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ABSTRACT

This paper presents a simple and robust mechanism called SYN-dog
to sniff SYN flooding sources. We install SYN-dog as a software
agent at leaf routers that connect stub networks to the Internet. The
statelessness and low computation overhead of SYN-dog make itself
immune to any flooding attacks. The core mechanism of SYN-dog
is based on the protocol behavior of TCP SYN—SYN/ACK pairs,
and is an instance of the Sequential Change Detection [1]. To make
SYN-dog insensitive to site and access pattern, a non-parametric Cu-
mulative Sum (CUSUM) method [4] is applied, thus making SYN-
dog much more generally applicable and its deployment much easier.
Due to its proximity to the flooding sources, SYN-dog can trace the
flooding sources without resorting to expensive IP traceback.

1. INTRODUCTION

The growing DDoS attacks have imposed a significant threat on
the availability of network services [12]. Due to the readily avail-
able tools and its simple nature, flooding packets is the most com-
mon and effective DoS attack. More than 90% of the DoS attacks
use TCP [18], and TCP SYN flooding dominates in the available at-
tacking tools and the number of known DoS attacks [16]. The SYN
flooding consists of a stream of spoofed SYN packets directed to a
listening TCP port of the victim, which exploits the TCP three-way
handshake mechanism and its limitation in maintaining half-open
connections.

Under the normal condition, when a server receives a SYN re-
quest, it sends a SYN/ACK packet back to the client and waits for
client’s acknowledgment. Before the SYN/ACK packet is acknowl-
edged by the client, the connection remains in half-open state for a
period of up to the TCP connection timeout. The half-open connec-
tion is not closed until the failure of two retransmissions, which typi-
cally lasts for 75 seconds. The server has built in its system memory
a backlog queue to maintain all half-open connections.

However, if a SYN request is spoofed, the victim server will never
receive the final ACK packet from the client to complete the three-
way handshake. Since this backlog queue is of finite size, the flood-
ing of spoofed SYN requests can easily exhaust the victim server’s
backlog queue, causing all of new incoming SYN requests to be
dropped. The stateless and destination-based nature of Internet rout-
ing infrastructure cannot differentiate a legitimate SYN from a spoofed
one, and TCP does not offer strong authentication on its SYN pack-
ets. Therefore, under SYN flooding attacks, the victim server cannot
respond only to legitimate connection requests while ignoring the
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spoofed. Note that the spoofed source address must be an invalid IP
address so that it can’t be reachable from the victim; otherwise, any
endhost that receives the SYN/ACKs from the victim would send a
RST to the victim. A RST packet is issued when the receiving host
does not know what to do with the received packet. The arrival of
RST causes the connection to be reset, foiling the flooding attack.

Most of previous work in countering SYN flooding attacks fo-
cused on mitigating the flooding effect on the victim, such as Syn
cookies [3], SynDefender [6], Syn proxying [19] and Synkill [24].
All of these defense mechanisms are stateful, i.e., states are main-
tained for each TCP connection or state computation is required like
Syn cookies, which makes the defense mechanism itself vulnerable
to SYN flooding attacks. Moreover, the defense mechanisms in-
stalled at the firewall of the victim server or inside the victim server
can not give any hint about the SYN flooding sources, and hence,
must rely on the expensive IP traceback [2, 20, 23, 26, 27, 32] to
trace the flooding sources.

In this paper, we propose a simple and robust mechanism called
SYN-dog to sniff SYN flooding sources without resorting to expen-
sive IP traceback. The statelessness and low computation overhead
of SYN-dog make itself immune to any flooding attacks. Instead of
monitoring the ongoing traffic at the front end or the victim server
itself, we install SYN-dog as a software agent at leaf routers that
connect end hosts to the Internet. The key feature of SYN-dog is to
utilize the inherent TCP SYN—SYN/ACK pair’s behavior for sniff-
ing SYN flooding sources.
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Figure 1: TCP states corresponding to normal connection estab-
lishment and teardown (from [29])

The SYN and SYN/ACK packets signal the start of a TCP connec-
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tion establishment in each direction. As shown in Figure 1 that is bor-
rowed from [29], in the ideal case, one appearance of a SYN packet
results in the corresponding transmission of a SYN/ACK packet in
the reverse direction within one round-trip time (RTT). Although
there is no strict one-to-one match between SYN and SYN/ACK
packets due to SYN losses and subsequent retransmissions, under
the normal condition, a very strong positive correlation between SYN
and SYN/ACK does exist as shown in Section 4.1. The discrepancy
between the number of SYNs and SYN/ACKSs mostly happens for
the following two reasons.

e Some TCP servers are overloaded, and drop the SYN requests
without generating SYN/ACK responses.

e The forwarding path of SYNs is congested, and as a result,
some SYNs are dropped before they reach their destinations,
so no corresponding SYN/ACKSs are generated.

Due to its proximity to the flooding sources, SYN-dog can trace the
flooding sources without resorting to expensive IP traceback. The
flooding sources must be inside the subnet to which the leaf router is
connected.

Neither state nor state computation is involved in our SYN-dog.
Only two new variables are introduced to measure the number of
received SYN and SYN/ACK packets at the inbound and outbound
interfaces, respectively. We refer to the traffic flowing from the Inter-
net to the Intranet as inbound, and the traffic in the other direction as
outbound. Based on this SYN—SYN/ACK pair’s behavior, the dy-
namics of the difference between the number of SYN and SYN/ACK
packets can be viewed as a stationary, ergodic random process, and
SYN-dog is an instance of the Sequential Change Detection [1]. To
make SYN-dog independent of sites and access patterns, the differ-
ence between the number of SYNs and SYN/ACKSs is normalized
by an estimated average number of SYN/ACKSs. The non-parametric
Cumulative Sum (CUSUM) method [4] is applied, making SYN-dog
much more generally applicable and its deployment much easier.

The efficacy of SYN-dog is validated by trace-driven simulations.
The evaluation results show that SYN-dog has short detection time
and high detection accuracy. Due to its proximity to the flooding
sources, SYN-dog mechanism not only alarms on the ongoing SYN
flooding attacks but also reveals the location of the flooding sources.
It is also incrementally deployable and works without requiring a
wide installation of SYN-dogs.

The remainder of this paper is organized as follows. Section 2
discusses the issues related to SYN-dog. Section 3 describes the
proposed detection algorithm based on the TCP SYN—SYN/ACK
pair’s behavior. Section 4 validates and evaluates the performance
of SYN-dog using trace-driven simulations. Finally, conclusions are
drawn in Section 5.

2. ISSUES RELATED TO SYN-DOG

Two issues closely related to the SYN-dog mechanism are dis-
cussed in this Section. One is the structure of SYN-dog, and the
other is packet classification.

The SYN-dog consists of two Sniffers, which are installed at the
inbound and outbound interfaces of a leaf router, respectively. The
one installed at the outbound interface is the outbound Sniffer that
counts the outgoing SYNs, while the one installed at the inbound
interface is the inbound Sniffer that counts the incoming SYN/ACK.
Figure 2 illustrates the structure of SYN-dog at a leaf router. The two
sniffers coordinate with each other via shared memory, or IPC inside
the router, and periodically exchange the counting information.

Outbound Inferface
Out-bound Sniffer

Intranet

In-bound Sniffer
Inbound Interface

Figure 2: The structure of SYN-dog at a leaf router

SYN-dog is, in some sense, a by-product of the router infrastruc-
ture that differentiates TCP control packets from data packets [31].
This packet classification was originally motivated by the desire of
providing fine-grained service differentiation to IP flows. Large-
scale packet classification mechanisms [14, 15, 28] have been pro-
posed, making it possible to distinguish the TCP SYN and SYN/ACK
packets at leaf routers at a very high speed.

To identify TCP SYNs and SYN/ACKs, the TCP header needs to
be accessed. This identification is performed at leaf routers, which
are usually the trusted entities for the clients in the same intranet.
A multi-layer IPSec protocol [33] has been proposed, which allows
trusted routers to access the transport-layer information. Therefore,
the network-level security of [PSec can not be an obstacle to the iden-
tification and counting of TCP SYNs and SYN/ACKSs at leaf routers.

Briefly, packets are classified as follows. First, we check if the IP
packet contains a TCP header. The IP packet that contains the TCP
header must have zero fragmentation offset. Then we compute the
offset of TCP flag bits in the IP packet. Finally, the six TCP flag
bits are read to determine the type of the TCP segment. The detailed
description of the packet-classification algorithm is given in [31].

3. STATISTICAL FLOODING DETECTION

The rationale behind SYN-dog is that a flooding attacker’s behav-
ior is noticeably different from that of a legitimate user. It compares
the observed sequence with the profile representing the user’s normal
behavior, and detects any significant discrepancy. Moreover, as will
be seen in Section 3.2, SYN-dog can detect flooding attacks even
when the normal connection arrivals are bursty and time-varying.

3.1 Sniffing Mechanism

The total number of outgoing SYNs and incoming SYN/ACKSs are
recorded during every observation period, to, at leaf routers. The
setting of the observation period to must balance the sniffing reso-
lution and the algorithm’s stability; o is set to 20 seconds in our
CUSUM algorithm. Note, however, that our algorithm is insensitive
to this choice. At the end of each observation period, the number of
outgoing SYNs counted by the outbound Sniffer and the number of
incoming SYN/ACKSs counted by the inbound Sniffer are reported to
the SYN-dog’s CUSUM algorithm.

Under the normal condition, the difference between the above col-
lected numbers of outgoing SYNs and incoming SYN/ACKSs is bounded
compared to the total number of active TCP connections. This obser-
vation holds in spite of the fact that the total number of active TCP
connections may be bursty on a small time scale, and slowly-varying
on a large time scale. According to the specification of TCP/IP proto-
col [22, 29], an outgoing SYN is paired with an incoming SYN/ACK
within one RTT. In other words, the strong correlation between the
number of SYNs and SYN/ACKSs is not sensitive to the request ar-
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rival process. Figures in Section 4.1 clearly show that the consistent
synchronization between the SYNs and SYN/ACKSs is independent
of the sample time, sites and time-of-day.

However, under SYN flooding attacks, there will be much more
outgoing SYNs than incoming SYN/ACKSs collected by the sniffers
of SYN-dog. The SYN flooding traffic has significant regularity and
semantics that can be filtered out. Recent experiments with SYN at-
tacks on commercial platforms have shown that the minimum flood-
ing rate to overwhelm an unprotected server is 500 SYN packets per
second. With a specialized firewall designed to resist against SYN
floods, a server can be disabled by a flood of 14,000 SYNSs per sec-
ond [8]. To shut down the victim server for 10 minutes, for exam-
ple, the group of attackers need to inject at least a total of 300,000
SYN packets. During the same time period, however, the number
of SYN/ACKs counted by the inbound Sniffer remains largely un-
changed. Therefore, the difference between the number of outgoing
SYNs and incoming SYN/ACKSs will dramatically increase, and re-
main large during the whole flooding period that typically lasts for
several minutes [18]. Therefore, the occurrence of a large difference
between the number of SYNs and SYN/ACKs implies the existence
of flooding sources in its stub network.

3.2 The CUSUM Algorithm

Let {A,,n =0,1,---} be the number of outgoing SYNs minus
that of incoming SYN/ACKs collected from the above sampling. To
alleviate its dependence on the time, access pattern and size of the
network, {A,,} is normalized by the average number K of incoming
SYN/ACKs during the sampling period to. K can be estimated in
real time and updated periodically. An example of recursive estima-
tion and update of K is:

K(n) = aK(n—1)+ (1 — )SYN/ACK(n), 1)

where n is the discrete time index and « is a constant lying strictly
between O and 1 that represents the memory in the estimation.
Define X,, = A, /K. The mean of X, denoted as c, is much less
than 1. {X,} is not dependent on the network size or time-of-day.
Its dynamics are solely the consequence of the TCP protocol specifi-
cation. So, we can consider { X, } as a stationary random process.
Our flooding source sniffing algorithm is based on the Sequential
Change Detection [1]. The objective of Change Detection is to de-
termine if the observed time series is statistically homogeneous. It
has been studied extensively by statisticians. See [1] and [4] for a
good survey. The existing algorithms can be largely divided into two
categories: posterior and sequential. Posterior tests are done off-line
where the whole data segment is collected first and then a decision
about homogeneity is made based on the analysis of all the collected
data. On the other hand, sequential tests are done on-line with the
data presented sequentially and the decisions are made on the fly.
We adopt a sequential test for a quicker response when a flooding
attack occurs. It also saves memory and computation. Despite of
the numerous works on the modeling of the arrival process of TCP
connection requests [5, 7, 10, 13, 21, 25], there is no consensus on
whether it should be modeled as self-similar or Poisson. For such a
dynamic and complicated entity like the Internet, it may not be pos-
sible to model the total number of TCP connections at all times by
a simple parametric model. Therefore, we seek robust tests which
are not model-specific. Non-parametric methods fit this requirement
very well. In particular, we apply the non-parametric CUSUM (Cu-
mulative Sum) method [4] to our attack sniffing. This method enjoys

all the virtues of sequential and non-parametric test, and the compu-
tation load is very light. When the time series is i.i.d. with a para-
metric model, CUSUM is asymptotically optimal for a wide range of
Change Detection problems [1, 4].

{X,} is assumed to satisfy some regularity conditions. The de-
tails can be found in [4]. In practice, they are very mild and easily
satisfied even by long range dependent arrival processes. In gen-
eral, E(X,) = ¢ < 1. We choose a parameter a > c and define
X, = X, — a so that it has a negative mean during normal oper-
ation. When a flooding attack takes place, X, will quickly become
a large positive. Suppose, during an attack, the increase in the mean
of X,, can be lower-bounded by h. Our change detection is based on
the observation of h > c.

Define Sy, = Zle X;, with Sp = 0 at the beginning. Let

yn = (o1 +Xa)", @)
Yo = 0,
where 1 is equal to z if z > 0 and 0 otherwise. It can be shown
that
Yn = Sp — \min Sk, 3)

i.e., yn 1s the maximum continuous increment until time n. A large
{yn} is a strong indication of a flooding attack. Since Eq. (2) is
iterative and much easier to compute than Eq. (3), we will use it in
making detection decisions.

Let dn (.) be the decision at time n: ‘0’ for normal operation (ho-
mogeneity) and ‘1’ for attack (a change occurs). Here N represents
the flooding threshold:

_ [0 ify, <
dN(y")_{l if yn > N.

In other words, dn (yn) = I(Y, > N), where I(.) is the indicator
function. The effect of introducing a is to offset the possible posi-
tive mean in {X, } so that the test statistic y, will be reset to zero
frequently and will not accumulate with time.

In this algorithm, there are two parameters involved: a, the upper
bound in case of normal operation and NN, the flooding threshold.
These values affect the performance. Let Py, (E,,) be the probability
measure (expectations) of {X’ » } with the attack occurring at time m
and Px (Eoo ) be the counterparts of { X,, } without any attack. There
are two fundamental performance measures for the sequential change
detection.

C)

False alarm time (the time without false alarm): the time duration
with no false alarm reported when there is no attack.

Detection time: the detection delay after the attack started.

One would want the second measure to be as short as possible
while keeping the first measure as long as possible. However, they
are conflicting goals and cannot be simultaneously met. Therefore,
the design philosophy of a statistical change detection is to mini-
mize the detection time subject to a certain false alarm tolerance,
like average time between two consecutive false alarms, worst-case
false alarm time, and so on. The CUSUM rule has been shown to
be asymptotically optimal with respect to the worst-case mean false
alarm time when the parametric model is known for the data and the
observations are independent.

Due to the lack of a complete model for {X,,}, it is difficult to
discuss optimality. The choice of CUSUM is based on its simplicity
in computation and non-parametric implementation, as well as its
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generally excellent performance. It has been shown in [4] that, with
the choice of a and N, as N — oo, we have

Po{dn(n) =1} = c1exp (~c2N). Q)

In other words, the time between consecutive false alarms grows

exponentially with N. ¢; and c» are constants, depending on the

marginal distribution and mixing coefficients of {X’ » }. The bursti-

ness of the traffic is reflected by the mixing coefficients ¢ (s), and

thus, does impact the detection performance. However, the constants

c1 and c2 only play a secondary role and can be ignored in practice.
In order to study the detection time, let’s define

inf{n:dny(.) =1}, (6)

_ +
PN = (TN Nm) )

™ =7(dn) =

where py represents the normalized detection time after a change oc-
curs and m represents the starting time of the attack. In CUSUM, for
any m > 1, if h and a represent accurate values instead of bounds,
we have

o
h—|c—al’

pPN Y= (N
where h— |c — a| is the mean of { X, } when n > m (after a flooding
attack starts). The above is a conservative estimation (upper bound)
of the actual detection time when a and h are bounds rather than the
true values. To ensure a long false alarm time, we set h = 2a in our
design.

Since a potential attacker may initiate the attack from many sites
simultaneously, only part of the flooding SYN packets can be seen by
each SYN-dog. To balance the detection sensitivity and false alarm
time, we set a = 0.35 and h = 0.7. Note that the choices of a
and h are independent of the network size and access pattern. In
doing so, a universal false alarm rate can be realized, ensuring wide
implementability of our sniffing mechanism.

Based on a and h, the flooding threshold /N can be specified as
follows: assume ¢ = 0, and ~y can thus be obtained by Eq. (7); and
Eq. (2) specify a target detection time (i.e., the product of v and IV)
such that the flooding threshold NV is determined. We choose 3t as
the designed detection time when h = 2a and therefore, N = 1.05.

It is worth noting that our algorithm is to check the cumulative
effect of a flooding attack. So, it can sniff a flooding source with the
SYN flooding rate less than h at the expense of a longer response
time. The actual lower bound of detection sensitivity in terms of
SYN flooding rate, fin,can be given as

=l

fmin = (a - C) . (8)
Furthermore, the detection capability is not sensitive to the flooding
pattern: it can detect the attacks with both constant and bursty flood-
ing rates. The effectiveness of SYN-dog is evaluated by trace-driven
simulations.

4. PERFORMANCE EVALUATION

To evaluate and validate SYN-dog, we have conducted trace-driven
simulation experiments. The trace data used in our study are col-
lected from four different sites at different times. The first trace
was gathered at Lawrence Berkeley Laboratory Internet access point,
which contains one hour’s worth of all wide-area traffic between the
Lawrence Berkeley Laboratory and the rest of the world. The trac-
ing time was from 14:00 to 15:00 on Friday, January 21, 1994. The

second trace was taken on March 13, 1997 on a 10 Mbps Ethernet
connecting Harvard’s main campus to the Internet, which is a half-
hour trace and starts at 12:39 EST. The third set was obtained by
placing network monitors on the high-speed link (OC-12, 622 Mpbs)
that connects the University of North Carolina at Chapel Hill (UNC)
campus network to the rest of the world. The trace was collected on
September 27, 2000. The fourth set was collected at the Internet ac-
cess link that connects the University of Auckland at New Zealand
to the rest of the world. The tracing ran from 14:36 to 17:47 on
Thursday, December 5, 2000. A summary of the traces used in our
experiments is given in Table 1.

Table 1: A summary of the trace features

|| Trace || Duration | Traffic type ||
LBL One hour Bi-directional
Harvard Half hour Bi-directional
UNC-in Half hour Uni-directional
UNC-out Half hour Uni-directional
Auckland-in Three hours | Uni-directional
Auckland-out || Three hours | Uni-directional

4.1 Normal Traffic Behavior

The four sets of traces represent the normal traffic behaviors at
the exchange points between different stub networks and the Inter-
net at different times. We parse the traces and extract the TCP SYN
and SYN/ACK packets as the input to our leaf router simulator. The
dynamics of SYN and SYN/ACK packets at the LBL site is illus-
trated in Figure 3 (a). The corresponding result from the Harvard
trace is illustrated in Figure 3 (b). The outgoing SYNs and incoming
SYN/ACKs from the UNC and Auckland traces are shown in Fig-
ures 4 (a) and (b). They clearly show the consistent synchronization
between SYN and SYN/ACK packets. The consistency indicates that
the synchronization is an inherent traffic behavior and independent of
time and sites. Note that in the figures of the LBL and Harvard traces,
the “SYN” and "SYN/ACK?” are the collections from both directions,
instead of "Outgoing SYN” and ”Incoming SYN/ACK” as shown in
the UNC and Auckland traces.

We have applied the proposed detection algorithm on the Harvard,
UNC and Auckland traces without adding flooding attacks. The test
statistics, {yn }, for the Harvard and UNC traces are plotted in Fig-
ures 5 (a) and (b); for the Auckland trace is plotted in Figure 5 (c).
The flooding threshold is specified in last Section, i.e., N = 1.05.
For all the traces tested, ¥, s are mostly zeros. Among the isolated
spikes of y, in Harvard trace, the maximum is about 0.05; the max-
imal spike of y, in Auckland trace is about 0.26. Both are much
smaller than the flooding threshold IN. So, no false alarms are re-
ported.

4.2 SYN Flooding Detection

With the appearance of Trinoo, which only implements UDP packet
flooding, many tools have been developed to create DDoS attacks.
Most of them, such as Tribe Flood Network (TFN), TFN2K, Trinity,
Plague and Shaft, generate TCP SYN flooding attacks [9]. Although
these DDoS attack tools employ different ways to coordinate the at-
tacks with the goal of achieving robust and covert DDoS attacks,
their flooding behaviors are similar in that the SYN packets are con-
tinuously sent to the victim.

The mechanism of DDoS attacks works as follows: the master
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sends control packets to the previously-compromised slaves, instruct-
ing them to target at a given victim. The slaves then generate and
send high-volume streams of flooding messages to the victim, but
with fake or randomized source addresses, so that the victim cannot
locate the flooding sources.

Incoming normal traffic

Leaf Router

Last-mile Sniffer

First-mile Sniffer

Outgoing normal traffic Flooding traffic

T

Figure 6: The trace-simulation flooding attack experiment

In the experiments of sniffing SYN flooding sources, the UNC
and Auckland 2000 traces are used as the normal background traf-
fic. Among them, UNC-in or Auckland-in is used for inbound back-
ground traffic, and UNC-out or Auckland-out is for outbound back-
ground traffic. The flooding traffic is mixed with the normal traffic,
the SYN-dog at a leaf router is simulated, as shown in Figure 6. Be-
cause the non-parametric Cumulative Sum (CUSUM) method is used
for sniffing flooding sources, the flooding traffic pattern or its tran-
sient behavior (bursty or not) does not affect the detection sensitivity.
The detection sensitivity depends only on the total volume of flood-
ing traffic. Therefore, without loss of generality, we assume that the
flooding rate is constant.

In a large-scale DDoS attack, the flooding sources can be so coor-
dinated that the traffic from each flooding source is not significant.
We assume the flooding traffic is evenly distributed among different
flooding sources and there is only one flooding source inside each
stub network. Therefore, the flooding rate seen by the outbound
Sniffer, f;, equals the individual flooding rate inside the same stub
network. This setting is intended to “hide” the flooding sources from
SYN-dog. That is, the less the flooding sources inside the stub net-
work, the less flooding traffic seen by the outbound Sniffer and the
harder to detect the flooding attack. Assume that the minimum SYN
flooding traffic to bring down a TCP server is V' packets per second,
then the flooding rate seen by the outbound Sniffer, f;, is determined
by

fiZA—S

where A; is the total number of the stub networks that contain a
flooding source. The flooding duration in all experiments is set to 10
minutes, a typical attacking duration observed in the Internet [18].
The starting time of flooding attacks in the UNC traces is randomly
chosen between 3 and 9 minutes, but the starting time in the Auck-
land traces lies between 3 and 136 minutes. To examine the detection
sensitivity of SYN-dog, we conduct the flooding experiments in the
UNC and Auckland traces and vary the flooding rate f; seen by the
outbound Sniffer.

4.2.1 UNC Case

Using the UNC traces as the background traffic, we observe the
dynamics of y,,. Figures 7 (a), (b) and (c) plot the dynamic behaviors

of y,, when f; is set to 45, 60 and 80 SYNs per second, respectively.
The accumulative effects of SYN flooding are clearly shown in the
figures. In the cases of 60 and 80 SYNs per second, SYN-dog can
detect the SYN flooding attack in 4 and 2 observation periods, re-
spectively. However, in the case of 45 SYNs per second, SYN-dog
takes a much longer time (about 9 observation periods, i.e., 3 min-
utes) to exceed the flooding threshold of 1.05. The detection perfor-
mance of SYN-dog in the context of the UNC traces is summarized
in Table 2, which lists the detection probability and detection time
for different f; values. The unit of detection time is the observation
period to, which is 20 seconds.

Table 2: Detection Performance of the SYN-dog at UNC

| fi [ Detection Prob. | Detection Time ||
37 0.8 19.8
40 1.0 13.25
45 1.0 8.65
60 1.0 4
80 1.0 2
120 1.0 1

Clearly, larger flooding rates lead to faster and easier detection of
attacks. According to Eq. (8), the lower detection bound is about
37 SYNs per second in this simulation scenario. If we implement
the same SYN-dog at a smaller subnet, K will be smaller, so we
can achieve more “sensitive” detection. This is confirmed by the
simulation study of the Auckland traces, which is presented in the
next section.

4.2.2 Auckland Case

In the environment of the Auckland traces, the dynamic behaviors
of y,, are illustrated in Figure 8 when f; is set to 2, 5 and 10 SYNs
per second, respectively. In the case of 2 SYNs per second, SYN-dog
can detect the SYN flooding attack in about 8 observation periods. In
contrast, at the flooding rate of 5 or 10 SYNs per second, SYN-dog
takes a much shorter time (2 or 1 observation period, respectively) to
detect the ongoing flooding. The detection performance of SYN-dog
in the context of Auckland traces is summarized in Table 3. Since
the K of Auckland trace is much smaller than that of UNC trace, the
lower detection bound is significantly reduced from 37 to 1.75 SYNs
per second.

Table 3: Detection Performance of the SYN-dog at Auckland

|| fi || Detection Prob. | Detection Time ||
1.5 0.55 20.64
1.75 0.95 12.95
2 1.0 7.85
5 1.0 2
10 1.0 <1

4.2.3 Discussion

Due to its proximity to the flooding sources, once SYN-dog detects
the ongoing flooding traffic, it can further locate the flooding source
inside the stub network, for example, by triggering the ingress filter-
ing mechanism [11] and checking the MAC addresses of IP packets
whose source addresses are spoofed.
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(a) 45 SYNs per second

(b) 60 SYNs per second

(c) 80 SYNs per second

Figure 7: SYN flooding detection sensitivity at the SYN-dog of UNC

1

AV

1

(a) 2 SYNs per second

(b) 5 SYNs per second

(c) 10 SYNs per second

Figure 8: SYN flooding detection sensitivity at the SYN-dog of Auckland

From the detectable flooding rate, we can specify the efficacy of
our algorithm in detecting distributed SYN flooding attacks. To at-
tack a protected server, the aggregate flooding rate V' should be larger
than 14,000 [8]. In the UNC case, the lower detection bound is 37,
and A can be as large as 378 stub networks like the UNC case. Con-
sidering that the UNC stub network consists of over 35,000 users [25],
it clearly demonstrates the utility and power of our SYN-dog mech-
anism. In the Auckland case, the lower detection bound is 1.75, and
hence A can be as large as 8,000 medium size stub networks like
the Auckland case. Source address spoofing requires that the attack
software open a raw network socket, so the attacker must have root
access on end hosts. Although the attacker can simultaneously initi-
ate the flooding attacks from numerous machines, it is much harder
to launch the attacks from a similar large number of stub networks
due to access limits.

For the time being, we set the parameters to be independent of net-
work size and access pattern. In practice, the network administrator
of the involved leaf router can incorporate site-specific information
so that the algorithm can achieve higher detection performance. For
instance, in the UNC case, we can reduce a, the upper bound in case
of normal operation, from 0.35 to 0.2 and [V, the flooding threshold,
from 1.05 to 0.6 without incurring additional false alarms. Then, the
lower detection bound f,i» decreases from 37 to 15 SYNs per sec-
ond, and the detection sensitivity is greatly improved. The dynamics
of y,, for the case f; = 15 is shown in Figure 9.

S. CONCLUSION

We presented a simple and robust mechanism to sniff SYN flood-

0.8

0.6

04

02

Figure 9: The improvement of flooding detection sensitivity

ing sources, which is installed at leaf routers. SYN-dog utilizes the
SYN—SYN/ACK pair’s behavior that is invariant under various ar-
rival models and independent of sites and time-of-day. Due to the
employment of the non-parametric CUSUM method, SYN-dog is ro-
bust and stateless, resulting in the low computation overhead. More-
over, SYN-dog does not undermine end-to-end TCP performance.
The efficacy of SYN-dog is evaluated and validated by trace-driven
simulations. The simulation results show that SYN-dog is sensitive
to the SYN flooding attacks. Once SYN-dog detects an ongoing
flooding traffic, the location of flooding sources is revealed and fur-
ther action can be taken to pinpoint the flooding sources.
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