Ad Real-Time Systems, 21, 199-217, 2001
‘@ © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Trade-Off Analysis of Real-Time Control
Performance and Schedulability*

DANBING SETO
Pratt & Whitney, United Technologies Corp., 400 Main Street, MS 163-14 East Hartford, CT 06108

JOHN P. LEHOCZKY
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213

LUI SHA
Department of Computer Science, University of Illinois, 1304 W. Springfield Avenue, Urbana, IL 61801

KANG G. SHIN
Real-Time Computing Laboratory, Department of Electrical Engineering and Computer Science,
The University of Michigan, Ann Arbor, MI 48109

Abstract. Most real-time computer-controlled systems are developed in two separate stages: controller design
followed by its digital implementation. Computational tasks that implement the control algorithms are usually
scheduled by treating their execution times and periods as unchangeable parameters. Task schedulability
therefore depends only on the limited computing resources available. On the other hand, controller design is
primarily based on the continuous-time dynamics of the physical system being controlled. The set of tasks
resulting from this controller design may not be schedulable with the limited computing resources available.
Even if the given set of tasks is schedulable, their overall performance may not be optimal in the sense that they
do not make a full use of the computing resources. In this paper, we propose an integrated approach to controller
design and task scheduling. Specifically, task frequencies (or periods) are allowed to vary within a certain range
as long as such changes do not affect critical control functions such as the maintenance of system stability. We
present an algorithm that determines the task frequencies such that a prescribed aspect of system performance is
optimized subject to satisfaction of computing resource constraints. The tasks are then scheduled with the
chosen frequencies. The proposed approach also addresses the issue of choosing controller processors.

Keywords: real-time control, task schedulability, resource management

1. Introduction

The control of physical systems has changed from analog to digital technology, and
computer control has been applied to perform more complex, higher-level functions. In
applications ranging from flight control to micro-surgery, real-time control plays a crucial
role in coordination of the dynamics of these systems. Although the application domain
of digital real-time control has been expanded significantly, there still remain many issues
in control implementation before its full potential can be achieved. For example, the

* This research was supported in part by the Office of Naval Research under contract N00014-92-J-1524, by
the Software Engineering Institute of Carnegie Mellon University, by the NSSN program, by the ISC program,
and by the JSF program.

200 SETO ET AL.

design of controllers and the scheduling of control tasks are usually considered
separately, and this separation may result in suboptimal system designs. In this paper we
investigate the interaction between control task performance and task scheduling.

A real-time computer-controlled system consists of two major parts: the physical
system and the computer system. The physical system includes the physical plant to be
controlled, sensors to provide information on the plant’s real-time behavior, and actuators
that drive the physical plant. The computing unit can be a computer (a CPU) or a
computer network which generates control commands to the actuators in the physical
system. Figure 1 shows two different computer-controlled systems, where one involves a
single computer controlling one physical system, and the other has one computer
controlling multiple physical systems. In the former case, there are multiple control
algorithms executing concurrently, and the computation of each of the control laws is
considered to be one task. In the latter system, all of the physical systems are running
simultaneously, and generation of the control command for each one of them is a task. In
both cases, the physical systems are sampled periodically, and the computation of the
control commands must be finished within the sampling period of the corresponding
physical systems. This set of periodic tasks needs to be scheduled carefully so that the
overall systems will work properly.

—@ Computer

Y l Control Law 1] A Y

C |
AD|—= T T el selection™ D/A]
1 ‘ Control Law n f

Physical System |«

Computer
[Clock |

! '

. . A ; :
Soacios| 575 o oo}~ 2
A

- Physical System 1 }«

Physical System 7}«

Figure 1. Examples of real-time computer-controlled systems.

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 201

Task scheduling is a fundamental issue in any real-time control algorithm
implementation. A seminal contribution was made by Liu and Layland [2] who
developed optimal static and dynamic priority scheduling algorithms for hard real-time
task sets. They showed for such task sets that dynamic priority scheduling algorithms can
achieve 100% schedulable utilization, while the optimal static priority algorithm, the rate
monotonic algorithm, has a least upper bound of 69% on its schedulable utilization.
Nevertheless, over the last two decades, significant progress has been made on
generalizing these algorithms and making them suitable for real applications (e.g., Sha et
al. [7]). Still, nearly all of these developments have assumed that the task set
characteristics (e.g., computation times, periods and deadlines) are fixed and known.

There have been several papers which relate task scheduling and system performance.
For example, Gerber et al. [1], addressed the issue of task design in relation to system
performance; however, their focus was on distributed systems, and they did not use the
performance index approach we present. Task scheduling and system performance have
also been addressed by Locke [3] and other authors using best-effort scheduling (see
Locke [3] for references). This approach is especially designed to handle transient
overloads, and its premise is that a task will obtain a value which depends on the time at
which it is completed. Again, this work did not focus on any particular application area
such as control algorithm scheduling nor were performance indices introduced.

The control algorithm is usually designed to optimize some system performance index
based on physical system properties, and this is often carried out with the assumption that
the resulting controller will always be implementable on a digital controller computer.
With a digital implementation, a controller can be designed using two distinct
approaches. One approach is direct digital design which first discretizes the associated
continuous-time system dynamics and then designs a control algorithm for the discretized
system. The second approach is continuous-time design followed by digitization. In this
approach, the control algorithm is designed based on the continuous-time system
dynamics, and the resulting control law is digitized for implementation on a computer.
Neither of these design strategies takes into account any limitations on the available
computing resources.

When there are insufficient computing resources for the real-time control
computations, one may naturally think of adding additional processors or replacing the
computer with a faster one. Both approaches certainly solve the computing resource
problem, but they may be neither efficient nor economical. For example, in the
automotive industry, resource constraints are common due to cost concerns and the
limited physical space inside each automobile. The reduction of overall resource usage
without sacrificing system performance is one of the challenging software issues that
needs to be addressed. On the other hand, when the computing resources are ample for
scheduling the given set of tasks, the issue becomes how to best exploit the extra
computing resources to further improve the control system’s performance. In summary, a
better approach to real-time computer-controlled system design would be to optimize the
global system performance by simultaneously considering both control performance and
computing resource availability.

The proposed integrated approach requires knowledge of the relationship between
control system performance and sampling frequency (inverse of task period), and real-

202 SETO ET AL.

time scheduling theory. In this paper, we assume that (i) the control algorithm has been
developed using a continuous-time design followed by digitization, and (ii) the resulting
algorithm is “‘optimal’’ (in the sense of a certain given objective function). To implement
such a control strategy, we would like the sampling frequency to be as high as possible in
order to make a better match between the (optimal) continuous-time control and its
digital implementation. Note, however, that the limitations on computing resources
shared among multiple tasks impose an upper bound on the sampling frequency for each
periodic task. These upper bounds, one for each periodic task, must be considered in the
integrated design approach, while they need not be considered in standard control
designs. On the other hand, to correctly capture and control the system dynamics, the
sampling frequencies are normally chosen to be 5 to 10 times the corresponding system’s
characteristic frequencies. This requirement gives a lower bound on the sampling
frequency from the control system point of view.

By allowing the sampling frequencies to vary within the ranges defined by the lower
and upper bounds mentioned above, we can actually enhance periodic task schedulability.
That is, one can change the periods of some of the tasks in the given set (within these
ranges) so that all of the periodic tasks in the set become schedulable, if the initial task
periods make the task set unschedulable. We will adjust the task frequencies to optimize
the overall system control performance, subject to two constraints: (1) the lower bounds
on task frequencies and (2) the limitations on available computing resources.

The paper is organized as follows. In Section 2, we briefly review some of the basic
concepts in control theory, especially the optimization of control system performance and
digital control implementation. We describe in detail the rationale for combining control
design and its digital implementation (i.e., task scheduling) in the design of real-time
computer-controlled systems. The main results of this paper are presented in Section 3,
where we derive an algorithm for choosing the optimal task frequencies such that all the
tasks are schedulable with a dynamic priority assignment scheduling algorithm, and the
system performance using the digital control implementation is optimized for the limited
computing resources. The issue of choosing processors is discussed through examples.
Conclusions are drawn in Section 4.

2. Control Design and Its Digital Implementation

Here we will briefly review some of the relevant concepts in control theory. In particular,
we will first present an example to demonstrate the relationship between the control
system performance index and the control task frequency when the control input is to be
produced by a digital computer. Then we discuss in general the issues of optimizing
system performance and digital control implementation.

To illustrate the effect of sampling frequency on system performance, we have chosen
an actual real-time control application, a bubble control system. Such a system is a
simplified model designed to study diving control in submarines. For a discussion of real-
time computing issues in real submarines, the reader may refer to Molini et al. [5]. The
bubble control system considered here consists of a tank filled with water and a diver, an
inverted cup partially filled with air and immersed in the water. Depth control of the diver

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 203

is achieved by adjusting the air volume inside the diver, which is controlled by adjusting
the piston connected to the air bubble. A schematic diagram of the system is given in
Figure 2.

Let x = (x,Xp,%3) = (y,9,h — h,), where h, is the air-volume height at equilibrium
state. The equations of motion can be written as:

)&1 — xz
X = =il —ox
Xy = —a(x)x, — b(x)u (1)

where u is the control variable defined as the piston velocity /, ¢, and ¢, are positive
coefficients of the water resistance and buoyancy, respectively, and a(x) and b(x) are
positive definite functions obtained from the law of conservation of mass for the air.
Suppose the control objective is to drive the diver to move at a given speed v,;. Then, a
tracking problem can be formulated, for example, to have the diver follow a reference
trajectory

Yr :y(O) +th

From the control design point of view, the control goal is to make |y(¢) — y,(¢)] = 0 as
t—00. Moreover, we wish to design the control u, the law for adjusting the piston
velocity, such that the diver trajectory y converges to the reference y, as fast as possible.
Apparently, if the piston can be moved arbitrarily fast, it is possible to drive the diver to
follow the reference at an arbitrarily fast convergence rate. However, due to the physical
limitation, all the pistons have an upper bound on their velocity, and therefore, the
tracking problem must be solved with a limited control regime. In other words, the
control objective can be restated as: drive the diver such that its trajectory converges to

1

3
T

\/

Figure 2. A schematic diagram of the bubble control system.

204 SETO ET AL.

the reference as fast as possible with limited control. To put such objective in the
perspective of optimal control, we define an objective function, or a performance index as

s = [{ruF + 00 - 5,02 ar

where r > 0 is a weighting constant. The physical meaning of this performance index can
be interpreted as a measure of the total cost of control and tracking error generated in the
time period [0, #] by the control u. By minimizing this performance index with a properly
designed control law u, we can make both the tracking error and the control cost to be
small, which results in a fast convergence of the diver trajectory to the reference with a
small amount of control. Formally, the optimization problem can be stated as: find the
optimal control function #* such that

JF=JW") = min J (u)

subject to: Equation (1),
HOSySH_Hw OS/’ISH“
lu| < u

max

where H,,, H. and H are the water level, the height of the diver, and the height of the tank,
respectively, and u,,, is the maximum piston velocity.

When a continuous-time control law u is implemented digitally, the system
performance will deviate from the value obtained with the continuous-time control, J *
and the deviation will depend on the sampling frequency. Let f and T = 1/f be the
sampling frequency and period, respectively. Suppose the control is implemented as a
zero-order hold, i.e., u(t) = u(kT),Vte [kT, (k + 1)T). Then the performance index with
the digitized control can be written as

n—1 (k+1)T 5 5
Ip(f) = / [r(u(KT))" + (y(2) — y,(2))"]dt
k=0 YK

T

where y(¢) is the trajectory of the diver under the digitized control. Hence we conclude
that the performance index of a given control law u with a digital implementation is a
function of the sampling frequency (period). Figure 3 shows the simulation result of
AT*(f) = J55(1) —J* for the bubble control system with f, representing the lower
bound of frequency.

Remark 2.1 Figure 3 illustrates that there can be a wide range over which the sampling
frequency can vary. Specifically, any frequency above the lower bound f,, will keep the
system stable with a particular value of the performance index. Furthermore, the
performance index is a convex function of sampling frequency, and it is this convexity
property that allows us to select optimal frequencies for a set of tasks, such as in the
computation of the bubble control command, and schedule them in a single CPU. This
will be elaborated on in the next section.

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 205

20 Y . . .

18+ \ .

+a (=]
T

/

Performance Index Difference
=
T
L

8
6 - 4
4+
\.____
2 ~~—
0 L 1 L B —
0 20 g, 40 60 80 100 120

Sampling Frequency

Figure 3. AJ*(f) for the bubble control system.

We now extend the results obtained from the above example to general real-time
control systems. As shown in the example, the system performance is usually measured
by a performance index, and the control algorithm is often derived to optimize this index
subject to the system dynamics and constraints. For example, the objective for a radar
system 1is to track a target, and the performance index would be a measure of the tracking
error. For this example, one would like to design a control algorithm to minimize the
performance index. For mechanical systems, on the other hand, the performance index
might be some measure of the total work the system produces, and in this case we would
want to maximize the performance index. Other examples may involve minimization of
time (e.g., minimizing the system response time) or energy (e.g., minimizing the cost).
The problem of optimizing the performance index can be stated formally as follows.

() i) = () il S5).) + [L5001 @
subject to: X = f(x(¢), u(z),1) (3)
c(x(0),u(t) <0 @

where J(u) is the system performance index, Q C R™ is a set containing valid control
values, [0,¢] is the time interval of interest, S(+) and L(-) are the weight (or cost)
functions depending on system states, time and control inputs. Equation 3 describes the
dynamics of the underlying system with state x(¢) € R" and control input u(f) € Q for each

206 SETO ET AL.

t > 0, while Equation (4) represents the constraints on the system trajectory and the
control input with ¢(-) € RP. The complete statement of the control optimization problem
can be summarized as: find the optimal control such that the performance index defined
by Equation (2) will be minimized (maximized) subject to the system dynamics and
constraints given by Equation (3) and Equation (4).

The optimal control for the problem described above can be derived by direct digital
design or continuous-time design and then digitization. We adopt the latter design
approach; similar results can be obtained for the direct digital design. Suppose the
optimization problem in Equations (2)—(4) can be solved with the optimal control u*(¢)
resulting in performance index J*. Then, the control implementation determines if we
can actually obtain the performance for which the controller is designed. Discretizing the
control input * () in the time domain with sampling period T and zero-order hold, we
obtain the performance index with the digitized control as

n=1 pk+1)T
I =S) + X [Lt 0.), 5
k=0
where again, f = 1/T is the sampling frequency, 7, = nT, and x™(t) is determined by
K = f (), ™ (KT), 1), kT <t < (k+ 1T, k=0,....,n—1

Equation (5) shows that the performance index is a function of the sampling frequency, and
Figure 4 illustrates possible performance indices. In this paper, we will consider only

MIN PI MAX PI

bt
%)
o
o

Performance Index
o
[=2]
Performance Index
o
[+2]

0.4r 0.4
0.2t 0.2r
0 . . 0 A .
0 50 100 0 50 100
Sampling Frequency Sampling Frequency

Figure 4. Control system performance indices versus sample frequency.

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 207

monotone, convex or concave functions as shown in Figure 4. The physical meaning of
these functions is clear: as the sampling frequency increases, the performance index with
digitized optimal control (PIDOC) will tend to converge to the performance index with
continuous-time optimal control (PICOC). On the other hand, as the sampling frequency
decreases, the difference between PIDOC and PICOC will increase, and eventually the
system will become unstable. To prevent this from happening, a lower bound on the
sampling frequency must be imposed. For convenience, we will consider the difference
AT*(f) =5 (f) = J*|. Clearly, lim,,, AJ*(f) = 0. Since the PIDOC J;(f) con-
sidered in this paper is assumed to be a monotone, convex or concave function as shown in
Figure 4 and J* is a constant, the difference AJ*(f) will always be a monotone, convex
function. Moreover, we will approximate the function AJ*(f) by an exponential decay
function, i.e., AJ*(f) = ae™", where o is a magnitude coefficient and f8 is the decay rate.
While there are various ways to obtain the approximation, we consider the least- ;Square
fitting agproach Let AJ; (f) be a simulation result with Jt1 points at (f,,, AT ()
(AT - (o AT (), and L= S0 [AJS(f) — e PP, with o=
AJS*(fu)e (2 by setting AJ s (f,,) = oe ~#u. Then by searching for B such that L is
minimized, we obtain an exponential expression for AJ*(f).

Remark 2.2 The algorithm developed in this paper is not restricted to the optimal
control problem. Let J and J,(f) be the performance indices generated by a continuous-
time control which may not be optimal and its digital implementation at sampling
frequency f, respectively. Then the algorithm can be applied provided AJ(f) =
l/p(f) —J| is convex and monotonically decreasing. We shall therefore use AJ(f) in
the rest of the paper. Again, note that AJ is a function of both the sampling frequency f
and the control function u. Since our goal is to investigate the effect of sampling
frequency on the performance index for a given control function u#, we omit u from the
argument list of AJ.

For multiple physical systems controlled by a single CPU, we consider designing the
control algorithm for each system such that the performance of the overall system is
optimized. Suppose there are n control systems under consideration and each of them is
required to achieve a control goal independent of the others. Apparently, for each control
system to have an optimal performance, a control law can be derived by solving the
optimization problem as stated above. To determine the sampling frequency for each
control system, we have to make a trade-off among the systems. In other words, if we
make one system’s behavior close to the performance it would have with the continuous-
time optimal control by allowing it to be sampled at a high frequency, then the rest
systems will suffer from relatively slow sampling rates due to the limited computing
resources. Therefore, we will determine the sampling frequency for each control system
with respect to a weighted sum of the performance indices

fl7"'7fn ZWAJ f; (6>

i=1

208 SETO ET AL.

which is defined as the performance index of the overall system. In Equation (6), w;,
i=1,...,n, are the design parameters determined from the application, for instance, the
importance of the associated control system to have a better performance than the others.
For this set of control systems, we will develop an algorithm to find the optimal choice of
fis---,f, such that AJ(f,....,f,) is minimized subject to the availability of the
computing resource. In this paper, the algorithm is developed for a general class of
control systems in which the functions AJ(f) are monotonically decreasing and convex.
Many control systems belong to this class; for example, the aircraft landing control
application studied in Shin et al. [8] offers a second example.

Remark 2.3 The tasks to be scheduled may not all be control-related tasks. For example,
some tasks might involve data processing and display. The periods for some of these tasks
may not be changeable, while others may not have associated performance indices. When
the system involves such tasks, we will schedule them as a part of the real-time task set
without optimizing their periods.

3. Task Scheduling

In this section, we address the issue of determining the task frequencies such that all the
tasks are schedulable and the system performance indices are optimized. Specifically, for
a given set of tasks {t,,...,7,} with minimal allowable frequencies, f,,,- ..,/ and
performance indices

A]i(fl.):ocie*ﬁ‘t", i=1,...,n (7)

we choose the frequencies f; > f,,; such that all the tasks are schedulable and the
performance index for the overall system, > ;_, @;AJ;(f;), is minimized. In this paper,
we will concentrate on developing the algorithm for selection of task frequencies with
dynamic priority assignment (DPA) scheduling schemes. Determination of the optimal
frequencies for tasks schedule with a static priority algorithm (such as rate monotonic)
involves a different approach which is out of the scope of this paper. The static priority
case is addressed in Seto et al. [6].

To guarantee the schedulability of a task set {7,...,7,} with a DPA scheduling
algorithm, the frequencies of the tasks f;,...,f, need to be chosen such that
Yol Cif; <A, where C; is the execution time of task 7; and 0 <A <1 is the given
utilization. If the task set contains two types of tasks, ones with variable frequencies and
the others with unchangeable frequencies, we need to modify the given utilization by
subtracting Zje 7 C i f, from A, where J is the collection of indices of the tasks whose
periods are fixed. So far as the determination of the frequencies is concerned, we only
consider the tasks which have variable frequencies and performance indices characterized
by Equation (7). Then the optimization problem can be stated as:

min AJ yooosn) = min W,-O(ie‘iﬁ"f" 8
min (fioeofu) f)Z: (8)

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 209

subject to Y Cifi <A, fi>f i=1,....n (9)

i=1

Before formally solving this nonlinear constrained optimization problem, we offer
some insight into the form of the optimal solution. If >~} _, C,f,; <A, then at least one of
the frequencies can be increased above its minimum value. The decrease in the system
performance index per unit increase in utilization of task i, i.e., 0AJ/0(C,f;), is given by

U,(f) = T;e Pifi where T'; = "% /5’ and task i has frequency f.. We label the tasks so that

Ul(fml) < U2(fn12) - < U, (fmn) (10)

Consequently, task n should have its frequency increased first. As long as sufficient
processor utilization is available, this increase should continue until the point at which

U,(f)=U,_(f "*1)) Both f,, and f,_, should then be increased to maintain the
equality U,(f,) =U,_;(f,_).- Only these two frequencies will be increased until
U,(f,) =U,_1(fi—1) = Uy _o(fin(n—2))- At this point, if additional processor utilization
is available, all three of these frequencies will be increased to maintain equality in the
marginal performance indices. This process continues until either processor utilization is
exhausted or all task frequencies are increased above their minimum value. If p of the
frequencies are set to their minimum values for some 1 < p < n — 1, then total processor
utilization of A — >°7_ | Cf,,; is available for tasks p + 1,. .., n. The optimal frequencies
are easﬂy found using standard Lagrange multiplier methods and are given by
= (lnF Q), where p+1 <i <n and Q is chosen to ensure the total processor
utlllzatlon is A. This method is illustrated in Figure 5 and formalized in the following
proposition.

Proposition 3.1 Given a set of tasks 7, ..., 7, to be scheduled in a single CPU with the
objective function given by (8) and constraints given by (9). Suppose > i_, C;fu < A.
Then there exists a unique optimal set of sampling frequencies, £}, ...,f., given by

fi* :fmi7 izlv"'7p7

1
ff =g T —0), j=pt i (1)
J

i=1 i= p+l

iy :%fﬁf’ (ZCfml+ Z ’lnF —A)
v Y
i=p+1

Sy« -« +fmn are ordered to satisfy (10), and pe {1,...,n} is the largest integer such that

ZCfm,+ Z (ﬁpfm,,+1n1> > A

i=1 i= p+1

210 SETO ET AL.

p =n-1, i.e., the first n-1 tasks have
their frequencies set to the minimums.

o
Increase the frequencies of tasks 7,.1,...,7, while
maintain the equality Uy (fpr1)="+-=U,(f,).

Total available
utilization is reached?

No Yes “ No

Figure 5. Algorithm of determining the optimal frequencies.

If no such integer p exists, then

f;‘_ﬂlj(lnrj_g), Q_[Z%lnl"i—A]/Z%, I<j<n

i=1 i=1

Proof: To solve the constrained optimization problem, we introduce n+ 1 Lagrange
multipliers 4, 4; > 0, it >=1,...,n, and minimize the augmented objective function

AJ(fis-- o) = iwiaie_ﬁiﬂ + 4 <i Cifi - A) + i/li(fmi —fi)

i=1 i=1 i=1

subject to (9), A(Y7_, Cf; —A) =0, and 4,(f,,; —f;) =0, i =1,...,n. Since both the
objective function and the constraint functions are convex, this optimization problem has
a unique solution given by (ff...,f¥ if and only if the following Kuhn-Tucker
conditions are satisfied,

—Te Pl 45 —2/)C;=0

n
> Ciff —A<0, fui =5 <0
- n
}(thfz*A) :Oa li(fmiif;‘*):()
A 2 >0
for all i = 1,...,n. See Mangasarian [4] for details of the Kuhn-Tucker condition. Since

A; >0, T; >0, Vi, we have

/>0, which implies Y C,f;=A (12)

i=1
Note that Y 7_, C;f, < A by assumption. If >°/_, C;f;, = A, then f* = f,., 1 <i<n,
which agrees with the proposition. It remains to consider the case >_:_ C; f,; <A, which

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 211

is assumed in the follows. In this case, some (or all) of fi, ..., f, must be increased from
their minimal values so that Equation (12) is satisfied. Next we will show that the process
of increasing frequencies must begin with f,. Suppose to the contrary that we start
increasing f;, j < n. Then f; > f,; which results in 4; = 0 and 2 = T;e ~fi/i. On the other
hand,

éz -) — rne—ﬂn.fmn - rje—[f;/‘,- — rne—ﬁufm
Since Te “hitwi < T e~ Fifwn and Le —hit; <Te ~Bifwi, we conclude that
[e ~hifi <T e~ Fitm, and 1, <0, which is not allowed Thus f, has to be increased
ﬁrst In this case, we have fn > fom> n = 0, and A = T',e~Fi/s. Clearly, 1 decreases as f,
increases. Now consider the frequencies of the other tasks. Before]j, j <n can be
increased, we have 4 = ['je™#iln + ;/C;, which has a minimum value [;e~#i/n_1If 4
falls below I';e ~biti . must be 1ncreased above Jmj- Therefore, when fn is 1ncreased to the
value at Wthh A=T, e Pr1/uo-i) and the total utilization Zl,l Cifoni +C,f, is still
less than A, f,_; Will start to increase. Then both f, and f,_, will be increased with
J=Te bl =T, e Prfi-v until A =T, ,e Pr-2/ue-1 in which case, f, , starts
increasing if the total utilization is still less than A. This process will continue until the
total utilization reaches A, which can be checked by finding the largest integer p such that

P n
> Cifut Y. Cfi>A with i=T,e /v and

i=1 i=p+1

1 1
fi = ﬂiln(lfl),ip+1,...,n

which is equivalent to

rl
ZCfMl+ Z <ﬁpfn1p+lnr_p> ZA

i=1 i=p+1 1

as given in the proposition. After the integer p has been identified, we conclude that the
frequencies fi, . .., f, must be chosen to be f,,;, . . . ,f,,, and the remaining frequencies are
computed from

p n
Zcifn1i+ Z C,f, =A and /1:1"’)67[3,,]",,

i=1 i=p+1

which results in Equation (11) in the proposition. If no pe{l,...,n} exists, then all
frequencies must be increased above their minimum values, which can be determined by
solving >/ Cif;=A and A =T,e P/, Vi, as summarized in the statement of the
proposition. |

Remark 3.1 The solution to the optimization problem and the associated algorithm rely
on the fact that both the objective function and the constraint region are convex. It is
important to note that the constraint region is convex because we are assuming the use of

212 SETO ET AL.

the earliest deadline first processor scheduling algorithm. This algorithm allows the
processor to schedule periodic tasks with deadlines at the end of each task period up to
100% utilization regardless of the individual task periods and computation requirements.
Had we assumed that processor scheduling was done using a static priority algorithm,
then the constraint region would not in general be convex, and it would depend upon the
individual task periods and computation requirements in a non-linear way. A more
complicated search algorithm would need to be employed to determine the optimal set of
task periods in this case. See Seto et al. [6] for details.

Proposition 3.1 provides a method for optimally determining the sampling frequency at
each level of CPU utilization such that task schedulability with a DPA scheduling
algorithm is guaranteed. Its application can be found in a wide range of real-time control
systems. In fact, most control systems can have a flexible sampling frequency above the
lower bound. This feature was defined as the control system deadline and discussed in
detail in Shin and Kim [9] where the authors derived the number of consecutive control
updates that can be missed without losing system stability. Proposition 3.1 presents an
integrated approach to deriving the sampling frequencies for the tasks that optimize
overall system performance subject to task schedulability and system stability.

Example 3.1 Consider an open-loop temperature control problem. Suppose there are
five units whose temperatures need to be automatically controlled by one processor, and
controlling the temperature in each unit is considered to be one task. The execution time
C;, the given frequency f; and the minimum required frequency f,,; of each task are listed
in Table 1.

According to the given data, the total utilization with the given frequencies will be
1.55 > 1, and therefore, the tasks are not all schedulable. However, by investigating the
underlying physical systems, we may find that these tasks are schedulable with a set of
“‘redesigned’’ frequencies. In fact, if the minimum required frequencies were used, the
task set would be schedulable with a DPA scheduling algorithm. Suppose the temperature
for each unit is governed by the dynamic equation

Vi = —ay; + b (13)

where 7,(¢) is the temperature difference between the i-th unit and the ambient
temperature with y(0) = 0; g; and b; are positive constants depending on the insulation of
the unit; u; is the rate of heat (cold air) supplied to the unit. Suppose we need to change

Table 1. Data for temperature control scheduling.

C; (ms) £, (Hz) f (Hz) Utilization (%)
Unit 1 10 20 30 30
Unit 2 15 12.5 20 30
Unit 3 20 10 20 40
Unit 4 25 6 10 25

Unit 5 30 4 10 30

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 213

the temperature in the i-th unit, and we require such a change to be completed in no more
than 7, time units and to consume a minimum amount of fuel. Let), be the difference
between the desired temperature and the ambient temperature. We also require that
7i(t¢) = vail < ;. Then, the optimization problem can be formulated as

: (1 CR N L
minJ; = min Epi(yi(tf) = Ya) + 2) ui (t)dt

ul

where p; is a weight coefficient. Then, the continuous-time optimal control and the final
state are determined by

VaiPib? sinh(a;t;)
;e 4 p;b? sinh(a,t;)

i (1) = VaiPia:bie""

- P) V;k (tf) =
;e + p;b? sinh(a;t;) :

Digitizing u*(f) with sampling period 7; and choosing p; > 1, we obtain the
approximations:

(1) P B A e il :
S (ty) = v an = —p5 | ——
Vi f Vdis di 2p1/dl 1+ e_a’Ti

To satisfy the condition [y;(t;) — 7,| < 6;, we need

1 —e—ali 1 4+
() <0, = T.<—In'% :
ydl<1 +e”’T’) - T a ani —0;

Furthermore, by approximating 14 ¢~ %Tix3/2, 1 — e~ %Tixe P with p; = 1/a; and
fi = 1/T,, we finally obtain

a;
In L +9;

Vai — i

2 X
AJ; = ge—/fsz with f,; =

To determine the sampling frequencies in relation with the system performance and
task schedulability, we assume the physical parameters as given in Table 2.

Following the algorithm in Proposition 3.1, we determine the optimal frequency for
each task as follows. Let

p 5. C. T.

i=1 i=p+1 i

Table 2. Data for temperature control tasks.

% ﬁi C; (ms) fmi (Hz) Wi
Unit 1 2/3 0.3 10 20 1
Unit 2 2/3 0.4 15 12.5 2
Unit 3 2/3 0.5 20 10 3
Unit 4 2/3 0.6 25 6 4
Unit 5 2/3 0.7 30 4 5

214 SETO ET AL.

Then, a simple calculation shows

F(5)=0.38875<1, F(4)=09<1, F(3)=1.04>1
Therefore, we will assign

fi=fm, fori=1,273 ie., fi=20Hz, f,=125Hz, f;=10Hz
and compute f; and f5 to be

fo=(nTy—Q)/By =797 Hz, f5=(InT5—0Q)/Bs=7.1Hz

This choice of frequencies yields a total utilization 99.97%, and the final set of tasks is
schedulable. Furthermore, these frequencies yield a performance index difference AJ =
0.0696 which is better than the one obtained with the minimal frequencies, AJ = 0.2997.

Example 3.2 Consider the bubble control system discussed in the previous section.
Suppose four such systems with different physical dimensions are installed on an
underwater vehicle to control the depth and orientation of the vehicle, and they are
controlled by one on-board processor. For each bubble control system i, let C; be the
control task execution time in each sampling period, f,,; be the lower bound on sampling
frequency, and w; be the weight. The following data are given for the control design and
scheduling problem: AJ; = oc,-e’ﬁff?', i=1,...,4, and where the frequencies, f;,
i=1,...,4, must be determined. The coordinator is the control unit which coordinates
the bubble subsystems to perform a desired mission, for instance, changing depth, roll or
pitch angles. The frequency for this particular task is fixed, and it is determined by the
underlying coordination requests. For example, to keep the roll angle 6, within a certain
range, say |6,| <#0,,,, we may want to choose the task period to be 6,,,/max(|6,]).

A simple calculation shows that the total CPU utilization of the overall bubble system
is 63% when the minimum task frequencies are assigned, and the total CPU utilization
available for the bubble systems is 95%, excluding the utilization of the coordinator.
These imply that for any Ae[0.63,0.95], all the tasks are schedulable with a DPA
scheduling algorithm, using the task frequencies determined by the algorithm described
in Proposition 3.1. Again, letting

p 1. C T
Fi) =) Cifut Y 4 (ﬁpf;ﬂ,, ““r")
p

i=1 i=p+1 Bi

Table 3. Data for bubble control scheduling.

% B; C; (ms) fmi (Hz) Wi fi (Hz)
bl 1 0.5 10 15 5 —
b2 1 0.7 10 10 3 —
b3 1 0.3 10 18 2 —
b4 1 0.1 10 20 1 —
coordinator — — 5 — — 10

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 215

we find
F(4)=0.63, F(3)=0.7908, F(2)=0.8371, F(1)=0.8852

Hence we conclude (also as indicated in Figure 6): when A € (0.8852,0.95], there is no
frequency chosen to be the corresponding lower bound. When A € (0.8371,0.8852], there
is one frequency that needs to assume its minimum value, i.e., f; = 15 (Hz). When
A€(0.7908,0.8371], two frequencies are set to their minimum value, i.e., f; = 15 (Hz)
and f, = 10 (Hz). When A is reduced further to range (0.63,0.7908], three frequencies
must be set to their lower bounds, namely, f; = 15 (Hz), f, = 10 (Hz) and f; = 18 (Hz).
Finally, when A = 0.63, all the frequencies must be assigned their minimum values.
Table 4 shows, at different utilization levels, the optimal frequencies computed from the
algorithm in Proposition 3.1 and the resulting performance index difference.

The results in Table 4 demonstrate that the control system performance will be
improved through increasing tasks’ sampling frequencies as more computing resource is
available. This is also illustrated in Figure 6 as the relation between the performance
index difference AJ and the value of A.

Examples 3.1 and 3.2 outline general guidelines for the selection of processors and the
determination of processor load. As shown in Example 3.1, by using the optimal
sampling frequencies, not only is the task set made schedulable from a unschedulable set,
but also the control system performance index difference is reduced from AJ = 0.2997,
when the minimal frequencies are used, to AJ = 0.0696, a 76% improvement. In this
case, if a faster processor is chosen, the gain on performance will be within the extra 24%
range, and a significant change on computing speed is required to realize the gain on

0.14 T T T T T

0.12

=
-

o
=
@

0.06

Performance Index Difference

o
g

~

=3 |-‘“‘-~,_h___

0.02 p=2

p=1

I
I
]
|
|
1

L 1 | Ll | L
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Total Utilization A

Figure 6. AJ versus total utilization A.

216 SETO ET AL.

Table 4. Optimal frequencies and corresponding AJ at different utilization levels.

A p [fl‘f2f3vf4] AJ

0.95 0 [15.77, 11.02, 21.53, 46.68] 0.0157
0.8852 1 [15, 10.465, 20.24, 42.81] 0.0232
0.8371 2 [15, 10, 19.16, 39.55] 0.0310
0.7908 3 [15, 10, 18, 36.08] 0.0416
0.63 4 [15, 10, 18, 20] 0.1499

performance. Then an economic decision needs to be made if a faster processor is indeed
needed. The same conclusion can be made in Example 3.2, namely, as the performance
index difference correspoinding to the optimal frequencies, AJ = 0.0157, is 89% better
than AJ = 0.1499 at the minimal frequencies, a faster processor will only gain another
11% extra improvement on performance, and such an improvement will require
significant increase of processor speed. Furthermore, since the utilization when tasks are
assigned minimal frequencies, i.e., A = 0.63, is far below the available utilization A =
0.95 in this example, we would question if it is economical to have the four bubble
control systems use up all the available computing resource. We must determine if more
tasks should be scheduled on the same processor without significantly affecting the
performance of the bubble systems. Figure 6 shows that there is indeed a possibility of
increasing the load on the processor. In fact, for low levels of available utilization, great
gains in the overall performance can occur from relatively small increases in the available
utilization. However, a point of diminishing marginal returns will be reached. At this
point, any increase in available utilization begins to contribute relatively little to the
overall system performance. Therefore, for a high level of available utilization, as in
Example 3.2, loading more tasks on the processor will not significantly reduce the overall
system performance.

4. Conclusion

In this paper, we have considered the periodic task schedulability issue from a new point
of view, optimization of the performance of a real-time computer-controlled system. For a
set of tasks from a class of control systems, whose performance indices are monotonically
decreasing (increasing) and convex (concave) functions of the sampling frequencies, an
algorithm is proposed to determine the task frequencies such that a weighted sum of the
system performance indices is optimized and all the tasks are schedulable with a dynamic
priority assignment scheduling algorithm.

The main contributions of this paper are three-fold. First, the developed algorithm
enhances the processor’s task schedulability by allowing the task frequencies to change in
relation to their system performance. For a set of real-time control tasks with given
sampling frequencies, they may not be schedulable with the chosen DPA scheduling
algorithm, but will become schedulable if their frequencies can be adjusted and their
minimum allowable frequencies render the schedulability. In this case, the algorithm
guarantees that the tasks will be scheduled with the system performance being optimized.

TRADE-OFF ANALYSIS OF REAL-TIME CONTROL PERFORMANCE AND SCHEDULABILITY 217

Second, even for a set of tasks which are originally schedulable, the proposed algorithm
can still be used to improve the overall system performance. This feature distinguishes
our algorithm from the others where system performance was not considered to be a
factor in scheduling the tasks. Finally, the proposed integrated system design approach
provides a guideline for choosing the processors and loads during the design phase. It
offers an analytical means for improving system performance in terms of hardware costs.

Future work along this line will include generalizing the algorithm developed here to
address the problem of task re-allocation over a network of processors and optimizing the
overall system performance. Preliminary results on this extension is documented in Shin
and Meissner [10].

References

1. Gerber, R., Hong, S., and Saksena, M. 1994. Guaranteeing end-to-end timing constraints by calibrating
Intermediate Processes. In Proceedings of the IEEE Real-Time Systems Symposium.
2. Liu, C. L., and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of Association for Computing Machinery 20(1): 46-61.
3. Locke, C. D. 1986. Best-effort decision making for real-time scheduling. Ph.D. Dissertation, Computer
Science Department, Carnegie Mellon University.
4. Mangasarian, O. L. 1969. Nonlinear Programming. McGraw-Hill Book Company.
5. Molini, J. J., Maimon, S. K., and Watson, P. H. 1990. Real-time system scenarios. In Proceedings of the
IEEE Real-Time Systems Symposium.
6. Seto, D., Lehoczky, J. P., and Sha, L. 1998. Task period selection and schedulability in real-time systems. In
Proceedings of the 20th IEEE Real-Time Systems Symposium.
7. Sha, L., Rajkumar, R., and Sathaye, S. S. 1994. Generalized rate-monotonic scheduling theory: A
framework for developing real-time systems. Proceedings of the IEEE 82(1): 68-82.
8. Shin, K. G., Krishna, C. M., and Lee, Y.-H. 1985. A unified method for evaluating real-time computer
controllers and its application. IEEE Transactions on Automatic Control 30(4): 357-366.
9. Shin, K. G., and Kim, H. 1992. Derivation and application of hard deadlines for real-time control systems.
IEEE Transactions on Systems, Manufacturing, and Cybernetics 22(6): 1103—-1413.
10. Shin, K. G., and Meissner, C. 1999. Adaptation and graceful degradation of control system performance by
task re-allocation and period adjustment. Proceedings of the 1999 European Real-Time Systems Conference.
York, UK.

