
Proceedings of the 2001 IEEE 
International Conference on Robotics & Automation 

Seoul, Korea. May 21-26, 2001 

ing Man1 

Orest Storoshchuk 
McMaster University 
email: orest.storoshchuk@gm.com 

facturing Control Software * 

Abstract 
Software is essential in today’s machine controllers 

for reuse, reconfiguration and cost-reduction. Formal 
models and specifications for such a system are criti- 
cal to  guarantee correctness. In this paper, we present 
an approach to model manufacturing control systerns 
based on a framework for subsystem composition and a 
Nested Finite State Machine (NFSM) model for system 
behavior. The contribution of this work is the applica- 
tion of model-based methodology for real control sys- 
tems. Some preliminary results have shown that devel- 
opment costs are reduced significantly due to domain- 
specific knowledge captured in such a model. 

Key Words: control systems, formal model, soft- 
ware architecture, real-time systems. 

1 Introduction 
Manufacturing control systems typically control a set 

of equipment with various real-time information per- 
taining to the processes and equipment. In current 
practice, control engineers first develop the code for 
supervisory discrete event control. Then, the data ac- 
quisition/monitoring code developed by engineers from 
different groups is added. Such a methodology results 
in ad hoc system implementation, with success highly 
dependent on individuals’ efforts [l]. Adding the mon- 
itoring code requires substantial effort first to compre- 
hend the control code and then to integraie without 
compromizing performance. Regular maintenance in- 
curs more costs to  keep monitoring synchronized with 
the continually evolving control code. 

Representing domain knowledge and information 
within system context is essential to facilitate software 
development and maintenance. It has been shown that 
component-based system design and integration will 

*The work reported in this paper was supported in part by 
DARPA under Grant F33615-00-1706 administrated by the US 
Airforce Wright Lab. 

Shige Wang and Kang G. Shin 
Real-Time Computing Lab, 
EECS Department, 
The University of Michigan 
email: { wangsg, kgshin} @eecs. umich. edu 

help solve these critical issues [a, 3,4]. In practice, how- 
ever, how to apply these solutions and methodologies in 
the manufacturing domain still remains unanswered [5]. 
There is little evidence showing significant improvement 
in control software development [6, 7, 81. One funda- 
mental reason for this is inadequate scientific guidelines 
for adapting these methodologies in the control domain. 
Misapplication can result in an increase in effort, dura- 
tion and skill requirements. Linkman and Rombach [8] 
outlined an experimentation and research cycle neces- 
sary to support the evolution of software engineering 
as a discipline. The experimental process is needed to 
successfully transfer software technologies from the the- 
oretical domain into industrial applications. 

This paper presents how to construct control soft- 
ware for a real system using a model-based approach. 
The construction demonstrates the first portion of re- 
search on the experimental process of transferring tech- 
nologies to industrial applications and the evaluation of 
the model-based approach. We chose a stamping/roll- 
forming work-cell system as an application to  model, 
which is representative in the manufacturing domain. 
The model that we used combines the object-oriented 
composition model and a formal method of finite state 
machine [9, lo], which is compliant with the OMAC 
user group specifications [ll]. We focus on provid- 
ing a process for assembling the components and their 
behaviors. In this process, the domain knowledge was 
modeled and represented as a set of reusable compo- 
nents, which can be selected and integrated by a non- 
controls user. It has been shown experimentally that 
the process removes the need for specialized controls 
engineering knowledge for control software design and 
implement at ion. 

The rest of the paper is organized as follows. Sec- 
tion 2 describes the software architecture and the 
stamping/roll-forming experimental ,system. Section 3 
presents the components, specifications and behaviors 
of the work-cell system. Section 4 presents how the con- 
struction of the experimental system is achieved, and 

0-7803-6475-9/01/$10.000 2001 IEEE 4072 

mailto:orest.storoshchuk@gm.com


describes our experience on efforts measured during the 
development. The paper concludes with Section 5 .  

member components. The FSM we are using is a Mealy 
machine. The existence of a control logic driver in each 
control-related component enables direct execution of 
such separate behavior specifications. 

'Oftware Architecture and Experi- The NFSM behavior model has two significant ad- 
mental System vantaffes. First, it supports integration and verifica- 

2.1 Software architecture 
v _ _  - 

tion of behavior in a hierarchy, which is essential when 
we model software with components. This reduces the 
complexity of system behavior analysis and verification. 
Furthermore, the properties of a system can be analyzed 
more thoroughly using a formal method instead of US- 

ing costly simulations. Second, since a FSM can be fully 
specified in a table format, it is convenient for imple- 
mentation and run-time reconfiguration of control logic. 
Moreover, such an implementation enables control en- 
gineers to utilize it in their daily routine, as it does not 
require specialized software tools (such as programming 
languages, compilers and debuggers). 

Software for manufacturing control systems can be 
divided into two parts, controller software and applica- 
tion software, as shown in Figure 1. Controller software 
defines the functionality of the system and is platform- 
dependent. The application software defines the be- 
havior of the system and is expected to be platform- 
independent. 

In our architecture, the software of a control system 
is modeled as a set of inter-communicating components. 
Components are designed and implemented with a set 
of external and internal interfaces, as well as environ- 

Figure 1: Controller Figure 2: Software 
software structure component structure 

To support composition with different granularities, 
components are organized hierarchically. The behavior 
of a component can be specified independently of its 
implementation arid the behavior of other components. 
The behavior of each basic component is modeled as a 
Finite State Machine (FSM), and the behavior of a com- 
posite component is modeled as a Nested Finite State 
Machine (NFSM) which synchronizes the FSMs of its 

cation 
To model the system with an object-oriented model, 

the work-cell is partitioned hierarchically. At the top 
level, the entire work-cell is treated as an independent 
system which could be operated by itself. The behavior 
of the overall system can be specified with a system- 
level FSM. At the next level, the system is divided into 
distinct subsystems as shown in Figure 4, coordinated 
by the system-level state machine. The behavior of each 
subsystem is specified with a subsystem-level FSM. A 
subsystem is then further divided into smaller compo- 
nents, which are coordinated by their subsystem-level 
state machines. 

4073 



_ _ _ _ _ _ _ _ _ _ _ _ _ _  
Roll Former I I I work-cell, four classes are necessary for such a sys- 

i fines a sequence of steps when the system is oper- 

I -  Lg ' 1  --? tem. The first class is sequentzal control, which de- 

i ated automatically. A component of this class contains 
I nested device control state machines for both automatic 
I mode and manual mode, which define the sequence in 
I a subsystem-level auto state and manual state, respec- 
I tively. When the subsystem is in the automatic mode, 

the automatic sequence state machine is selected. When 
the subsystem is in the manual mode, the manual se- 
quence state machine is selected. The FSMs for com- 
ponents have only a partial observation of the system 
external to the controlled device. Typically, only in- 
terface states or conditions of components that the de- 
vice interacts with, such as the destacker wishing to 
unload a part onto the press entry conveyor, are ob- 
served. Sequential control components can also contain 
supervisory state machines to single step or single cycle 
through the sequence. 

The second class is non-sequentzal auto, which does 
not exhibit a sequence of steps while the system is run- 
ning automatically. However, these components must 
be active to allow the subsystem to  be in a condition 
where automatic behavior is possible. Typically, these 
are devices that supply energy such as hydraulic pumps, 
flywheels, motors connected to devices with clutches, 
etc. These must be running before the subsystem can 
be placed into an automatic operating mode. 

The third class is non-sequentad manual,  which is 
very similar to the  cond d. It tYPicah' controls the 
same devices, but in a mode which will not occur while 
in automatic operation such as running the devices in 
a reverse d i ~ c t i o n .  Physically, this may be the Same 
device, but from the model's Point of view, it is treated 
as a different class due to its different characteristics. 
This limits the amount of complexity that would result 
in modeling both as a single class. 

The fourth class is sequential constraanang condatzon, 
which is primarily designed for tracking constraining 
conditions that can not always be determined directly 
from system sensors. A common constraint is allowing 
only one part at a time in a machine. For example, the 
press entry conveyor may not have more than one part 
in at a time, but there is no sensor to indicate this. The 
first three classes typically do not remember the state 
they were in when the controller is shut down while 
this class must. The requirement is forced by the fact 
that the constraining condition can not be directly de- 
termined from sensors. A FSM is used to keep track of 
the constraining condition and the states that indicate 
this condition are persistent. The first three classes will 
directly control the devices through outputs that they 

R 
Pa 
Ta 

_ _ _ _ _  
Roll Former Subsystem I 

PressITransfers 
Subsystem 

I 

Deacacker Subsystem I 
r - - - - - - - - - - -  

0 TranStec 
Pans Stack 

Figure 3: The work-cell 
system 

Figure 4: Partitioning 
of the work-cell system 

The components at each level can be as 
classes in an object-oriented model, and can be imple- 
mented as software components. The abstract classes 
and their nesting are shown in Figure 5. The top 
layer defines the system-level control that is responsible 
for overall functions and behaviors such as sequentially 
starting subsystems (to prevent overloading the electri- 
cal distribution system), determining when the entire 
cell can be placed into an automatic mode, running the 
cell automatically, emergency stopping, etc. A system- 
level state machine models this behavior. The next 
level is the subsystem control that groups closely re- 
lated components together to provide coordination and 
ability of independent subsystem operations. Classical 
principles of modular software design, such as coupling 
and cohesion, can be used to determine the boundary 
and function of a subsystem, A subsystem-level state 
machine is responsible for subsystem behaviors such as 
sequentially starting components, setting the overall be- 
havior mode (automatic, manual, off), single cycling, 
informing the system of the overall subsystem state, etc. 
The lowest level defines the individual components. 

Device Sequence State Machine 

stop Input 
Activate Output 

Figure 5: Classes for work-cell control system 

Based on the operations of various devices in the 

4074 



are associated with, while this class typically does not 
drive any outputs. The first three classes exhibit dis- 
tinctly different automatic and manual behavior while 
this class does not. This class is primarily used as an 
interface coordinating components which are directly 
connected such as the destacker and the press. 

The abstract class model that resulted from our anal- 
ysis is fairly simple. Such simplicity is key to suc- 
cessfully irnplementing an application generator and its 
ability to be used by a domain expert (mechanical engi- 
neer) who is not familiar with control code generation. 
A simple model also enables the automatic generation 
of monitoring code since relatively few rules are needed 
for the limited finite set of different situations. 

4 Control Software Construction and 
Experience 

In this section, we present design of control code for 
the stamping/roll-forming work-cell using the abstract 
class model described in previous section and its im- 
plementation in PLC code. Figure 6 shows the imple- 
mented hierarchical object model based on the abstract 
class model. 

At the system-level, a wrapper line object of the 
system-level control class is implemented to coordinate 
the entire system allowing a.utomatic cycling, emer- 
gency stopping, emptying out of parts, etc. Three 
subsystem-level control objects, which correspond to 
the partitioning of the system shown in Figure 4, are 
implemented to control subsystems. Each of the three 
objects contains a supervisory FSM to allow manual 
o r  automatic l~ehavior in each subsystem, as shown in 
Figure 7. 

Each subsystem-level object controls one or more 
component-level objects. The destacker subsystem con- 
tains only the sequence destacker object of the sequen- 
tial control class. Two nested state machines model this 
object's behavior. A manual sequence state machine, 
shown in Figure 8, is nested in the manual state of 
the destacker subsystem-level FSM to specify the man- 
ual operations. An automatic sequence state machine, 
shown in Figure 9, is nested in the automatic state of 
the destacker subsystem-level FSM to specify the auto- 
matic operations. 

The press-transfers subsystem contains five 
component-level objects. The sequence press/conveyors 
object of the sequential control component class speci- 
fies the sequencing of the press, its entry and exit of 
conveyors. An automatic and a manual state machine 
controls the behavior for auto and manual mode, 
respectively. Similarly, the sequence scissors lift object 
of the sequential control component class specifies the 

Figure 9: Automatic mode FSM 

sequencing of the scissors lift with its automatic and 
manual state machines. The hydraulic press must 
have its hydraulic motor running before it can be run 
automatically. This behavior is provided by the run 
hydraulic motor object of the non-sequential compo- 
nen t  needed for auto class. Similarly, the conveyors 
must be enabled before the subsystem can enter the 
automatic state. The enable conveyor drives object 
of the non-sequential component needed f o r  auto class 
serves this purpose. Since only one part is allowed 
in the press subsystem at a time, and the part may 
be present but can not be detected by the sensors, a 
track part  posit ion in press object of the sequential 
constraining component class is used. A state machine 
is implemented in this object to keep track of the 
loading of a part in the press and its delivery out of 
the press subsystem. 

The roll former subsystem does not have a sequence 
(beyond simply running or being stopped), thus it does 
not contain any objects of the sequential control com- 
ponent class. This subsystem needs to  control the roll 
former and its entry conveyor running in the forward di- 
rection to allow automatic behavior, therefore a run roll 
f o rmer  forward object of the non-sequential component 
needed f o r  auto class is used. To allow the roll former 
to be run in reverse when the subsystem is in manual, 
a run roll f o rmer  reverse object of the non-sequential 
manual component class is used. As in the press sub- 
system, the presence of a part can not be determined 
by sensors, therefore a track part posit ion in roll f o rmer  
object of the sequential constraining condition compo- 
nen t  class is needed. 

The PLC code was initially manually coded based 
on the object model. We developed a prototype ap- 
plication generator based on the model to  capture code 
design patterns from control engineers. This now allows 
a non-controls expert to interact with the application 
generator to specify the behavior of a different work-cell 
and have code automatically generated matching that 
which would have been written by a controls expert. 

Based on our experience of constructing the appli- 

4075 



Onto conveyor 

Figure 8: Manual mode 
FSM Figure 6: Object model of the work-cell Figure 7: High-level FSM. 

cation, software development using the NSFM model 
shows several distinct advantages over the method used 
in current practices. 

the total development cycle. The programs based on 
the NSFM model provide an easily understood docu- 
mentation of the system behavior and a standard pat- 

First, the development cycle is shortened and code 
functionality and quality are improved. The initial sys- 
tem design and code generation required approximately 
one half of the time. The typical process consists of the 
control designer obtaining an incomplete comprehen- 
sion of the system requirement and starting to gener- 
ate code. During the code generation, questions arise 
which result in a consultation with the customer (per- 
son specifying the function of the system). Frequently, 
new 1/0 is required and existing code has to be changed. 
Additional code is generated and new questions arise 
resulting in further consultation. Unfortunately, the 
customer usually does not comprehend the full system 
requirement at the beginning and the application code 
has to be created through a series of meetings. I t  is 
hard to remember all of the implications of the deci- 
sions that have been made along the way. The code 
ends up being a series of patches without the removal 
of obsolete and redundant pieces. The NSFM method 
forces a control engineer to obtain a full understanding 
of the requirements before any coding can begin since 
the NSFM must be fully specified. The NSFM provides 
a compact and complete model of the system behavior 
facilitating communication with the customer and re- 
moving ambiguity. Once the NSFMs are drawn, coding 
is a simple mechanical process. It can be written cleanly 
in one pass. The resultant quality and functionality is 
superior to the current practices in industry. Neither 
noticeable code size, nor execution speed penalties were 
observed in our application system. 

tern of code implementation simply correlates with it. 
For the same reasons, modification of the destacker se- 
quence by someone other than the software developer 
also required one third of the normal time. An addi- 
tional advantage was noted during the diagnosis of sys- 
tem failure, which was not comprehended by the imple- 
mented diagnostics. The hierarchical nesting of finite 
state machines provided a natural sequence of diagnos- 
tic steps. A technician can start checking the state ma- 
chine from the top down by examining the current state, 
expected next state and conditions needed to achieve 
it. The location of an error where the missing condi- 
tion exists can be quickly determined, and mapped.to 
the physical condition. The transition from one state to 
the next typically requires examining only a few lines of 
code. The state machine method effectively eliminates 
the need to examine and understand large sections of 
code by automatically indicating the current state. Us- 
ing a standard pattern for implementing the code al- 
lows a technician to quickly understand the functions 
and logic, and correlate it with the sequencing of the 
physical machine. Normally this is far more difficult in 
traditional control logic where the current state of the 
system can not be readily determined. There are no dis- 
tinct state indicators. The state needs to be deduced 
by studying the conditions of the machine, the current 
value of the logical equations represented by the control 
logic and correlating the two. The logical equations 
represented by the code have usually undergone sim- 
plification making it more difficult to determine their 
functions. 

Secondly, our approach reduces maintenance costs. 
The software debugging normally requires one third of Thirdly, the standard code pattern makes integration 

4076 



of diagnostic code far simpler. The reduction in effort 
is approximately one third. In addition, having the sys- 
tem context readily available from the FSMs provides 
data of better quality. 

5 Conclusion 
Our proposed methodology of NFSMs coupled with 

standard components was successfully applied in the 
domain of supervisory discrete event control of manu- 
facturing work-cells. Initial development re,quired one 
half the time; debug and later modifications required 
one third of the time. 

A general abstract model and domain specific archi- 
tecture was derived from implementing a stamping/roll 
forming work-cell. The abstract object model that re- 
sulted from our analysis is fairly simple. Such simplicity 
enabled us to successfully implement a prototype appli- 
cation generator, which allows non-controls personnel 
familiar with the function of a machine’, to describe it 
and automatically generate PLC Ladder Logic control 
code. The application generator provides a model and 
architecture, which makes the automatic generation of 
context-aware monitoring code possible. Our intention 
is to use the application generator as part of a replicable 
experimental process for transferring software technolo- 
gies from the theoretical domain into industrial appli- 
cations. 

The methodology has advantages even for manual 
code generation. Less time is required to initially gen- 
erate the code with fewer errors and to debug the appli- 
cation software. It is easier to comprehend by someone 
other than the initial software developer and simpler to 
modify. It is also easier to diagnose a machine mechan- 
ical condition requiring corrective action. 

References 

[l] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. 
Weber, “Capability of maturity model for soft- 
ware,” Technical report, Software Engineering In- 
stitute, CMU, February 1993. 

[2] D. K. Hammer, A. A. Hanish, and T. S. Dillon, 
“Modeling behavior and dependability of object- 
oriented real-time systems,” Computer Systems 
Science &Engineering, vol. 13, no. 3, pp. 139-150, 
Maj7 1998. 

[3] B. Furht and W. A. Halang, “A survey of real- 
time computing systems,” International Journal of 
Mini and Microcomputers, vol. 16, no. 3, pp. 141- 
155, 1994. 

[4] S. Ren, G. Agah, and M. Saito, “A modular ap- 
proach for programming distributed real-time sys- 
tems,” in Lectures on Embedded Systems: Euro- 
pean Educational Forum School on Embedded Sys- 
tems (LNCS 1494), pp. 171-207, Springer-Verlag, 
Veldhovan, Netherland, November 1996. 

[5] S. Birla and K. G. Shin, “Reconfiguration require- 
ments for software to control automotive manufac- 
turing machine tools,” in Proceedings of the 1998 
Japan- USA Symposium on Flexible Automation, 
July 1998. 

[6] B. Kitchenham, P. Brereton, D. Budgen, 
S. Linkman, V. L. Almstrum, and S. L. Pfleeger, 
“Evaluation and assessment in software engineer- 
ing,” Information and Software Technology, vol. 
39, no. 11, pp. 731-734, Novermber 1997. 

[7] W. F. Tichy, “Should computer scientists experi- 
ment more?,” Computer, vol. 31, no. 5, pp. 32-40, 
May 1998. 

[8] S. Linkman and H. D. Rombach, “Experimenta- 
tion as a vehicle for software technology trasfer - 
a family of software reading techniques,” lnforma- 
tion and Software Technology, vol. 39, no. 11, pp. 
777-780, Novermber 1997. 

[9] S. Wang, C. V. Ravishankar, and K. G. Shin, 
“Open architecture controller software for integra- 
tion of machine tool monitoring,” in Proceedings of 
1999 IEEE International Conference on Robotics 
and Automation (ICRA ’991, pp. 1812-1820, De- 
troit, MI, May 1999. 

[lo] C. Shiu, M. J. Washburn, S. Wang, C. V. Ravis- 
hankar, and K.  G. Shin, “Specifying reconfigurable 
control flow for open architecture controllers,” in 
Proceedings 1998 Japan- USA Symposium on Flex- 
ible Automation, volume 2, pp. 659-666, Otsu, 
Japan, July 1998. 

[Ill OMAC Working Group. OMAC API Documenta- 
tion vU.23, April 1999. 

4077 


