "Machme2� 0----.- : -

:·(:a:�.��.f�.�?l i..c1 U-•• : i (CarrierD) PM2.1

A . '
I COl Transferl.lC02 : � Transter2.1 ,

[p....:_�_�c���G
Buffer1.1 i PM.I

!Transferll.1 PTI.I Transfer!2.1

o-:��c�{} . ;Tnmsfer21.1 PT2.1 Transfer22 I

. o-.:�{}��{} ! . I
Y y y ..

GTR.1 Positioning, r RH.I..3.1
,Tablel.l

_ _ ___ �.

�_..:...�� .. ___ ! ______ i _,

RH-I.n � P;;it;��i·�g·:
!Tab�e2 I I

. y
GTR.2

Fig. II Workpiece path

Workpiece path can be described hierarchically as
shown in Fig. II where CO* is a C&S node's name. C&S
node details are described as shown in Fig. 12 (C07, 8
and 9 are omitted.). In an equipment resource node, the
left-hand side circle represents the "Loaded" place and the

557

right-hand side circle does the "Unloaded" place. In a
sensor resource node, the upper-side circle represents the
"Off' place and the bottom-side circle does the "On"
place. Conditions stored in switch nodes are described as
follows for the case of CO I (Place I and Place2 are
variables):

Type, Priority
CSl .l.Unloadedl
CS 1.I.Unloaded2

(l)COI

S.;'drA c�.
� : �::d!�ll

Tmn,fcrn.l. g.
UnloadeG C0445 eso.1.

Loadedl5

CD
(4)C04

1. GTRSensor.l
4. PMSensorl .l

// Priority I
1/ Priority 2

(2)C02

CD�
Transferl!.!. 1'11.1
Unloaded Loaded ��.

tC05'

CDO
(5)C05

2. PTl Sensor. I
5. PMSensor2.1

(4)�3"
P.Y1 I. I.
Unloaded Swltch3

...
C03

CD •
PM'.l 1�"n<fe<21 1
Unloaded Loaded

��
C032

(3)C03

PM3.lD
T

Idle � TranslerI2.1. _ :.. Loaded
PTI.1. 6COGI
UnlC1arlerl

CD
(6)C06

3. RH-L3Sensor.1
6. PT2Sensor.1

Fig. 12 Detailed C&S nodes

List 2 An example 0 f sync h romzatlOn d ata on COS!
Transferll PT! GTRSensor PTlSensor

MOVf�2 Waitl
/\ roach2

Releasel
Leave2 <·N:Off <-N'On

Waitl RotateD

@�
PTll.l. CD

PTI1.1.

Unloaded

....

CD C052 pr11 I

<0

SW;'b,h5 �.ded

Transfelll.l. �051

���12l
Loaded

@ PTl2.!

<0

(I)PT 1.1 (2)C05

21: PT11.1.Sensor
(3)C06

22: PT12.1.Sensor
Fig. 13 In a case of changing number of input PT

An example of synchronization condition data
included in C&S nodes (C05) is shown in List 2. Here the
lines above or below a place name represent transitions,
and thick lines denote collaboration. In sensor places, the

arrow is synchronization, and <-N means synchronization
at the next transition of a pointed place.

If designers want to change the number of Input PTs
to two (PTII and PTl2), they need to modify SCD data
by changing resource node PT I and C&S nodes, C05 and
C06, as shown in Fig. 13. Then, the states used in PTI
can be reused in PTlI and PT l2. State data is omitted
here, but one can easily infer that the parameterized data
on actions can be reused without increasing the amount of
data too much.

5. Data Structure

�
StateLlbraI)'

_ _ ___ �" __ --.J
ReSOllrce behavior

Fig. 14 Data structure cf SCD model

The data structure to realize the proposed model is
shown in Fig. 14. Ovals represent data objects based on
object-oriented methods. The line ended with a circle
denotes the reference of object dara. Especially, gray lines
represent the relations between sub-models and main data
objects. Previous, next and child in the figure mean to
own data lists (e.g., hierarchy). Places and nodes of sub­
models are linked and an SCD model is constructed by
their combination. We only give the meaning of some
special data classes as follows.

• System: Top object in SCD data
• ProfileData: Resource parameter list
• ControlGroup: Administration of resource groups
• Behavior: Cyclic STD of resource
• NodeObject: Super class of every node (place,

transition, resource node, etc.)

6. Conclusion
We proposed a modeling method for supporting the

reconfiguration of a manufacturing system. Specifically,
we presented a system control design model and

558

described how to define the data as the first step. The
model is then composed of 3 sub-models based on
workpiece path, manufacturing process flow, and resource
behavior. These sub-models are described with general
graph descriptions and state transition diagrams, and
decomposed into multiple data levels, such as skeleton
data configuration, parameterized description, and
variable and parameter lists. By separating control
structure from actual data and components of the structure
based on the designer's viewpoints, this model enables
the data to be moditied only locally and facilitates
efficient reconfiguration of manufacturing systems. Also
part of skeleton of control configurations, and process,
motion and synchronization data can be reused. A Plasma
Display Panel transfer cell is modeled as an example.

As future work, we are planning to
(1) verify the state-level system behavior by simulation

using the model, and refine the model,
(2) investigate how to reconfigurc the data and makc

execution data for the model., and
(3) expand the model to be able to deal with timing

constraints, complex distributcd control systems and
description of exceptions.

Reference
[I] 1. L. Peterson., "PETRI NET THEORY AND THE
MODELING OF SYSTEMS", Prentice-Hall, 1981.

[2] K. Furusawa, T. Yoshikawa, and K. Ohashi,
"Development of an Integrated WorkceIl Design and
System Engineering (II) -Applying Line-Model to Real
Systems-", Proceedings of the 41th Annual Conference of

ISCIE, pp. 337-338, 1997 (Japanese)
[3] R. P. Monfared, and R. H. Weston., "The re-engineer­
ing and reconfiguration of manufacturing cell control
systems and rcuse of their components", Proc. Instn.
Mech. Engrs., vol. 211, pp. 495-508, 1997

[4] J. M. Edwards and M. Wilson, "A top down and
bottom up approach to manufacturing enterprise engineer­
ing using the function view", into J. Computer Integrated

Manufacturing, vol. II, no. 4, pp. 364-376, 1998
[5] H. Cho and 1. Lee, "Integrated framework of IDEF
modeling methods for structured design of shop floor
control systems", Int. J. Computer integrated manufactur­
ing, vo1. 12, no. 2, pp.I13- 1 28, 1999

[6] A. Zimmermann, S. Bode, and G. Homme1.,
"Performance and Depcndability Evaluation of Manu­
facturing Systems Using Petri Nets", "Manufacturing and
Petri Nets" of 17th Int. ConI on Application and Theory of

Petri Nets, pp .235-250, 1996

[7] M. Heiner, P. Deussen., and J. Spranger., "A Case
Study in Developing Control Software of Manufacturing
Systems with Hierarchical Petri Net", "Manufacturing
and Petri Nets" of I7'h Int. Con! on Application and
Theory of Petri Nets, pp.I77-196, 1996

