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Abstract

While the Differentiated Services (DiffServ) infrastructure is
scalable and robust in providing network Quality of Service
(QoS), there are serious drawbacks with the services provided
by DiffServ: (1) the services are coarse-grained and one-
way only; (2) no service differentiation and resource isola-
tion are provided to meta-data packets such as TCP SYN and
ACK packets. Moreover, the coarse-grained service differen-
tiation and the lack of resource isolation at IP routers exposes
its vulnerability to Distributed Denial of Service (DDoS) at-
tacks [10]. Based on the concept of layer-4 service differen-
tiation and resource isolation, where the transport-layer in-
formation is inferred from the IP headers and used for packet
classification and resource management, we present a scal-
able fine-grained DiffServ (sf-DiffServ) architecture that pro-
vides fine-grained service differentiation and resource iso-
lation among thinner Behavior Aggregates (BAs). The sf-
DiffServ architecture consists of a fine-grained QoS classi-
fier and an adaptive weight-based resource manager at IP
routers. A two-stage packet classification mechanism is de-
vised to decouple the fine-grained QoS lookup from the rout-
ing lookup at core routers. Due to its scalable QoS support for
TCP control segments, sf-DiffServ supports bi-directional dif-
ferentiated services for TCP sessions. Most importantly, the
fine-grained resource isolation provided inside the sf-DiffServ
is a powerful built-in protection mechanism to counter DDoS
attacks, reducing the vulnerability of Internet to DDoS at-
tacks.

1 Introduction

As the Internet evolves into a ubiquitous communication
infrastructure, more sophisticated services than the tradi-
tional best-effort service have become necessary to meet the
Quality-of-Service (QoS) requirements of various real-time
applications. To support network QoS, the Differentiated Ser-
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vices (DiffServ) infrastructure [5] has been proposed as a
promising solution due mainly to its scalability and robust-
ness. Based on the DS field in the IP header, IP flows are
classified into different Behavior Aggregates (BAs). Services
are provided for aggregates, not for individual flows, and de-
fined by a small set of Per-Hop Behaviors (PHBs), which
are the forwarding behaviors applied to different aggregates
at IP routers. The current best-effort service at IP routers is
replaced by three different services: best-effort service and
two more advanced services, i.e., premium and assured ser-
vices. Corresponding to the three different services provided
by DiffServ, three types of PHBs are specified: Expedited
Forwarding (EF), Assured Forwarding (AF), and Best-Effort
(BE). In the DiffServ architecture, EF is to support premium
service for stringent (hard) real-time applications that require
bounded end-to-end delay and jitter, and AF is to support as-
sured service for soft real-time applications.

The current DiffServ architecture only provides one-way
differentiated service for each session, which works well only
if UDP is used for transporting application data [35]. How-
ever, besides HTTP, a large fraction of application-layer pro-
tocols like ftp and telnet, are based on TCP for reliable data
transport service. The latest Internet traffic measurements
have shown that 90–95% of the Internet traffic belongs to
TCP [8]. The reliability of TCP is achieved by its three-
way handshake, acknowledgment (ACK) and timeout mech-
anisms. The TCP congestion control mechanism [12, 34]
makes the data transmission of a TCP connection ACK-
clocked. The success of meeting the application’s deadline
depends not only upon the service guaranteed for TCP seg-
ments in their forwarding path, but also upon the service re-
ceived by the returning TCP ACKs in the backward path. Un-
fortunately, the current DiffServ architecture provides no ser-
vice differentiation and resource isolation to meta-data pack-
ets such as TCP SYNs and ACKs. By default, the current
DiffServ treats these TCP control segments from different
user classes as BE traffic. Recent experiments [22, 35] have
shown that the current DiffServ can not meet the required
service assurance for TCP-based applications that need bi-
directional service differentiation.
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Moreover, in the current DiffServ architecture, the QoS
classification at core routers solely depends upon the DS field
in the IP header,1 yielding only coarse-grained service dif-
ferentiation and resource isolation. No further service differ-
entiation and resource isolation are provided among different
transport-layer protocols within a BA. UDP and TCP are two
dominant transport-layer protocols in the current Internet, but
their services and traffic behaviors are quite different. It is
beneficial to divide a single BA into a UDP behavior aggre-
gate and a TCP behavior aggregate. Besides meeting the re-
quirement of the bi-directional service differentiation to TCP
sessions in the context of DiffServ, there are three reasons for
differentiating TCP control segments — SYNs, FINs, ACKs
and RSTs — from data segments even in the best-effort ser-
vice model: (1) usually TCP control segments have much
smaller packet size than that of data segments; (2) the loss
of a TCP control segment incurs more serious performance
degradation than the loss of a data segment; (3) DDoS attack
tools usually utilize TCP control segments for generation of
DoS attacks, such as TCP SYN and ACK flooding attacks.
In other words, the coarse-grained service differentiation and
the lack of resource isolation on meta-data packets not only
degrade the assured service of TCP sessions but also expose
the vulnerability of Internet to DDoS attacks [10].

In this paper, we propose a scalable fine-grained DiffServ
(sf-DiffServ) architecture to provide fine-grained service dif-
ferentiation and resource isolation among thinner aggregates
without compromising scalability. The basic concept em-
ployed is layer-4 service differentiation and resource isola-
tion, in which the transport-layer information is inferred from
the IP headers and used for packet classification and resource
management at IP routers. To support layer-4 service dif-
ferentiation and resource isolation, we present a fine-grained
QoS classifier and an adaptive weight-based resource man-
ager, with which the scalable fine-grained DiffServ infras-
tructure is built. The fine-grained QoS classifier divides each
BA into thinner aggregates, and the adaptive weight-based re-
source manager provides service differentiation and resource
isolation among these thinner aggregates. At core routers, we
employ a two-stage packet classification mechanism to de-
couple the routing lookup from QoS lookup. The first stage
performs the routing lookup at the input port, and the second
stage performs the fine-grained QoS lookup at the output port
after the packet is routed through the switching fabric. The
service differentiation between different TCP control flows is
relative, instead of quantitative or qualitative. It guarantees
that the TCP control segments for high-tiered TCP sessions
receive better service (i.e., lower delay and lower loss rate)
than those for low-tiered sessions. No bi-directional resource
reservation is needed.

The performance of the sf-DiffServ architecture is eval-
uated by simulation. The simulation results show that the
sf-DiffServ provides better end-to-end QoS to applications:

1Multi-field packet classification is limited to edge routers in the DiffServ
architecture.

the response time of a premium request is guaranteed to be
shorter than that of basic requests with the same round-trip
time (RTT); a high-tiered TCP session has lower ACK loss
rate and higher effective throughput than a low-tiered one.
Moreover, the resource isolation provided by the sf-DiffServ
significantly throttles the flooding traffic received by the vic-
tim server, which can be utilized as a built-in protection mech-
anism of routers to counter DDoS attacks.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the motivation of this work and the related
work. Section 3 describes a fine-grained QoS classifier and
an adaptive weight-based resource manager, the key compo-
nents of the sf-DiffServ architecture. Section 4 evaluates the
performance of the sf-DiffServ architecture. Finally, the pa-
per concludes with Section 5.

2 Motivation and Related Work

Our work was initially motivated by the desire of provid-
ing preferential treatments to TCP ACKs and achieving bi-
directional differentiated service to a TCP session. One sim-
ple way to achieve this is that end-hosts mark each ACK as a
premium, assured or best-effort packet, corresponding to the
class of the data packet being acknowledged, but no enhanced
mechanisms implemented at IP routers to distinguish ACKs
from data segments.

The validity of this simple marking scheme has been con-
firmed by the authors of [22], where the effect of ACK mark-
ing on TCP throughput is thoroughly studied. They found
that copying the marking of a data segment into its ACK is
a practical and optimal strategy if resource provisioning is
done properly for EF and AF aggregates. At the same time,
they pointed out the necessity of the resource provisioning
for EF and AF ACK flows. However, the proper resource
provisioning requires the accurate traffic profile of the ACK
flows. Unfortunately, it is extremely difficult to characterize
the traffic profile of ACK flows, such as peak rate and burst
size, because the traffic characterization of an ACK flow de-
pends on the following factors that are not known until the
TCP connection has been established: (1) the actual arrival
rate of TCP data segments in the forward path; (2) the pro-
cessing time required for the receiver to generate an ACK
for a newly-received data segment — delayed acknowledg-
ment or not; (3) the Maximum Segment Size (MSS) in the
forward path, which determines the number of TCP data seg-
ments and, implicitly, the number of TCP ACKs; and (4) the
loss rate of data segments in the forward path.

Without proper resource provisioning and traffic condi-
tioning for ACK aggregates, the ACKs and data segments
that share the same queue could interfere with each other.
For EF or AF aggregates, adding unconditioned ACK flows
could cause the violation of their traffic profiles at routers. In
other words, the conformant EF or AF data flows may suf-
fer from packet losses, longer delay and delay jitter, as a re-
sult of adding unconditioned ACK flows. Especially, under
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distributed ACK flooding attacks, the performance of confor-
mant EF or AF flows will seriously degrade. On the other
hand, an ACK flow could also be interfered with by non-
conforming EF or AF data flows, resulting in unnecessary
ACK losses by the traffic shaper at boundary routers. Our
simulation results shown in Section 4.2 demonstrate that the
simple ACK marking scheme provides insufficient service
differentiation and isolation to ACK flows when network re-
sources are under-provisioned. Also, sharing the same queue
with large data segments leads to ACK compression [38].

Furthermore, there are two serious drawbacks with this
simple marking scheme: (1) the best-effort TCP traffic, which
will continue to be the dominant load on the Internet, will not
receive any performance improvement with the simple mark-
ing scheme; (2) DDoS attacks on the Internet make the simple
marking scheme much less attractive, since it exposes more
vulnerability to various TCP flooding attacks and upgrading
the service level of TCP control segments will make the prob-
lem even worse. The simulation results shown in Section 4.3
confirm this claim.

To improve the TCP performance in the context of network
asymmetry, the acks-first scheduling scheme has been pro-
posed [4], giving TCP ACKs priority over TCP data pack-
ets. So, the router always forwards ACKs before data seg-
ments. However, this acks-first scheme could cause starva-
tion of data packets and violation of traffic profiles, especially
under ACK flooding attacks. Also, no ACK identification
scheme at routers was provided in [4]. Therefore, to achieve
better network QoS and counter DDoS attacks, we need to
differentiate the TCP control segments from data segments at
IP routers.

Resource management is essential to real-time applica-
tions. Meeting timing constraints with high resource utiliza-
tion is the a key goal of resource management. Numerous ap-
proaches have been proposed and implemented to achieve this
goal [1, 2, 3, 9, 19, 25, 30, 36, 37], in which adaptation and
hierarchy are the two key features. Also, resource isolation
has been utilized as a powerful mechanism to counter DoS at-
tacks [3, 17, 27]. However, most of these approaches are de-
signed for applications, end-hosts and edge routers, without
paying attention to the resource management at core routers
due mainly to the scalability problem. In this paper, based
on the layer-4 classification, we build a flexible and scalable
resource manager at core routers without requiring a resource
signaling protocol like RSVP [39] in the DiffServ architec-
ture.

3 Scalable Fine-grained DiffServ Ar-
chitecture

To provide layer-4 service differentiation and isolation, we
propose a fine-grained QoS classifier and an adaptive weight-
based resource manager, both of which are essential to the sf-
DiffServ architecture. The granularity of the classifier is still

based on aggregates, not individual flows, and the resource
manager is stateless, thus preserving the scalability and ro-
bustness of the original DiffServ infrastructure. Moreover, at
core routers the QoS lookup is decoupled from the routing
lookup by employing a two-stage packet classification mech-
anism. The set of QoS filtering rules is small, and has the
same/similar size at both edge and core routers. In contrast
to routing lookup, QoS lookup is independent of network size
and does not cause any scalability problem in packet classifi-
cation. The sf-DiffServ architecture is detailed in the remain-
der of this section.

3.1 Two-stage packet classification

For service differentiation, layer-4 switching [14, 28] has
been proposed, in which routing decisions are made based not
only on the destination address but also on the header fields
at the transport or higher layer. Routing and QoS lookups are
integrated into a single framework to fulfill layer-4 switch-
ing, and therefore, the forwarding database of a router consists
of a large number of filters to be applied on multiple header
fields. The deployment of a large-scale packet filtering mech-
anism [11, 13, 28] makes it feasible to implement layer-4 or 5
switching at edge routers or at the front-end of server farms.
However, layer-4 switching has primarily been used for load
balancing by connection routers in server farms. It is very
difficult to implement layer-4 switching at core routers due
mainly to security and scalability difficulties. Even with fast
and scalable packet classification, the problems with layer-
4 switching at core routers are: (1) addition of higher-layer
information — such as port numbers — and more routing
entries enlarges the routing table at core routers, causing the
routing lookup to require much more memory and time; (2)
when IP payload is encrypted, higher-layer headers become
inaccessible.

To support layer-4 service differentiation and resource iso-
lation, the fine-grained QoS classification has to work well at
both edge and core routers. Therefore, we decouple the fine-
grained QoS lookup from the routing lookup at core routers
by employing a two-stage packet classification mechanism. In
addition to overcoming the scalability problem at core routers,
there are several other reasons for this decoupling.

� Routing decisions must be made at the input port, but
most of service differentiation — buffer management
and packet scheduling — is performed at the output port.

� There is a large difference between the search spaces of
routing lookup and QoS lookup. The size of routing ta-
ble is very large and ever-increasing with the growth of
Internet, but the filtering rule set of QoS classification is
small and remains stable.

� Conventional routing lookup is based solely on destina-
tion addresses, which is a one-dimensional search, but
QoS lookup is based on multiple fields, which is a multi-
dimensional search.
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Figure 1: The architecture of the two-stage packet classifier
at core routers

Note that at core routers, our QoS lookup is mainly re-
stricted to the IP header fields, and the transport-layer in-
formation is accessed only if necessary. The proposed QoS
lookup should not become the performance bottleneck inside
the router. Moreover, the decoupling greatly simplifies the
implementation of packet classification. The architecture of
the two-stage packet classification is illustrated in Figure 1,
where the forwarding table is the local version of routing
table in the line card. With the forwarding table, the rout-
ing/switching decision can be made locally at each input port.

3.2 Fine-grained QoS classifier

As the key component of the sf-DiffServ architecture, the
proposed QoS classifier at routers uses several fields in the
IP header for QoS classification in addition to the DS field.
Transport-layer information is extracted to further divide a
BA into a UDP aggregate and a TCP aggregate, and then
to distinguish TCP control segments that mainly consist of
ACKs, from TCP data segments in the TCP aggregate. QoS
classification can be modeled at three different hierarchical
levels as shown in Figure 2.

Behavior Aggregates

TCP AggregateUDP Aggregate

IP Flows 

Level 1

Level 2

Level 3

TCP Control SegmentsTCP Data Segments

Figure 2: The three-level QoS classification

At the first two levels, it is straightforward to set the fil-
tering rules. By checking DS and protocol type fields in the

IP header against the filtering rules, the QoS classification is
simple and does not cause any ambiguity. However, the ac-
curate TCP control segment identification at level 3 could be
much more complex. To implement the identification of TCP
control segments at IP routers, the easiest way is to utilize
one of the unused bits of DS field in the IP header. However,
the problem with this solution is that it requires the modifica-
tion of the IP header and cooperation from end-hosts. More-
over, the IETF has proposed using the two unused bits of DS
field for the deployment of the Explicit Congestion Notifica-
tion (ECN) mechanism [23] at routers.

So, we propose size- and port- based identification of TCP
control segments without requiring any new bit. Note that in
the following we present a detailed description of a general
TCP control segment identification, which can be applied to
the identification of each individual TCP control segment like
SYN, FIN, ACK and RST. The only difference at the port-
based version is to check different bits in the 6-bit flag field.

3.2.1 TCP Control Segment Identifications

Initially, each TCP segment is encapsulated in a single IP
packet, but IP fragmentation could occur at intermediate
routers. Once the IP packet is fragmented, only the first frag-
ment contains the TCP header. So, the IP packet that contains
the TCP header must have a zero fragmentation offset. By
checking the fragmentation offset field in the IP header, the
ambiguity caused by IP fragmentation is eliminated. Theoret-
ically, if an IP packet encapsulates a TCP control segment, it
should meet the following requirements: (1) its protocol type
is TCP; (2) its fragmentation offset is zero; and (3) the corre-
sponding flags in the TCP header are ON.

However, recent Internet traffic measurements [8, 31] have
shown that about 40% of all IP packets are 40 bytes long,
most of which are TCP control segments, implying that an
overwhelming majority of TCP control segments are 40 bytes
long. Then, based on whether the TCP header is accessed
or not, we have two versions of TCP control segment identi-
fication: lightweight and heavyweight. Since IP options are
included primarily for network testing or debugging, and the
fraction of packets with IP header options are typically less
than 0.003% [15], it is reasonable to assume that no IP option
fields are attached to TCP control segments.

The lightweight version is a size-based classifier. It takes
advantage of the above observations, and only checks the to-
tal length field in the IP header. The base filtering rule of TCP
control segment identification is that the IP packets whose to-
tal length are 40 bytes, are classified as TCP control segments.
The rationale behind this is that, since the IP header without
options is 20 bytes and the TCP header without options is 20
bytes, a total of 40 bytes is the minimum size of an IP packet
that encapsulated a TCP segment (without any payload). Con-
sidering TCP options — MSS option (4 bytes), Window scale
factor option (3 bytes), Timestamp option (10 bytes) and Se-
lective Acknowledgment option (10/18/26 bytes) — that can
appear in the TCP control segments like SYNs or ACKs and
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the requirement of a 4-byte boundary by padding NOP op-
tions, the complete filtering rule of TCP control segment iden-
tification is set as:

Rule : fX j X = 4 � n; 10 � n � 20g

where X is the total length of an IP packet and n is an inte-
ger. Since the maximum space that TCP options can use is 40
bytes, the maximum packet length of a TCP control segment
is 80 bytes.

The main advantage of the lightweight version is that there
is no need to access the TCP header, thus reducing overhead
significantly. Its chief disadvantage is inaccuracy. The tiny
TCP data segments that meet the filtering rules will be mis-
classified as TCP control segments. However, because the
tiny TCP data segments are most likely to belong to interac-
tive TCP sessions, they have similar features of TCP control
segments, i.e., small size and loss-sensitive TCP performance.
For end-to-end TCP performance it is beneficial to separate
them from, and give priority over, other TCP data segments.
Moreover, the proposed adaptive weight-based resource man-
ager has the ability to cope with this inaccuracy.

Since the lightweight version does not access the TCP
header, it can not further differentiate TCP control segments
into SYNs, FINs, ACKs and RSTs. To achieve accurate
and fine-grained TCP control segment identification, the TCP
header needs to be accessed. The heavyweight version of TCP
control segment identification is a port-based classifier. The
matching scope is outside the IP header, and hence, the TCP
flags of the TCP header are checked. Besides the additional
overhead in accessing the TCP header, IPSec makes the port-
based classification difficult. However, a multi-layer IPSec
protocol [40] has been proposed, which allows trusted routers
to access the transport-layer information.

Even in the heavyweight version of TCP control segment
identification, especially for ACK identification, we still need
to rely on the total length field in the IP header to eliminate
the ambiguity caused by the following two reasons:

� Some TCP implementations always set the ACK-flag bit
ON once the TCP connection is established [29]. Fur-
thermore, some malicious TCP senders could intention-
ally set TCP flag bit ON in its TCP data segments.

� The piggyback mechanism in which ACKs are sent
along with a reverse-direction data flow, results in a
packet that could be interpreted as a TCP data segment
or TCP ACK.

The ambiguity caused by always-on ACK-flag and piggy-
backing can be solved by simply checking the total IP packet
length. The large packet with ACK-flag ON is classified as
a TCP data segment, but the small packet with ACK-flag ON
is classified as a TCP ACK. Considering the addition of TCP
option fields like the Timestamp in the TCP header, we set the
threshold to 80 bytes, as the available bytes for TCP options
is 40. If the total packet length is larger than 80 bytes, the

packet is classified as a TCP data segment. Otherwise, it is
classified as a TCP ACK.

Lightweight Heavyweight

I.

No

Yes

 Fragment offset is 0 ?

II.

III.

Total length < = 80 bytes 

Yes

No

Yes

Yes

No

Yes

No
Total length is 4*N bytes? 

II.

It is a data  

It is a control 

Is any TCP flag ON ? 

Figure 3: The flowchart of the TCP control segment identifi-
cation algorithm

In summary, we suggest the lightweight version be used
at core routers, and the heavyweight version be used at edge
routers. A detailed description of the complete TCP control
segment identification algorithm is given in Figure 3, where
N is an integer such that 10 � N � 20. There are three
major steps in the heavyweight version, but only two steps in
the lightweight version are given in Figure 3.

3.2.2 Validating lightweight identification

To validate the lightweight version of TCP control segment
identification algorithm, six Internet traces taken at three dif-
ferent sites [21] are used. All the traces were collected be-
tween February 2002 and March 2002. The three chosen sites
are located at high-bandwidth interconnection points. ADV
represents the site where the OC3c (155Mbps) PoS (Packet
over Sonet) link connects the Advanced Network and Ser-
vices premises in Armonk, NY, to their ISP and the Inter-
net2/Abilene network. ANL is referred to the OC3c link be-
tween the Argonne National Laboratory and the Ameritech
Network Access Point (NAP) in Chicago. BUF is the site
where the OC3 PoS link connects NYSERnet’s router and
University at Buffalo’s router.

Traces Mis-classified Total Number Error ratio

ADV-1 665 97053 0.68%
ADV-2 354 45463 0.78%
ANL-1 4351 560223 0.77%
ANL-2 2665 437085 0.61%
BUF-1 2218 208301 1.06%
BUF-2 2390 605127 0.39%

Table 1: Effect of mis-classification

From these traces, we found that no TCP control segment
is mis-classified as a data segment and only an insignificant
number of tiny TCP data segments are mis-classified as con-
trol segments. The filtering rule of 4-byte boundary signifi-
cantly reduces the inclusion of tiny data segments (less than

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) 
0-7695-1739-0/02 $17.00 © 2002 IEEE 



80 bytes) in control segments. For example, in BUF-1 trace,
without this rule, there would be 13318 tiny data segments
that are mis-classified. However, after applying this rule, the
number of mis-classified data segments is reduced to 2218.
Table 1 gives the percentage of mis-classification of TCP data
segments vs. the total data segments in each trace. Moreover,
over 97% of the mis-classified tiny TCP data segments are
with “PSH” flag ON in its TCP header.

3.2.3 Discussion

Currently, only a negligible part of the IP traffic is reported to
belong to IPv6 [8, 31], so the proposed QoS classifier is based
only on IPv4. Compared to IPv4, the most important changes
in IPv6 lie in the packet format. The header format of IPv6 is
very different from that of IPv4. However, the following two
features of IPv6 will make the TCP control segment identifi-
cation even easier and faster: (1) IPv4’s variable-length op-
tions field is replaced by a series of fixed-format headers, and
each IP packet has a base header followed by zero or more
extension headers; (2) no fragmentation occurs at intermedi-
ate routers, and all the fragmentation and reassembly are re-
stricted to end-hosts. So, it is easy to adjust the proposed QoS
classifier to work properly in the context of IPv6.

The emergency of Internet Telephony — also called voice
over Internet Protocol (VoIP) — does not pose a threat to the
lightweight version TCP control segment identification, since
VoIP data streams are carried by Real Time Transport Proto-
col (RTP) that is running on top of UDP, instead of TCP [24].
Moreover, the real audio streams show a significant regularity
on packet lengths — concentrating on 244/254, 290/300 and
490/502 bytes [16], which are much larger than 80 bytes.

3.3 Adaptive weight-based resource manager

To enable better service differentiation and resource isolation
between thinner aggregates, we propose an adaptive weight-
based resource manager for IP routers. A hierarchical link-
sharing structure is built, which is similar to the hierarchy of
QoS classification. As shown in Figure 4, the root of the re-
source tree is the total link capacity. As the level of the re-
source tree gets lower, the IP flows that share the link are split
into thinner aggregates. Each leaf node has its own queue,
and every classified incoming packet is then inserted into the
appropriate queue. Subsequently, the weighted round-robin
scheduler will take care of these queued packets and select
the next packet for transmission.

At level 1 of the resource tree, each node represents the
allocated bandwidth to each BA. The bandwidth allocation
and priority assignment at the BA level are done by the
Bandwidth Broker (BB) [20] via Service Level Agreements
(SLAs). At level 2 of the resource tree, the BA is divided fur-
ther into a UDP aggregate and a TCP aggregate. Each node
at level 2 corresponds to the bandwidth allocated to the thin-
ner UDP/TCP aggregate. Within each BA, the UDP aggregate
and the TCP aggregate have the same priority and a weighted

ASSURED

LINK

  UDP     TCP   UDP     TCP

   Data
    TCP     TCP     TCP

   Data

PREMIUM
Level  1

Level  0

   Control
Level  3

  UDP

    TCP
   Control

Level  2

EFFORT

BEST

    ICMP    TCP

   Data
    TCP

   Control
    TCP

    leaf node

    none-leaf node

   queue

Figure 4: The link-sharing framework

round-robin scheduling scheme is used between them. The
composition of each BA is different. Most of an EF (Expe-
dited Forwarding) aggregate is UDP real-time audio/video.
However, in the AF (Assured Forwarding) and BE (Best-
Effort) aggregates, the majority of packets belong to TCP. The
weights assigned to the thinner aggregates are based on the
recent empirical studies reported in [8, 15, 16, 31], which are
listed in Table 2. Here we assume the total weight of each BA
is 1. The total weight assigned to UDP and TCP aggregates in
BE is 0.99, since ICMP packets account for less than 1% of all
IP packets and, by default, these ICMP packets are treated as
BE traffic. Note that the weights at level 2 are tunable param-
eters that can be adjusted by network administrators to meet
their local requirements. The weight assignment is strictly en-
forced only when there is no empty queue. Once a queue is
empty, its assigned weight can be temporarily shared by other
non-empty queues until the next packet enters the queue.

Type Expedited Assured Best-Effort

UDP 0.7 0.05 0.04
TCP 0.3 0.95 0.95

ICMP 0 0 0.01
Total 1 1 1

Table 2: Level-2 weight distribution in different BAs

Each node at level 3 of the resource tree represents the
bandwidth allocated to TCP data or control segments. The
TCP data and control segments within the same TCP aggre-
gate are also scheduled according to the weighted round-robin
policy. The guiding principle for the weight setting at level 3
is that preference is given to control segments but there is a
strict limit on the weight of control segments. The weight
preference to control segments is the embodiment of resource
overprovisioning as suggested in [22], and the strict limit pre-
vents the misuse of preference. Because the overwhelming
majority of the TCP control segments are TCP ACKs, we first
present the rule of setting the weight of TCP ACKs, and then
use the ACK weight as the baseline to derive the weights of
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all TCP control segments.

3.3.1 Setting the weight of ACKs

The rule of thumb for setting the weight for TCP ACKs is
to approximate the upper bound of their bandwidth consump-
tion. If the weight is measured in number of packets, the ratio
of the weight of TCP ACKs to that TCP data segments is 1:1.
This one data segment vs. one ACK policy is based on the
fact that the transmission of a TCP data segment will later
trigger a TCP ACK. Considering wide deployment of the de-
layed ACK mechanism at TCP receivers, weights are assigned
to give preference to TCP ACKs, and this preference is also
intended to provide a safety cushion to other TCP control seg-
ments and tiny TCP data segments in case the lightweight ver-
sion of TCP control segment identification is used.

Adhering to the policy of one data segment vs. one ACK,
if the weight is measured in number of bytes, then we should
consider the average packet size. As mentioned earlier, a great
majority of TCP ACKs are 40 bytes long, so the average size
of TCP ACK is 40 bytes. Common MSSs of TCP implemen-
tations are 512, 536 and 1460 bytes [8, 31]. Including the 40
bytes of both the IP and TCP headers, the total packet lengths
for these MSSs are 552, 576, and 1500 bytes, respectively.
Their observed ratio is 1:1:2. Thus, the average size of a TCP
data segment is 1K bytes and the ratio of the weight of ACKs
to that of data segments is 1 : 25.

The traffic load distribution inside the DS domain will be
balanced by routing algorithms and traffic engineering. At an
interface of a core router, the volume of outgoing TCP data
traffic equals that of incoming TCP data traffic, and each out-
going TCP data segment 2 implies an incoming TCP ACK to
the interface. Therefore, this one data segment vs. one ACK
policy is valid for core routers inside a DS domain.

However, at a leaf router or a boundary router between two
different DS domains, this policy is often invalid due to the
asymmetry of traffic load. This traffic load asymmetry has
been observed in traffic measurements of the trans-Atlantic
link [31]. The weight of TCP ACKs should depend on the
weight allocated to the TCP data segments in the reverse di-
rection. The weight of the ACK aggregate at leaf or boundary
routers can be set based on traffic measurements or with the
help of the Bandwidth Broker. Like the weight setting at level
2, the weight assigned to ACKs, which is the baseline of TCP
control segments, is also a tunable parameter and can be ad-
justed locally.

Once the weight of the ACK aggregate is set, we use a
simple adaptive calibration scheme to derive the weight of all
TCP control segments for which the ACK weight is used as
the baseline. The mechanism of the weight calibration works
similarly to the adaptive-weighted packet scheduling of EF
traffic [33]. Its goal is to increase the flexibility of the resource
manager to absorb bursty control traffic and the tiny data seg-
ments that are mis-classified as TCP control segments.

2Or two outgoing TCP data segments if the delayed ACK mechanism is
ON at the TCP receiver.

3.3.2 Adaptive weight calibration of TCP control aggre-
gate

As in [33], we use the estimated average queue size of the
TCP control aggregate to adaptively adjust the weight. The
average queue size of the TCP control aggregate is calculated
by using a low-pass filter with an exponentially-weighted
moving average. Let avg be the average queue size, q the
instantaneous queue size and fl the parameter of the low-pass
filter, then the average queue size of TCP control aggregate is
estimated as:

avg  (1� fl) � avg + fl � q:

To reduce the instantaneous fluctuation of queue size, the pa-
rameter of the low-pass filter fl is set to 0.01.

Assuming that the weight of TCP ACKs is wa, we set the
original weight of TCP control aggregate wc to 1:2 wa. To
adaptively calibrate the weight of TCP control aggregate, two
thresholds,minth andmaxth, are introduced. By keeping the
average queue size of the TCP control aggregate below the
maximum threshold, bursty losses of TCP control segments
are prevented. To accomplish this, the weight of control ag-
gregate should be proportionally increased once the average
queue size of control aggregate exceeds the minimum thresh-
old. The values of minth and maxth are set to one fourth and
three fourths of the buffer, respectively. The linear relation-
ship between the weight and the average queue size of control
aggregate is given by:

f(C) =

8<
:

wc; C 2 [0;minth)
(U�wc)�(C�minth)

maxth�minth
+ wc; C 2 [minth;maxth)

U; C 2 [maxth; full]

where f(C) is the weight function of control aggregate, U is
the upper limit that the weight of control aggregate can reach,
and C is the average queue size of control aggregate. Since
the total weight for TCP aggregates is fixed, the increase of
control aggregate’s weight must cause the same amount of de-
crease in the data aggregate’s weight. However, once the av-
erage queue size of control aggregate reduces below maxth,
the weights taken from data aggregate will be returned.

The weight calibration favors the control aggregate but dis-
favors the data aggregate, which is consistent with the guid-
ing principle of the weight settings. The rationale behind this
is that the bandwidth taken by the data aggregate is usually
much more than the bandwidth consumed by the control ag-
gregate; the small amount of bandwidth shift from the data
aggregate to the control aggregate can prevent bursty losses
of the control segments, but only leads to a single isolated
data packet loss or just a longer queueing delay. However, the
weight of control aggregate cannot exceed the upper limit,
which prevents the abuse of preferential treatment of TCP
control segments and protects the TCP data aggregate from
starvation. U is set to 2wc in our simulation.
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4 Performance Evaluation

The proposed sf-DiffServ architecture is evaluated by simu-
lation with ns-2 [18, 32]. According to the purpose of sim-
ulation, we categorize the simulation experiments into two
different classes. One is used for evaluating the capability
of service differentiation, and the other is used for evaluating
the capability of resource isolation under flooding attacks. To
demonstrate the capability of providing better network QoS,
we compare the received service of different class users in the
sf-DiffServ, simple marking and the existing DiffServ archi-
tectures.

4.1 The simulation setup

The simulated network topology shown in Figure 5, is a rel-
atively simple, yet sufficiently representative topology. All
nodes are in a single DS domain. Each end-host is connected
to its respective edge router, and the edge routers are con-
nected via core routers. The link capacity and one-way prop-
agation delay between an end-host and an edge router are 10
Mbps and 1 ms, respectively. The bandwidth and the link de-
lay between an edge router and a core router are 3 Mbps and
8 ms, but those between two core routers are 1 Mbps and 16
ms. The UDP/TCP data segment size is set to 1000 bytes, and
the TCP control segment size is set to 40 bytes. The version
of TCP used in the simulation is TCP New-Reno since it has
been widely deployed in the Internet. The initial TCP con-
gestion window size is set to 2 and the delayed-ACK mecha-
nism is ON. With respect to the direction of targeted TCP data
flows, we name the path R3 ! R1 as the forward path and
the path R1 ! R3 as the backward path.

End-hosts

Egde RoutersEgde Routers

End-hosts

Core Routers

Data flows

ACK flows

E1

En
n
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F
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R
1R 2 3
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Figure 5: The network topology used for simulation

Note that, although the TCP version in our simulation ex-
periment is New-Reno, most of the simulation results in this
paper are applicable to all TCP variants for the following rea-
sons. First, the TCP behaviors after a retransmission timeout
for all of these schemes are similar. TCP variants differ only
in the way of recovering from packet losses after a fast re-
transmit. Second, the ACK losses in the reverse path only
lead to a timeout or slower congestion window growth, but
cannot trigger a fast retransmit. Finally, in most cases of our
simulation experiments, we intend to make the forward path
congestion-free.

4.2 Service differentiation

We first focus on the short-lived TCP flows and measure
the end-to-end latencies of different client requests experi-
enced in the sf-DiffServ and the existing DiffServ architec-
tures. Then, we study the long-lived TCP flows and measure
the ACK loss rate and effective throughput, where we not only
compare the sf-DiffServ with the existing DiffServ, but also
with the marking scheme for TCP ACKs proposed in [22].

4.2.1 End-to-end latencies: short-lived TCP flows

In our simulation for evaluating end-to-end latencies, two
clients C0 and Cn on the same stub network send requests
to a remote web server S0. The two request-response trans-
actions are performed by two TCP connections, which have
the same RTT. The request sent by client C0 is premium, and
that by client Cn is basic. These two requests are simultane-
ously sent out. In response to each request, 20K bytes (i.e.,
20 TCP data segments3) of data is transmitted from server S0.
The server’s response to client C0 receives premium service,
but the one to client Cn is delivered with best-effort service.
Background traffic, which consists of three TCP connections
with large initial ssthresh of 64KB and a bursty UDP connec-
tion with Exponential ON/OFF, is sent from Ei to Fi, period-
ically congesting the backward path of the two TCP connec-
tions. S0 supports service differentiation and isolation as in
WebQoS [6]. A premium request is given priority over basic
ones, and is guaranteed to get a faster response than the ba-
sic ones. Assume that the server is slightly overloaded by the
incoming requests, and the time difference between the start
of processing the premium and basic requests is 300 ms. The
server’s processing overhead for a premium request is similar
to the one for a basic request, which is set to 5 ms.

As shown in Figure 5, in the forward path R3 ! R1, the
server’s responses are sent from S0 to C0 and Cn; but the
ACKs of C0 and Cn are delivered to S0 in the backward path
R1 ! R3. The background traffic also runs along the back-
ward path. We assume that the forward path is lightly-loaded
without any congestion. In contrast, the background traffic
causes periodic congestions in the backward path. Due to the
burstiness and the global synchronization [38] of the back-
ground traffic, the state of the backward path fluctuates wildly
between “congested” and “idle.” It is not uncommon that
C0’s ACKs are dropped during the congestion in the back-
ward path, butCn’s ACKs — which occur later in time during
the idle period of the backward path — are delivered quickly.

In the current DiffServ architecture, which does not support
service differentiation among ACK flows, the ACK losses of
a premium-class flow in the backward path could undo or de-
grade the service differentiation achieved by the server and
the forward path. The simulation results of the current Diff-
Serv architecture are plotted in Figure 6 (Premium I, II, III
and Basic), clearly showing this symptom. According to the

3The Internet traffic measurements show that the average number of pack-
ets per TCP flow ranges from 16 to 20.
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impact of the ACK losses of a premium session upon its TCP
performance, the simulation results are categorized into three
different cases.
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Figure 6: The response times of premium and basic requests

Case 1. ACKs in the initial congestion window are dropped
during the first RTT, which results in a retransmission
timeout. If the initial congestion window size is 1, a sin-
gle ACK loss leads to the retransmission timeout. The
lethal effect of losing self-clocking at the very beginning
of TCP transmission lies in that the initial retransmission
timeout is set to 3 seconds. Being idle for 3 seconds is
a big loss for the premium session, which is shown in
Figure 6 (Premium I).

Case 2. bursty ACK losses occur when the congestion win-
dow size is small, and result in a retransmission time-
out. However, the ACK losses must happen after the
first RTT. The retransmission timeout has been correctly
set, instead of a large default value. Even so, the occur-
rence of retransmission timeouts still greatly degrades
TCP performance as shown in Figure 6 (Premium II).

Case 3. bursty ACK losses occur when the congestion win-
dow size is large enough to prevent retransmission time-
outs. ACK losses only slow down the growth of con-
gestion window size and increase the burstiness of data
transmission in the forward path. The TCP performance
degradation shown in Figure 6 (Premium III) is not as
significant as those caused by retransmission timeouts.

The same simulation experiments are conducted for the sf-
DiffServ architecture, where the lightweight version of TCP
control segment identification is used. Due to finer traffic
classification and service differentiation among ACK aggre-
gates, the ACKs of the premium session are guaranteed to re-
ceive better differentiated service than those of the basic ses-
sion. Moreover, because separate buffers are used for queue-
ing ACKs and data segments, the queueing delay experienced
by the ACKs is reduced. The simulation result is shown in

Figure 6 (sf-DiffServ). It clearly shows the improvement of
response time of the premium session in the sf-DiffServ over
the uni-directional counterpart.

4.2.2 ACK loss rate and goodput: long-lived TCP flows

The experimental configuration is somewhat different from
the one used above. Three targeted TCP connections are
established from S1 to C1, which receive premium, assured
and best-effort services, respectively. In addition to the three
targeted TCP connections, two more TCP connections carry
best-effort data from S2 to C2. All of them have infinite
amounts of data to send. The resources along the forward
path R3 ! R1 is properly provisioned for the premium and
assured traffic, but the remaining network resources are peri-
odically exhausted by the best-effort traffic, causing random
data losses to occur in the forward path.

On the backward pathR1 ! R3, similar background traffic
is generated between Ei to Fi, and shares the same path with
the targeted ACK flows. The background traffic is a mixture
of premium, assured and best-effort traffic. Compared to the
simulation configuration in the forward path, there are two
key differences in the backward path:

� the network resources for the premium and assured ser-
vices in the background traffic are under-provisioned;
and

� the best-effort traffic consists of not only TCP flows but
also UDP flows, which causes severe congestion in the
backward path thus resulting in bursty packet losses.

The ACK loss rates of targeted TCP connections are
charted in Figure 7, where Marking refers to the ACK mark-
ing scheme proposed in [22], and Existing refers to the cur-
rent DiffServ architecture. The effective throughput of the
targeted TCP connections are shown in Figure 8, where Re-
served refers to the reserved bandwidth for EF and AF flows.
The simulation results show that:

� sf-DiffServ provides better service isolation for ACK
flows, significantly lowering the ACK loss rate and in-
creasing effective throughput; and

� the ACK marking scheme cannot support service isola-
tion for ACK flows when network resources are under-
provisioned, thus resulting in bursty ACK losses and
hence degrading TCP performance significantly.

For EF and AF traffic, the ACK loss rates of Marking are
much lower than those of Existing, but are much higher than
those of sf-DiffServ. Moreover, most of ACK losses are bursty
rather than random, lowering effective throughput. For EF
traffic, the main reasons for bursty ACK losses are: (1) the
buffer space for premium service is very small, and can only
accommodate 1 or 2 data packets; (2) the size of a data seg-
ment is much larger than that of an ACK. Once the buffer has
been filled with data segments, all the incoming ACKs will be
dropped.
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Figure 7: The ACK loss rate in different DiffServ architec-
tures
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Figure 8: The effective throughput in different DiffServ ar-
chitectures

In the Existing and Marking DiffServ architectures, AF
traffic share the same FIFO queue with best-effort traffic, but
AF packets are much less likely to be dropped than best-
effort ones. However, without proper resource provisioning
for ACK flows, the ACKs are more likely to be marked as
high drop-precedence packets at edge routers due to the cor-
responding traffic profile violation. Under a severe conges-
tion, all the packets marked with high drop-precedence will
be dropped, causing bursty ACK losses. Since bursty ACK
losses cause much severer degradation to TCP performance
than random ACK losses, even modest ACK loss rates for EF
and AF can greatly reduce their effective throughput.

Compared to the Existing DiffServ, the ACK marking
scheme provides no improvement to best-effort traffic. Best-
effort ACKs experience high loss rates in the backward path
because of the congestion caused by the UDP flows in the
background traffic. Furthermore, due to data losses in the for-
ward path, an ACK loss for retransmission in the backward
path leads to a timeout, reducing cwnd to 1, triggering a slow-
start, and hence, degrading effective throughput significantly.

In contrast, the sf-DiffServ architecture significantly im-
proves the performance of best-effort TCP traffic, thanks to
its resource isolation between UDP and TCP flows, as well as
between ACKs and TCP data segments within the best-effort
class. The sf-DiffServ not only provides better differentiated
service to high-tiered services, but also significantly improves
the performance of best-effort TCP sessions.

4.3 Resource Isolation

sf-DiffServ also provides a built-in protection mechanism to
counter DDoS attacks. The layer-4 traffic splitting greatly re-
duces the performance degradation caused by DDoS attacks
like UDP flooding, ICMP flooding (i.e., smurf), TCP SYN
flooding and ACK flooding. The resource isolation provided
inside the BE traffic class is especially valuable, since the
edge routers in the DiffServ architecture perform traffic con-
ditioning and policing on EF and AF traffic, but not on BE
traffic. Most importantly, most of the flooding traffic will be
dropped by the first few routers before they reach the core of
the network, thus limiting the damage caused by the flood-
ing source mainly to the local stub network where it origi-
nated. The cascaded throttling of flooding traffic at the first
few routers makes the rest of the Internet unaffected, and
saves the network bandwidth.

In our flooding experiments, there are 10 flooding sources
in each stub network except for the one that the victim F1 be-
longs to. The flooding rate at each source is constant and set
to 5000 packets per second. At the same time, there are 10
TCP connections running from Ei to Fi, where i is an integer
in [1,10], carried by the BE service as the normal background
traffic. We first measure the volume of the flooding traffic
that reaches at the victim under different DiffServ architec-
tures. Four types of flooding attacks — SYN, ACK, UDP,
and ICMP flooding — are simulated. All the flooding traffic
is transported by the BE service. Since there is no difference
in treating the BE traffic in the Existing and the Marking ar-
chitectures, we normalize the various flooding traffic reached
the victim in these architectures to 1 to make the presentation
easier. Then, the flooding traffic received at the victim in the
sf-DiffServ architecture is properly scaled based on the nor-
malization. Figure 9 shows that sf-DiffServ throttles the flood-
ing volume that reaches the victim and effectively protects the
victim from flooding attacks. Moreover, during flooding at-
tacks, the TCP effective throughputs in Existing and Marking
are reduced almost to zero, but the one in sf-DiffServ can still
achieve 95% (in the cases of UDP and ICMP flooding) and
85% (in the case of SYN and ACK flooding) of the band-
width assigned to the entire BE traffic, thanks to the layer-4
resource isolation.

For EF or AF traffic, the UDP and ICMP flooding do not
cause much damage in all DiffServ architectures because the
edge routers perform traffic conditioning and policing on EF
and AF traffic. However, the Marking DiffServ exposes more
vulnerability to the ACK flooding attacks. In this architec-
ture, the ACK flows are accepted without strict policing based

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) 
0-7695-1739-0/02 $17.00 © 2002 IEEE 



0

0.2

0.4

0.6

0.8

1

1.2

SYN Flooding ACK Flooding UDP Flooding ICMP Flooding

N
or

m
al

iz
ed

 F
lo

od
in

g 
V

ol
um

n
Existing and Marking sf-DiffServ

Figure 9: The flooding volume received at the victim

0

20

40

60

80

100

120

Premium Assured

E
ff

ec
ti

ve
 T

h
ro

u
g

h
p

u
t 

(K
p

b
s)

Reserved sf-DiffServ Marking

Figure 10: The goodput of conformant EF and AF flows under
the ACK flooding attack

on the belief that the small bandwidth requirement by ACK
flows can be absorbed by over-provisioning. The flooding
ACK flows marked as EF or AF traffic can seriously violate
the traffic profile between the stub network and the leaf router
that connects the stub network to the Internet. Even worse,
in large-scale DDoS attacks, even if only a small number
of ACKs are flooded from each attacking source, once these
ACKs are aggregated at core routers where no traffic condi-
tioning is performed, the flooding ACK aggregates can “steal”
the reserved bandwidth from the conformant aggregates. Fig-
ure 10 charts the goodputs of conformant EF and AF flows
from C1 to F1 in Marking and sf-DiffServ, and clearly shows
the vulnerability of Marking to the ACK flooding attack and
the robustness of sf-DiffServ to the same attack. Note that
the conformant EF flow is carried by UDP, but the AF one is
carried by TCP.

5 Conclusions

We presented a scalable fine-grained DiffServ architecture to
provide layer-4 service differentiation and resource isolation.

The key components of the sf-DiffServ architecture are the
fine-grained QoS classifier and the adaptive weight-based re-
source manager. A two-stage packet classification mechanism
is devised to decouple the fine-grained QoS lookup from the
routing lookup at core routers. BAs are further divided into
thinner aggregates. By using separate queues and adaptive-
weighted bandwidth allocation, better service differentiation
and isolation are achieved for these thinner aggregates. No
bi-directional resource reservation is required.

We evaluated the performance of the sf-DiffServ architec-
ture by simulation. The simulation results show that:

� sf-DiffServ guarantees that high-tiered TCP sessions re-
ceive better service and hence yield better performance
in terms of loss rate, end-to-end delay and effective
throughput, than low-tiered TCP sessions;

� It not only achieves better differentiated service for high-
tiered services, but also significantly improves the per-
formance of best-effort TCP sessions;

� It provides a built-in protection mechanism to counter
DDoS attacks, especially UDP and ICMP flooding.

Furthermore, the simulation results demonstrate that a simple
ACK marking scheme does not provide good service differen-
tiation and isolation for ACK flows when network resources
are under-provisioned. It exposes the vulnerability of EF and
AF traffic to the ACK flooding attacks. The scalable fine-
grained DiffServ architecture is therefore necessary to pro-
vide better network QoS to TCP sessions, and a simple but
powerful built-in protection mechanism to counter DDoS at-
tacks.
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