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Abstract: The manufacturing industry cannot stay competitive and survive in today's market without agile adaptation to 
rapidly changing customers' demands. This in tum requires manufacturing systems to be reconfigurable for timely 
introduction of new products in the market. Unfortunately, at present, the system designers cannot systematically and 
completely manage their design data, because manufacturing systems have gradually become too large and too 
complicated to manage. In order to reconfigure and reuse H/W and S/W components in manufacturing systems, and 
improve the engineering environment of system control design, we propose a model-based control design using state 
transition diagrams and a general graph description, while taking reconfiguration and reuse of design data into account. 
We demonstrate the utility of the proposed approach using a real application. 

1. Introduction 
User demands for products tend to change rapidly. To 

respond to such demands, manufacturers must modify the 
design and functions of products, and change their 
production schedule to be competitive. This in tum 
requires to quickly reconfigure their manufacturing 
systems like a cell or line. It is, however, difficult and 
time-consuming to change system control programs due 
mainly to their ad hoc, and sometimes proprietary, nature. 
Especially, many parts of the System Control Design 
(SCD) data are inter-related to one another, thus requiring 
significant time and effort to identify and determine 
which parts to be modified. As a result, it is very costly to 
modify the control programs, or sometimes costlier than 
re-developing them from scratch. 

Since graphs are very useful to represent data relations, 
many researchers attempted to model manufacturing 
systems using various graph descriptions, such as state 
transition diagrams (STDs) [2,3,4,6,7] and IDEF [5]. For 
accurate system descriptions, however, these models 
usually consist of an excessive number of states when 
they are llsed to model realistic (large) systems. To cope 
with this difficulty, some of these models adopt a 
hierarchical stmchlre, but they have not taken into 
account system reconfiguration and reuse of H/W, S/W 
and SCD data, while its unit of reconfiguration is coarse 
in others. The authors of [3] and [4] presented a model 
based on CIM-OSA, which is composed of event flow 
and resource behaviors at a control specification level, 
and described with an object diagram and a Petri-Net. 
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This model is decomposed according to manufacturing 
system functionalities. Researchers have taken into 
account reconfiguration of a manufacturing systcm and 
reuse of components of SCD data. But the unit of 
replaceable parts is a resource object. [5] provided a 
model consisting of message flows based on IDEF3 and a 
resource configuration graph. In this model sequence 
control flows and synchronization between resources in 
the message flow can be understood easily, but it didn't 
consider data reconfiguration. [6] presented a model 
consisting of a manufacturing system's stmcture graph 
and production routes based on Colored Petri-Nets. This 
model adopts templates and allows use of variables. It 
includes the concept of time to estimate mntime, but it is 
difficult to identify synchronization parts between 
resources when system size is large. [7] proposed a 
cooperation model between resource behaviors and a 
system control model using hierarchical Petri-Nets. The 
authors demonstrated the use of the analysis tools to 
verify the properties of their models, and analyzed them 
both quantitatively and qualitatively. Their concept is 
similar to ours in terms of a cyclic description of resource 
behaviors, synchronization descriptions and their 
compositions. However, in their model it is difficult to 
detcct the boundaries between resource behaviors in the 
final composed model. 

We previously attempted to model manufacturing 
systems with a cyclic STD model [2]. Each equipment 
behavior is described with a cyclic STD, and the model of 
a target system is configured to connect synchronized 
transitions between STDs of resources. This modeling 
method is very simple, but the definitions of system 
sequence control are included implicitly, and hence, it is 
difficult to modify part of the control. Moreover, the 
number of redundant descriptions explodes when the 



number of combinations between resourccs increases in 
workpiece path. Neither did it give any information about 
the redundancy in behavior descriptions. 

In this paper we propose a modd-based control design 
method in which one can build a control system easily 
and efficiently using a reconfigurable SCD data model. 
We (I) make the SCD data model r,�configurable from the 
designers' standpoints and (2) reduce redundant state 
descriptions. This model is descrih�d by combining three 
sub-models corresponding to process flow, workpiece 
path, and resource behavior. Each cfthem is a cyclic STD 
or a graph description, and is hierarchically-structured. 

The papcr is organized as follows. Section 2 describes 
the architecture of reconfigurable manufacturing systems. 
Section 3 introduces the notation in graph descriptions, 
and Section 4 presents a real application example. Section 
5 describes data structures, and th(� paper concludes with 
Section 6. 

2. Architecture 
We will focus on how to change the type, number and 

location of resources, and process flow in SCD as casily 
as possible for designers who do not completely manage 
the SCD data. Such a robust model requires the following 
basic functionalities: 

(1) Data definition from designer's viewpoints, 
(2) Hierarchical and componemial model structures. 

The main objects in system control design are: 
(1.1) Manufacturing (M-) proct:ss flow, 
(1.2) Selection of resources, 
(1.3) Workpiecc path/flow bctwcen resources, 
(1.4) Resource behavior (e.g., sequence of parts of a 

motion or process control program), 
(1.5) Collaboration and synchronization (C&S) 

between resources, 
(1.6) Layout (resource and workpiece base locations). 

The model is composed of the following functionalities: 
(2. 1) Hierarchal skeleton structure of SCD data, 
(2.2) Parameterized descriptions of motion or process 

behavior, 
(2.3) Variable and parameter list. 
Fig. 1 shows the proposed SCD model which consists 

of three sub-models and combinat:lOns thereof: 
• M-process flow (for (1.1» 
• Workpiece path (for (1.2), (1.3) and (1.5» 
• Resource behavior (for (1.4) and (1.5» 

M-process 110w and resourcc behavior arc described with 
STD and workpiece path using a. graph description. The 
behaviors of each resource are described with a cyclic 
STD and can be understood easily. Parts of data in these 
models can be linked to each other at a low level (e.g., a 
place, transition or node, which is an element of each 
graph description). These parts together form a SCD 
model, but these graph descriptions only show the data 
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structure of SCD. Actual process or motion data are 
linked to places or nodes. Moreover, process and motion 
data are decomposed into parameterized descriptions, and 
variable and parameter list. This way, redundant 
descriptions are reduced in decomposing the SeD data 
into components at lower levels than a resource, and 
sharing the same parts. As a result, the local data can be 
reconfigured easily. 

Fig. I The proposed model configuration 

3. Notation and Modeling 
3.1 M-process flow and resource behavior 

M-process flow and resource behavior are described 
with STDs. A STD is constructed with a set of places, 
transitions and arrows. Graph models are constructed by 
connecting places and transitions with arrows. A place 
represents a part of manufacturing process and can have a 
hierarchical structure, and designers define and expand 
SCD data from an upper level to a lower level. Also, a 
place itself has data objects as shown in Fig. 2 where the 

line ended with a circle means a reference to another data 

object . 

Fig. 2 Data structure of a place 

A place only represents a node in graph descriptions. A 
combination of state, variable and parameter list 
represents the actual context of place, and finally 
identifies the place. "Variable list" means a list of 
variables defined by the user and can be defined locally, 
and "parameter list" means a list of resource variables 
obtained from the profiled data of resources. Also, a state 
is composed of action and state type data. Action data is 
motion or process execution data like a program and is 
parameterized. State type includes the data related to 
execution type of resources (type of M -process, execution 
code type of action, and so on). Likewise, SCD 



configuration and its actual detailed context arc separatcd. 
State is reused at other places in the same SCD or other 
SCDs. M-process flow and resource behavior are 
represented below as a flow of such places. 

M-proccss flow 
The M-process flow shows a sequential flow of M­

processes for each workpiece as shown in Fig. 3. 

�:p�ocess �_w _____________________ _ 

C place! r�( . . ��.ace:� plac�3)-+-C�ce4� 

link /' Resource behavior _.�L __________ _ _____ _ 

placc5 2nd lev�I(C&S) 

__ Synchroniza�i_�� ___________ "_._ 

Fig 3 M-process flow and resource behavior 

Each M-process is described by a place and can bc 
defined hierarchically. All terminal places, which are 
elementary M-processes, can be linked. to any place of 
any resource behavior. But on this phase of M-process 
flow definition, actual resources are not decided exactly 
until it is linked to resource behaviors, and state and 
variable lists are defined. Then the M-process flow itself 
is independent of resources. lJsers can reuse the M­
process flow for a system that has the same M-process 
flow by modifying the context of places. 

Resource behavior 
The resource behavior represents a sequence of 

resource actions and is shown in Fig. 3. The resource 
behavior is defined based on the cyclic STD of the upper­
most level. The cyclic STD is a conceptual behavior 
described with basic actions like "Loaded", "Unloaded" 
and "Processing." Some resources can use the same cyclic 
STD at this level, and we can provide a certain basic 
cyclic STD as a template. A resource can own multiple 
STDs each of which corresponds to a motion or process 
control program. Cyclic STDs, which are not independent 
within a resource, share a start place, which is called the 
"Idle" place. Upon completion, every resource behavior 
always returns to the "Idle" place. A place can be 
described hierarchically in the same way as an M-process 
flow. The difference between M-process flow and 
resource behavior is that all cyclic STDs have more than 
onc collaboration and synchronization (C&S) place, 
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which is represented by a thick-lined oval, at the top level 
of a resource behavior. A C&S place represents 
collaboration or synchronization with any C&S places of 
other resources (e.g., "Loaded" and "Unloaded" place) as 
shown in Fig. 6. There always exists a C&S place next to 
the "Idle" placc, becausc one behavior is selected by one 
of transitions between the "Idle" place and the activated 
place. If multiple actions need to be executed in parallel 
within a resource, it needs to own multiple behaviors, 
which do not share the "Idle" place. 

Lower-level places of a C&S place are defined here or 
in the connection node of workpiece path. Details of 
collaboration and synchronization are defined at the 
second level of resource behavior as shown in Fig. 6. 

3.2 Workpiece path 
A workpiece path is specified with a graph descrip­

tion, and uses 4 types of nodes and 2 types of arrows as 
shown in Fig. 4. 

o 
(l)Resource (2)Collaboration (3)Swltch 

& synchronization 

• ---+ 
(4)Virtual (S.l)Arrow 

-

(5.2)Arrow for 
synchronization 

Fig. 4 Nodes in workpiece path 

A resource node represents a real or conceptual 
resource and each small circle corresponds to the C&S 
place of a resource behavior. When the node represents a 
conceptual resource, it can be expanded hierarchically. 
Then, small circles mean C&S places of a complex 
behavior to the outside world. In case of an actual 
resource, it corresponds to a resource behavior. 

A C&S node is linked to the C&S places of 
collaborating or synchronizing resource behaviors. The 
nomlal arrow of (5.1) in Fig. 4 is used for collaboration to 
link nodes, and the diamond-shape arrow of (5.2) is used 
for synchronization. Designers can define C&S conditions 
between resource behaviors at a lower level through this 
node as shown in Fig. 6. 

A switch node represents the branch or join of 
resource nodes, and is linked to the designer-defined 
conditions. 

A virtual node is used in the "detailed" connection 
node and represents real input and output places of 
approximate resource nodes locally. Usually, a connection 
between resources is described conceptually at the upper­
most level, and all actual connection nodes don't appear 
at the upper level of workpicce path. But when a 
conceptual resource node is expanded, the number of 
connection nodes is not restricted to one (e.g., when 
multiple resources are used in one process as shown in 
Fig. 5). As an example, a workpiece path among resource 



nodes and the lower level of connection node C02 are 
given in Fig. 5. Two resource nodes are sensors, and three 
virtual nodes are C&S places of the equipment in the 
expanded node C02. Also "PMll.l. Loaded" means 
<Resource name>.<Behavior number>. <Place name> in 
this figure. 

The relation between workpiece path and resource 
behavior is shown in Fig. 6. Details of synchronization 
can be defined through a connection node. 

Buffer! COl Transfer! C 02 PVlI 

[}-::,::-rr>�� 

i O· PMl!.l., 
: PMl2i 

T"n'f"I.�[:�.�lto i : 0 I 
Unloaded I ... 

P\1 12. I. 1 

.�o.ed I 
C022 ___ J 

Fig. 5 An example of workpiece flow 

I3eh"iocC .� Workpiece path 
Op]'Ce12 

placeJ3 .J place23 
O-� 

�ehav!or A Behavlo)f B 

Resource behavior t 
BehavwrA HehavlOrC 

I cvr3D I Gl'F 
I � @� -'(-I , I (placeI11) 

Gl'� 

I 
I r I L�! (��e234 

ll11d..: 

_ :Synchronization 
Fig. 6 Relation between workpiece path and resource 

behavior 

4. An Example Application 
The above model is applied to the SCD of a Plasma 

Display Panel (PDP) transfer cell as an example. This cell 
consists of elements of panels, three cassettes storing 
panc1s, two typcs of robots (GTR and RH-L3), two 
positioning tables (PT) (one of which is PTI for input and 
the other is PT2 for output), and process machine (PM) 
evaporating MgO on panels. The graphical scene of this 
cell is given in Fig. 7 and its layout in Fig. 8. One cassette 
stores 15 panels. The types of work are to transfer panels 
from a cassette to PM, perfonn a ehemical process on PM, 
and restore the panels to a cassette. PM draws in a carrier 
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and 2 panels can be placed on the carrier each time. The 
workpiece path is cyclic as shown in Fig. 8. On PTs, the 
workpiece position is corrected. But position control is 
omitted to simplify the presentation. Each robot, PTs and 
PM have sensors, which check the existence of panels. 
The actual definition of each sub-model is explained 
below using the cell, and details are given using GTR and 

PTL 

Fig. 7 PDP transfer cell (CG screen) 

I "lv' orkpiece flow 

Cassette 
j GTR 

InputJT(PTl ) 
j 

RH·L3 
1 

PM 
I RH-L3 
I OutputPT(PT2) 
t 

UTR 

4.1 M-process flow and resource behavior 

( Input * Processing >+c Out�ut ) 
y �CTra�Sfer4)1 

Fig. 9 M-process flow 

This cell's process consists of transfer processes and a 
chemical process, and a process flow is described as 
shown in Fig. 9. The "Input" place shows how to transfer 
from buffer to PM, and the "Output" place represents a 
reverse-process for it. Each basic resource behavior can 
be described as shown in Fig. 10 where thick-lined ovals 
represent C&S places. The resource behavior is described 
with <Resource name>.<Behavior number> and * 
represents the corresponding resource or behavior number. 
"Wait*" or "Passive*" places denote the action of 
previous state being finished. An example of a place list 



of resource behaviors is shown in List I. States can be 
shared by these multiple places. 

(2) GTR.*, RH-L3.*, 

PositioningTable*1 

(3) Pruco"Machinel(or 2).1 

� 
bD 

( I ) Cassette*' I (4) Process (5) * Sensor' .1 
Machine3.1 

Fig. 10 Resource behaviors 

List I Place list of GTR and PT I 
Behavior PI<lce 

Levdl Levd2 Leve13 
GTR TlJPM Idle 

(GTR.1) Loaded Movel Movell(1-3) 

(ToBuffer) Movc 12 (! 15 
Approachl 
Absorb ! 

Leavel 
Passive! 

Unloaded Move2 

(ToPTI) Approach2 
Releasel 
Le:we2 
WaHl 

Positioning TorM Idle 
Table! (Positioning Loaded Wait! 

lable!.l) HotateU 
PlJ�iliurtill 

Unloaded Wait2 

Rotate�U 
4.2 Workpiece path 

r . Ciil.l -; i " ,p,�����;--" ,:�� rp������" .. -
�·c" ' .

.

• 1 .

.

. 1 .... 1.--10=: •
. 

Maclune.l' 'Machine.3 , .,ilsse !�.: !-i . • I 
- -- _______ J 

; CS2 I : , (CarrierA) PM L1 .. 

: . '1 '0=:" .'i C09.� n :Casselle2.1,,<III(, .. -. '--- 6� --- - i -- I Process PM] I ! CSJ.! "Machme2� 0----.- : -

:·(:a:�.��.f�.�?l i..c1 U-•• : i (CarrierD) PM2.1 

A . ' .. .. .. 
I COl Transferl.lC02 : � Transter2.1 , 

[p....:_�_�c���G 
Buffer1.1 i PM.I 

!Transferll.1 PTI.I Transfer!2.1 

o-:��c�{} . ;Tnmsfer21.1 PT2.1 Transfer22 I 

. o-.:�{}��{} ! . I 
Y y y  .. 

GTR.1 Positioning, r RH.I..3.1 
,Tablel.l 

_ _ ___ �. 

�_..:...�� .. ___ ! ______ i _, 

RH-I.n � P;;it;��i·�g·: 
!Tab�e2 I I 

. y  
GTR.2 

Fig. II Workpiece path 

Workpiece path can be described hierarchically as 
shown in Fig. II where CO* is a C&S node's name. C&S 
node details are described as shown in Fig. 12 (C07, 8 
and 9 are omitted.). In an equipment resource node, the 
left-hand side circle represents the "Loaded" place and the 
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right-hand side circle does the "Unloaded" place. In a 
sensor resource node, the upper-side circle represents the 
"Off' place and the bottom-side circle does the "On" 
place. Conditions stored in switch nodes are described as 
follows for the case of CO I (Place I and Place2 are 
variables ): 

Type, Priority 
CSl .l.Unloadedl 
CS 1.I.Unloaded2 

(l)COI 

S.;'drA c�. 
� : �::d!�ll 

Tmn,fcrn.l. g. 
UnloadeG C0445 eso.1. 

Loadedl5 

CD 
(4)C04 

1. GTRSensor.l 
4. PMSensorl .l 

// Priority I 
1/ Priority 2 

(2)C02 

CD� 
Transferl!.!. 1'11.1 
Unloaded Loaded ��. 

tC05' 

CDO 
(5)C05 

2. PTl Sensor. I 
5. PMSensor2.1 

(4)�3" 
P.Y1 I. I. 
Unloaded Swltch3 

... 
C03 

CD • 
PM'.l 1�"n<fe<21 1 
Unloaded Loaded 

�� 
C032 

(3)C03 

PM3.lD
T 

Idle � TranslerI2.1. _ :.. Loaded ........ . 
PTI.1. 6COGI 
UnlC1arlerl 

CD 
(6)C06 

3. RH-L3Sensor.1 
6. PT2Sensor.1 

Fig. 12 Detailed C&S nodes 

List 2 An example 0 f sync h romzatlOn d ata on COS! 
Transferll PT! GTRSensor PTlSensor 

MOVf�2 Waitl 
/\ roach2 

Releasel 
Leave2 <·N:Off <-N'On 

Waitl RotateD 

@� 
PTll.l. CD 

PTI1.1. 

Unloaded 

.... 

CD C052 pr11 I 

<0 

SW;'b,h5 �.ded 

Transfelll.l. �051 

���12l 
Loaded 

@ PTl2.! 

<0 

(I )PT 1.1 (2 )C05 

21: PT11.1.Sensor 
(3)C06 

22: PT12.1.Sensor 
Fig. 13 In a case of changing number of input PT 

An example of synchronization condition data 
included in C&S nodes (C05) is shown in List 2. Here the 
lines above or below a place name represent transitions, 
and thick lines denote collaboration. In sensor places, the 



arrow is synchronization, and <-N means synchronization 
at the next transition of a pointed place. 

If designers want to change the number of Input PTs 
to two (PTII and PTl2), they need to modify SCD data 
by changing resource node PT I and C&S nodes, C05 and 
C06, as shown in Fig. 13. Then, the states used in PTI 
can be reused in PTlI and PT l2. State data is omitted 
here, but one can easily infer that the parameterized data 
on actions can be reused without increasing the amount of 
data too much. 

5. Data Structure 

� 
StateLlbraI)' 

_ _ ___ �" __ --.J 
ReSOllrce behavior 

Fig. 14 Data structure cf SCD model 

The data structure to realize the proposed model is 
shown in Fig. 14. Ovals represent data objects based on 
object-oriented methods. The line ended with a circle 
denotes the reference of object dara. Especially, gray lines 
represent the relations between sub-models and main data 
objects. Previous, next and child in the figure mean to 
own data lists (e.g., hierarchy). Places and nodes of sub­
models are linked and an SCD model is constructed by 
their combination. We only give the meaning of some 
special data classes as follows. 

• System: Top object in SCD data 
• ProfileData: Resource parameter list 
• ControlGroup: Administration of resource groups 
• Behavior: Cyclic STD of resource 
• NodeObject: Super class of every node (place, 

transition, resource node, etc.) 

6. Conclusion 
We proposed a modeling method for supporting the 

reconfiguration of a manufacturing system. Specifically, 
we presented a system control design model and 
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described how to define the data as the first step. The 
model is then composed of 3 sub-models based on 
workpiece path, manufacturing process flow, and resource 
behavior. These sub-models are described with general 
graph descriptions and state transition diagrams, and 
decomposed into multiple data levels, such as skeleton 
data configuration, parameterized description, and 
variable and parameter lists. By separating control 
structure from actual data and components of the structure 
based on the designer's viewpoints, this model enables 
the data to be moditied only locally and facilitates 
efficient reconfiguration of manufacturing systems. Also 
part of skeleton of control configurations, and process, 
motion and synchronization data can be reused. A Plasma 
Display Panel transfer cell is modeled as an example. 

As future work, we are planning to 
(1) verify the state-level system behavior by simulation 

using the model, and refine the model, 
(2) investigate how to reconfigurc the data and makc 

execution data for the model., and 
(3) expand the model to be able to deal with timing 

constraints, complex distributcd control systems and 
description of exceptions. 
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