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Preface

This volume contains the 37 papers presented at the 9th International Confe-
rence on Real-Time and Embedded Computing Systems and Applications (RT-
CSA 2003). RTCSA is an international conference organized for scientists and
researchers from both academia and industry to hold intensive discussions on
advancing technologies topics on real-time systems, embedded systems, ubiqui-
tous/pervasive computing, and related topics. RTCSA 2003 was held at the
Department of Electrical Engineering of National Cheng Kung University in
Taiwan. Paper submissions were well distributed over the various aspects of
real-time computing and embedded system technologies. There were more than
100 participants from all over the world.

The papers, including 28 regular papers and 9 short papers are grouped into
the categories of scheduling, networking and communication, embedded systems,
pervasive/ubiquitous computing, systems and architectures, resource manage-
ment, file systems and databases, performance analysis, and tools and deve-
lopment. The grouping is basically in accordance with the conference program.
Earlier versions of these papers were published in the conference proceedings.
However, some papers in this volume have been modified or improved by the
authors, in various aspects, based on comments and feedback received at the
conference. It is our sincere hope that researchers and developers will benefit
from these papers.

We would like to thank all the authors of the papers for their contribution.
We thank the members of the program committee and the reviewers for their
excellent work in evaluating the submissions. We are also very grateful to all
the members of the organizing committees for their help, guidance and support.
There are many other people who worked hard to make RTCSA 2003 a success.
Without their efforts, the conference and this volume would not have been pos-
sible, and we would like to express our sincere gratitude to them. In addition,
we would like to thank the National Science Council (NSC), the Ministry of
Education (MOE), and the Institute of Information Science (IIS) of Academia
Sinica of Taiwan, the Republic of China (ROC) for their generous financial sup-
port. We would also like to acknowledge the co-sponsorship by the Information
Processing Society of Japan (IPSJ) and the Korea Information Science Society
(KISS).

Last, but not least, we would like to thank Dr. Farn Wang who helped in-
itiate contact with the editorial board of LNCS to publish this volume. We also
appreciate the great work and the patience of the editors at Springer-Verlag. We
are truly grateful.

Jing Chen and Seongsoo Hong



History and Future of RTCSA

The International Conference on Real-Time and Embedded Computing Systems
and Applications (RTCSA) aims to be a forum on the trends as well as inno-
vations in the growing areas of real-time and embedded systems, and to bring
together researchers and developers from academia and industry for advancing
the technology of real-time computing systems, embedded systems and their
applications. The conference assumes the following goals:

— to investigate advances in real-time and embedded systems;
— to promote interactions among real-time systems, embedded systems and

their applications;

— to evaluate the maturity and directions of real-time and embedded system
technology;

— to bridge research and practising experience in the communities of real-time
and embedded systems.

RTCSA started from 1994 with the International Workshop on Real-Time
Computing Systems and Applications held in Korea. It evolved into the Interna-
tional Conference on Real-Time Computing Systems and Applications in 1998.
As embedded systems is becoming one of the most vital areas of research and
development in computer science and engineering, RTCSA changed into the In-
ternational Conference on Real-Time and Embedded Computing Systems and
Applications in 2003. In addition to embedded systems, RTCSA has expanded
its scope to cover topics on pervasive and ubiquitous computing, home compu-
ting, and sensor networks. The proceedings of RTCSA from 1995 to 2000 are
available from IEEE. A brief history of RTCSA is listed below. The next RTCSA
is currently being organized and will take place in Sweden.

1994 to 1997: International Workshop on Real-Time
Computing Systems and Applications

RTCSA 1994  Seoul, Korea
RTCSA 1995 Tokyo, Japan
RTCSA 1996  Seoul, Korea
RTCSA 1997  Taipei, Taiwan

1998 to 2002: International Conference on Real-Time
Computing Systems and Applications

RTCSA 1998  Hiroshima, Japan
RTCSA 1999 Hong Kong, China
RTCSA 2000 Cheju Island, Korea
RTCSA 2002 Tokyo, Japan

From 2003: International Conference on Real-Time
and Embedded Computing Systems and
Applications

RTCSA 2003 Tainan, Taiwan
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Scheduling-Aware Real-Time Garbage Collection
Using Dual Aperiodic Servers

Tachyoun Kim' and Heonshik Shin?

1 SOC Division, GCT Research, Inc.,
Seoul 150-877, Korea
thkim@gctsemi.com
2 School of Electrical Engineering and Computer Science, Seoul National University,
Seoul 151-742, Korea
shinhs@snu.ac.kr

Abstract. Garbage collection has not been widely used in embedded real-time
applications since traditional real-time garbage collection algorithm can hardly
bound its worst-case responsiveness. To overcome this limitation, we have pro-
posed a scheduling-integrated real-time garbage collection algorithm based on
the single aperiodic server in our previous work. This paper introduces a new
scheduling-aware real-time garbage collection which employs two aperiodic
servers for garbage collection work. Our study aims at achieving similar per-
formance compared with the single server approach whilst relaxing the limitation
of the single server approach. In our scheme, garbage collection requests are
scheduled using the preset CPU bandwidth of aperiodic server such as the spo-
radic server and the deferrable server. In the dual server scheme, most garbage
collection work is serviced by the secondary server at low priority level. The
effectiveness of our approach is verified by analytic results and extensive simu-
lation based on the trace-driven data. Performance analysis demonstrates that the
dual server scheme shows similar performance compared with the single server
approach while it allows flexible system design.

1 Introduction

As modern programs require more functionality and complex data structures, there is a
growing need for dynamic memory management on heap to efficiently utilize the memory
by recycling unused heap memory space. In doing so, dynamic memory may be managed
explicitly by the programmer through the invocation of “malloc/free” procedures which
is often error-prone and cumbersome.

For this reason, the system may be responsible for the dynamic memory reclamation
to achieve better productivity, robustness, and program integrity. Central to this auto-
matic memory reclamation is the garbage collection (GC) process. The garbage collector
identifies the data items that will never be used again and then recycles their space for
reuse at the system level.

In spite of its advantages, GC has not been widely used in embedded real-time
applications. This is partly because GC may cause the response time of application
to be unpredictable. To guarantee timely execution of a real-time application, all the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 1-17, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



2 T. Kim and H. Shin

components of the application must be predictable. A certain software component is
predictable means that its worst-case behavior is bounded and known a priori.

This is because garbage collectors should also run in real-time mode for predictable
execution of real-time applications. Thus, the requirements for real-time garbage col-
lector are summarized and extended as follows [1]; First, a real-time garbage collector
often interleaves its execution with the execution of an application in order to avoid in-
tolerable pauses incurred by the stop-and-go reclamation. Second, a real-time collector
must have mutators ! report on any changes that they have made to the liveness of heap
objects to preserve the consistency of a heap. Third, garbage collector must not interfere
with the schedulability of hard real-time mutators. For this purpose, we need to keep
the basic memory operations short and bounded. So is the synchronization overhead
between garbage collector and mutators. Lastly, real-time systems with garbage collec-
tion must meet the deadlines of hard real-time mutators while preventing the application
from running out of memory.

Considering the properties that are needed for real-time garbage collector, this pa-
per presents a new scheduling-aware real-time garbage collection algorithm. We have
already proposed a scheduling-aware real-time GC scheme based on the single server
approach in [1]. Our GC scheme aims at guaranteeing the schedulability of hard real-time
tasks while minimizing the system memory requirement. In the single server approach,
an aperiodic server services GC requests at the highest priority level. It has been proved
that, in terms of memory requirement, our approach shows the best performance com-
pared with other aperiodic scheduling policies without missing hard deadlines [1].

However, the single server approach has a drawback. In terms of rate monotonic
(RM) scheduling, the server must have the shortest period in order to be assigned for
the highest priority. Usually, the safe server capacity for the shortest period may not
be large enough to service a small part of GC work. For this reason, the single server
approach may be sometimes impractical. To overcome this limitation, we propose a
new scheduling-aware real-time GC scheme based on dual aperiodic servers. In the dual
server approach, GC requests are serviced in two steps. The primary server atomically
processes the initial steps such as flipping and memory initialization at the highest priority
level. The secondary server scans and evacuates live objects. The effectiveness of the
new approach is verified by simulation studies.

The rest of this paper is organized as follows. Sect. 2 presents a system model and
formulates the problem addressed in this paper. The real-time GC technique based on the
dual aperiodic servers is introduced in Sect. 3. Performance evaluation for the proposed
schemes is presented in Sect. 4. This section proves the effectiveness of our algorithm by
estimating various memory-related performance metrics. Sect. 5 concludes the paper.

2 Problem Statement

We now consider a real-time system with a set of n periodic priority-ordered mutator
tasks, M = {My, ..., M, } where M,, is the lowest-priority task and all the tasks
follow rate monotonic scheduling [2]. The task model in this paper includes an additional

! Because tasks may mutate the reachability of heap data structure during the GC cycle, this
paper uses the term “mutator” for the tasks that manipulate dynamically-allocated heap.
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Table 1. Notations

| Symbol [ Description

M;, M ; [Periodic mutator task ¢ and its j°" instance
C;, T;, D;, R;|Worst-case execution time, period, deadline, and response time of M
A Maximum amount of memory allocated by M during T3
Gk k" garbage collection request
Cac, Reoco |Worst-case execution time of and response time of G
Ly, L}, Amount of live memory processed by Gy, and its maximum value
Mesy Memory reservation for hard real-time tasks
M System Memory requirement
Ts1,Ts2  |Periods of the primary server and the secondary server
Cs1, Cs2  |Capacities of the primary server and the secondary server
Si(k), F;(k) |Start/Completion time of the k" instance of M

0;(t) Idle time at priority level 4 at time ¢
I; (w) Interference of tasks with higher priority than that of M during the time interval
[0, w)

property, memory allocation requirement of M. M, is characterized by a tuple M, =
(Ci,T;, D;, A;) (see Table 1 for notations). Our discussion will be based on the following
assumptions:

— Assumption 1: There are no aperiodic mutator tasks.

— Assumption 2: The context switching and task scheduling overhead are negligibly
small.

— Assumption 3: There are no precedence relations among Ms. The precedence con-
straint placed by many real-time systems can be easily removed by partitioning tasks
into sub-tasks or properly assigning the priorities of tasks.

— Assumption 4: Any task can be instantly preempted by a higher priority task, i.e.,
there is no blocking factor.

— Assumption 5: C;, T;, D;, and A; are known a priori.

Although estimation of A; is generally an application-specific problem, A; can be spec-
ified by the programmer or can be given by a pre-runtime trace-driven analysis [3]. The
target system is designed to adopt dynamic memory allocation with no virtual memory.
In this paper, we consider a real-time copying collector proposed in [3], [4] for its sim-
plicity and real-time property. This paper treats each GC request as a separate aperiodic
task {Gy.(t*, %),k > 1} where t* and ¥ denote the release time and completion time
of the k" GC request Gy, respectively.

In our memory model, the cumulative memory consumption m.(M;, k,t) by a
mutator task, defined for the interval [t’;, t’;“), is a monotonic increasing function.
Although the memory consumption function for each mutator can be various types
of functions, we can easily derive the upper bound of memory consumption of M;
during ¢ time units from the worst-case memory requirement of M;, which amounts to
a product of A; and the worst-case invocation number of M, during ¢ time units. Then,
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the cumulative memory consumption by all the mutator tasks at ¢’ (t¥ < ¢/ < tF+1)is
bounded by the following equation.

nsgmansn<E{(F]- G0} o

On the contrary, the amount of available memory depends on the reclamation rate of
the garbage collector. For the copying collector, half of the total memory is reclaimed
entirely at flip time. Actually, the amount of heap memory reproduced by Gx depends
on M and the size of live objects Ly, and is bounded by (& — Ly,).

We now consider the property of real-time GC request Gy. First, G, is an aperiodic
request because its release time is not known a priori. It is released when the cumula-
tive memory consumption exceeds the amount of free (recycled) memory. Second, G,
is a hard real-time request. The k" GC request Gy (t¥, ¢¥) must be completed before
Gry1 (tFHL) 571 is released. In other words, the condition t* < #**! should always
hold. Suppose that available memory becomes less than a certain threshold while pre-
vious GC request has not been completed yet. In this case, the heap memory is fully
occupied by the evacuated objects and newly allocated objects. Thus, neither the garbage
collector nor mutators can continue to execute any longer.

On the other hand, the system may also break down if there is no CPU bandwidth
left for GC at t“*! even though the condition t* < %1 holds. To solve this problem,
we propose that the system should reserve a certain amount of memory spaces in order
to prevent system break-down due to memory shortage. We also define a reservation
interval, denoted by Rg, to bound the memory reservation. The reservation interval
represents the worst-case time interval [t¥,¢,), where . (> t¥) is the earliest time
instant at which the CPU bandwidth for GC becomes available. Hence, the amount of
memory reservation M,.s, can be computed by the product of Rg and the memory
requirement of all the mutator tasks during Rg. There should also be memory spaces in
which currently live objects are copied. As a result, for the copying collector addressed
in this paper, the system memory requirement is given by:

Rg
T

M = 2(Myeon + L}) = Q(Z
i=1

-‘A + L) )

where M, , and L} denote the worst-case memory reservation and the worst-case live
memory, respectively. The reservation interval R¢ is derived from the worst-case GC
response time R and the GC scheduling policy.

3 Dual Server Approach

3.1 Background

‘We have presented a scheduling-aware garbage collection scheme using single aperiodic
serverin [1],[3]. Inthe single server approach, GC work is serviced by an aperiodic server
with a preset CPU bandwidth at the highest priority. The aperiodic server preserves its
bandwidth waiting for the arrival of aperiodic GC requests. Once a GC request arrives in
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the meantime, the server performs GC as long as the server capacity permits; if it cannot
finish within one server period, it will resume execution when the consumed execution
time for the server is replenished. By assigning the highest priority, the garbage collector
can start immediately on arriving G;, preempting the mutator task running.

However, the single server approach has a drawback. Under the aperiodic server
scheme, the server capacity tends to be very small at the highest priority. Although the
server capacity may be large enough to perform the initial parts of GC procedure such as
flipping and memory initialization, it may not be large enough to perform single copying
operation of a large memory block. Guaranteeing the atomicity of such operation may
yield another unpredictable delay such as synchronization overhead. For this reason, this
approach may be sometimes impractical.

3.2 Scheduling Algorithm

In this section, we present a new scheduling-aware real-time GC scheme based on dual
aperiodic servers. In the dual server approach, GC is performed in two steps. The primary
server performs flip operation and atomic memory initialization at the highest priority.
The secondary server incrementally traverses and evacuates live objects. The major
issue of dual server approach is to decide the priority of the secondary server and its safe
capacity. We mean maximum server capacity which can guarantee the schedulability of
given task set by safe capacity. The dual server approach can be applied to the sporadic
server (SS) and the deferrable server (DS).

The first step is to find the safe capacity of the secondary server. This procedure
is applied to each priority level of periodic tasks in given task set for simplicity. In
doing so, we assume that the priority of the secondary server is assigned according
to the RM policy. There is always a task of which period is identical to the period of
the secondary server because we compute the capacity of the secondary server for the
periods of periodic tasks. In this case, the priority of secondary server is always higher
than that of such a task.

The maximum idle time at priority level ¢, denoted by §(D;), is set to the initial value
of the capacity. For each possible capacity of the secondary server Cs2 € [1, §(D;)], we
can find the maximum capacity at priority level ¢ which can guarantee the schedulability
of given task set using binary search. As aresult, we have n alternatives for the parameters
of the secondary server. The selection of the parameter is dependent on the primary
consideration of system designer. In general, the primary goal is to achieve maximum
server utilization. However, our goal is to minimize the memory requirement as long as
there exists a feasible schedule for hard real-time mutators.

As mentioned in Sect. 2, the system memory requirement is derived from M,..s,
and Lj.. The worst-case memory reservation is derived from R under the scheduling
policy used. Hence, we need a new algorithm to find R under the dual server approach
to derive the memory requirement.

For this purpose, we use the schedulability analysis which is originally presented by
Bernat [5]. Let the pair of parameters (period, capacity) = (T, C;) of the primary server
and the secondary server be (151, Cs1) and (T2, Cso), respectively. Then, we assign
Ts1 = Ty and Cs; = o such that o is the smallest time required for flipping and atomic
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Task
Execution

Ca 1

Cs2 2

time
t t+10 t+20 t+30 t+40

[] Gk |

Fig. 1. Response time of Gy, (Ts51 = 6,Cs1 = 1,Ts20 = 10,Cs2 =2,Cqc = 4)

memory initialization. Traditional worst-case response time formulation can be used to
compute Rgc.
In Theorem 1, we show the worst-case response time of GC under the SS policy.

Theorem 1. Under the SS, for fixed Cac, Cs1, Ts1, Cso, and Tyo, the response time of
the garbage collector R of the dual server approach is bounded by the k" completion
time of a virtual server task SSyo with T!y = Tya + R, period, C', = 1 capacity, and
(Tso — Cyo) offset such that Ry, is the worst-case response time of a task M, which
is the lowest priority task among the higher priority tasks than the secondary server,

9= Coc— Cur — GCGCCC} 1) Coyand b — {CGCCC}

Proof. Let €(> 0) be the available capacity of the secondary server when a new GC
request is released. If the condition C'gc — Cy1 < € is satisfied, then the GC request Gy,
is completely serviced within one period of the secondary server. Otherwise, additional
server periods are required to complete G. The remaining GC work must be processed
after the capacity of the secondary server is replenished. We assume that there is always
(1 capacity available when a new GC request arrives. This is because the replenishment
period of the primary server will always be shorter than or equal to that of the secondary
server. If this assumption is not valid, GC requests will always fail.

The interval, say A, between the beginning of G and the first replenishment of the
secondary server is at most (752 — C2). In other words, the first period of the secondary
server is released A time units after G, was requested because the secondary server may
not be released immediately due to interference caused by higher priority tasks. In the
proof of Theorem 1, R is computed by using the capacity of the sporadic server and
the replenishment period.

Roughly, the worst-case response time of G, coincides with the k*" completion time
Coc — Ca

. More correctly,
CSQ “ Y

of the secondary server with A offset such that k = {
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it is the sum of A, any additional server periods required for replenishment, and the
CPU demand remaining at the end of GC cycle. It results from the assumption that
all the mutator tasks arrive exactly at which the first replenishment of the secondary
server occurs. In this case, the second replenishment of the secondary server occurs at
the time when all the higher priority tasks have been completed. Formally, in the worst-
case, the longest replenishment period of the secondary server is equal to the worst-case
response time of M,, denoted by R, where M, is the lowest priority task among the
higher priority tasks. Because the interference is always smaller than the worst-case
interference at the critical instant, the following replenishment periods are always less
than or equal to the first replenishment period. Hence, we can safely set the period of
a virtual task SS5 to (Ts2 + R,). The CPU demand remaining at the end of GC cycle,
say v, is given by:

9 = Coo — Cyp — ([CGCC_Q(“] —1)052.

It follows that the sum of the server periods required and the CPU demand remaining
at the end of GC cycle actually corresponds to the worst-case response time of the k*"
response time of a virtual server task SSso with T, period and 1} capacity. Because
a task’s response time is only affected by higher priority tasks, this conversion is safe
without loss of generality. Fig. 1 illustrates the worst-case situation.

O

Since the DS has different server capacity replenishment policy, we have the follow-
ing theorem.

Theorem 2. Under the DS, for fixed Ccc, Cs1, Ts1, Cso, and Tys, the response time of
the garbage collector Rgc of the dual server approach is bounded by the k" completion
time of a virtual server task SSgo with T.y = Tso period, Cly = ¥ capacity, and

(Ts2 — Cs2) offset such that 9 = Cge — Cs1 — ({CGC_CS{‘ — 1) Cyo and k =

CSZ
Cac — Ca
Cs2 '

Proof. The server capacity for the DS is fully replenished at the beginning of server’s
period while the SS replenishes the server capacity exactly T time units after the ape-
riodic request was released. For this reason, the period of a virtual task 77, equals Tss.
0O

For the dual server approach, we do not need to consider the replenishment of server
capacity in computing M,..s,. This is because there is always sufficiently large time
interval to replenish the capacity of the primary server between two consecutive GC
cycles. Finally we have:

M;esp = Z

n
i=1

Race
A; . 3
{ T -‘ &
Let F!,(k) denote the k" completion time of a virtual secondary server task SSs.
As shown above, F,(k) is equal to R To derive the memory requirement, we now
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present how we can find F/,(k) with given parameters of the secondary server. We
now apply Bernat’s analysis to find F”, (k). Bernat presents an extended formulation to
compute the worst-case completion time of M; at its k" invocation.

We explain briefly the extended worst-case response time formulation. Let us first
consider the worst-case completion time of M at the second invocation. The completion
time of the second invocation F; (2) includes its execution time and interference caused by
higher priority tasks. The interference is always smaller than the worst-case interference
at the critical instant. Formally, the idle time at priority level ¢ at w, denoted by 0;(w),
is defined as the amount of CPU time can be used by tasks with lower priority than M
during the period [0, w) in [5]. Again, the amount of idle time at the start of each task
invocation is written as:

Based on the above definitions, F;(2) includes the time required to complete two invo-
cations of M, the CPU time used by lower priority tasks (level-i idle time), and the
interference due to higher priority tasks. Thus, it is given by the following recurrence
relation:

0 =g )
{wo = 5;(2) + C; @

where Ii(w(”)) denotes the interference caused by tasks with higher priority than task
1. The correctness of Eq. (4) is proved in [5].

Similarly, the completion time of the k" invocation of M, F; (k) is the sum of the
time required to complete %k invocations of M, the CPU time used by lower priority
tasks, and the interference due to higher priority tasks. Thus, we have F;(k) as the
smallest w (> 0) such that:

w = kC; + (k) + I;(w) . )

More formally, F;(k) corresponds to the smallest solution to the following recurrence
relation:

w© :S( )+ C; ©)
w D) = kC; + (k) + Li(w™) .

As mentioned earlier, the worst-case response time of garbage collector equals
F!, (k). Following the definition of F’,(k), it can be found by the worst-case response
time analysis at the critical instant. For this reason, we can apply the Bernat’s extended
worst-case response time formulation to our approach without loss of generality. F., (k)
is the smallest solution w (> 0) where w™+!) = w(™ to the following recurrence
relation:

{w<0> = Se(k) +Cy o

wtD = kO 4 652(k) + To(w™),
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where Sgo(k) = (k — 1)Tly, Cly = Cac — Csy — GCGCC_QCﬂ - 1) Co,
w™)
ds2(k) = 052(Ss2(k)), and Iyo(w™) = Zj { T,
M, €hp(55,2)
and I, (w™) can be easily computed because 7", is known a priori. Hence, we need
only to compute d,2(k) in order to compute F7q (k).
To compute 42 (k), we assume another virtual task M as follows:

WC In Eq. (7), Ss2(k)

M=(C, T, D),
where T = Seo(k), D=T .

At the beginning of this section, we compute the safe capacity of the secondary server
at priority level ¢ by computing §;(D;). Similarly, the amount of idle time between
[0, Ss2(k)) which has been unused by the tasks with priorities higher than or equal to
M, corresponds to the upper bound for the execution time of the virtual task M. Then,
d42(k) is computed by obtaining the maximum C which can guarantee that the virtual
task M is schedulable. Formally, we have:

8s2(Ss2(k)) = maz{C | M is schedulable} . ®)

The maximum C whicll satisfies the condition in Eq. (8) is the solution w where
w1 = () and w"™ < D to the following equation:

w=C+ I/(w) 9)

where I/(w) denotes the interference caused by the tasks with higher than or equal
priority to task 7. A simple way of finding C is to perform binary search for the interval
[0, D) of which complexity is O(logz D). Actually, this approach may be somewhat
expensive because, for each value ¢ € [0, D), the worst-case response time formulation
must be done for higher priority tasks. To avoid this complexity, Bernat also presents an
effective way of computing d; (k) by finding more tighter bounds. However, his approach
is not so cost-effective for our case which targets at finding a specific F; (k).

We present a simple approach to reduce the test space. It is possible by using the fact
that (' is actually the idle time unused by the tasks with higher than or equal to priorities
than the secondary server. Using the definition of I; (w), the interference of tasks with
higher than or equal priority to M, the upper bound for C is given by:

IN

C < Saa(k) = L;(Sea(k)) < Sealk) — > f;(k)J of (10)

j€hep(SS2) J

where hep(SS2) denotes the set of tasks with higher than or equal priority to the sec-
ondary server.

The lower bound for C' can also be tightened as follows. Given any time interval w =
[t1, t2), the worst-case number of instances of M ; within the interval can approximate

to — 1t
[ 2 T ! —‘ + 1. We can optimize this trivial bound using the analysis in [3]. The analysis
J
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uses the worst-case response time of M ;, R;. It classifies the instances into three cases
according to their invocation time. As a result of analysis, it follows that the number of
instances of M within a given time interval w, denoted by ¢; is given by:

¢; = Hﬁ-‘—&-f(jLwhere
. . o _|w 4 (11D
fiy=4 TR {w ({TjJT’“)}

0 otherwise .

For details, refer to [3].
The above formulation can be directly applied to finding the lower bound for 6, (k)
by substituting w for Sso (k). Finally, we have:

czsa- ¥ (|22 4s0) 0. (12)
)

j€hep(SSa J

3.3 Live Memory Analysis

We have proposed a three-step approach to find the worst-case live memory for the
single server approach in [4]. According to the live memory analysis, the worst-case live
memory Lj equals the sum of the worst-case global live memory Ly, , and the worst-
case local live memory Ly, ;,.,;- Usually, the amount of global live objects is relatively
stable throughout the execution of application because global objects are significantly
longer-lived than local objects. On the other hand, the amount of local live objects
continues to vary until the time at which the garbage collector is triggered. For this
reason, we concentrate on the analysis of the worst-case local live memory.

The amount of live objects for each task depends not on the heap size but on the state
of each task. Although the amount of live memory is a function of A; and varies during
the execution of a task instance, it is stabilized at the end of the instance. Therefore, we
find the worst-case live local memory by classifying the task instances into two classes:
active and inactive®. Accordingly, we set the amount of live memory for an active task
M, to A; in order to cover an arbitrary live memory distribution. By contrast, the amount
of live memory for an inactive task M ; converges ; A; where 7y; denotes the stable live
factor out of A;. Consequently, the worst-case live local live memory is bounded by:

Lz,local = mCLI’( Z Al + Z FYJAJ) (13)

M Eactive(tF) M Einactive(tk)

where active(t) and inactive(t) denote the set of active tasks and the set of inactive
tasks at time ¢, respectively. We also assume the amount of global live memory to be a
constant Ly ,,, because it is known to be relatively stable throughout the execution of
the application. Then, L} equals the sum of L .., and Ly ;.

We now modify the live memory analysis slightly to cover the dual server approach.

We first summarize the three-step approach as follows:

% We regard a task as active if the task is running or preempted by higher priority tasks at time
instant t. Otherwise, the task is regarded as inactive.
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— Step 1. Find the active windows: For each tasks, find the time intervals in which the
task instances are running or preempted by higher priority tasks, i.e., active. Those
time intervals are referred as active windows and represented by A; ; = [S; j, Fi ;]
where S; ; and F; ; denote the earliest start time and the latest completion time
of M;_;, respectively. First, we put a restriction on the periods of mutators; M; is
harmonic with respect to M [6]. This constraint helps to prune the search space.
Second, the search space is limited to a hyperperiod H. We compute S; ; from
the worst-case completion time of a task instance M, ; where M, is the lowest
priority task among the tasks such that their priorities are higher than that of M; and
A, (G-, =T forl <1< T% We also compute F; ; under the assumption
that the total capacity of aperiodic server is used for GC, i.e., the garbage collector
behaves like a periodic task. Then, F; ; equals the sum of (j — 1)7; and the worst-
case response time of M;, denoted by R;, including the interference caused by
another periodic task with (C;, T;, D;, A;) = (server capacity, Ty, T, 0).

— Step 2. Find the transitive preemption windows: Using the active windows
found in Step 1, this step finds the preemption windows. The preemption win-
dow P aq,=. .=, 1S the set of time intervals in which tasks M;, ..., My, are all
active. They are equivalent to the intervals overlapped among active windows for
mutator tasks. Those tasks are active because one of them is running and the others
are preempted by higher priority tasks.

— Step 3. Compute the worst-case live memory: This step computes the worst-case
local live memory using Eq. (13).

As to the live memory, the worst-case scenario is that a GC request is issued when all the
tasks are active. Generally, the possibility of a certain task being active ? is proportional
to CPU utilization of given task set. Hence, we try to find the worst-case local live
memory under the highest utilization attainable. For this purpose, we assume the CPU
bandwidth reserved for GC is fully utilized because the CPU utilization of periodic tasks
for given task set is fixed.

And therefore, we need a simple modification on the computation of active windows
in order that it may include the interference caused by the secondary server. In Step
1 of our live-memory analysis, S; ; and F; ; determine the active window of M, ;.
Because the computation of S; ; ignores the bandwidth reserved for GC, only the latest
completion time F; ; should be recomputed. Suppose that Rf/ denotes the worst-case
response (completion) time of M. Then, we can compute Rf' = w using the following
recurrence relation:

w-c+ ¥ |2]a (14)
) l

lehp(i

where hp(i) is the set of tasks, including the aperiodic servers, whose priorities are
higher than that of M. The only difference from the single server approach is that hp(7)
does not always include the secondary server although it does include the primary server.
This is because the secondary server may not have higher priority than that of M; whilst

% In most cases, it means that the task is preempted by a higher priority task.
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the primary server has the highest priority. Steps 2 and 3 are applied to the dual server
approach without any modification. Example 1 clarifies the modified approach.

Example 1. Consider the task set whose parameters are as given in Table 2.

Table 2. Example task set: Ts1 = 10, Cs1 = 1, Ts2 = 30, Cs2 = 6

|_|G]T D] Ai | % [RY]
Mi[2[10]10]988[0.43[ 3
Ma| 43030 [1028]0.36] 16
M;[10] 60 | 60 [1200]0.38] 29
M| 15[120]120]1696[0.27[108

— Step 1. The active windows of periodic tasks in the example are

Aij=[10(j — 1), 10(j — 1) + 3],

Az =[30(j — 1) +2, 30(j — 1) + 16],

Ay = [60(j — 1) +6, 60(j — 1) +29],

Ay, = [120( — 1) + 18, 120(j — 1) + 108], where 1 < j < 2

i

— Step 2. Using the active windows found in Step 1, we can determine the preemption
windows for the following combinations: M; = My, M; = M3z, M; =
My, My = My, M3 = My, and M| = M3 = My,

— Step 3. As a result of Eq. (13), M; = M3 = M, is the combination that max-
imizes the amount of local live memory. In this case, Ly ., is reduced by up to
13% compared with the trivial bound.

3.4 Worst-Case Memory Requirement

As mentioned in Sect. 3.2, the worst-case memory requirement is derived from the sum of
the amount of memory reserved for hard real-time periodic mutators and the worst-case
live memory. Because the reserved memory depends on the worst-case GC time Cg o
and vice versa, we need to compute the amount of reserved memory, M,..s,,, iteratively.
First, we set the amount of memory allocated by all the mutators during a hyperperiod
to the initial value of M,..s,. This is because, even in the worst-case, a GC cycle must be
completed within a hyperperiod. Thereafter, the algorithm computes M,..s,, using Cac
and Rgc recursively until MT(Z;J” Mﬁesv We can easily compute Cgc using L}

obtained from the off-line live memory analysis [4]. The worst-case response time for
GC can also be computed using Theorem 1 and 2. In summary, M., is the smallest
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solution to the following recurrence relation:

0 =i¥fh
i=1 1

"R (w™)
(n+1) _ DG\ T 4,
e =3 | Rt

i=1 i

5)

where Rgc(w™) denotes the worst-case GC response time derived from the amount
of memory reservation computed in the previous iteration. Finally, we can compute the
system memory requirement using Eq. (15) in Sect. 2.

4 Performance Evaluation

This section presents the performance evaluation of our scheme. We show the efficiency
of our approach by evaluating memory requirement through extensive analysis. Analytic
results are verified by simulation based on trace-driven data. Experiments are performed
on the trace-driven data acquired from five control applications written in Java and three
sets of periodic tasks created out of the sample applications. The CPU utilization for
those three task sets of TS1, TS2, and TS3 are 0.673, 0.738, and 0.792, respectively.
The parameters used in the computation of the worst-case garbage collection work are
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Fig. 2. Capacity of the secondary server at each priority level.
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Fig. 3. Live memory of each task sets for the dual server approach.

derived from a static measurement of the prototype garbage collector running on 50
MHz MPC860 with SGRAM. For details on the experiment environment, refer to [1].
Because the major goal of our approach is to reduce the worst-case memory requirement,
our interest lies in the following three parameters. First, we compare the worst-case live
memory of the dual server with that of the single server. Second, we analyze the worst-
case memory reservation of both schemes. Third, we conduct a series of simulations to
compare the feasible memory requirement. Figs. 3, 4, and 5 show performance evaluation
results.

We first compute the capacity of the secondary server at each priority level using
traditional worst-case response time formulation. For this purpose, the capacity of the
primary server is set to Cs; = 1 for simplicity. The only job of the primary server is to
flip two semispaces and to initialize the heap space. As shown in [3], efficient hardware
support enables the memory initialization to be done within hundreds of microseconds.
Hence, we make this assumption without loss of generality. Fig. 2 illustrates the capacity
of the secondary server for the SS and the DS. The x axis is the priority level and the
y axis is the maximum utilization that can be allocated to the secondary server. In all
the graphs shown in this section, the lower the priority level in the graph the higher the
actual priority is. And, the secondary server has higher priority than that of a periodic
task which has identical period with it. The DS algorithm can also be directly applied
to our approach. The graphs in Fig. 2 show that the capacity of the secondary server for
the DS is generally smaller than that of the SS. As pointed out in [7], for the DS, the
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maximum server utilization occurs at low capacities; in other words, at high priorities
under the RM policy. This is because the larger the capacity the larger the double hit
effect, and therefore the lower the total utilization. However, as can be seen in Fig. 2,
there is little difference in maximum server utilization of both schemes.

Fig. 3 illustrates the worst-case local live memory derived from the simulation and
the analysis for the dual server approach. For comparison, the worst-case local live
memory acquired from the simulation and the analysis for the single server approach is
also presented. These results demonstrate that the analytic bound accords well with the
simulation bound. The dual server approach also may reduce the worst-case local live
memory by up to 8 % compared with the single server approach. It results from the fact
that the dual server approach causes smaller interference over mutator tasks compared
with the single server approach.

We also compare the memory reservation of the dual server approach with that of
the single server approach. Fig. 4 illustrates the worst-case memory reservation for each
task set. The graphs show that, at relatively high priority level, the dual server approach
can provide comparable performance to the single server approach. The results also
demonstrate that noticeable differences in memory reservation are observed from the
priority levels 5in TS1, 7in TS2, and 7 in TS3, respectively. For the DS, we can find that
at those priority levels the server utilization starts to decrease. Following Theorem 2 in
Sect. 3.2, this server utilization has a great impact on the worst-case GC response time,
and thus memory reservation. On the other hand, for the SS, the performance begins
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to degrade at certain priority level though the server utilization has relatively uniform
distribution. This is because the period of a virtual task representing the SS dual server
is much longer than that of the DS server, which yields longer GC response time. For
details, see Theorem 1 in Sect. 3.2.

Fig. 5 compares the feasible memory requirements of both schemes. We mean fea-
sible memory requirement by the amount of heap memory to guarantee hard deadlines
without memory shortage under a specific memory consumption behavior. In our study,
the feasible memory requirement is found by iterative simulation runs. We regard a given
memory requirement as feasible if no garbage collection errors and deadline misses are
reported after 100 hyperperiods runs. In Fig. 5, the SS-based dual server approach pro-
vides feasible memory requirement comparable to the single server approach for all the
task sets. For TS3, the single server approach remarkably outperforms the dual server
approach. This is because the periodic utilization of TS3 is relatively high, and therefore
the CPU utilization allocated for the secondary server is smaller than the cases for TS1
and TS2. A noticeable performance gap between the SS-based single server and the
SS-based dual server is found in Fig. 5 (c). At the priority level 18, the performance
gap between two approaches is maximized because the CPU utilization allocated for
the secondary server is minimized at this priority level as shown in Fig. 2. It results in
longer GC response time, and thus large heap memory is needed.

The results also report that the DS provides comparable performance to the SS at
high priorities although, at low priorities, the SS generally outperforms the DS. For TS1,

140000 —— 250000
130000
= = 200000
% 120000 ’\/\ - % X’”“?M\i e
© 110000 e 3 Ty
£ S 150000
8 100000 g
4 i
I~ 2 100000 Single Server(SS)
S 90000 Dual Server(SS) —— 5] <
£ Single Server(SS) - £ SDu‘al gerver(gg)
2 80000 Dual Server(DS) g ingle Server(DS)
s s
Single Server(DS) 50000
70000
60000 0
1 2 3 4 5 6 7 8 9 10 i3 5 7 9 11 13 15
Priority Priority
(a) TS1 (b) TS2
350000 e
. 300000 L o~ *
S . , e \
e S
3 200000
o
2 150000 Dual Server(SS) ——
g Si Mcéo \ \(3§)‘ —————
S 100000 Dual Server(D.
=3 Single Server(DS)
50000

o Lo . . . .
1 5 10 15 20
Priority

(c) TS3

Fig. 5. Feasible memory requirement of given task sets for the dual server.
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the performance gap between two schemes is within 2.8 %. Although the capacities of
the SS is much larger than those of the DS at low priority levels, the double hit effect
offsets the difference. However, for TS3, a noticeable performance gap is observed at low
priority levels. This is because the periodic utilization of TS3 is quite high, and therefore
the double hit effect diminishes at low priorities. Although the DS may not provide
stable performance compared with the SS, it can provide comparable performance to,
even better than at some configuration, the SS. And, it has another advantage over the
SS; its implementation and run-time overheads are quite low. In summary, the DS is still
an attractive alternative to the SS in terms of scheduling-based garbage collection.

5 Conclusions

We have proposed a new scheduling-aware real-time garbage collection scheme. Our pre-
vious work [1] employed single aperiodic server to service garbage collection requests.
By integrating task scheduling with garbage collection algorithm, the scheme achieves
small memory footprint while guaranteeing hard deadlines. However, this scheme is
sometimes impractical because it may inevitably not reserve sufficiently large server
capacity. A new scheduling-aware garbage collection scheme based on dual aperiodic
servers is introduced to overcome the limitation of the single server approach while
achieving similar performance compared with the single server approach. The results
obtained in this paper are summarized as follows. In general, the dual server approach
shows comparable performance to the single server whilst it enables more flexible system
design. In addition, the DS can be an alternative solution to the scheduling-aware garbage
collection scheme. Simulation results show that it can provide similar performance to
the SS with smaller implementation and run-time overheads.
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Abstract. A complex real-time embedded system may consist of multi-
ple application components each of which has its own timeliness require-
ments and is scheduled by component-specific schedulers. At run-time,
the schedules of the components are integrated to produce a system-
level schedule of jobs to be executed. We formalize the notions of sched-
ule composition, task group composition and component composition.
Two algorithms for performing composition are proposed. The first one
is an extended Earliest Deadline First algorithm which can be used as
a composability test for schedules. The second algorithm, the Harmonic
Component Composition algorithm (HCC) provides an online admis-
sion test for components. HCC applies a rate monotonic classification
of workloads and is a hard real-time solution because responsive supply
of a shared resource is guaranteed for in-budget workloads. HCC is also
efficient in terms of composability and requires low computation cost for
both admission control and dispatch of resources.

1 Introduction

The integration of components in complex real-time and embedded systems has
become an important topic of study in recent years. Such a system may be made
up of independent application (functional) components each of which consists
of a set of tasks with its own specific timeliness requirements. The timeliness
requirements of the task group of a component is guaranteed by a scheduling
policy specific to the component, and thus the scheduler of a complex embedded
system may be composed of multiple schedulers. If these components share some
common resource such as the CPU, then the schedules of the individual compo-
nents are interleaved in some way. In extant work, a number of researchers have
proposed algorithms to integrate real-time schedulers such that the timeliness
requirements of all the application task groups can be simultaneously met. The
most relevant work in this area includes work in “open systems” and “hierarchi-
cal schedulers” which we can only briefly review here. Deng and Liu proposed
the open system environment, where application components may be admitted
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online and the scheduling of the component schedulers is performed by a ker-
nel scheduler [2]. Mok and Feng exploited the idea of temporal partitioning [6],
by which individual applications and schedulers work as if each one of them
owns a dedicated “real-time virtual resource”. Regehr and Stankovic investi-
gated hierarchical schedulers [8]. Fohler addressed the issue of how to dynami-
cally schedule event-triggered tasks together with an offline-produced schedule
for time-triggered computation [3]. In [10] by Wang and Mok, two popular sched-
ulers: the cyclic executive and fixed-priority schedulers form a hybrid scheduling
system to accommodate a combination of periodic and sporadic tasks.

All of the works cited above address the issue of schedule/scheduler composi-
tion based on different assumptions. But what exactly are the conditions under
which the composition of two components is correct? Intuitively, the minimum
guarantee is that the composition preserves the timeliness of the tasks in all
the task groups. But in the case an application scheduler may produce differ-
ent schedules depending on the exact time instants at which scheduling decisions
are made, must the composition of components also preserve the exact schedules
that would be produced by the individual application schedulers if they were to
run on dedicated CPUs? Such considerations may be important if an application
programmer relies on the exact sequencing of jobs that is produced by the ap-
plication scheduler and not only the semantics of the scheduler to guarantee the
correct functioning of the application component. For example, an application
programmer might manipulate the assignment of priorities such that a fixed pri-
ority scheduler produces a schedule that is the same as that produced by a cyclic
executive for an application task group; this simulation of a cyclic executive by a
fixed priority scheduler may create trouble if the fixed priority scheduler is later
on composed with other schedulers and produces a different schedule which does
not preserve the task ordering in the simulated cyclic executive. Hence, we need
to pay attention to semantic issues in scheduler composition.

In this paper, we propose to formalize the notions of composition on three
levels: schedule composition, task group composition and component compo-
sition. Based on the formalization, we consider the questions of whether two
schedules are composable, and how components may be efficiently composed.
Our formalization takes into account the execution order dependencies (explicit
or implicit) between tasks in the same component. For example, in cyclic exec-
utive schedulers, a deterministic order is imposed on the execution of tasks so
as to satisfy precedence, mutual exclusion and other relations. As is common
practice to handle such dependencies, sophisticated search-based algorithms are
used to produce the deterministic schedules offline, e.g., [9]. To integrate such
components into a complex system, we consider composition with the view that:
First, the correctness of composition should not depend on knowledge about how
the component schedules are produced, i.e., compositionality is fundamentally a
predicate on schedules and not schedulers. Second, the composition of schedules
should be order preserving with respect to its components, i.e., if job x is sched-
uled before job y in a component schedule, then job z is still scheduled before
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y in the integrated system schedule. Our notion of schedule composition is an
interleaving of component schedules that allows preemptions between jobs from
different components.

The contributions of this paper include: formal definitions of schedule compo-
sition, task group composition and component composition, an optimal schedule
composition algorithm for static schedules and a harmonic component composi-
tion algorithm that has low computation cost and also provides a responsiveness
guarantee. The rest of the paper is organized as follows. Section 2 defines basic
concepts used in the rest of the paper. Section 3 addresses schedule composition.
Section 4 defines and compares task group composition and component com-
position. Section 5 defines, illustrates and analyzes the Harmonic Component
Composition approach. Section 6 compares HCC with related works. Section 7
concludes the paper by proposing future work.

2 Definitions

2.1 Task Models

Time is defined on the domain of non-negative real numbers, and the time
interval between time b and time e is denoted by (b, €). We shall also refer to a
time interval (4,74 1) where 7 is a non-negative integer as a time unit. A resource
is an object to be allocated to tasks. It can be a CPU, a bus, or a packet switch,
etc. In this paper, we shall consider the case of a single resource which can be
shared by the tasks and components, and preemption is allowed. We assume that
context switching takes zero time; this assumption can be removed in practice
by adding the appropriate overhead to the task execution time.

A job is defined by a tuple of three attributes (c,r,d) each of which is a
non-negative real number:

— c is the execution time of a job, which defines the amount of time that must
be allocated to the job;

— r is the ready time or arrival time of the job which is the earliest time at
which the job can be scheduled;

— d is the deadline of the job which is the latest time by which the job must
be completed.

A task is an infinite sequence of jobs. Each task is identified by a unique ID
i. A task is either periodic or sporadic.

The set of periodic tasks in a system is represented by T},. A periodic task is
denoted by (4, (¢, p, d)), where i identifies the task, and tuple (¢, p, d) defines the
attributes of its jobs. The jth job of ¢ is denoted by job (i, 7).

Suppose X identifies an object and Y is one of the attributes of the object.
we shall use the notation X.Y to denote the attribute Y of X. For instance, if
(i,7) identifies a job, then (i, 7).d denotes the deadline of job (i, j).

The attributes in the definition of a periodic task, ¢, p and d, are non-negative
real numbers:
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— cis the execution time of a task, which defines the amount of time that must
be allocated to each job of the task;

— p is the period of the task;

— d is the relative deadline of the task, which is the maximal length of time by
which a job must be completed after its arrival. We assume that for every
periodic task, ¢ < d < p.

If a periodic task 7 is defined by (¢, p,d), job (i, ) is defined by (¢, j-p,j-p+d).

A sporadic task is denoted by a tuple (7, (¢, p, d)), where ¢ identifies the task,
and (¢, p, d) defines the attributes of its jobs, as follows: The jth job of sporadic
task 7 is identified as job (i,7), j > 0. The arrival times of jobs of a sporadic task
are not known a priori and are determined at run time by an arrival function A
that maps each job of a sporadic task to its arrival time for the particular run:

ATy x N = R, where N is the set of natural numbers and R is the set of
real numbers.

A(i, j) =t if the job (i, ) arrives at time ¢.

A(i, j) =L if the job (i, 7) never arrivals.

The attributes ¢ and d of a sporadic task are defined the same as those of
a periodic task. However, attribute p of a sporadic task represents the minimal
interval between the arrival times of any two consecutive jobs. In terms of the
function A, A(i, (j + 1)) — A(3,5) > p if A(i,(j+ 1)) is defined.

For a sporadic task (¢, (¢, p,d)), job (4,7) is defined as (¢, A(3, j), A(i, 7) + d).

A task group T'G consists of a set of tasks (either periodic or sporadic). We
shall use STG to denote a set of task groups. The term component denotes a
task group and its scheduler. Sometimes we call a task group an application
task group to emphasize its association with a component which is one of many
applications in the system.

2.2 Schedule

A resource supply function Sup defines the maximal time that can be supplied to
a component from time 0 to time ¢. Time supply function must be monotonically
non-decreasing. In other words, if ¢t < ¢/, then Sup(t) < Sup(t').

The function S maps each job to a set of time intervals:

S TG x N — {(R,R)} where TG is a task group, and N and R represent
the set of natural numbers and the set of real numbers respectively.
S(2,7) = {(bi .k, €ix)|0 <k < h} where k and h are natural numbers.

S is a schedule of TG under supply function Sup if and only if all of the
following conditions are satisfied:

— Constraint 1: For every job (i, j), every time interval assigned to it in the
schedule must be assigned in a time interval allowed by the supply function,
ie., for all (b,e) € S(i,7), Sup(e) — Sup(b) =e —b.
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— Constraint 2: The resource is allocated to at most one job at a time, i.e.,
time intervals do not overlap: For every (b; ; k, € ;) € S(i,7) and for every
(bir jr ks €ir o 1) € S(i, j'), one of the following cases must be true:

® ¢ jk < by g or
o cp g < byjk; or
ei=1 j=7 and k=F.

— Constraint 3: A job must be scheduled between its ready time and deadline:
for every (b,e) € S(1,5),

(t,5)r<b<e<(ij)d

— Constraint 4: For every job (i,7), the total length of all time intervals in
S(i,7) is sufficient for executing the job, i.e.,

Z (e—b)> (i,5).c

(b,e)€5(i,5)

Given a time ¢, if there exists a time interval (b,e) in S(i,j) such that b <
t < e, then job (4, 7) is scheduled at time ¢, and task i is scheduled at time t.

An algorithm Sch is a scheduler if and only if it produces a schedule S for
T under A and Sup.

A component C of a system is defined by a tuple (TG, Sch) which specifies the
task group to be scheduled and the task group’s scheduler. A set of components
will be written as SC.

3 Schedule Composition

Suppose S, is a schedule of a component task group T'Gj. We say that the
schedule S integrating the component schedules in | J T'G}, is a composed schedule
of all component schedules {S,|0 < h < n — 1} if and only if there exists a
function M which maps each scheduled time interval in S to a time window
subject to the following conditions:

— For each time interval (b, e) € Sy, (4,7), M(h, (b,e)) = (bn,en), and (by, ep) is
within the ready time and deadline of job (i, j);
— The time scheduled to job (i,7) by S between (by,ep) is equal to e — b:

> (y—az)=e—b
(z,y)€5(i,5) and b, <z<y<ep

— M(h,(b,e)) is before M(h, (V' ¢’)) if and only if (b,e) € Sp(i,7) is before
(' e e S, 5").

The notion of schedule composition is illustrated in Figure 1 where the compo-
nent schedule Sy is interleaved with other component schedules into a composed
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Fig. 1. Definition of Schedule Composition

schedule S. Notice that the time intervals occupied by Sy can be mapped into
S without changing the order of these time intervals.

To test whether a set of schedules can be integrated into a composed sched-
ule, we now propose an extended Earliest Deadline First algorithm for schedule
composition. From the definition of a schedule, the execution of a job (3, j) can be
scheduled into a set of time intervals by a schedule S. We use the term S(i, 7) to
denote the set of time intervals job (4, j) occupies. In the following, we shall refer
to a time interval in S(7, j) as a job fragment of the job (4, 7). The schedule com-
position algorithm works as follows. A job fragment is created corresponding to
the first time interval of the first job in each component schedule .S, that has not
been integrated into S, and the job fragments from all schedules are scheduled
together by EDF. After the job fragment, say for schedule S} has completed,
the job fragment is deleted and another job fragment is created corresponding
to the next time interval in schedule Sj,.

The schedule composition algorithm is defined below.

— Initially, all job fragments from all component schedules are unmarked.

— At any time ¢, Ready is a set that contains all the job fragments from all
the component schedules that are ready to be composed. Initially, Ready is
empty.

— At any time t, if there is no job fragment from component schedule S; in
Ready, construct one denoted as (h, ¢, r,d) by the following steps:

e Let (b,e) be an unmarked time interval such that (b,e) € Si(i, ) and
for all unmarked time interval (¥',¢e’) € Sp(i',5'), b < V';

e Define the execution time of the job fragment as the length of the sched-
uled time interval: ¢ := e — b;

e Define ready time of the job fragment as the ready time of the job sched-
uled at (b,e): r:= (4,7).75

e Define deadline of the job fragment as the earliest deadline among all
jobs scheduled after time b by Sj:

d:=min({(i',7).d|(V',€e) € Sp(7,j") and b < b'})

e Mark interval (b, e).
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— Allocate the resource to the job fragment in Ready that is ready and has
the earliest deadline.

— If the accumulated time allocated to job fragment is equal to the execution
time of the job fragment, delete the job fragment from Ready.

— If t is equal to the deadline of a job fragment before the completion of the
corresponding job in Ready, the schedule composition fails.

In the above, the time intervals within a component schedule S, are trans-
formed into job fragments and put into Ready one by one in their original order
in Sy. At any time ¢, just one job fragment from S}, is in Ready. Therefore, the
order of time intervals in a component schedule is preserved in the composed
schedule.

The extended EDF is optimal in terms of composability. In other words, if
a composed schedule exists for a given set of component schedules, then the
extended EDF produces one.

Theorem 1. The extended EDF is an optimal schedule composition algorithm.

Proof: If the extended EDF for composition fails at time f, then let s be
the latest time that following conditions are all true: for any S}, there exists
(bye) € Su(i,4), (i,7).r > s, all time intervals before b in S}, are composed
into S no later than time s, and for all (', ¢’) composed between s and f, the
corresponding job fragment has deadline no later than f. Then for any time ¢
between (s, f), there is a (b',¢') € S(i',5') and b’ <t < e’. The aggregate length
of time intervals from component schedules that must be integrated between
(s, f) is larger than f — s, therefore no schedule composition exists. B

Because of its optimality, the extended EDF is a composability test for any
set of schedules. Although extend EDF is optimal, this approach, however, has
a limitation: the input component schedules must be static. In other words, to
generate system schedule at time ¢, the component schedules after time ¢ need to
be known. Otherwise, the deadline of the pseudo job in Ready cannot be decided
optimally. Therefore, the extended EDF schedule composition approach cannot
be applied optimally to dynamically produced schedules.

4 Task Group Composability and Component
Composability

We say that a set of task groups STG={TGy, .., TGy_1} is weakly composable if
and only if the following holds: Given any set of arrival functions {Ag, .., A,_1}
for the task groups in STG, for any 0 < k < mn — 1, there exists a schedule
Sk for TGy, under Ay, and SS = {Sp, .., Sp—1} is composable. Obviously, weak
composability is equivalent to the schedulability of task group |Jg,o TGr. We
say that a set of task groups STG is strongly composable if and only if the
following holds: Given any schedule Sy of TG under any Ay, SS = {So, .., Sn—1}
is composable. The following is a simple example of strong composability.
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Suppose there are two task groups. T'Gy consists of a periodic task Ty =
(1,5,5), and TG, consists of a sporadic task 77 = (1,5,5). Then an arbitrary
schedule Sy for TGy and an arbitrary schedule Sy of TG4 can always be composed
into a schedule S by the extended EDF no matter what the arrival function is.
Therefore, this set of task groups are strongly composable.

Not all weakly composable sets of task groups are strongly composable. Sup-
pose we change the above example of strongly composable set of task groups by
adding another periodic task 7o = (4, 10, 10) to task group T'Gy. Two schedules
can be produced for TGy by a fixed priority schedulers: Sp and Sj). In Sy, suppose
we give a higher priority to Tp, and therefore for all j, So(0,75) = (5-4,5-5+1),
and Sp(2,j) = (10 -5 + 1,10 - j + 5). For S}, suppose we give higher prior-
ity to T, and therefore for any number j, S;(0,25) = (10 -5 + 4,10 - j + 5),
S50(0,25+1) =(10- 45+ 5,105+ 6); SH(2,7) = (10- 4,10 - 5 + 4).

S is composable with any schedule S; of TGy, but S| is not. In S, for any
Jj, the deadline of job (0,2 - j) is at 10 - j + 5, and yet it is scheduled after job
(2,7) whose deadline is at 10-j + 10. Because of the order-preserving property of
schedule composition, it follows that every time interval (10 - j, 10 - j + 5) must
be assigned to S{. Thus, if a job of T} arrives at time 10- j, schedule composition
becomes impossible.

We say that a set of supply functions SSup={Supy, .., Sup,—_1} is consistent
if and only if the aggregate time supply of all functions between any time interval
(b, e) is less than or equal to the length:

Z (Supi(e) — Supi(b)) <e—1b

Suppose SC = {(Schoy, TGy), .., (Schy—1,TG,_1)} is a set of components.
SC' is composable if and only if given any set of arrival functions SA =
{Ag,.., A,_1}, there exists a set of consistent supply functions SSup =
{Supo, .., Sup,—1} such that Schy produces schedule Si of TG under arrival
function Ay and supply function Supy, and SS = {Sy, .., S,,—1} is composable.

Component composability lies between weak composability and strong com-
posability of task groups in the following sense. A component has its own sched-
uler which may produce for a given arrival function, a schedule among a number
of valid schedules under the arrival function. Therefore, given a set of compo-
nents, if the corresponding set of task groups of these components are strongly
composable, then the components are composable; if the task groups are not
even weakly composable, the components are not composable. However, when
the task groups are weakly but not strongly composable, component compos-
ability depends on the specifics of component schedulers.

To illustrate these concepts, we compare weak task group composability,
strong task group composability and component composability in the following
example which is depicted in Figure 2. Suppose there are two components Cy =
(TGo, Scho) and C; = (T'Gy, Schy). For any valid arrival function A for each of
the task groups, there exists in general a set of schedules that may correspond to
the execution of the task group under the arrival function set. In Figure 2, the
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circle marked as S5 o represents the set for all possible schedules of T'G under
Ap; and SSp.1, S51,0, SS1,1 are defined similarly. If TGy and T'G; are strongly
composable, then randomly pick a schedule Sy from SSy, and a schedule Sy
from 5S;, where x and y are variable and Sy and S; are composable. If TG
and T'G; are weakly composable, then for any x and y, there exists a schedule
So from SSy , and there exists a schedule S; from S5 , such that Sy and S; are
composable. The small circle marked as 5SSy o, is the set of all schedules that can
be produced by the scheduler Scho under Ag. Each point in SSj ¢ s corresponds
to one schedule, and one or multiple supply functions upon which Schy produces
S550,0,s. Circle 850,15, 551,0,s; 551,1,s are defined similarly. If components Cj
and C; are composable, then for any pair of x and y, there exists a schedule Sy
in $S0,2,5, and a schedule Sy in $51 4, So and S; are composable, and there
exists a supply function Supy corresponding to Sy and a supply function Sup;
corresponding to S, and Supy and Sup; are consistent.

SS0, 1

Fig. 2. Composability

In many scheduler composition paradigms, the resource supply functions can
be determined only online for components that have unpredictable arrivals of
jobs. Therefore it is often hard to define resource supply function a priori. How-
ever, we can introduce the notion of contracts to express the requirements im-
posed on the supply function by a component, as the interface between a com-
ponent and the composition coordinator. In the next section, we shall discuss
Harmonic Component Composition which makes use of explicit supply function
contracts.

5 Harmonic Component Composition

We consider the tradeoff between composability and the simplicity in the design
of the system-level scheduler to be a significant challenge in component com-
position. As an extreme case in pursuing simplicity, a coordinator may allocate
resources among components based on a few coarse-grain parameters of each
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component, such as the worst case response time and bandwidth requirement.
This type of solutions often does not achieve composability, i.e., admission of
new components may be disallowed even when the aggregate resource utiliza-
tion is low because of previous overly conservative capacity commitments. At
the opposite extreme, the coordinator may depend on details about the com-
ponents to perform complex analysis and may take on too many obligations
from individual components, such that the system performance may eventually
be degraded. We now propose a solution to meet the challenge by introducing
class-based workloads. We call this approach Harmonic Component Composition

(HCC).

5.1 Coordinator Algorithm

The system designer will select a constant K as the number of resource classes. A
class k (k € [0, K)) is defined by a class period P, = m¥, where m is a designer-
selected constant. We require a rate monotonic relation between the periods of
classes: For any 0 < [ < k < K — 1, %’; = m!~%, Lower class has larger class
number and longer class period.

When a component C is ready to run, it generates a supply contract and sends
it to the coordinator. The supply contract is a list of workload defined as (k, I, w),
where k < [. The workload permits that up to w time units of resource supply
can be on demand within any time interval of length m!; and once a demand
occurs, it must be met within m”* time units. Upon receiving a supply contract,
the coordinator will admit a component if and only if it can satisfy the contract
without compromising the contracts with previously admitted components.

When a demand is proposed to class k, it will be served within m* time. To
keep this guarantee, HCC maintains a straightforward invariant to make sure
that supply needed online for class k£ or higher in any time interval with length
mPF is less than or equal to mF. To accomplish this, the aggregate workload
admitted to class k or higher is constrained as if there is a conceptual resource
associated with class k£ which is consumed by admitting any workload with class
k or higher. Suppose that Ry represents the conceptual resource of class k. Ry,
is initiated as Py. A workload (k, 1, w) requires no conceptual resource from the
classes higher than k, but requires that from every class lower than or equal to
k. The value of the conceptual resource requirement of a workload (k,,w) on
class i is derived from the worst case occupation in a time interval of length P;
by the workload.

If a component C, is admitted, the coordinator establishes a server identified
with (h, k, 1) for each workload (k, [, w) in the contract. The component to which
the server belongs is identified by h, the class of the server is k, and (k, ) defines
a subclass. All servers of class ¢ are in a list L;. The server is defined with a
budget limit w and replenishment period of m!. A server have four registers,
load, carry, budget and replenish.
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Initialization:
(1) foreach 0 <k <K -1

(3) Ly, is set as an empty list

Contract Admission:

(1) Upon component Cj, proposes a contract V},, which is a
list of (k, I, w)
foreach 0 <:< K —1
foreach (k,l,w) € V
foreach k < i <]
R, :=R,—w
foreach [+ 1 <i< K —1
R =R, —w-(m")
if 3R, <0
) reject component C}, and terminate this run of
contract admission;
)  foreach i € [0, K — 1]
) RZ = R;
)
)

AN AN AN AN N S N S
= O 00 ~J O U = W N
O — N

foreach (k,l,w) € V3
construct server (h,k,l) and add to the end of Ly,
with the following initial values:
(15) budget = w, loaded = carry = 0, replenish as
empty queue.

Referring to the algorithm specification above, a component C}, may load a
server (h,k,l) by adding a value to its register load when the component Cj,
demands usage on the resource. If the value of the load register is positive, the
server is loaded. If a loaded server has budget(budget > 0), then the budget
is consumed on the load and all or part of the loaded value becomes carried
(carry > 0). At the start of a time unit (¢,¢ + 1) (which means ¢ is a non-
negative integer), if class k is the highest class with a carried server, then the
first carried server in Ly supplies resource in the time unit (¢,¢+ 1).

The existing budget of a server is held in budget. When load and budget are
both positive and v = min(load, budget), both of them are reduced by v and
carry is increased by v. Consumed budget will be replenished after m! units of
time. The queue replenish records the scheduled replenishments in the future.
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Online Execution:

) Upon the start of time unit (¢,¢ + 1):

) foreach server (h,k,l)

) Replenish budget:

) if the head of queue in replenish is (t,val)

) budget := budget + val

) dequeue (t,val) from repenish

) Carry work load:

) if load > 0 and budget > 0

) v := min(load, budget)

0 carry = carry +v

1 budget := budget — v

2 load := load — v

3 enqueue (vt +m') to replenish

4 Supply Resource:

5 Select server (h,k,l), such that k is the highest class
with at least one carried server, and (h, k,1) is the first
carried server in L.

(16) carry = carry — 1

(17) Supply resource to component C}, in time unit (¢, ¢+

D

o — — — ~— —

When a component terminates, the coordinator reclaims the conceptual re-
sources from the component.

Component termination:

(1) Upon the termination of component Cj,
(2) foreach (k,l,w) € V,

(3) delete server (h, k,1) from Ly

(4) foreach k <1 <

(5) R, =R, +w

(6) foreach I+ 1<i< K -1

(7) R; = R;+w-(m

5.2 Component Algorithm

In the HCC approach, a component generates a supply contract, and if admitted,
it may demand supply from its servers. Different algorithms may be applied for
different components in a composition. We describe one solution here as an
example.
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Assume that there is a component C},, and its component scheduler is EDF.
A task (¢, p,d) is categorized to subclass (|[logmd], |logmp]), and its execution
time is added to the weight w of the workload with that subclass.

Supply Contract Generation:

(1) foreach (k,l) such that 0 <k <I< K —1
(2) Wk, = 0

(3) foreach i € T,

(4) k := |log,, i.d]

(5) L := |log,, i.p]

(6) W, = Wk, + i.C

(7) foreach wy; #0

(8) add workload (k, [, wy;) into contract V},

At run time, upon the arrival of a job (4, j), a demand for resource supply is
added to the server corresponding to task i at the start of the next time unit.

Online execution:

(1) Initialization:

(2) foreach (k,1)

(3) Wk, = 0;

(4) Upon the arrival of job (3, ),

(5) k := |log,, i.d]

(6) 1= log,ip]

(7) Wkl = Wg,1 + i.C

(8) Upon the start of time unit (¢, + 1)
(9) foreach server (k,!) such that wy; > 0
(10) load := load + wy ;

(11) w, = 0;

5.3 Example

Having described how HCC works, we illustrate the HCC approach by an exam-
ple below.

In this example, we design a system with four components with the following
specifications.

— Component Cj consists of one task for emergency action and 2 periodic
routine tasks. The emergency action takes little execution time and rarely
happens, but when a malfunction occurs, the action must be performed
immediately. We abstract this action by a sporadic task Ty = (1,00,1),
which means that the execution time and relative deadline are both 1, and
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the minimum interval between consecutive arrivals are infinite. The periodic
routine tasks are given by 77 = (1,80, 8), T> = (1, 100, 10).

— Component C7 is a group of periodic routine tasks defined as follows: T3 =
(1,3,3), Ty = (1,10, 10).

— Component (5 is a bandwidth-intensive application, which needs 25 percent
of the resource. It can be modeled as T5 = (16, 64, 64).

— Component C3 has one periodic task Tg = (3, 30, 30).

The value of m and K are arbitrarily selected as 2 and 6 by the system
designer, based on estimations of the potential workloads. Let us apply the
contract generation as defined in this paper. Four contracts will be produced as
follows. Recall that workload is defined as (k, [, w).

Vo =4(0,6,1),(3,6,2)}, where Ty is mapped to workload (0,6, 1), T} and T

are mapped to (3,6,2).

- V1 ={(1,1,1),(3,3,1)}, where T3 is mapped to (1,1,1), and T is mapped
to (3,3,1).

- V5 ={(6,6,16)}.

V= {(44,3)}.

Suppose that all components become ready at time 0, and the admission
decisions are made according to their index order. For all 0 < k < 6, Ry, remains
non-negative when Cy, Cp, Cs are admitted. However, during the admission of
Cs, R < 0, therefore C5 is not admitted. Table 1 shows the change of Ry
during admission procedure, and Table 2 shows the established servers on all
classes after that.

Assume that the first job of T arrives at time 4 and the online executions
of all components are defined as in this paper. We now show a step by step
execution from time 0 to time 4.

At time 0, the budget registers of all servers have been initialized according to
their weights, and the components add their current demands to the correspond-
ing load registers, as shown in Table 3. Coordinator moves the in-budget loads
into register carry, and the consumed budget are recorded for replenishments in

Table 1. Component Admission

Component 0 [Component 1 |Component 2 Component 3
initial|(0, 6, 1)[(3, 6, 2)[(1, 1, D[(3, 3, 1)| (6, 6, 16) (4,4, 3)
Ro| 1 0 0 0 0 0 Ry 0
Ri| 2 1 1 0 0 0 4 0
Ro| 4 3 3 1 1 1 R} 1
R3| 8 7 5 1 0 0 R 0
R4| 16 15 13 5 3 3 R) 0
Rs| 32 31 29 13 9 9 Rj 3
Re| 64 63 61 29 21 5 Ry -7
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Table 2. Servers on All Classes

Lo|{(0,0,6)}
L1|{(1,1,1)}
Lo
Ls|{(0,3,6),(1,3,3)}
Ly
Ls
Ls|{(2,6,6)}

Table 3. Register Image Right After Component Loading At Time 0

budget |load|carry|replenish
1 0
1 1
2 2
1 1
16 16
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the future. The carried value of server (1,1,1) becomes 1. Server (0,0, 6) is not
carried, therefore server (1,1,1) is selected to supply time between time (0, 1).
Its carry is then decremented back to 0. Table 4 shows the register image after
the execution of the coordinator.

Between time (0, 1), no load is added from any component. At time 1, server
(0,3, 6) is selected to supply between (1, 2) so its carry is decremented, as shown
in Table 5.

At time 2, server (1, 1, 1) replenishes its budget, and server (0, 3, 6) is selected
as supplier and so its value of carry is decremented, as shown in Table 6.

At time 3, the second job of T3 is ready, so Cy loads server (1,1,1) by 1,
as shown in Table 7. On the coordinator side, budget is available for server
(1,1,1), therefore budget is consumed for the load and carry is incremented by
1. Budget is consumed, and therefore future replenishment is added to replenish.
Then server (1,1,1) is selected as supplier, and its carry is decremented by 1.
Table 8 shows the register image after the coordinator execution.

At time 4, a job of task Ty arrives. Therefore server (0,0, 6) is loaded by 1,
as shown in Table 9. During the coordinator execution, budget is available for
(0,0,6) and consumed, future replenishment is stored, and the value of carry
is incremented by 1. Then server (0,0,6) is selected to supply, and its carry is
decremented back to 0. Table 10 shows the register image after these executions.

It is noteworthy that a simple fixed-priority composition scheme cannot even
compose Cy and C together for the following reason. Because of the short dead-
line of task Ty, Cp must have the highest priority. Then there is a possibility
that 3 continuous time units may be supplied to Cy, in which case task T5 in
C1 may miss its deadline. The low composability is a result of not distinguish-
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Table 4. Register Image Right After Coordinator Execution At Time 0

budget |load|carry|replenish
(0, 0, 6)[1 0 |0
(1,1, 1)|0 0 1[0 {(1,2)}
(0, 3, 6)|0 0 |2 {(2,64)}
(1, 3, 3)|0 0 |1 {(1,8)}
(2, 6,6)|0 0 |16 |{(16,64)}

Table 5. Register Image Right After Coordinator Execution At Time 1

budget|load|carry|replenish
(0, 0, 6)|1 0 |0
(1,1, )0 0 0 (L2}
(0, 3, 6)|0 0 |1 {(2,64)}
(1, 3, 3)|0 0 |1 {(1, 8)}
(2, 6,6)|0 0 |16 |[{(16,64)}

Table 6. Register Image Right After Coordinator Execution At Time 2

budget|load|carry|replenish
(0,0, 6)[1 0 |0
(1,1, D[1 0 |0
(0, 3, 6)[0 0 |0 {(2,64)}
(1, 3, 3)[0 0 |1 |{(1,8)}
(2, 6, 6)|0 0 |16 [{(16,64)}

Table 7. Register Image Right After Component Loading At Time 3

budget|load|carry|replenish
(0, 0, 6)[1 0 |0
(1,1, 1)|1 1 1|0
(0, 3, 6)|0 0 |0 {(2,64)}
(1, 3, 3)|0 0 |1 {(1,8)}
(2,6, 6)|0 0 |16 |{(16,64)}

ing the different types of workloads in Cy. In contrast, by Harmonic scheduler
composition, Cy, C; and C5 can be admitted one by one and served in the same
time.

5.4 Analysis

If a component C}, is admitted by the coordinator, then the coordinator will
supply resources to C} according to the supply contract Vj. Assuming that
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Table 8. Register Image Right After Coordinator Execution At Time 3

budget |load|carry|replenish
(0, 0, 6)[1 0 |0
(1,1, 1)|0 0 |0 {(1,5)}
(0, 3, 6)|0 0 |0 {(2,64)}
(1, 3, 3)|0 0 |1 {(1,8)}
(2, 6,6)|0 0 |16 |{(16,64)}

Table 9. Register Image Right After Component Loading At Time 4

budget |load|carry|replenish
(0, 0, 6)[1 1 10
(1,1, 1)|0 0 |0 {(1,5)}
(0, 3, 6)|0 0 |0 {(2,64)}
(1, 3, 3)|0 0 |1 {(1,8)}
(2, 6,6)|0 0 |16 |{(16,64)}

Table 10. Register Image Right After Coordinator Execution At Time 4

budget |load|carry|replenish
(0, 0, 6)[0 0 |0 {(1,68)}
(1,1, 1)|0 0 |0 {(1,5)}
(0, 3, 6)|0 0 |0 {(2,64)}
(1, 3, 3)|0 0 |1 {(1,8)}
(2, 6,6)|0 0 |16 |{(16,64)}

there is a workload (k,l,w) in V4, then a server (h,k,l) is established. Within
any time interval of length m!, up to w time units of supply may be loaded to
the server, and every demand will obtain supply within m* units of time since
the demand is loaded. We call this the responsiveness guarantee. However, if
the accumulated load exceeds w time units within a time interval of length m!,
the server is overloaded and the responsiveness guarantee will not be provided
anymore. The rationale here is that if the component breaks the supply contract
by overloading, the coordinator cannot guarantee prompt supply. On the other
hand, A non-overloaded server always provides the responsiveness guarantee,
even when other servers (including other servers of the same component) are
overloaded. We shall prove the responsiveness guarantee.

First, we prove that in a non-overloaded server, load never waits for budget.

Lemma 1. For a non-overloaded server (h,k,l), load < budget at any non-
negative integer time t after budget replenishment.
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Proof: Base Case: At time 0, Register budget is initialized to w, and a non-
overloading component loads less than or equal to w at time 0. The lemma is
true.

Induction case: Assume that for any non-negative integer ¢t < n, the lemma
is true. We now prove that the lemma is still true at time n+ 1 by contradiction.

Assume the contrary: The value of load and the value of budget at time n+ 1
after replenishment is « and y, and = > y.

Let n’ = maz(0, (n+1—m!)). Assume that the budget consumed after time
n' but before or at time n is z, then y + z = w;

Because the lemma is true at time n’, all loads arrived before or equal to
time n' are carried before or at time n’, so budget consumed between (n’,n) is
for load arrived after n’ and before or at time n. Because the lemma is true for
time n, load is decreased to 0 after the execution of the coordinator at time n.
Therefore, the aggregate load after time n’ and before or at time n is equal to
the budget consumption during the the same interval of time, which is z.

Also, the aggregate arrival of load after time n but before or at time n + 1
is z. The aggregate arrival of load after time n’ and before or at time n + 1 is
x + z. Thus  + z > y + z = w, and the server is overloaded, a contradiction. m

A non-negative integer time t is class k un-carried if all servers of class k or
higher have zero value for carry before the coordinator execution at time t. At
a class k un-carried time ¢, all previously loaded in-budget work for servers of
class k or higher is completely supplied.

Lemma 2. Ift is a class k un-carried time, then there exists another class k
un-carried time t' such that t <t +mF.

Proof: According to the admission control algorithm, the aggregation of exist-
ing budget from all servers of class k or higher at time ¢ before the coordinator
execution and replenishment at or after time t and before t +m” will not exceed
P, = mF. Therefore, the maximal aggregate value that can be added to carry
of all servers of class k or higher will not exceed m”*. At any integer time ¢, if
there exists a server of class k or higher with carry > 0, a supply is drawn from
a server with class k or higher made and a carry is decreasing. If ¢ does not
exist after time t and before time ¢t + mF, then carry is decreased by m”* at or
after time ¢ and before ¢t +mF, and time ¢t +m” must be an class k un-carried
time. Therefore the lemma holds.

Theorem 2. If server (h,k,l) is not overloaded at any time, it provides the
responsiveness guarantee.

Proof: Time 0 is a class k un-carried time. According to Lemma 2, at any
time ¢, there exists another un-carried time ¢’ for class k before or at time t+m*.
According to Lemma 1, if component C}, adds load at time ¢, the complete load is
moved to carry at time t. Because carry = 0 at time ¢, the supply corresponding
to the demand loaded at time ¢ is made before time ¢’'. Therefore responsiveness
guarantee is maintained. m
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The computational complexity of admission for a component C}, is bounded
by O(K -|V4|), where K is the maximal number of classes, and |V},| is the number
of workloads in the contract which is bounded by K?2. The online coordinator
overhead for each time unit is bounded by O(n - s), where n is the number of
components and s is the maximal number of servers for a component which is
bounded by K2. Because the period of classes increases exponentially, K should
be a small number.

6 Comparison with Related Work

There has been a significant amount of work on compositions in the last few years
as has been pointed out in Section 1 of this paper. Instead of using EDF online for
scheduling resource supply among components such as is in [2] and [5], our HCC
approach distinguishes itself from these previous works by using a rate monotonic
classification of workloads; the coordinator applies a fixed priority policy among
workload classes. The urgency of workloads from components is expressed by
their classes instead of explicit deadlines. The rate monotonic design of HCC
makes admission control and budget management simple, yet maintains good
composability. Many hard and/or soft real-time scheduling approaches depend
on a server budget to control the resource supply to a component to maintain
a fair share. Total Bandwidth Server [7] is one example of this approach. Like
servers, HCC also makes use of the budget idea. Because HCC is not deadline-
based and temporal workload control depends totally on budget control, HCC
does not require as much communication (e.g., deadlines of newly arrived jobs)
between the system-level scheduler and the component schedulers and is hence
a less costly and easier to implement budget-enforcement strategy.

POSIX 4 [4] defines two fixed priority schedulers, which are SCHD_FIFO
and SCHD_RR. For both of them, there may exist multiple fixed priorities, and
multiple tasks may be assigned to each priority. The tasks with the same priority
are scheduled with First-In-First-Out by SCHD_FIFO, and with Round Robin
by SCHD_RR. However, POSIX.4 defines neither priority assignment algorithm
nor schedulability guarantee mechanism. Cayssials et al. propose an approach
to minimize the number of priorities in a rate-monotonic fixed priority scheme,
assuming that multiple tasks may be scheduled on the same priority [1]. HCC
not only classifies tasks into priorities but also regulates tasks by servers.

7 Future Work

Whereas the Harmonic Component Composition is a dynamic approach in which
the coordinator does not depend on internal knowledge of components, we are
also investigating another approach to composition that improves composability
and online resource supply efficiency by exploiting a priori knowledge of the com-
ponents. Unlike the approach described in this paper, this alternative approach
requires extensive offline computation. We believe that these two composition
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approaches span the two far ends of a wide spectrum of practical solutions for
composing real-time schedulers. There is still much to be explored in the spec-
trum of solutions by a combination of the approaches. This is a subject for
further investigation.
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Abstract. Network of workstation (NOW) is a cost-effective alternative
to massively parallel supercomputers. As commercially available off-the-
shelf processors become cheaper and faster, it is now possible to build
a PC or workstation cluster that provides high computing power within
a limited budget. However, a cluster may consist of different types of
processors and this heterogeneity within a cluster complicates the design
of efficient collective communication protocols.

This paper shows that a simple heuristic called fastest-node-first
(FNF) [2] is very effective in reducing broadcast time for heterogeneous
cluster systems. Despite the fact that FNF heuristic does not guarantee
an optimal broadcast time for general heterogeneous network of work-
station, we prove that FNF always gives near optimal broadcast time
in a special case of cluster, and this finding helps us show that FNF
delivers guaranteed performance for general clusters. In a previous pa-
per we showed a similar bound on the competitive ratio in a send-only
communication model. This paper extends the result to a more realis-
tic sender-receiver model. We show that FNF gives a total broadcast of
2T + 3, where T is the optimum time and [ is a constant. This improves
over the previous bound on 2aT + 3 [17], where « is a theoretically
unbounded ratio of the processor performance in the cluster.

1 Introduction

Network of workstation (NOW) is a cost-effective alternative to massively paral-
lel supercomputers [1]. As commercially available off-the-shelf processors become
cheaper and faster, it is now possible to build a PC or workstation cluster that
provides high computing power within a limited budget. High performance par-
allelism is achieved by dividing the computation into manageable subtasks, and
distributing these subtasks to the processors within the cluster. These off-the-
shelf high-performance processors provide a much higher performance-to-cost
ratio so that high performance clusters can be built inexpensively. In addition,
the processors can be conveniently connected by industry standard network com-
ponents. For example, Fast Ethernet technology provides up to 100 Mega bits
per second of bandwidth with inexpensive Fast Ethernet adaptors and hubs.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 38-52, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Parallel to the development of inexpensive and standardized hardware com-
ponents for NOW, system software for programming on NOW is also advancing
rapidly. For example, the Message Passing Interface (MPI) library has evolved
into a standard for writing message-passing parallel codes [9,8,13]. An MPI pro-
grammer uses a standardized high-level programming interface to exchange in-
formation among processes, instead of native machine-specific communication
libraries. An MPI programmer can write highly portable parallel codes and run
them on any parallel machine (including network of workstation) that has MPI
implementation.

Most of the literature on cluster computing emphasizes on homogeneous clus-
ter — a cluster consisting of the same type of processors. However, we argue that
heterogeneity is one of the key issues that must be addressed in improving par-
allel performance of NOW. Firstly, it is always the case that one wishes to
connect as many processors as possible into a cluster to increase parallelism and
reduce execution time. Despite the increased computing power, the scheduling
management of such a heterogeneous network of workstation (HNOW) becomes
complicated since these processors will have different performances in computa-
tion and communication. Secondly, since most of the processors that are used to
build a cluster are commercially off-the-shelf products, they will very likely be
outdated by faster successors before they become unusable. Very often a cluster
consists of “leftovers” from the previous installation, and “new comers” that are
recently purchased. The issue of heterogeneity is both scientific and economic.

Every workstation cluster, be it homogeneous or heterogeneous, requires ef-
ficient collective communication [2]. For example, a barrier synchronization is
often placed between two successive phases of computation to make sure that all
processors finish the first phase before any can go to the next phase. In addition,
a scatter operation distributes input data from the source to all the other pro-
cessors for parallel processing, then a global reduction operation combines the
partial solutions obtained from individual processors into the final answer. The
efficiency of these collective communications will affect the overall performance,
sometimes dramatically.

Heterogeneity of a cluster complicates the design of efficient collective com-
munication protocols. When the processors send and receive messages at different
rates, it is difficult to synchronize them so that the message can arrive at the
right processor at the right time for maximum communication throughput. On
the other hand, in homogeneous NOW every processor requires the same amount
of time to transmit a message. For example, it is straightforward to implement
a broadcast operation as a series of sending and receiving messages, and in each
phase we double the number of processors that have received the broadcast mes-
sage. In a heterogeneous environment it is no longer clear how we should proceed
to complete the same task.

This paper shows that a simple heuristic called fastest-node-first (ENF), in-
troduced by Banikazemi et. al. [2], is very effective in designing broadcast proto-
cols for heterogeneous cluster systems. The fastest-node-first technique schedules
the processors to receive the broadcast in the order of their communication speed,
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that is, the faster node should be scheduled earlier. Despite the fact that the FNF
heuristic does not guarantee optimal broadcast time for every heterogeneous net-
work of workstations, we show that FNF does give near optimal broadcast time
when the communication time of any slower processor in the cluster is a multiple
of any faster processor. Based on this result, we show that FNF is actually an
approximation algorithm that guarantees a broadcast time within 27"+ (3, where
T is the optimal broadcast time and [ is the maximum difference between two
processors. This improves over the previous bound 2aT + 3 [17] where « is the
maximum ratio between receiving and sending costs, and can be arbitrarily large
theoretically. In a previous paper [19] we show a similar result for a communi-
cation model where the communication cost is determined by the sender only.
This paper shows that FNF can still achieve guaranteed performance when the
model determines the communication costs based on both the sender and the
receiver.

We also conduct experiments on the performance of the fastest-node-first
technique. The cluster we construct in our simulation consists of three types of
processors, and the number of nodes is 100. We construct the schedules from a
random selection and FNF, and apply them on the heterogeneous cluster model.
Experimental results indicate that FNF gives superior performance over random
selection, for up to 2 times of throughput.

The rest of the paper is organized as follows: Section 2 describes the com-
munication model in our treatment of broadcast problem in HNOW. Section 3
describes the fastest-node-first heuristic for broadcast in HNOW. Section 4 gives
the theoretical results for broadcast. Section 5 describe the experimental results
that we compare the completion time of our heuristics(FNF) with the random-
select algorithms, and Section 6 concludes.

2 Communication Model

There have been two classes of models for collective communication in homo-
geneous cluster environments. The first group of models assumes that all the
processors are fully connected. As a result it takes the same amount of time for
a processor to send a message to any other processor. For example, both the
Postal model [5] and LogP model [15] use a set of parameters to capture the
communication costs. In addition the Postal and LogP model assume that the
sender can engage in other activities after a fixed startup cost, during which
the sender injects the message into the network and is ready for the next mes-
sage. Optimal broadcast scheduling for these homogeneous models can be found
in [5,15]. The second group of models assume that the processors are connected
by an arbitrary network. It has been shown that even when every edge has a
unit communication cost (denoted as the Telephone model), finding an opti-
mal broadcast schedule remains NP-hard [10]. Efficient algorithms and network
topologies for other similar problems related to broadcast, including multiple
broadcast, gossiping and reduction, can be found in [7,11,12,14,18,21,22,23].
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Various models for heterogeneous environments have also been proposed in
the literature. Bar-Nod et al. introduced a heterogeneous postal model [4] in
which the communication costs among links are not uniform. In addition, the
sender may engage another communication before the current one is finished,
just like homogeneous postal and LogP model. An approximation algorithm for
multicast is given, with a competitive ratio logk where k is the number of destina-
tion of the multicast [4]. Banikazemi et al. [2] proposed a simple model in which
the heterogeneity among processors is characterized by the speed of sending pro-
cessors, and show that a broadcast technique called fastest-node-first works well
in practice. We will refer to this model as the sender-only model. Based on the
sender-only model, an approximation algorithm for reduction with competitive
ratio 2 is reported in [20], and the fastest- node-first technique is shown to be
also 2-competitive [19]. Despite the fact that the sender-only model is simple
and has a high level abstraction of network topology, the speed of the receiving
processor is not accounted for. In a refined model proposed by Banikazemi et al.
[3], communication overheads consists of both sending and receiving time, which
we will refer to as the sender-receiver model. For the sender-receiver model the
same fastest- node-first is proven (Libeskind-Hadas and Hartline [17]) to have
a total time of no more than 2aT + 3, where « is the maximum ratio between
receiving and sending time, 3 is the maximum difference between two receiving
time, and T is the optimal time. We adopt the sender- receiver model in this pa-
per and improve this bound to 27 + 8. Other models for heterogeneous clusters
include [6,16].

2.1 Model Definition

The model is defined as follows: A heterogeneous cluster is defined as a collection
of processors pg, p1, ..., Pn_1, €ach capable of point-to-point communication with
any other processor in the cluster. Each processor is characterized by its speed
of sending and receiving messages, and the network is characterized by the speed
to route a message from the source to the destination. Formally, we define the
sending time of a processor p, denoted by s(p), to be the time it needs for p
to send a unit of message into the network. The network is characterized by
its latency L, which is the time for the message to go from its source to its
destination. Finally we define the receiving time of a processor p, denoted by
r(p), to be the time it takes for p to retrieve the message from the network
interface. We further assume that the processor speed is consistent, that is, if
a processor p can send messages faster than another processor ¢, it can also
receive the messages faster. Formally we assume that for two processors p and
q, s(p) < s(q) if and only if 7(p) < r(q).

The communication model dictates that the sender and receiver processors
cannot engage in multiple message transmissions simultaneously. That is, a
sender processor must complete its data transmission to the network before
sending the next message, that is, a processor can only inject messages into the
network at an interval specified by its sending time. This restriction is due to
the fact that processor and communication networks have limited bandwidth,
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therefore we would like to exclude from our model the unrealistic algorithm that
a processor simply sends the broadcast message to all the other processors simul-
taneously. Similarly, the model prohibits the simultaneous receiving of multiple
messages by any processor.

DD
-

Fig. 1. A broadcast send-receive communication model.

2.2 Broadcast Problem Description

We consider an example with two fast processors pg, and p;, and one slow pro-
cessor po. The fast processors have sending time 1 and receiving time 2, the slow
processor has sending time 2 and receiving time 3, and the network latency L is
1. We assume that pq is the source and that it sends a message to po at time 0.
The message enters the network at time 1 since s(po) is 1, and leaves the network
at time 1 4+ L = 2, and is received by py at time 2 + r(pz) = 5. After sending a
message into the network at time 1, pg can immediately send another message
to p1 and inject it into the network at time 1+ s(pp) = 2. The message is finally
received by p; at time 2 + L + r(p;) = 5. See Figure 1 for an illustration.

2.3 Simplified Model Description

We can simplify the model as follows: Since a receiving node p always has to wait
for L 4+ r(p) time steps before it actually receives the message, we can add the
network latency L into the receiving time. The processor p, therefore receives
its message at time s(pg) + r(p2) =144 =5, and p; receives its message from
po at time 2s(pg) + r(p1) = 5. See Figure 2 for an illustration.

Assume that a processor ¢ sends a message to the other processor p at time
t, then p becomes ready to receive at time t + s(q), since p now can start re-
ceiving the message, and we denote the ready to receive time of p by R(p).
At time ¢ + s(q) + r(p) p becomes ready to send because it can start sending
its own message now, and we use S(p) to denote the ready to send time of p.
That is, a processor p can finish sending messages into the network at time
S(p) + s(p), S(p) + 2s(p), ..., S(p) + i * s(p), where i is a positive integer, until
the broadcast is finished.
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Fig. 2. A simplified send-receive communication model.

3 Fastest-Node-First Technique

It is difficult to find the optimal broadcast tree that minimizes the total broadcast
time in a heterogeneous cluster, therefore a simple heuristic called fastest-node-
first (FNF) is proposed in [2] to find a reasonably good broadcast schedule for
the original sender-only heterogeneous model [2].

3.1 Fastest-Node-First Scheduling for Broadcast

The FNF heuristic works as follows: In each iteration the algorithm chooses
a sender from the set of processors that have received the broadcast message
(denoted by A), and a receiver from the set that have not (denoted by B). The
algorithm picks the sender s from A because, as the chosen one, it can inject the
message into the network as early as possible. The algorithm then chooses the
fastest processor in B as the destination of s. After the assignment, r is moved
from B to A and the algorithm iterates to find the next sender/receiver pair.
Note that this same technique can be applied to both models — the sender only
and the sender-receiver heterogeneous models — since we assume that the sending
and receiving times are consistent among processors. The intuition behind this
heuristic is that, by sending the message to those fast processors first, it is likely
that the messages will propagate more rapidly.

The fastest-node-first technique is very effective in reducing broadcast
time [2,17,19]. The FNF has been shown in simulation to have a high probability
to find the optimal broadcast time when the transmission time is randomly cho-
sen from a given table [2]. The FNF technique also delivers good communication
efficiency in actual experiments. In addition, FNF is simple to implement and
easy to compute.

3.2 FNF Not Guarantee Optimal Broadcast Time

Despite its efficiency in scheduling broadcast in heterogeneous systems, the FNF
heuristic does not guarantee optimal broadcast time [2,6] in sender-only model.
Since the sender-only model is a special case of the sender-receiver model, FNF
is not optimal in the sender-receiver model either. For example, in the situation
of Figure 1 FNF will not achieve optimal time, as Figure 3 indicates.
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Fig. 3. A counterexample that FNF always produces the optimal broadcast time since
the fast processor pp sends message to the faster p; first, instead of the slower ps.

4 Theoretical Results

Despite the fact that FNF cannot guarantee optimal broadcast time, we show
that FNF is optimal in some special cases of heterogeneous clusters. Based on
the results of these special cases, we show that the fastest-node-first algorithm
produces a schedule with guaranteed performance.

Theorem 1. [2]

There exists an optimal schedule in which all processors sends messages with-
out delay. That is, for all processor p in T, starting from its ready to send time,
p repeatedly sends a message with a period of its sending time until the broadcast
ends.

With Theorem 1, we can simply discard those schedules that will delay mes-
sages, and still find the optimal one. Since there is no delay, we can characterize
a schedule as a sequence of processors sorted in their ready to receive time. Since
no delay is allowed, any scheduling method must schedule s, the processor in A
that could have completed the sending at the earliest time, to send a message
immediately. Formally we define P = (py, ..., pn—1) to be a sequence of n pro-
cessors sorted in their ready to receive time and the processors appear in P in
non-decreasing sending speed, except for the source sg. The total broadcast
time of P (denoted by T(P)) is by definition max?—' S(p;), the latest ready to
send time among all the processors'. A broadcast sequence P is optimal if and
only if for any other permutation of P (denoted by P’), T(P) < T(P’).

Let p be a processor and NSp(p,t) be the number of messages successfully

sent at and before time ¢ by p in the sequence P. Formally, NSp(p,t) = \_t;g;)p) 1

for t > S(p). We can define ready to receive time R(p;) and ready to send time
S(p;) recursively (Eqn. 1). that is, the ready to receive time of the i-th processor
in P is the earliest time when the total number of messages sent by the first ¢ — 1
processors reaches i.

! Note that the processor that has the latest ready to receive time may not have the
latest ready to send time.



An Approximation Algorithm for Broadcast Scheduling 45

R(po) =0 and S(po) =0

i—1
R(p;) = min{t| Y NSp(p;,t) =i}, 1<i<n-—1
7=0
S(pi) = R(pi) +r(pi), 1<i<n—-1 (1)

4.1 Power 2 Clusters

In this section we consider a special case of heterogeneous clusters in which all
the sending and receiving costs are power of 2, and we refer to such clusters as
power 2 clusters [19]. Similar notation is also used in [17]. We show that FNF
technique does guarantee minimum ready to receive time for the last processor
receiving the broadcast message in a power 2 cluster, and this is the foundation
of our competitive ratio analysis.

Henceforth we will focus on minimizing the ready to receive time of the
last processor in a sequence P = (po, ..., pn—1), which is denoted as TR(P) =
R(pn—1). We will later relate our finding with the latest ready to send time
among all the processors, denoted by T'S(P) = max?z_o1 S(p;), which is the time
the broadcast actually takes. We choose this approach since TR(P) is much
easier to handle in our mathematical analysis than T'S(P).

We first establish a lemma that it is always possible to switch a processor p
with a slower processor ¢ that became ready to receive right ahead of p (with
the exception that ¢ is the source) so that p and ¢ will contribute more on the
NS function after the switch. We then use an induction to show that this mod-
ification will not increase the ready to receive time of the processors thereafter,
including the last one in the sequence. This leads to the optimality of FNF for
the last ready to receive time in a power 2 cluster.

Lemma 1. Let p be a first faster processor that became ready to receive right
after a slower processor q in a sequence P, that is, R(p) = t1 > R(q) = to, and
s(p) < s(q). By switching p with q in P we obtain a new sequence P’. Then, in
this new sequence P, R(p) is moved forward from ty to to, and R(q) is delayed
from ty to no later than t1, and NSp/(p,t)+NSp/(q,t) > NSp(p,t)+NSp(q,t),
fort > tg.

Proof. Let’s consider the time interval from ty to ¢;. Since p is the first faster
processor that becomes ready to receive right after a slower processor ¢, no
processor becomes ready to receive between ty and ¢;. Since, in P’, p is moved
to ¢’s position in P, p has R(p) = tg. As p is faster in sending and receiving, ¢
becomes ready at or before ¢, from Equation 1. For our purpose we will assume
that ¢ becomes ready to receive at time ¢; since if the time is earlier, it is more
likely that NSp/(p,t) + NSp:(q,t) > NSp(p,t) + NSp(q,t), for t > to.

Let d = t; — to. Since all the ready to receive time is integer, d is at least
1. Tt is easy to see that when d is larger, NSp/(p,t) + NSp/(q,t) is more likely
to be larger than NSg(p,t) + NSs(q,t), when t > to. In fact, from p’s point of
view, when the sequence changes from P to P’, the NS(p) increases between
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Fig. 4. An illustration that the N'S function in P and P’.The black squares indicate
where the NS function increases by 1. Note that the NS function in P’ is no less than
in P for all time later than to. In this example r(p) = r(q) = 4, s(p) = 2, s(q) = 4, and
d=1

L#ﬁ))J and fﬁ], but the decrease in NS(q) is only between L#Z)J and f%}.
The increase in N.S(p) is larger than the decrease in N'S(q) when d is sufficiently
large, since s(q) is at least twice as large as s(p). In addition, r(p) is no larger
than r(g), and that means N.S(p) increases earlier than the decrease of N.S(q).
Therefore, by moving p further ahead in time, it becomes easier for the increase
of the NS function from p to compensate the decrease of the NS function from
q, when the sequence changes from P to P’. Therefore it suffices to consider the
worst case when d = 1.

Let us consider the change of NS function from ¢’s point of view. ¢ is delayed
by only one time step, so NSg(q) is at most greater than NSg/(q) by 1, which
only happens at time interval [tg +7(q) + ks(q), to +7(q) + ks(q) + 1), where k is
a positive integer, r(g) is the receiving time of ¢, and s(q) is the sending time of
q. See Figure 4 for an illustration. However, during this interval N.Sp, (p) will be
larger than N.Sp(p) by one since s(g) is a multiple of s(p), and r(q) is a multiple
of 7(p) due to speed consistency. This increase compensates the decrease due to
q and the Lemma follows.

After establishing the effects of exchanging the two processors on the N.S
function, we argue that the ready to receive time of the processors after p and ¢
will not be delayed from P to P’. We prove this statement by an induction and
the following lemma serves as the induction base:

Lemma 2. Let p and q be the (j — 1)1 and j'" processor in P, then the ready
to receive time of pj41 in P’ is no later than in P.

Proof. The lemma follows from Lemma 1 and the fact that the ready to receive
time of the first j 4 1 processors in the sequence is not changed, except for p and
q. Here we use the subscript to indicate whether the N.S function is defined on
P or P’, and for ease of notation we remove the same second parameter ¢ from
all occurrences of NS functions.
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Rp/(pj+1) = min{t| IZ:NSP' () = j+1}
- min{t|<§ NSpi(p1)) + NSpi(p) + NSpi(q) > j + 1}
= min{tl(g NSp(p)) + NSp/(p) + NSpi(q) = j + 1}
< min{tl(ji NSp(p)) + NSp(p) + NSp(q) = j + 1}
= RP(pj+l1:)O

Lemma 3. The ready to receive time of p; in P’ is no later than in P, for
j+1<i<n-1.

Proof. We complete the proof by the induction step. Assume that the ready to
receive time of p;,, in P’ is no later than in P, for 1 <m < n—j—1. Again for
ease of notation, we remove the same second parameter ¢ from all occurrences
of NS functions.

Rp/(pjym+1)
Jjtm

=min{t| > NSp/(p) > j+m+1}
=0

j—2 j+m

= min{t|((z NSpi(pi1)) + NSpi(p) + NSpi(q) + Z NSp:(pi)) > j+m+1}
1=0 I=j+1
j—2 j+m

<min{t|(}_NSp(m)) + NSp(p) + NSp(q) + Y NSpi(p)) > j+m+1}
1=0 I=j+1
Jj—2 j+m

< min{t|(O_ NSp(p)) + NSp(p) + NSp(g) + > NSp(p)) >j+m+1}
1=0 I=j+1

= Rp(pj+m+1)

The second-to-the-last inequality follows from Lemma 1, and the last in-
equality follows from the induction hypothesis that all the processors from p;4;
to pj+m have earlier ready to receive time (hence earlier ready to send time) in
P’ than in P, so they will have larger NS function, and a smaller ¢ to satisfy
Equation 1. One immediate result from Lemma 2 and 3 is that for any processor
sequence of a power 2 cluster, including the optimal ones, the final ready to
receive time will never be increased by making the faster processors ready to
receive earlier than slower ones. Now we have the following theorem:
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Theorem 2. The fastest-node-first algorithm gives optimal final ready to receive
time for a power 2 cluster.

4.2 An Approximation Algorithm

We can use Theorem 2 to show that FNF is actually an approximation algorithm
of competitive ratio 2 for the final ready to receive time. By increasing the
transmission time of processors, we can transform any heterogeneous cluster into
a power 2 cluster. We increase the sending and receiving time of each processor
p to be 2M10g (@)1 and 2Moer )] respectively. We will show that FNF, optimal for
the transformed cluster, also gives a schedule at most twice that of the optimal
final ready to receive time for the original cluster.

Theorem 3. The fastest-node-first scheduling has a final ready to receive time
no greater than twice that of the optimal final ready to receive time.

Proof. Let P be a sequence that gives optimal final ready to receive time for
a heterogeneous cluster C, and C’ be the power 2 cluster transformed from C.
We apply the same sequence P on C and C’ and let T and T’ be the final
ready to receive time TR respectively, that is, before and after the power 2
cluster transformation. We argue that this increase in transmission time will at
most double the TR, that is, 7" < 2T. This is achieved by an induction on the
processor index i. We argue that p;, which is ready to receive at time R(p;) for
C, becomes ready to receive no later then 2R(p;) for C’. The induction step
follows from the fact that all the previous p; for j < 7, become ready no later
than 2R(p;) for C’, and that both the sending time of the previous p;, j < ¢,
and the receiving time of p; are, at most doubled from C to C".

Now we apply FNF scheduling on C’ and let 7" be the resulting final ready
to receive time. Since C’ is a power 2 cluster, it follows from Theorem 2 that 7"
is no more than 7. Finally, we apply the same FNF scheduling on C and let T*
be the resulting final ready to receive time. T* should be no more than T" since
the sending and receiving times of each corresponding processor are higher in
C’ than in C. As a result T* is no greater than 7", which in turn is no greater
than 7", which in turn is no more than 27

Theorem 4. The total broadcast time from fast-node-first technique is at most
2T + 3, where T is the optimal total broadcast time, and [ is max{r(p;)} —

2min{r(p;)}.

Proof. Let P be an optimal schedule in total broadcast time. Let p be the
last processor that became ready to receive in P. As a result the optimal to-
tal broadcast time T is at least Rp(p) + r(p). Let p’ be the last processor
that became ready to receive according to FNF. From Theorem 3 we have
Rp/(p’) < 2Rp(p). Note that this inequality holds when P is any sched-
ule, and not necessarily the optimal schedule for the final ready to receive
time. The total broadcast time using FNF is Rp:(p) + r(p’), which is at most
2Rp(p) +7(p") = 2Rp(p) + 2r(p) + r(p') — 2r(p) < 2T+ f.
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5 Experimental Results

This section describes the experimental results and compare the completion
times of our heuristics (FNF) with those of a random-selection algorithm and
a trivial lower bound. The experimental results indicate that FNF outperforms
the random-selection algorithm by a factor of 2 in average, and is not very far
away from the lower bound.

5.1 Experimental Environment

The input cluster configurations for our experiments are generated as follow: We
assume that the number of classes in a cluster is 3. We vary the cluster size
from 6 to 100, and set one third of the nodes to be fast processors, one third to
be normal processors, and the others to be slow processors. For each processor
in the same class, we assign the same sending time and receiving cost to it, that
is, each node in the fast processor group has sending time 1 and receiving time
2, the sending and receiving time for normal processors are 5 and 6 respectively,
finally the time for slow processors are 10 and 11.

We compare the results from FNF and random selection. We repeat the ex-
periments for random-selection algorithm for 200 times and compute the average
broadcast time. On the other hand since FNF is a deterministic algorithm, for
each cluster size we test the FNF algorithm for only once.

5.2 FNF Heuristics and Random-Select Algorithm

We describe our implementation of FNF as follows: The program uses an array
to represent the set of processors that have not yet received broadcast message
(denoted by R-set), and a priority queue for the set of processors that have
received the broadcast message (denoted by S-set). The elements in the R-set
array are sorted according to their communication speed, and the elements in
the S-set are ordered so that the processor that could send out the next message
fastest has the highest priority. In other words, the processors in the S-set are
sorted according to their availability in time. Initially the S-set has the broadcast
source and the R-set is empty, and the simulation time is set to zero. The priority
queue design simplifies and speeds up the simulation, since the simulator can be
driven by events, not by time.

In each iteration we check if all nodes have received the broadcast message.
If this is not the case then we will schedule the next message. We pick the next
sender (with the highest priority) from the S-set priority queue, and the receiver
that has the minimum receiving time from the R-set. After choosing the sender
and the receiver, we calculate the updated available time for the sender and new
available time for the receiver, and place them into the S-Set (the chosen receiver
is therefore removed from the R-set). At the end the R-set will be empty and
the ready-to-send time of the last receiver is the total broadcast time. Figure 5
gives an example of a broadcast scheduling among 6 node.
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Fig. 5. The example of FNF algorithm under 6 node case.

We now describe the random-selection algorithm. Due to the random nature
of this algorithm, we will not need to maintain any priority queue or sorted array.
We randomly choose a sender from the S-set and a receiver from the R-set for
the next message. We repeatedly schedule the transmission until all processors
receive the message. The average time for the last receiver to receive its messages
is the time that we are interested in.

5.3 Timing Comparison

Figure 6 shows the experimental results. The completion time of FNF is about
half of the average time of random-selection algorithm.

o 20 40 60 80 100
Total number of processors

Fig. 6. The comparison of two scheduling algorithms.

We also give a lower bound on the optimal communication time for our
experimental cluster. No matter how the processors are scheduled, the broadcast
source must spend at least one unit of time to send the message, and a slow
destination processor must at least spend eleven units of time to receive the
message. As a result, the lower bound is at least 12 Figure 6 shows that the total
time of FNF is no more than twice that of the lower bound in our experiments.

From our experiments, we observed that it is almost impossible to find a single
case from 200 times of random-selection that gives a better broadcast time than
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the FNF algorithm. In addition, the broadcast time of the FNF algorithm might
be very close to optimal since our lower bound estimate is very rough. These
timing results also indicate that the completion time grows very slowly when the
size of the cluster increases, even when the cluster has up to 100 processors. Our
experimental results are consistent with those obtained by previous theoretical
sections. In addition, the FNF schedule is very easy to compute and efficient to
use.

6 Conclusion

FNF is a very useful technique in reducing broadcast time. In a previous paper
we show that FNF gives a broadcast schedule at most twice that of the optimal
time for the sender-only communication model[19]. For a more realistic sender-
receiver model adapted by this paper, we show that FNF gives a broadcast
schedule at most twice that of the optimal time plus a constant. This improves
over the previous bound by a performance ratio factor. In practice this factor is
bounded by 1.85 [17], but could be unbounded theoretically.

We also describe the experimental results in which we compare the com-
pletion time of our heuristics (FNF) with a random-selection algorithm. The
experimental results indicate that FNF outperforms the random-selection algo-
rithm by a factor of 2 in average. In addition, we also compare the timing results
of FNF with a very roughly estimated lower bound, and FNF always gives a total
broadcast time within twice of the lower bound.

There are many research issues open for investigation. For example, it will
be interesting to extend this technique to other communication protocols, in-
cluding reduction and all-to-all communication. For example, we showed that
for reduction there is a technique called “slowest-node-first” [20] that also guar-
antees 2-competitiveness in sender-only model. It would be interesting to extend
the result to the sender-receiver model, as we did for broadcasting in this paper.
In addition, it will be worthwhile to investigate the possibility to extend the
analysis to similar protocols like parallel prefix, all-to-all reduction, or all-to-all
broadcasting. These questions are very fundamental in designing collective com-
munication protocols in heterogeneous clusters, and will certainly be the focus
of further investigations in this area.
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Abstract. This paper addresses the problem of scheduling real-time
jobs that have multiple feasible intervals. The problem is NP-hard. We
present an optimal branch-and-bound algorithm. When there is time
to compute the schedule, this algorithm can be used. Otherwise, the
simple heuristics presented here can be used. In addition, a priority-
boosting EDF algorithm is designed to enhance the timeliness of jobs.
Simulation results show that the combined use of the heuristics and the
priority boosting EDF algorithm performs nearly as well as the optimal
algorithm.

1 Introduction

In some real-time applications, a job may have more than one feasible interval.
Such a job can be scheduled to begin its execution in any of its feasible intervals.
It is said to complete in time if the job completes by the end of the interval. If the
job remains incomplete at the end of the interval, the scheduler terminates the
job, and the partial work done by the job is lost. The scheduler then schedules
the job to execute from the start in a later feasible interval. The job misses its
deadline if it remains incomplete by the end of its latest feasible interval.

An example of such an application is missile jamming. A missile jamming
system tries to intercept each cruise missile before it hits its target by jamming
the missile’s guidance system. In general, a cruise missile flies for a long distance
and may pass several jamming-prohibited areas, such as metropolitan areas,
before reaching its target. Destroying the missile’s guidance system close to such
an area may cause unacceptably large collateral damages. Hence, the missile can
be jammed only before or after it flies over these areas. The time intervals when
the missile is not over or close to any jamming-prohibited area are the feasible
intervals of the job. The starts and ends of the intervals are either known a prior
or can be estimated from past information. The jamming job only needs to be
executed to completion once in one of its feasible intervals.

The optional jobs in the error-cumulative imprecise computation model stud-
ied by Choeng|[1] are also examples of jobs with multiple feasible intervals. In the
imprecise computation model, a job consists of two parts: mandatory and op-
tional part. The mandatory part must complete by its deadline and the optional
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© Springer-Verlag Berlin Heidelberg 2004
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part can be skipped if there are not enough resources. Skipping the optional
part introduces error into the result produced by the job. In some real-time ap-
plications like radar tracking, the error from the incomplete optional parts of
jobs in a periodic task accumulates. The error-cumulative model introduces a
threshold for the cumulative error of the task. When the cumulative error be-
comes greater than the threshold, the task fails. (In a radar tracking system,
the system may lost the tracked target if the cumulative error becomes greater
than a given threshold.) To confine the error within the threshold, the optional
part must execute completely at least once in every predetermined number N of
periods. We can view the optional part of one job in N periods as a job with IV
feasible intervals, which are intervals left over after the mandatory parts of the
jobs complete. As long as the job with N feasible intervals completes in time,
the error of the periodic task is under the allowed threshold.

Our model resembles real-time workload models that allow some jobs to be
skipped. Examples of these models are the skip-over model [2], reward-based
model [3], (error-cumulative) imprecise computation model [1,4], and (m k)-firm
guarantee model [5]. However, these models are concerned with periodic tasks.
The relative deadlines of (optional) jobs in all periods of a task are the same.
Optional jobs are not required to complete in some of these models: These jobs
can be terminated at any time or discarded entirely and produce results with
different levels of precision. In contrast, our model assumes that the length of
feasible intervals (i.e., the relative deadlines) are arbitrary. This factor introduces
another dimension of complexity. In addition, jobs are not optional: Each job
must execute from start to completion in one of its feasible intervals, and the
job fails to meet its timing requirement if it does not complete by the end of its
latest feasible interval.

This paper presents an exponential optimal algorithm and several simple
heuristics for finding a feasible schedule for jobs with multiple feasible intervals.
The optimal algorithm uses the branch and bound approach to reduce the time
required for finding a feasible schedule for a given job set. This algorithm is
optimal in the sense that there is no feasible schedule if the algorithm cannot
find one. These heuristics are extensions of traditional bin-packing heuristics:
First Fit Decreasing (FFD), Last Fit Decreasing (LFD), Best Fit Decreasing
(BFD), and Worst Fit Decreasing (WFD).

The paper also presents a priority-boosting EDF algorithm that is designed to
enhance the timeliness of jobs. The algorithm makes use of the result produced by
the optimal algorithm or a heuristic algorithm, which is the selection of a feasible
interval for each job that is schedulable. According to the priority-boosting EDF
algorithm, jobs are prioritized based on (1) the feasible interval selected for each
job and (2) job deadlines: The closer the selected feasible interval of a job is to the
scheduling time, the higher priority of the job. The heuristics and the priority-
boosting algorithm are evaluated by extensive simulations. The performances
are compared against that of the optimal algorithm.

Following this introduction, Section 2 describes the task model and defines
the terms used here. The section also states the problems of scheduling jobs with
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multiple feasible intervals. Section 3 presents an exponential optimal algorithm,
several polynomial-time heuristics, and the priority-boosting EDF algorithm.
Section 4 evaluates the heuristics and the combined use of the heuristics and the
priority-boosting EDF algorithm. Finally, Section 5 summarizes the paper.

2 Formal Models and Problem Statements

Thus far, and in our subsequent discussion, we use the term job as it is commonly
used in real-time systems literature [6,7,8]: A job is an instance of computation,
or the transmission of a data packet, or the retrieval of a file, and so on. We
focus here on scheduling jobs and call the jobs Ji, J2, and so on.

Multiple Feasible Interval Jobs. Each multiple feasible interval job is char-
acterized by its temporal parameters including its execution time, release time,
and a set of feasible intervals. The execution time, denoted by e, is the amount
of time required to complete the execution of the job when it executes alone
and has all the resources it requires. Throughout our discussion, we assume that
for the purpose of determining whether each job can complete by its deadline,
knowing its worst case execution time (WCET) is sufficient. By the execution
time of a job, we mean its WCET.

The release time of a job, denoted by r, is the instant of time at which the job
becomes known to the scheduler. A job is said to be eligible in the time interval
from its release time to the instant when the job completes.

Associated with each job is a set of disjoint time intervals, called feasible
intervals. The earliest feasible interval of a job begins at or after its release time.
The job can be scheduled and executed only in its feasible intervals. Once a
job begins to execute in a feasible interval, it must complete by the end of the
interval in order to produce a correct result. The scheduler may terminate the
job (and the partial work done by the job is lost) if the job remains incomplete
at the end of the interval. In that case, the scheduler will reschedule the job to
execute from the start in a later feasible interval of the job if such an interval
exists. In this paper, we assume that the scheduler always terminates the job at
the end of its feasible interval if it remains incomplete at the time, regardless
whether it has a later feasible interval or not.

We denote each feasible interval by FI = (L, R] where L and R represents
the start time and end time of the interval, respectively. We use F'I; ; to denote
the j-th feasible interval of job J;. The set of feasible intervals of job .J; is denoted
by FI; = {FI;1,Fl;>,..., F; i)} where n(i) is the number of feasible intervals
of job J; and intervals in the set are indexed in ascending order of their start
times. We represent a multiple feasible interval job J; by J; = (r;, e;, FI;). We
focus on this kind of jobs. Hereafter, we omit “multiple feasible interval” as long
as there is no ambiguity.

Figure 1 shows an example. Each box above a time line represents a feasible
interval. In this example, job J; has only one feasible interval; job J; has two
feasible intervals; and job J3 and Jy have three feasible intervals. Traditional
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Fig. 1. Example of multiple feasible interval jobs

real-time workload models consider only jobs exemplified by job J;. At any time
t, the term current feasible interval of a job refers to the interval which begins
before ¢t and ends after or at ¢t. Clearly, a job may not have a current feasible
interval at t.

The absolute deadline of a job is the instant of time by which its execution
is required to be completed. For a multiple feasible interval job, we can consider
the end time of each feasible interval as an absolute deadline of that job. In
other words, a job with n(i) feasible intervals has n(i) absolute deadlines. By
the absolute deadline of a job at time ¢, we mean the end time of the current
feasible interval of the job if the job has current feasible interval at time ¢. The
deadline of a job at ¢ is infinite if the job does not have current feasible interval
at t. Hereafter, we use the term deadline to mean absolute deadline and denote
it by d.

System workload, denoted by u(t), is the total instantaneous utilization of
eligible jobs in the system at time ¢. The instantaneous utilization of a multiple
feasible interval job at time ¢ is equal to its execution time divided by the length
of its current feasible interval if it has current feasible interval at time ¢. The
instantaneous utilization of the job is zero if it does not have a current feasible
interval.

We call a failed attempt to complete the execution of a job in one of its
feasible intervals a deadline miss. More precisely, a deadline miss occurs at the
end of a feasible interval if a job executes in the feasible interval and remains
incomplete at that time. The following definition states the timing constraint of
a job with multiple feasible intervals.
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Definition 1 (In-Time Completion).

An execution of a job J completes in time if and only if there is no deadline
miss between the time when it starts and the time when it completes. A job J
meets its timing constraint, or simply that it completes in time, if and only if
one of its execution completes in time.

When every job only has one feasible interval, Definition 2.1 is same as the
traditional definition of in-time completion.

Problem Formulation. The problem of scheduling jobs with multiple feasible
intervals can be divided into two problems: feasible interval selection and job
scheduling. Since each job must be executed entirely in one of its feasible inter-
vals, the scheduler may first choose for the job an interval among all the feasible
intervals of the job. The feasible interval selection problem is concerned with
how to make this selection. At any time in a system containing jobs with mul-
tiple feasible intervals, eligible jobs may or may not be in their selected feasible
intervals and all eligible jobs compete for the same resources. The job scheduling
problem is concerned with how to schedule these jobs if the scheduler aims to
achieve other performance goals in addition to ensuring the in-time completion
of every job.
These problems are stated more formally below.

1. Feasible Interval Selection: Given a set of multiple feasible interval jobs,
J={J1,Jo,...,Jm}, we want to find a feasible interval FI; € FI; for each
job J; such that all jobs can meet their real-time requirements defined by
Definition 2.1 when every job executes only in its selected feasible interval.
We refer to such a set of selected intervals collectively as a feasible (interval)
selection.

2. Multiple Feasible Interval Job Scheduling: Given a set of multiple-feasible
interval jobs, J = {J1, Ja, ..., Jar }, and the selected feasible interval FI; for
each job J;, we want to schedule these jobs so that they all complete in-time
and their response times are small.

If scheduling is done off-line or the release times of all jobs are identical,
the timing parameters of all jobs are known when the scheduler selects feasible
intervals for them. For this case, we seek a branch-and-bound optimal algorithm
for use when there is time to search for a feasible selection and simple heuristics
for use when there is little time to do search for a selection. In general, the jobs
are not released at the same time or the timing parameters are not available
until the jobs are released. In this case, the branch-and-bound feasible interval
selection algorithm is not suitable. The heuristics are simple enough for use
repeatedly when jobs are released.

In our subsequent discussion, we assume that the jobs are to be executed on
a single processor. Since the preemptive EDF algorithm is known to be optimal
for uniprocessor scheduling, we assume that the scheduler uses this algorithm.
This simplifying assumption can be easily removed by including a schedulability
analysis algorithm that is appropriate for the scheduling scheme used by the
system.
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3 Algorithms

In this section, we first show that the problem of selecting a feasible interval for
every job in a set of multiple feasible interval jobs so that all jobs complete in
time is NP-hard. We then present an exponential optimal algorithm that chooses
a feasible intervals for each job in the job set whenever the job set is schedulable
and a set of heuristics that attempt to find feasible intervals in polynomial time.
Finally, we present an EDF-based algorithm for scheduling the jobs after feasible
intervals have been selected for them.

3.1 NP-Hardness

The following theorem states that finding a feasible schedule for a set of multiple
feasible interval jobs is NP-hard.

Theorem 3.1. Finding a feasible schedule for a set of multiple feasible interval
jobs when timing parameters of the jobs are all known is NP-hard.

Proof. We prove the theorem by showing that a restricted version of this problem
is as hard as the bin-packing problem [9], a NP-complete problem. To do so,
consider a set of multiple feasible interval jobs J = {Ji, Ja, ..., Jar}. The sets
of feasible intervals for all jobs are identical, i.e., FI; = FI, = ... = FI,,.
Moreover, the lengths of all feasible intervals are identical.

Each feasible interval can be considered as a bin in the bin-packing problem.
The length of each feasible interval is the bin capacity. Each job is an object
to be packed into a bin; the size of the object is the execution time of the job.
To complete all jobs selected to complete in an interval without any deadline
miss, the sum of execution times of the jobs in the interval must be no greater
than the length of the feasible interval. Clearly, the problem of finding a feasible
interval for each job such that every job can complete within its selected feasible
interval is as same as finding a bin for each object such that all objects can be
packed into the bins.

Since the restricted version of the problem of finding a feasible schedule of
multiple feasible interval jobs is a bin-packing problem, we can conclude that
the problem is as hard as a NP-complete problem. Hence, the problem is NP-
hard. O

3.2 Branch and Bound Algorithm

We now describe a branch-and-bound (BB) algorithm. It selects a feasible in-
terval for every job in the given set of jobs when all the jobs are schedulable or
declares the job set infeasible when some jobs in the set are not schedulable.
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Pruning Condition. The condition of pruning the search space is the schedu-
lability condition!. When analyzing the schedulability of a subset of jobs, the
BB algorithm checks whether the jobs in the subset are schedulable (i.e., they
have no deadline miss) when they are scheduled to execute in the EDF order
in their selected feasible intervals. A subset of jobs is said to be feasible if all
the jobs in the subset are schedulable and infeasible if otherwise. When a subset
of jobs is infeasible, the BB algorithm can eliminate all subsets containing the
infeasible subset. This obvious fact allows the BB algorithm to disregard parts
of the search tree.

Branch and Bound Strategy. Figure 2 shows the search tree for a job set
J of M jobs. Each node v in the tree is labeled with a M-tuple vector X. The
vector represents feasible interval selections for a subset of jobs. Specifically, the
i-th element of a vector X is either FI; . or FI;; for some j = 1,2,...,n(i).
The element being F'I; , means that a feasible interval has not yet been selected
for job J;. The element being F'I; ; means that the j-th feasible interval of J; is
selected. The vector (FI; ., FIs ., ..., FIy.) labeling the root represents that
no feasible interval has been selected.

(D Bl )

(R, Pl Flgs) U (L gy, Flaa, o Filal Job Jy

(FI Pl Flge, o Flagd U (P P, Flae o Flug Joh 1

(FD Pl Bl Bl Flag ) b (FL 0 Bl Fly gy, Bl Job Jy

(P Pl Flaad ':Frl.‘.u_hF[z.ur_u_h---‘Ff.\q,w{MJ_\.'r Job Jyy

Fig. 2. Search Tree

On the first level of the tree, there are n(1) nodes. Each node represents a
different feasible interval selection for job J;. For a set J of M jobs, the length

! This condition can be considered as the lower bound in a branch-and-bound algo-
rithm: A solution is disregarded when its bound is greater than the lower bound.
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of the longest path from the root to a leaf node is M. The leaf nodes enumerate
all possible combinations of selected feasible intervals for jobs in the set J. (For
example, the vector labeling the leftmost leaf node indicates that the earliest
feasible interval of every job is selected for that job in the combination.)

The BB algorithm visits the search tree in the depth-first manner starting
from the root. When visiting node u, the algorithm checks if the schedule cor-
responding to X, (i.e., the schedule of jobs in the selected feasible intervals
represented by X, ) is feasible. While conducting schedulability analysis, the
algorithm ignores the jobs whose feasible intervals are not yet selected. If the
schedule corresponding to X,, is not feasible, the children of node u are not vis-
ited because none of the schedules corresponding to these nodes can be feasible.
Hence, the algorithm returns to the parent of node u. If the schedule correspond-
ing to X, is feasible, the algorithm continues visiting the children of node u if
there exists any. If node u is a leaf node, the algorithm stops and returns X, as
a feasible interval selection for the job set J. If none of the children of node
has a feasible schedule and its parent is not the root, the algorithm returns to its
parent to consider other sibling nodes. If its parent is the root, the algorithm has
exhausted the search space; the algorithm stops and reports a failure of finding
a feasible schedule for the job set J.

Figure 3 shows the pseudo code of the branch-and-bound algorithm. Function
DFSCHECK performs a depth-first search starting from job Ji when given a com-
bination of feasible intervals that have been selected for Jy, Js, ..., Jr_1. Function
DFSCHECK selects one feasible interval at each iteration for job Jy. It selects
Jj-th feasible interval F'I}, ; where 1 < j < n(k) for job Jj on line 3 and analyzes
the schedulability of the job set {.Ji,..., Ji} on line 4. If the job set is infeasible,
it continues the next iteration. Otherwise, it continues to visits a child node. If
feasible intervals have been selected for all jobs, the function stops and returns
the selection on line 8. If not, it calls Function DFSCHECK to select a feasible
interval for job Jg41.

Function BRANCH_AND_BOUND_FISELECTION initializes the array of se-
lected feasible intervals and calls Function DFSCHECK to visit the search tree
starting from job J;. The function completes and returns the array of selected
feasible intervals produced by Function DFSCHECK if the array exists or declares
the given job set infeasible if the array does not exist.

3.3 Fewer Feasible Interval First (FFIF) Based Algorithm

We present in this section several heuristics that are extensions of traditional
bin-packing heuristics such as First Fit Decreasing (FFD), Last Fit Decreasing
(LFD), Best Fit Decreasing (BFD), and Worst Fit Decreasing (WFD) [9]. While
the feasible interval selection problem and the bin-packing problem are similar,
they are differ in many fundamental ways: Feasible intervals are not identical
in length. The feasible interval selected for each job must be from the feasible
interval set of the job. Different jobs may have different feasible intervals. These
factors make it necessary for us to extend the traditional bin-packing heuristics
so they can be used for feasible interval selection.
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DFSCHECK (SelectedFl, k)

Input. SelectedFl: the array of the indexes of selected feasible intervals.
k: select one feasible interval for job Jj.

Output. SelectedFl: the array of selected feasible intervals.

1 for each feasible interval F'I;, ; of job Jj

2 do

3 Select feasible interval FIj, ; for job Jy;

4 if {J1,..., Ji} is schedulable in their selected feasible intervals

then
6 if feasible intervals for all jobs are selected
7 then
8 Return SelectedFl;
9 else
10 Call DFSCHECK to select one feasible interval for Jy41;
11 Return SelectedFl if the array exists;

12 end
13 Return NULL as no feasible schedule is founded;

BRANCH_AND_BOUND_FISELECTION(FI[M])
Input. Fl: the array of feasible intervals for M jobs
Output. SelectedFl: the array of selected feasible intervals if exists.

1 Initialize the selection array;
2 Call DFSCHECK(SelectedFl, 1) to select the feasible interval for job Ji;
s return SelectedFl or the declaration that the job set is not feasible;

Fig. 3. Optimal algorithm for selecting feasible intervals

Fewer Feasible Interval First (FFIF) Based Algorithms process the jobs in
non-descending order according to the number of feasible intervals. Intuitively,
the algorithms may have a better chance to find a feasible schedule of all jobs by
processing jobs having fewer feasible intervals first. This is the rationale behind
the FFIF-based algorithms. All FFIF-based algorithms sort all the eligible jobs
according to the numbers of their feasible intervals and process them in non-
descending order. Similar to the optimal algorithm, when checking whether a
job is schedulable in a feasible interval, the algorithms consider only the job
being processed and jobs for which feasible intervals have already been selected.

As stated earlier, the scheduler uses EDF algorithm. It is well known that all
jobs can be scheduled to complete by their deadlines if at any time ¢, the total
instantaneous utilization of all eligible jobs that are ready for execution is no
greater than 1 [10] (also Theorem 7.4 in [11]). To reduce the time complexity of
the heuristic algorithms, the scheduler uses this sufficient condition for schedu-
lability analysis. In other words, the scheduler checks the system workload w(t)
for t > 0 to determine whether this condition is met when deciding whether
a job is schedulable in a feasible interval. (More precisely, the scheduler checks
whether u(t) < 1 whenever the system workload changes.)
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The individual algorithms among the FFIF-based algorithms differ in their
selections of a feasible interval for each job. When selecting a feasible interval
for a job, FFIF-First Fit algorithm selects the first feasible interval of the job
in which the job is schedulable. In contrast, FFIF-Last Fit algorithm selects the
last feasible interval in which the job is schedulable. FFIF-First Fit algorithm
should work well when the system is lightly loaded and the release times of jobs
are generally fall apart. Choosing the first schedulable feasible interval allows
eligible jobs to complete before new jobs are released. However, when the system
is heavily loaded, FFIF-First Fit algorithm may not be able to find a feasible
schedule for jobs with fewer feasible intervals. FFIF-Last Fit algorithm generally
delays the executions of jobs if possible. In this case, a job that is released later
and has few feasible intervals is more likely to be schedulable when the system
is heavily loaded.

FFIF-First Fit and FFIF-Last Fit algorithm should work well when feasible
intervals of a job are similar in length. However, these two algorithms may not
work well when the job’s feasible intervals have dramatically different lengths.
FFIF-Best Fit and FFIF-Worst Fit algorithm take into account of this factor.
FFIF-Best Fit algorithm selects the feasible interval which has the largest max-
imal system workload. Specifically, the algorithm computes the maximal system
workload for each feasible interval of the job being processed, assuming that the
job is scheduled in the interval. Then, the algorithm selects the feasible inter-
val which produces the largest maximal system workload among all intervals in
which the job is schedulable. In contrast, FFIF-Worst Fit algorithm selects the
feasible interval during which the maximal system workload is the smallest and
in which the job is schedulable. Hence, FFIF-Worst Fit algorithm distributes
the system workload over the time line.

The time complexity of these four heuristics is O(nM?) where n is the maxi-
mum number of feasible intervals of a job and M is the number of jobs in the job
set: The complexity of sorting the jobs is O(M log M). For each job, the sched-
uler checks if the system workload u(t) is greater than 1 for ¢ > 0. In the worst
case, the scheduler has to check the system workload for M —1 time instants.
Hence, the time complexity of conducting the schedulability analysis for one job
is O(nM). The decision of selecting the feasible interval takes constant time.
Therefore, the time required to find a feasible interval for all jobs is O(nM?).
The complexity can be reduced to O(nM log M) when a range tree is used to
speed up schedulability analysis.

Figure 4 gives an illustrative example. The given job set is the same as the
one given in Figure 1. Feasible intervals (0, 5], (7,10], and (14,20] have already
been selected for job Jy, Jo, and Js, respectively. The system workload w(t) of
this schedule is shown as the solid line in Figure 4(a) and (b). Job Jy4 is the next
job to be processed. The dash line in Figure 4(b) shows the system workload if
job Jy executes in one of these three intervals. FFIF-First Fit and FFIF-Last Fit
algorithm selects the first interval (0, 4.5] and the last interval (12, 18] for job Jy,
respectively. FFIF-Best Fit algorithm selects the first interval (0,4.5] because
its maximal system workload is less than 1 and is the largest. FFIF-Worst Fit
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Fig. 4. FFIF-based algorithms

algorithm selects the last interval because its maximum system workload is the
smallest.

The optimal algorithm and four FFIF-based heuristics are better suited when
the release times of all jobs are identical or when scheduling is off-line. For on-
line scheduling, the scheduler may repeatedly apply such an algorithm as each
job is released on the new job and all the eligible jobs if the number of jobs
is small. Alternatively, it may process jobs in First-Come-First-Serve (FCFS)
order. Depending on the rule used to select a feasible interval for each job, we
have FCFS-First Fit, FCFS-Last fit, FCFS-Best Fit, and FCFS-Worst Fit.

3.4 Priority Boost EDF Algorithm

We now describe an algorithm, called Priority-Boosting EDF algorithm, that
makes use of the information on selected feasible intervals produced in the selec-
tion step to ensure the in-time completion of every job and to reduce the response
time of the job. One may question why not simply extend the EDF algorithm
a natural way: The scheduler considers each eligible job ready for execution in
each of the job’s feasible intervals and schedules all ready jobs on the EDF basis
based on the current deadlines of the jobs. In other words, the scheduler skips
the feasible interval selection step and schedules jobs solely on the basis of their
feasible intervals and deadlines.

The example in Figure 5 illustrates why this approach may fail, while a
scheduler that first selects a feasible interval for each job and makes use of this
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(a) Schedule by the EDF algorithm solely based on job deadlines.
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(b) Schedule by the EDF algorithm based on job deadlines and selected feasible
intervals.

Fig. 5. Schedule by the EDF algorithm

information in its scheduling decision may success. Suppose that the system has
the jobs Ji, Ja, J3, and Jy given in Figure 1. Each box in Figure 5 represents
an execution of a job and a cross symbol in a box represents an incomplete
execution. Figure 5(a) shows the schedule when ready jobs are scheduled by the
EDF algorithm according to their current deadlines. In this example, job J3 has
the earliest deadline; it executes first and completes at time 2. Job .J; completes
in time in its second attempt at time 9. However, job J; and J, cannot complete
in time before the ends of their latest feasible intervals. Figure 5(b) shows the
schedule when jobs are scheduled by the EDF algorithm only when they are in
their selected feasible intervals. In this example, the selected feasible intervals
of job Jy, Jo, Js, and Jy are (0, 5], (7,10], (14,20], and (12, 18], respectively. All
jobs complete in time.

The Priority-Boosting EDF algorithm is designed to take advantage of the
information on selected feasible intervals. It views the selected feasible interval of
each job as a reserved time interval for the job. In this interval, the job executes
in the foreground. Outside of this interval, the job executes in the background.
Specifically, the algorithm considers an eligible job ready for execution only in
its feasible intervals. The algorithm assigns priorities to ready jobs based on
two properties: selected feasible intervals and job deadlines. Each ready job is
assigned a priority within (0, 1]. Suppose that the Q-th feasible interval is selected
for job J;. In the g-th feasible interval of the job for ¢ = 1,2, ..., @, the priority of
the job is %. The larger the number, the higher the priority. In short, the priority
of a job monotonically increases as long as it remains incomplete. Whenever the
priorities tie, job deadlines are used to break the tie as the traditional EDF
algorithm does.

By assigning a priority within the range (0, 1], Priority-Boosting EDF al-
gorithm simulates the behavior of queuing jobs in multi-level foreground and
background queues by one queue. Jobs in their selected feasible intervals have
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Fig. 6. Schedule by Priority-Boosting EDF algorithm

priority 1 and always execute before jobs that are not in their selected feasi-
ble intervals. Hence, Priority-Boosting EDF algorithm guarantees that every job
completes in time in its selected feasible interval or sooner if the schedulability
condition holds. When all jobs are not in their selected feasible intervals, the al-
gorithm gives the highest priority to the job having the least number of feasible
intervals before its selected feasible interval. As a result, the job has a better
chance to complete in time before its selected feasible interval and leaves the
system. The reserved time for the job is released to accommodate new arrivals.

Figure 6 shows the schedule for the jobs in Figure 5 when they are scheduled
by Priority-Boosting EDF algorithm. Jobs scheduled in their selected feasible
intervals execute in the foreground; otherwise, jobs execute in the background.
Job Jj starts at time 0 and completes at time 1.5 because it is the only job
whose priority is 1 in that time interval. At time 1.5, the priorities of job J3 and
Jy are both % Job J3 starts because its deadline is earlier. Then, at time 2, job
Jo preempts jobs Js because its priority % is higher than the priority % of job
J3. Job Jy follows at time 4 in the background but is not able to complete in
time. At time 5, job J3 and J; are ready again and have the identical priority
and deadline. Job J3 is selected arbitrarily and completes at time 7. Finally, job
J4 continues to finish.

When jobs are scheduled only in their selected feasible intervals, each job
executes once and always in the foreground as illustrated in Figure 5(b). Priority-
Boosting EDF algorithm uses the information on the selected feasible intervals
to allow some jobs to execute in the background. Although jobs may execute
more than once, most of them complete earlier. For instance, job J3 completes
at time 7 in this example but completes at 17 in Figure 5(b).

4 Performance Evaluation

We compared the performance of the heuristics through extensive simulations.
Simulation parameters are chosen to ensure broad coverage. The performance of
the heuristics are compared against the performance of the branch-and-bound
algorithm.
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Table 1. Simulation Parameters

Parameters Value
Workload parameters
Number of jobs 10, 15, 20, 25, 30, 35, 40
Average arrival rate A =20,2,.2 job releases per second(Poisson)
Job Parameters
WECT 100 ms
Number of feasible intervals|Uniform(1, 5), Uniform(1, 10)
Interval Length Uniform(200ms, 500ms), Uniform(200ms, 1000ms)
Distance between intervals |Uniform(100ms, 300ms)

We evaluate the heuristics when jobs are processed in the first-come-first-
serve (FCFS) order and in the fewer-feasible-interval-first (FFIF) order. As
stated earlier, the heuristics use the sufficient condition u(t) < 1 for schedu-
lability test. To make the performance comparison fair, the branch-and-bound
algorithm also uses this sufficient condition rather than the exact test of con-
structing an EDF schedule and checking for in-time completion. Moreover, a job
is rejected if the scheduler cannot find a feasible interval for the job.

We evaluated the priority-boosting EDF algorithm as well as the (2-level)
foreground-background (F/B) EDF algorithm. The F/B EDF algorithm gives
each ready job priority 1 when the job is in its selected feasible interval and
priority 0 when the job is not in its selected feasible interval. Priority ties are
broken on the EDF basis.

Because of space limitation, we present only representative results. Results
for other cases are similar to the ones presented in Figures 7 to 10.

4.1 Workload Generation and Performance Metrics

We generate workloads based on two parameters: the number of jobs and average
arrival rate. The former is the number of jobs in the job set; the latter is the
average number of jobs released within each second on the average. Each job is
characterized by four parameters. They are execution time, number of feasible
intervals, length of each feasible interval, and temporal distance between two
consecutive feasible intervals. By temporal distance, we mean the difference in
time between the start of a feasible interval of the job and the end of an earlier
feasible interval of the job if there is an earlier feasible interval. Before each run
of the simulation starts, timing parameters of jobs in the job set are generated.
For all of the cases simulated, the execution times of all jobs are identical. The
lengths of feasible intervals and the temporal distances between two consecutive
feasible intervals are uniformly distributed. The specific values of the parameters
used in the simulations are listed in Table 1.

We use two metrics to measure the performance of the algorithms. They are
the mean completion rate and the mean last response time. Completion rate is
the fraction of jobs in the job set completing in time as defined in Definition 1.
While computing the mean value, we only count the job sets that are schedulable.
Hence, the mean completion rate for the branch-and-bound algorithm is always
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1. However, the heuristics may not be able to complete all jobs in time. The
higher the completion rate of an algorithm, the better the algorithm..

The last response time is the largest response time of all jobs in a given
job set. When every job in the job set has only one feasible interval, all work-
conservating scheduling algorithms (i.e., priority-driven algorithms) achieve the
same last response time. However, this is not true when jobs have multiple fea-
sible intervals. Figure 5 and 6 illustrates this fact. The last response times for
different scheduling algorithms differ. The last response time measures the effi-
ciency of an algorithm in scheduling jobs to complete in time. If an algorithm is
inefficient in the sense that it frequently schedules jobs to produce void results,
jobs will likely to complete in time late if they complete in time at all. In gen-
eral, an efficient algorithm is able to achieve a smaller last response time. Mean
last response time is the mean value of the last response times collected from
sample job sets. For the sake of fairness, we only count the job sets in which
every algorithm schedules all jobs to complete in time. Otherwise, a smaller last
response time can be achieved by not completing all jobs in time.

4.2 Results and Discussions

The 90% confidence interval for each data point plotted below is no more than
0.1% of data value.

Mean Completion Rate. We simulated a heavy workload in which all jobs
arrive at time 0 and the number of feasible intervals for each job is uniformly
distributed from 1 to 5.

Figure 7 shows the mean completion rates for the algorithms.

We see that the mean completion rates are always lower when jobs are pro-
cessed in the FCFS order (plotted as dashed lines) than when jobs are processed
in the FFIF order (plotted as dotted lines). Specifically, processing jobs in the
FFIF order increases the mean completion rates by about 10% to 15% for the
First-Fit and Best-Fit algorithm. These results suggest that the First-Fit and
Best-Fit should not be used when the scheduler cannot process jobs in the FFIF
order, for instance, when scheduling is done on-line. These two algorithms often
select the first or second feasible interval for each job. When the system is heavily
loaded, the feasible intervals often overlap. When processing jobs in the FCFS
order, First-Fit and Best-Fit algorithm often cannot find feasible schedules for
jobs that are release late and have only one or two feasible intervals.

The FFIF-based heuristic algorithms achieve mean completion rates that
are within 10% of the BB algorithm. In particular, the Worst-Fit algorithm
consistently outperforms other algorithms when jobs are processed in the FFIF
order. Note that the complexities of the Worst-Fit and Best-Fit algorithm are
generally larger because they repeat the schedulability test for every feasible
interval of every job.

When the job arrival rate decreases, the mean completion rates of FFIF-based
algorithms become closer to that of the BB algorithm. The difference between
performances of different heuristics also become smaller.
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Fig. 8. Mean Completion Rates for Worst Fit algorithm(Number of FIs=1~10)

Figure 8 shows the mean completion rates when feasible intervals are selected
by the Worst Fit algorithm and jobs are scheduled according to the priority-
boosting EDF and the F/B EDF algorithms.

When jobs are processed in the FFIF order, these scheduling algorithms have
the same performance. Hence only one plot is included here. By giving each
job a monotonically increasing priority as time becomes closer to the selected
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feasible interval of the job, the priority-boosting EDF algorithm can improve
the mean completion rate when jobs are processed in FCFS order. In particular,
the combined use of the FCFS-Worst Fit algorithm and Priority-Boosting EDF
algorithm performs nearly as well as the FFIF-Worst Fit algorithm. We also
show in this figure the mean completion rates when there is no selection step
and jobs are scheduled solely by EDF algorithm as exemplified by Figure 5(a).
As we can see, when jobs are thus scheduled, the mean completion rate drops
dramatically as the number of jobs in the job set increases.

Mean Last Response Time. Figure 9 shows the mean last response times
for the BB algorithm and the heuristics. Ready jobs are scheduled according to
the F/B EDF algorithm. In this simulation, when feasible intervals are selected
by the branch-and-bound algorithm, jobs are scheduled only in their selected
feasible intervals. As a result, the mean last response times for the branch-
and-bound algorithm may not be the minimal. Not surprisingly, the mean last
response time is the smallest and largest when feasible intervals are selected by
the First-Fit and Last-Fit algorithm, respectively. Moreover, when the feasible
intervals are selected by the Worst Fit algorithm, the mean last response time is
large in general because the Worst Fit algorithm distributes the workload over
the time line.

Figure 10 shows the mean last response time when the Priority-Boosting
EDF algorithm is used. As we can see, jobs complete earlier in general when
compared with the F/B EDF algorithm. The mean last response times achieved
by all four hueristics are close. The result shows that Priority-Boosting EDF
algorithm not only completes jobs earlier but also increases the completion rate.
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In summary, our simulation results show that the FFIF-Worst Fit algorithm
can select feasible intervals such that the completion rate is close to that by the
branch-and-bound algorithm. When the system is heavily loaded, the difference
of mean completion rates is always less than 10%. When jobs are processed in the
FCEFS order, the combination of the Worst-Fit algorithm and Priority-Boosting
EDF algorithm performs as well as the FFIF-Worst Fit algorithm.

5 Summary

We presented here the multiple feasible interval job model which characterizes
real-time applications in which a job is constrained to execute in disjoint time in-
tervals. These intervals are called feasible intervals. We developed an exponential-
time branch-and-bound algorithm and several polynomial-time heuristics for se-
lecting a feasible interval for each job so that all jobs can complete in time.
After feasible intervals have been selected for all jobs that are schedulable, the
Priority-Boosting EDF algorithm presented here improves the timeliness of jobs.

We evaluated the proposed heuristics by extensive simulations and compared
their performance against that of the branch-and-bound algorithm. The result
shows that FFIF-Worst Fit algorithm performs as well as the branch-and-bound
algorithm. Whenever it is not possible to sort the jobs based on the number of
feasible intervals of jobs, the combined use of the FCFS Worst-Fit algorithm and
Priority-Boosting algorithm achieves the similar performance of the FFIF-Worst
Fit algorithm.
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Abstract. Current hard real-time technologies are unable to support
a new class of applications that have real-time constraints but with
dynamic request arrivals and unpredictable resource requirements. We
propose two new admission control approaches to address this problem.
First, we present an efficient schedulability test, called utilization de-
mand analysis, to handle periodic and aperiodic tasks with deterministic
execution times. The utilization demand is defined as the processor uti-
lization required for a mixed task set to meet deadlines with certainty,
thus for deterministic deadline guarantees. We show that the utiliza-
tion demand analysis eliminates the need for complicated schedulability
analysis and enables on-line admission control. Second, we present a sta-
tistical admission control scheme using effective execution times to han-
dle stochastic execution times. Effective execution times are determined
from the deadline miss probability demanded by the application and
stochastic properties of task execution times. Every task is associated
with an effective execution time and is restricted to using processor time
not exceeding its effective execution time. This scheme allows every task
to meet its deadline with a specified probability without being interfered
with, and greatly simplifies the admission control when combined with
the utilization demand analysis.

1 Introduction

The emergence of distributed multimedia applications with demanding QoS re-
quirements is setting forth new challenges for real-time systems. Such new ap-
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plications including video conferencing and interactive distance learning require
real-time performance guarantees for the delivery and processing of continuous
media data. However, despite recent developments in real-time computing, cur-
rent hard real-time solutions cannot be directly applied to these applications.
While most real-time research has put an emphasis on the periodic task model
[15,2,12,3,14] in which task arrivals and execution times are deterministic, multi-
media applications have two distinguishing characteristics. First, processor usage
patterns include both periodic and aperiodic tasks. For example, a query for con-
tinuous media requires periodic tasks for delivery and processing of continuous
data, and a query on a database of static data types requires aperiodic tasks.
Second, task execution times are either deterministic or stochastic, such as CBR
(constant bit rate) video data versus VBR (variable bit rate) data. In this paper,
we attempt to provide deadline guarantees via admission control for real-time
tasks while allowing randomness in arrivals and execution times. Such deadline
guarantees can be either deterministic or statistical depending on the charac-
teristics of task execution times. When task execution times are upper bounded
and their bounds are known, deterministic deadline guarantees can be provided
so that all tasks meet deadlines at run-time. The deterministic guarantee pro-
vides the highest level of deadline guarantees, however, it may be an overly
conservative approach for some multimedia applications which are not greatly
impacted by infrequent deadline misses. This necessitates statistical deadline
guarantees. When task execution times are not bounded or exhibit great vari-
ability, a statistical approach provides probabilistic deadline guarantees with a
specified probability.

We present new admission control approaches for both types of deadline
guarantees. First, we propose an efficient schedulability test, called utilization
demand analysis, to handle periodic and aperiodic tasks with deterministic ex-
ecution times. The utilization demand is defined as the processor utilization
required for a mixed task set to meet all deadlines. We use the utilization de-
mand to develop a schedulability test for deterministic deadline guarantees under
EDF. We show that the utilization demand analysis eliminates the need for com-
plicated schedulability analysis and enables on-line admission control. Also, as
we will see later, the utilization demand provides a useful means for statistical
deadline guarantees.

Second, we present two admission control schemes to provide statistical dead-
line guarantees by bounding the probability that tasks miss deadlines. In gen-
eral, priority driven scheduling algorithms like EDF, unlike WFQ (weighted fair
queueing), inherently lack the “isolation” mechanism to protect tasks from one
another. If a task runs arbitrarily long, bounding deadline miss probabilities of
its subsequent tasks is significantly problematic. To overcome this problem, we
propose to discard tasks that match specific criteria. Our first approach is to
discard tasks missing deadlines, and this allows us to compute deadline miss
probabilities under the worst case. The shortcoming of this approach, however,
is that it leads to computationally complex algorithms since computing probabil-
ities generally requires expensive convolution operations. Our second approach
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improves upon the first one by aggressively discarding tasks. We use effective exe-
cution times which are determined from the deadline miss probability demanded
by the application and stochastic properties of execution times. Every task is
associated with an effective execution time and is restricted to using processor
time not exceeding its effective execution time. If a task consumes processor time
more than its effective execution time, it is immediately discarded. This scheme
allows every task to meet its deadline with a specified probability without being
interfered with, and greatly simplifies the admission control when combined with
the utilization demand analysis.

1.1 Related Work

A number of techniques have been proposed to handle mixes of periodic and
aperiodic tasks [13,16,6,17,7,8]. The algorithms in [13,16,6,17] assume that ape-
riodic tasks are soft real-time and give preferential treatment to periodic tasks.
In these aproaches, aperiodic tasks are handled at a lower priority level in the
background, or at a some fixed priority level by a special periodic task which
serves aperiodic requests with its limited capacity. The algorithms proposed in
[11,5] handle aperiodic tasks with explicit deadlines. Also, they are known to
be optimal with regard to specific criteria, for example, of the response time or
processor utilization. However, they not only require complete knowledge of the
periodic tasks, but also have high computational complexities when used on-line.
In our model, all aperiodic tasks have explicit deadlines and are scheduled by
the same scheduling policy as periodic tasks. Moreover, our utilization demand
method eliminates the need for complicated schedulability analysis, requiring
low run-time overhead.

In the meantime, several researchers have worked on non-deterministic so-
lutions to real-time scheduling problems with stochastic execution times. The
statistical rate monotonic scheduling (SRMS) in [1] is a non-deterministic ver-
sion of the classical rate monotonic scheduling. Under the assumption that the
accurate execution time of a task is known when the task arrives, SRMS allows
one to compute the percentage of deadline misses. Tia et al. [18] proposed two
methods to handle stochastic task execution times, probabilistic time-demand
analysis and transform-task method. The probabilistic time-demand analysis at-
tempts to provide a lower bound on the probability that a periodic task meets
its deadline under fixed priority scheduling. The probabilistic time-demand anal-
ysis is based on the notion of critical instant at which the first instances in all
periodic tasks are released simultaneously. The critical instant leads to the worst
case when all tasks complete before their deadlines, i.e., when no backlog exists.
However, it has not been proven for unbounded execution times that the crit-
ical instant is the worst case. Another method, called transform-task method,
divides each task into a periodic task and a sporadic task. The periodic task has
the same period as the original task and has a fixed execution time that should
be chosen such that all the periodic tasks in the system are schedulable. If the
actual execution time of a periodic task is larger than the fixed execution time



Deterministic and Statistical Deadline Guarantees 75

at run-time, the excessive portion of the task is modeled as a sporadic task that
can be scheduled by either a sporadic server or a slack stealing algorithm.

The key idea of our effective execution time method is similar to that of the
transform-task method in that each task is associated with a fixed amount of
execution time and its processor usage is enforced accordingly. Our contribution
is to give a formal definition of effective execution times based on the notion
of statistical schedulability and to combine effective execution times with the
utilization demand analysis in order to provide an efficient, statistical version
of admission control scheme. In fact, the use of effective execution times allows
us to easily extend existing deterministic scheduling algorithms and analysis
techniques to handle stochastic execution times.

The remainder of this paper is organized as follows. In Section 2, we discuss
our models and assumptions. Section 3 describes the utilization demand method
for schedulability analysis of aperiodic tasks with known worst case execution
times. This method is then applied to a mixed set of periodic and aperiodic
tasks. Section 4 introduces two techniques for statistical deadline guarantees. The
first technique bounds deadline miss probabilities by discarding tasks missing
deadlines. The second technique uses effective execution times as its discard
criterion. We will combine effective execution times with utilization demands to
provide an efficient admission test. We then conclude in Section 5.

2 Models and Assumptions

Consider a set of aperiodic tasks Q = {7, 72,...,7,...} where tasks are in
arrival order, i.e., 7; arrives earlier than 7;41. We use Q(t) C @ to denote the
set of tasks that have arrived before ¢t and have not completed by t. Every
aperiodic task 7; € Q has an arrival time A;, an execution time requirement e;,
and a relative deadline d; from its arrival time. The absolute deadline D; of 7;
is computed by D; = A; + d;. If the execution time e; is bounded from above,
then its least upper bound is denoted by e]***. Otherwise, we assume that e;
is an independent random variable and is distributed according to probability
density function (pdf) g, (e).

We use similar notation for periodic tasks. Periodic task 7; with period T}
can be considered as a finite or infinite sequence of aperiodic requests. Such
aperiodic requests are referred to as periodic task instances which are denoted
by 7; ;. Each periodic task instance 7; ; has an execution time requirement €; ;
and a common relative deadline d;. Note that we use the periodic task model
[15] where the relative deadline of a task is equal to its period, i.e., d; = T,.
If &; ; is upper bounded for all j, then the least upper bound is denoted by
e"**. Otherwise, we assume that all €; ; are independent random variables that
are identically distributed according to the same probability density function
gz, (e). Unlike aperiodic tasks, we use A; to denote the release time of the first
instance 7; ;. Using this, the absolute deadline D; ; of 7; ; is computed by D; ; =

A+ (J— 1)ﬂ+(j1
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In our discussions, we assume a simple system architecture consisting of two
components, an admission controller and a processor scheduler, as in Figure 1.
The admission controller, through admit or reject, is responsible for ensuring
that the system can provide promised deadline guarantees for all tasks accepted.
The processor scheduler in turn allocates processor time to tasks according a
particular scheduling algorithm. This simple architecture allows us to consider
a wide variety of models for end system operation and configuration. Note that
in the case of deterministic deadline guarantees, a periodic task is said to be
schedulable if all instances meet their deadlines. To do so, the admission con-
troller is responsible for admission of all future instances of accepted periodic
tasks.

Task
. Admission Queue EDF
Arrive—= Controller [T+ Scheduler Depart

Reject

Fig. 1. End system architecture

The scheduling algorithm considered here is earliest deadline first (EDF)[15].
EDF was selected for two reasons. First, EDF is known to be optimal for de-
terministic deadline guarantees in the sense that it can schedule any task set
which is schedulable by any other algorithm. Even though optimality of EDF
has not been proven in a statistical environment, it still serves as a benchmark
for other scheduling algorithms. Second, EDF algorithm allows for utilization-
based schedulability tests which incur little run-time overhead. Under EDF, if
the utilization of a task set does not exceed one, then the set is schedulable. We
will show that, in the next section, the utilization-based test and our utilization
demand analysis can be combined successfully into an integrated schedulability
test. Note that though we choose EDF for task scheduling, most of our techniques
are applicable to a variety of priority driven scheduling algorithms.

3 Utilization Demand Analysis and Deterministic
Deadline Guarantees

In this section we introduce the utilization demand analysis which provides a
schedulability test for a mixed task set. We first define utilization demands for
aperiodic tasks, and derive a necessary and sufficient schedulability condition. We
then develop an integrated schedulability test for a mixed set. The schedulability
tests developed in this section are used for deterministic deadline guarantees.
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Table 1. Summary of notation

l Notation ‘Meaning
Q Set of aperiodic tasks
Q(t) Set of aperiodic tasks that have arrived before ¢ and have not

completed by ¢
Q(t,hp(7)) |Set of aperiodic tasks that have higher priorities than 7; in Q(¢)
Tiy Tiy Tiyj Aperiodic task, periodic task, periodic task instance
Ai, e;, di, D; |Arrival time, execution time, relative deadline, and absolute
deadline of 7;

fi Finish time of 7;

e’ Worst case execution time of 7;

ef‘;“ Allocated processor time for 7; by ¢

ery Maximum residual execution time of ; at t (e]}" = ef" 8?2“)
i Lead time of 7; at t (D; —t)

Ai, €5, di, D; j|Release time, execution time, relative deadline, and absolute
deadline of 7; ;
T; Period of 7;
enaer Worst case execution time of 7;
9ei (€), geres(e) |pdf of ei, pdf of e
uQ ) (i) Utilization demand of 7; € Q(t)
U Maximum utilization demand of Q(t)

3.1 Utilization Demands for Aperiodic Tasks

Consider a set of aperiodic tasks Q@ = {71, 72,...,7,...} under priority driven
scheduling policy. In order to determine Q(¢) is schedulable at ¢, we need to con-
sider two dynamic variables for each task 7; € Q(t), maximum residual execution
time e;¢" and lead time dj7°. At time ¢, the maximum residual execution time

e;%® of 7; is the maximum of remaining processor time to complete 7;. The lead
tlme d;¢® of 7; is the difference between its absolute deadline D; and the current
time ¢ [10] i.e., D; —t. Keeping these two dynamic variables provides sufficient
information for the schedulability test of Q(t). Table 1 summarizes the notation

used throughout this paper.

We are now ready to define utilization demands for aperiodic tasks. Roughly,
a utilization demand of 7, € Q(t) is defined as the processor time required to
meet its deadline divided by its lead time. Since 7; can start only after its higher-
priority tasks complete, we need to consider the sum of residual execution times
of itself and its higher-priority tasks. Let Q(¢, hp(7;)) C Q(t) be the set of tasks
that have higher priorities than 7;. The utilization demand of 7; is defined by

def Do €Q(thp(m)) Eit T it
ugy(m) = == pdm : (1)
it




78 M. Ryu and S. Hong

The maximum utilization demand Ug(t) is defined for the set Q(t) as below.

def
UQ(t) i InlaX[UQ(t)(Ti)]. (2)

The following theorem shows a necessary and sufficient schedulability
condition for an aperiodic task set.

Theorem 3.1. Aperiodic task set Q(t) = {Tm,Tm+1s---,Tn} is schedulable if
and only if

UQ(t) <1. (3)

Proof. We consider the “if” part first. Let f; be the worst case finish time
of 7, € Q(t). The finish time f; will be current time plus the sum of residual
execution times of higher priority tasks including 7;’s execution time. By the
definition of utilization demand in Eq.(1), we have

o=t > Gy
T;€Q(t,hp(T:))
=t+ d;ﬁs S UQ(t) (1)

Since uq(rt:) < Uge) <1,

t+ (Di - t) . uQ(t)(Ti) S t+ (Di - t)
< D;.

Next, we consider the “only if” part. The proof is by contradiction. If we assume
that Q(t) = {71, 72,...,7n} is schedulable and Ug(¢;) > 1, then there exists 7;
such that ug(m;,t) > 1. Hence,

fi=t+ ) ET ey
T €Q(t,hp(T:))
> t+(Di*t) =D,.

This contradicts the assumption that Q(¢) is schedulable. O

Obviously, a new task arrival affects the schedulability of Q(¢) while task
departures do not. Therefore, the above schedulability test is valid only until
the next arrival time of a new task. This necessitates testing of schedulability at
every task arrival. Figure 2 illustrates the maximum utilization demand Ug ;)
with several task arrivals and departures. At t3, the utilization demand jumps
to above one. It is easy to show that if Ug is less than one at t, Ug(y) is a
decreasing function of time until the next arrival time.
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Fig. 2. Utilization demand for a dynamic task set with arrivals and departures

Our second theorem shows the subadditivity property of the utilization de-
mand function. This property is essential in devising an integrated shedulability
condition for a mixed set of periodic and aperiodic tasks.

Theorem 3.2. For any two aperiodic task sets,

Ugihuq=t) < Uqit) + Uqa()- (4)
Proof. See Appendix A.

3.2 Schedulabiltiy Condition for a Mixed Task Set

We now generalize the utilization demand analysis for a mixed set of periodic
and aperiodic tasks. Basically, all instances of periodic tasks can be considered as
aperiodic tasks. This gives a possibility to apply the utilization demand method
to periodic tasks. Suppose that P = {71, 72,...,7n} is a set of periodic tasks.
This periodic task set can be associated with an equivalent aperiodic task set
@ p which consists of all task instances generated by P. Thus, P is schedulable
if and only if all tasks in Qp are schedulable.

In the following theorem, we show an important relationship between the
utilization demand and the utilization of a periodic task set. The following
theorem states that the utilization of P is equal to or greater than the maximum
utilization demand of @ p.

Theorem 3.3. Let Up = Zfil é;az be the wutilization of periodic task set P =

{71, 72y ..., 7N} If P is schedulable by EDF, then
Ugrry < Up (5)

for allt > 0.
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Proof. For an arbitrary ¢, suppose that Qp(t) = {7m,..., T, ..., Tn}. Without
loss of generality, assume that the maximum utilization demand is Ug, ) =
UQ p (1) (7;). At this moment ¢, we inject a new periodic task into P such that P is
still schedulable. Consider a new periodic task 7, whose period is T* =D,;—A,.
We set é, = T, - (1 —Up) so that Up + % =1, then PU {7} will be schedulable
by EDF. If we release the first instance 79*,1 immediately before A;, then 7, ; has
an absolute deadline earlier than 7;. According to EDF policy, the priority of
Ts,1 is higher than that of 7;. Hence, 7; would be preempted and delayed by the
amount of é,, but 7; still meets its deadline D;. Let f/*** be the finish time of
delayed 7;, then we have

e = five.
=t+ (Dz — t) 'UQp(t)(Ti) ey < D;. (6)

_|_
By subtracting (¢; + €,) from both sides of Ineq.(6) and deviding both sides by
(D; —t), we have

D, —é.—t
u@e(t) (i) < —pH—5— Q
Ex

= 1 —
D, ®)
=1-(1—-Up)="Up. (9)
Eq.(9) follows from é, = T.(1 — Up) = (D; — t)(1 — Up). This completes the
proof. O

We are now able to derive a schedulability condition for a mixed task set.
Let P be the set of periodic tasks and its utilization be Up. The following
theorem gives a sufficient condition.

Theorem 3.4. Given periodic task set P and aperiodic task set Q(t), if Up +
Ugy <1, then PUQ(t) is schedulable by an EDF scheduler.

Proof. Let Qp be the equivalent aperiodic task set of P. It suffices to show that
Qp(t) UQ(t) is schedulable for any ¢. We show that Ug,xuge) < 1.

Ugryue®) < Ugrw) + Ugp) (10)
<Up+Uqguw <1 (11)

Ineq.(11) follows from Theorem 3.2 and Ineq.(11) follows from Theorem 3.3.
This completes the proof. O

Using Theorem 3.4 one can easily determine the schedulability for a mixed
task set in a similar fashion as with the utilization-based test for periodic task
sets. Note that all periodic tasks can meet deadlines under EDF algorithm if the
sum of their utilization factors does not exceed one. It is easy to see that the
algorithm for the utilization demand analysis has a run time of O(n) where n
is the number of aperiodic tasks in the system. Computing utilization demands
requires maintaining small data structure for residual execution times and lead
times. Also, this requires low run-time overhead, since these variables need to
be computed only when new tasks arrive.
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4 Effective Execution Times and Statistical Deadline
Guarantees

In this section, we present two statistical approaches to handling stochastic ex-
ecution times. We use two task discard policies to bound deadline miss proba-
bilities. The first approach is based on deadline miss handling. It discards tasks
missing deadlines, and this allows us to bound deadline miss probabilities of
tasks. The second approach associates each task with a fixed amount of pro-
cessor time, effective execution time, that is allocated to the task. It discards
any task whose processor usage exceeds its allocated processor time. Combined
with the utilization demand analysis, effective execution times enable an efficient
admission control with a surprising simplicity.

4.1 Statistical Deadline Guarantees with Deadline Miss Handling

A statistical approach allows for a small deadline miss probability. Specifically,
the probabilistic deadline guarantee is provided in the form of

where € is generally small, e.g., ¢ = 0.01. Using this condition, we can formally
define the statistical version of schedulability.

Definition 1. If the probability that a task 7; misses its deadline is equal to or
less than €, 7; is said to be statistically schedulable with probability 1 — €

Consider a task 7; and a task set (). We will use the execution time e; and
residual execution e} $® as random variables throughout this section. The deadline

miss probability of TZ can be stated as

Pr(fi>Dj)=Pr( Y er + > ex +e; > d;) (13)
T;€Q(As,hp(7i)) TR EQ((As, fi],hp(T:))

where Q((A;, fi], hp(7;)) contains 7;’s higher priority tasks that will be admit-
ted between the arrival and completion of 7;. Thus, to provide the statistical
guarantee for 7;, an admission policy must always ensure Pr(f; > D;) < € by
appropriately maintaining the future task set Q((4;, fi], hp(7;)). Whenever a
new task 75 arrives, the system needs to ensure Pr(f; > D;) < € for every 7; as
well as Pr(fi > Dy) < e for 7.

We now apply Eq.(13) to periodic tasks. As mentioned above, we assume
that tasks missing deadlines are immediately discarded. Without this as-
sumption, a periodic task instance 7; ; may not complete by the release of a
subsequent instance 7; j+1. Since such a backlog 7; ; can be arbitrarily long, all
the subsequent task instances may miss deadlines. This is called the domino
effect [4]. Discarding tasks that miss deadlines avoids such domino effects and
keeps the system predictable. The following theorem provides a statistical
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schedulability condition for a periodic task set. The intuition that motivates
the theorem is that we can find the worst case since future arrivals are known
due to the periodicity.

Theorem 4.1. Suppose tasks missing deadlines are immediately discarded for a
given periodic task set P = {7, 72,...,7n}. Task 7; € P is statistically schedu-
lable with probability 1 — € if the following holds.

M =
E
< l
—
=

(f”>D” ) < Pr(
k=1

Proof. Consider the equivalent aperiodic task set @Qp of P. At time fL-J-, we
have Qp(Ai ;) = {Tm,...,Tn} where 7, is 7; ;. Since d,, = d; = T; for 7,,, we can
write Ineq.(13)
Pr(fn > Dn)
= Pr( Z €hoa, + Z ex +en > Th).

TREQP (An,hp(Tn)) ThEQP ((An,fnl,hp(T0))

We can see that Qp(A,, hp(7,)) can include no more than one instance per each
periodic task 7, € P, since all the previous instances are finished or discarded
before their deadlines. Thus, we have

Z res Z Ek. (15)

TREQP (An,hp(Tn)) ThEP

We then find the worst-case workload of Zrker((An,fn],hp(Tn)) er +e,. For each

periodic task 7 € P, there are at most L%—j new arrivals at (Jp in the interval
- k

(A, fn] where T; = d; > f, — A,. Thus,

Z er + e, < Z (16)

TEQP (An,hp(Tn)) ThEP

It immediately follows from Eq.(15) and Eq.(16)

Z €pn, + Z er + ey

TkEQP(Anwhp(Tn)) TkeQP(Anahp(Tn))
i Ti .
<> E+ Y LTTJGk. (17)
FrEP Fep Tk
This leads to Ineq.(14). O

By combining Eq.(13) and Eq.(14), we can obtain the following admission
condition for a mixture of a periodic task set P = {71, 72,...,7i,..., 75} and an
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aperiodic task set Q(t) = {Tm,...,Tj,...,Tn}. Aperiodic task 7; € Q(t) can be
admitted if the following can be satisfied.

Pr(f; > D;) = Pr( > e+ Z ,
T €Q(Ai,hp(7:))UQ P (Ai hp(T:)) TiEP ]
+ Z er+e; >d;) <e (18)
TR E€EQ(Ai, fi],hp(Ti))

where > . _p L%Jéi represents the sum of execution times of periodic task in-
stances that arrive with higher priorities than 7; during the execution of ;.

Applying the above condition to admission control requires computing dead-
line miss probabilities at run-time. If task execution times are statistically in-
dependent, we can compute deadline miss probabilities by convolving sum of
random variables. For instance, the probability given in Eq.(13) can be written
as below.

P’I”(fZ > Dl)
= Pr( Z ers, + Z e+ e; > d;) (19)

T;€Q(Ai,hp(Ti)) TR €EQ((As, fil,hp(74))

=1- / geis(€) % ... gey(€) * ... ge, ,(e)de (20)
Q(Ai,hp(1:))UQa,, 5,1 V{Ti}

where ge;e;( e) is the pdf of e} for 7; € Q(A;, hp(7i)), ge, (€) is the pdf of ey for

T € Q((Ay, fi], hp(7:)), and gei7t(e) is the pdf of e;. Let epaSt be the processor
time consumed by 7; from its arrival time to current time ¢. leen the probability
density function g, (e), we have

0 ife<0
gej,t(e) = % otherwise 1)

st
where G, (e ebesh fo“ ge, (e)de.

In fact, the admlssmn control using Eq.(18) leads to computationally complex
algorithms since it involves expensive convolution operations. Note that convolu-
tion operations are very expensive. For instance, the computational complexity
of convolution gx h is known to be O(n?) where n is the number of points in dis-
cretized functions of g and h. Although the run-time overhead can be reduced if
we use FFT (Fast Fourier Transform) [9], the algorithm still requires O(nlogan)
for g * h. Our next approach eliminates the need for convolutions by taking
advantage of effective execution times, thus enabling efficient on-line admission
control.

4.2 Effective Execution Times and Overrun Handling

The approach in the previous section is based on the assumption that tasks
missing deadlines are discarded. This allows us to bound deadline miss proba-
bilities but leads to computationally complex algorithms. Our second approach
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improves upon this by aggressively discarding tasks. Every task is associated
with a particular amount of processor time, called effective execution time, and
the admission control is performed using effective execution times. If any task
overruns its effective execution time, it is immediately discarded. By overrun,
we mean that a task consumes processor time more than its effective execution
time.

The objective of preventing task overruns is to isolate tasks from one another.
Under this scheme, every task can independently receive processor time up to
the amount of its effective execution time. Thus, the deadline miss probability of
a task is not adversely affected by other tasks. If we choose appropriate values for
effective execution times for a given bound ¢, tasks can be statistically schedu-
lable with probability 1 —e. To choose the minimal processor time required for a
given bound, we can define the effective execution time e of 7; as a function of
the required deadline miss probability € and probability density function g, (e).

e

/6 ge,(x)dx =1 —€. (22)
0

Clearly, discarding overrun tasks has the implication that execution times
are bounded. The great benefit of this is that it allows us to integrate effective
execution times and the deterministic techniques we developed in section 3.
Using effective execution times, we can define statistical versions of utilization
demand and maximum utilization demand as below.

def 2omeQ(thp(r) St T

€ € def €
uQ(t) (Ti) - dres and UQ(t) = mlax[uQ(t) (Tl)] (23)
it

res,e __ e _ _past
where e; ;" = €5, —¢;

(T
Using the above definitions, the following theorem provides a statistical
version of schedulability condition for a mixed set.

Theorem 4.2. Given a periodic task set P and aperiodic task set Q(t), QpUQ(t)
18 statistically schedulable with probability 1 — € if the following holds.

U +Up <1 (24)
where Up =3 p %
Proof. Let S(t) be Q(t) UQp. Thus, it suffices to show that any aperiodic task
7 in S = {r,...,7,...} is statistically schedulable if Ug(t) < 1. Consider the
deadline miss probability of 7; € S.

Pr(fi>Di)=Pr( > €% + 3 e +e: > D;).(25)
7 €S(Ai,hp(7i)) 7 €S((Ai, fil.hp(Ti))
res,e

: res X € i
Since eres < €; and e; < €5 for any 7;, we have

Pr(fi>Di)=Pr( Y era + > ej +ei > D;) (26)
75 €S(Ai,hp(T:)) T, €S((As, fil,hp(7i))
> Pr( Z e+ Z €5 +ei > D;).(27)

75 €5(As,hp(Ti)) 7 €8((Ai, fil,hp(T:))
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res,e

Uy < 1implies 30 cgoa, np(r)) €4, T 2or,e5((Anfilhp(r)) €5 T € < Dis, thus
we have

Pr(fi > D;) > Pr( Z e+ Z e +ei >
T;€S(Ai,hp(T:)) ;€S8 ((Ai, filshp(Ti))
> G X e
7;€S(Ai,hp(Ti)) T €S((Ai, fi],hp(Ti))
= Pr(e; > ¢5). (28)
This completes the proof. O

In many applications, it may be unnecessarily stringent to discard overrun
tasks. If the system is not overloaded, it is often advantageous to allow overruns
as long as its further execution does not interfere with other admitted tasks.
There are two other possibilities for handling overruns without affecting
statistical guarantees for other admitted tasks. The first one is to give second
chances to overrun tasks. Under this, the overrun task, whether it is periodic or
aperiodic, is treated as a new aperiodic task. This task can receive processor
time if it passes new admission test. The other one is to provide utilization
slack. The use of utilization slack is similar to the idea of slack stealing [6,
11]. By Theorem 3.4, we can determine utilization slack and estimate available
processor time for an overrun task. The following theorem shows how to
estimate available processor time.

Theorem 4.3. Suppose that ; € Q(t)UQ p under EDF overruns at time t, where
Qp is an equivalent aperiodic task set of P. Let efl“k be the available processor
time for ; such that every task 7; in Q(t) U Qp is statistically schedulable with
probability 1 — e. The available processor time e$'*k(t) satisfies the following

%

estack (4) < di$® (1=Up = Up)) 2

?

where Up s the utilization of P.

Proof. Let S(t) be Q(t) U Qp. Clearly, 7; has the highest priority in S(¢) at
t, since 7; is executing at ¢. Thus, if we increase the execution time of 7; to
e; +e5leck this affects utilization demands of all the remaining tasks in S(¢). Let
tig(+)(77) be a new utilization demand for any 7; € S(t), then we can write

TES,€E TES,€E Slack
QireSthp(ry) Skt T €t TE

aS(t)(Tj) = dres (30)
.t
Zrkes(t,hp(Tj)) e;::,e + e;,ets’e dir,ets -(1-Up - Ué)(t))
= df‘es + d.,;es * (31)
J,t j;t

1 res Tes
Since d;° < djY’,

res,e

Z res,e +
T, €5(t,hp(r;)) Ck t €j.t
res
dj,t

g (T5) < + (1 =Up —Uiu) (32)
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5 Conclusion

We have proposed three approaches to deadline guarantees for a mixed set of
periodic and aperiodic tasks. First, we have presented a new schedulability anal-
ysis, called utilization demand analysis, which can be applied to periodic and
aperiodic tasks with deterministic execution times. We have shown that the
algorithm for this analysis has a run time of O(n), and thus it enables an effi-
cient on-line admission control. Second, we have presented a statistical admission
control scheme based on deadline miss handling. By discarding tasks missing
deadlines, this scheme allows us to bound deadline miss probabilities of tasks.
Third, we have presented an improved statistical scheme using effective execu-
tion times. By handling overruns, effective execution times allow tasks to meet
deadlines with a specified probability without being interfered with. Combined
with the utilization demand analysis, effective execution times greatly simplify
the admission control.

There are several future research directions. First, we could extend the un-
tilization demand analysis for fixed priority scheduling algorithms such as rate
monotonic (RM) algorithm. Second, we could evaluate a tradeoff between dead-
line miss probability and throughput of the system. Although we have not con-
sidered this problem in this paper, the results presented here will be useful in
such evaluation.
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Appendix: Proof of Theorem 3.2.

Let Q1(t) UQ2(t) = {Tms---,Tps---,7n}. Using Eq.(1) and Eq.(2), we have

eres res + +eres Tes + +eres
U, = - , 34
Q1 t)UQ2(t) max{ dres d;?ts dres } ( )

n,t

Suppose that the maximum utilization demand is Ug, 1yug, () = G trtops

d7‘€s
Without loss of generality, suppose 7, € Q1(t). Let Qj(t) C Q1(t) be “the set
of tasks whose residual execution times e;$* appear in e’"ﬁd%, and let

Q5(t) C Q2(t) be the set of tasks whose residual execution times €% appear in

€T f el .

—t—es—2%. Then, we can write
Pyt

res _|_ s 67‘68 B ETiGQf(t) eZEtS + Z'rjeQ; ® e§7ets o
dres - dres ( )
p,t Dt

Since priorities are assigned according to EDF, d;% is the maximum of {d}® :
7 € Q1(t) UQ5(t)}. Let dp% be the maximum of {df° : ; € Q5(t)}, then we
have d;% < d;. Hence,

res Tes res res
2oreqiw Gt + 2meqsm Gt _ Lneaio i . 2 reQz) G
res - res res

Pt p,t q,t
<Uq.,t) + Ug.r) (37)

(36)
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Abstract. Previous real-time disk scheduling algorithms assume that each disk
request incurs a disk mechanical operation and only consider how to move the
disk head under real-time constraints. However, with the increased capacity of
on-disk cache, modern disk drives read-ahead data aggressively. Thus, the on-
disk cache may service lots of requests without incurring physical disk access.
By exploring the design methodology of on-disk cache, in this paper, we pro-
pose CARDS: a cache-aware real-time disk scheduling algorithm that takes the
on-disk cache into consideration during scheduling. Therefore, the scheduling
algorithm can help to minimize the cache miss ratio. Besides, the service timing
estimation is more accurate in schedulability analysis since the cache effect is
considered. A simulation-based evaluation shows CARDS to be highly success-
ful as compared to the classical real-time disk scheduling algorithms. For ex-
ample, under sequential workload with 10 sequential streams, the data through-
put of CARDS is 1.1 times of DM-SCAN.

1 Introduction

In a computer system, after disk scheduling, disk requests are sent to and served by
the disk drive [14]. However, because the excess delay caused by the disk mechanical
operation, a random access memory, i.e., on-disk cache, is equipped in disk drives to
bridge the speed gap between the main memory and disk and acts as a speed-
matching buffer [8-9, 15]. Nevertheless, in the last couple of years, the drastically
improvement of hardware technology has driven an increased capacity of on-disk
cache. Since caches work on the premise that the issued tasks have spatial and tempo-
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ral locality, with the hope of repeated or sequential access patterns, the on-disk cache
can service most requested data without incurring physical disk accesses. If the ma-
jority of the accesses to disk are serviced by the on-disk cache, the I/O delay will be
significant reduced.

Cache design methodology gives cache designers a competitive edge in the mar-
ket. Therefore, manufacturers either patent them or consider their implementation a
trade secret. However, if the parameters of on-disk cache are disclosed, the caching
effect would be taken into consideration during the disk scheduling. Consequently,
the scheduling algorithm can help to, not just by cache replacement scheme, preserve
the principles of spatial and temporal locality, which in turn results in a higher hit
ratio. Furthermore, the service timing estimation is more accurate in schedulability
analysis since the caching effect is considered during scheduling. Otherwise, a task’s
execution time must assume in the worst case that a mechanical disk access is in-
curred. This results in an over estimation of system resource usage and decreases
system performance.

The idea of taking the on-disk cache into account in disk scheduling is also seen in
[18]. They mentioned that requests that can be satisfied by the cache should be given
higher priority to be accessed from disk cache. However, they only simulate the
caching effect for the performance evaluations of conventional disk scheduling algo-
rithms, which have no timing requirements.

On the basis of an existing real-time disk scheduling algorithm, DM-SCAN [1], we
propose the CARDS (cache-gware real-time disk scheduling) algorithm that considers
the on-disk cache effect during the scheduling of real-time disk tasks. After the com-
pletion of DM-SCAN algorithm, CARDS algorithm reorders the tasks that can be
served by on-disk cache. That is, disk requests whose accesses have the spatial local-
ity are made closer to meet their temporal locality, and thus increase the cache hit
probability. Experimental results shows that, under sequential accesses, our proposed
cache-aware algorithms obtains larger data throughput than DM-SCAN since the
increased cache hit ratio. For example, under sequential workload with 10 sequential
streams, the data throughput of CARDS is 1.1 times of DM-SCAN.

In the rest of this paper, we shall first introduce the disk service model in a real-
time environment, including on-disk cache design methodology, the timing charac-
teristics of real-time tasks, and the objective of real-time disk scheduling algorithm in
Section 2. Section 3 reviews the related works. In Section 4, we introduce the terms
used for the proposed algorithm. Section 5 presents the proposed CARDS algorithms.
The experimental results are shown in Section 6. Finally, Section 7 summarizes this

paper.
2 Background

2.1 Design Methodology of On-Disk Cache

The on-disk cache is often organized as a number of segments. A segment is a se-
quence of data blocks managed as a unit; that is, each segment contains data that is
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disjoint from all other segments. Some disk drives dynamically resize the number
(and size) of cache segment based on recent access characteristics to ensure greater
utilization.

With the incorporation of on-disk cache, the data path to the disk will be inter-
posed by the on-disk cache. In addition to retrieve the requested data blocks, most
disks, based on analyzing access and usage pattern of the requests, also perform read-
ahead. It is because that many applications process data sequentially that the next
request will be for data following the current request. By read-ahead, the requested
data of subsequent accesses will have been resided in the cache and shorten the serv-
ice time.

Compared with the capacity of a disk drive, the on-disk cache size is smaller. Con-
sequently, segment replacement occurs when the cache is full of data and a new data
block is requested. Note that, the replacement algorithm has a profound impact on the
cache performance. A good replacement scheme should evict the segment that has no
immediate access and retain the data more likely to be accessed soon. For example,
random replacement (RR), least recently used (LRU), and least frequently used (LFU)
are some of the well-known cache replacement algorithms [10, 17].

2.2 Real-Time System

Assume that the start-time and finish-time denote the actual times at which a task is
started and completed, respectively. To characterize the timing characteristics of a
real-time task, two parameters are associated with it to determine the proper start-time
and finish-time.

® Ready time : the earliest time at which a task can start
® Deadline : the latest time at which a task must be completed

To satisfy the real-time requirements, the start-time of a task should not be earlier
than its ready time. Additionally, its finish-time should not be later than the related
deadline [16]. Depending on the consequence of a missed deadline, real-time tasks
are further classified into hard and soft. A real-time task is said to be hard if missing
its timing constraints will cause serious damage and system will misbehave. In con-
trast, a real-time task is said to be soft if meeting its timing constraints is desirable for
performance, but a missed deadline does not influence the correctness of system be-
havior. A schedule of real-time tasks is said to be feasible if all tasks can be sequen-
tially served according to the specified real-time requirements. In this paper, we ad-
dress the hard real-time system.

2.3 Real-Time Disk Scheduling Problem

As stated above, disk tasks in a real-time system must be associated with timing char-
acteristics to describe their timing constraints. Accordingly, a real-time disk task 7T’ is
denoted by five parameters (¢, [, b, r, d) where ¢, is the track location, /, is the sector

number, b, is the data size, r, is the ready time and d, is its deadline. Assume that the
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schedule sequence is 7/T.. Because disk tasks are non-preemptive, the start-time s, and
finish-time f; of a real-time task 7, with schedule T'T, are thus computed by s, =
max{r, f;} and f; = s, + ¢, respectively. Note that, c,; denotes the service time of task
T, with schedule sequence TT.. If T, is a cache hit, c,, is the value of cache access time.
Otherwise, ¢, represents the time spent to access the physical disk.

Given a set of real-time disk tasks T = {7, T,, ..., T,} where n is the number of in-
put disk tasks and the i-th disk task 7' is denoted by (r, d, t, [, b,). The objective of a
real-time disk scheduling algorithm is to find a feasible schedule T, = T, T ,...T
with maximal throughput. The index function Z(i), for i = 1 to n, is a permutation of
{1, 2, ..., n}. Define schedule finish-time as the finish time it takes to serve all input
tasks according to their respective timing constraints. Clearly, this is the finish-time of

the latest task f,, . Therefore, the disk throughput is calculated as follows.

Throughput = sz(l)/fz(n) z(n) ’ M

The obtained disk throughput is related to the inverse of schedule finish-time. If
the input schedule is completed earlier, more data throughput is obtained. The data
throughput improvement of scheduler Z compared with scheduler X can be computed
as

Throughput improvement = (1 - f, /f. ) * 100% . 2)

Therefore, the problem objective defined to maximize throughput can be achieved
by minimizing the schedule finish-time. We formally formulate the real-time disk
scheduling problem as follows.

Definition 1: Real-Time Disk Scheduling
Given a set of n real-time disk tasks 7' = {7, ... T} where the i-th task T, = (7,
d, t, I, b), find a feasible schedule 7,=T,, T, that resolves miny, { f } under

Nt z2)”* Z(rz)
Yy <8, andf, <d, forl<z(i)<n. Q

3 Related Work

The SCAN algorithm was first proposed by Denning for scheduling conventional disk
tasks [5] and has been shown as an optimal algorithm under amortized analysis and
probability model [4]. However, due to the lack of timing consideration, the SCAN
algorithm is not suitable for scheduling real-time disk tasks. To address a task’s real-
time characteristic, EDF (Earliest Deadline First) was proposed and shown to be op-
timal if tasks are independent [11]. Nevertheless, in terms of disk scheduling, the
service time of a disk task depends on its previous task’s track location. The assump-
tion that tasks are independent is not held. Actually, taking only deadlines into ac-
count without considering the cost of service time, EDF incurs excessive seek-time
costs and results in poor disk throughput [13].
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Consequently, various approaches have been dedicated to combine the features of
SCAN type of seek optimizing algorithms with EDF type of real-time scheduling
algorithms [2-3]. For these algorithms, they start from an EDF schedule and then
reschedule tasks to minimize seek and/or rotational latency under real-time con-
straints. For example, the well-known SCAN-EDF scheme was proposed that first
schedules tasks with the earliest deadlines [13]. If two or more tasks have the same
deadline, these tasks are serviced according to their relative track locations, i.e., by
SCAN algorithm. Since only tasks with the same deadline are seek-optimized, the
obtained data throughput improvement is limited.

To increase the probability of applying SCAN algorithm to reschedule input tasks,
DM-SCAN (Deadline Modification-SCAN) proposed the concept of maximum-
scannable-group (MSG) [1]. An MSG is a set of continuous tasks that can be re-
scheduled by SCAN without missing their respective timing constraints. Given an
EDF schedule T = T/T,...T,, MSG G, started from task 7, is defined as the sequent
tasks G, =TT, T,,.T,, where task T, satisfies following criteria

i+1

fisd andr <s, forj=itoi+m. 3)

A simple example to demonstrate the identification of MSGs is shown in Fig. 1.
Given an EDF schedule 7=7,7,7,T,T,. To calculate MSG G,, we have f,< d,, r, <,
and f; < d, r, <s,, but f, > d, although r, <'s,. Thus, G,=T,T,. Following the same
approach, other MSGs can be obtained as G =T, G=TT, G=T1,T; and G,=T, re-
spectively.

| i
—

IReady Time; lDeadline; [ Task Execution; DMSG

Fig. 1. An example to demonstrate the identification of MSGs.

After the identification of MSGs, DM-SCAN reschedules tasks in each MSG by
seek-optimizing SCAN scheme to minimize total service time. Note that the resched-
uled result destroys the EDF sequence. Because DM-SCAN requires the input tasks
based on EDF order, a deadline modification scheme is proposed to modify tasks’
deadlines and transfers the rescheduled non-EDF sequence into a pseudo EDF order.
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Here, “pseudo” means that the tasks are ordered by the modified deadlines. For ex-
ample, given the schedule sequence T.T, a pseudo deadline d, is derived as d,, =

min{d, d }. By the deadline modlflcatlon scheme, DM-SCAN iteratively resched-
ules tasks from the derived pseudo EDF schedule to obtain more data throughput.

4 CARDS: Cache-Aware Real-Time Disk Scheduling Algorithm

4.1 Preliminaries

In this section, we describe the terms used in this paper. Given a set of n real-time
disk tasks, assume that for each disk access T, 1<i<n, if a cache miss occurs, the
cache logic will bring a data size of into the on-disk cache and the content of data
blocks brought into cache is denoted by E.. Thus, size(E,) = . Note that, the value of
depends on the cache segment size, and if read-ahead is performed, also on the read-
ahead size. To distinguish a set of tasks whose accesses having the principles of spa-
tial locality, we define the concept of principal task and cached task.

Definition 2: Principal Task and Cached Task

Given a set of real-time disk tasks 7,7, T,, if T’s requested data block b, is in-
cluded in E, where 1 <i < j < n. Then, 7, is called the principal task of T, and denoted
as P(T)=T. In addition, 7 is called the cached task of T, and denoted as C(T))=T.

Definition 3: Immediate Principal Task and Immediate Cached Task

Given a set of real-time disk tasks 7,7, T,, assume that P(j)=T7, (i.e., C()=T),
where 1 < i < j < n. If there exists no T;’s principal tasks (or 7;’s cached tasks) be-
tween T, and T, then task 7 is called the 1mmed1ate principal task of T, and denoted as
G(T)=T.In addltlon task 7, is called the immediate cached task of T and denoted as
H(T)=T.

Therefore, T, is cache hit if £ is resident in the on-disk cache when T’ is issued.
In other words, a cache hit occurs for T, if the cached data of G(T)) remains in the
cache, that is, has not yet been replaced when T is issued. Consequently, if 7, and
G(T) would be scheduled close enough such that the cached data of G(T) have not
yet been flushed when 7, is issued, then T, can be serviced by the on-disk cache and
shorten its access time.

However, in a real-time system, a derived schedule must be feasible. Therefore,
scheduling 7, and G(T)) to be closer must not viloate both T, and G(7)’s timing con-
straints. In addmon since other tasks may be influenced as thls cache-aware sched-
uling, the deadlines of the influenced tasks should not be violated to guarantee a fea-
sible schedule. Therefore, when and how to perform such cache-aware scheduling
scheme under real-time constraints posed a challenge in the design of our scheduling
algorithm.
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4.2 CARDS Algorithm

On the basis of the DM-SCAN, in this section, we propose the CARDS algorithm. As
described in Section 4, to increase cache hit ratio, G(7,) and 7, must be close enough
to prevent E,; from being replaced when T, is executed. Thus, after the running of
DM-SCAN algorithm, the CARDS reschedules tasks to make G(7,) and T, closer
while meeting tasks’ timing constraints.

Suppose that the number of cache segments is m and LRU is used as the cache re-
placement algorithm. Before describing the CARDS algorithm, for task 7,, we first

introduce the miss function f(k) as:

1 if 7, introduces a cache miss
fik) = ' )

0 if T, introduces a cache hit

By the miss function, the concept of flush point of T, P(i), is introduced such that
P(i)

Zf(l) =m+1 or P(i)=nif nisreached . 5)

I=i

As shown in Fig. 2, P(i) represents the position that E, is flushed to the disk. There-
fore, T/ should be executed before T,. if possible, to be cache hit. Therefore, CARDS

schedules T just immediately before the flush point of 7, P(i), if the rescheduling
result does not violate tasks’ timing constraints.

T, T Tis Ty TP(i)

Numberof [ J=m + 1

[ JTaskisacachehit [___] Taskisacache miss

Fig. 2. The identification of a flush point.

Assume that after the running of DM-SCAN, the derived schedule § = T'T,...T,.
Then, the CARDS identifies pairs of cached tasks and their immediate principal tasks.
For each pair of cached task T, j&€ [1, n], and its immediate principal task T, (= G(T),
CARDS must decide whether T/ should be scheduled to be closer to T, and, if yes,
which position is suitable for T’ to be scheduled. The steps that are performed by the
CARDS for each pair of cached task 7, and its immediate principal task T, are shown
in the following.

1. Calculate the value of P(i) by Equation (4) and (5).
2. If T is in front of T, as shown in Fig. 3a, T, can be serviced by the on-disk
cache by the cached data of T,. Therefore, no rescheduling is needed for 7.
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3. However, if T is after or equal to 7, i.e., P(i) <J, then cache miss will oc-
cur when T’ is issued. Consequently, CARDS tries to schedule 7' to execute

before T,,. Depending on the values of r, ready time of 7, and Sy, Start

time of T, two different cases may exist:

(a) Ifs,, < r,as shown in Fig. 3b, then T, can not be advanced to
execute before T, since its ready time falls behind the start

time of 7, ,. Consequently, no reordering is performed for 7.

(b) Ifs,, > r, as shown in Fig. 3c, then 7 can be advanced to exe-

cute before T,,. Although the time at Wthh T, could be started
is between max(d, r,) and s,,, CARDS reschedules T; into the
(PGH)-1)" position, i.e., immediate before T,,. Note that the re-
scheduling of 7, may result in an infeasible schedule. There-
fore, a feasibility checking must be performed for each re-
scheduling operation by the techniques described in Section

5.2.

P(i)?

From above algorithm, the increase of cache hit probability thus realized with the
CARDS by rescheduling tasks that have the opportunity to be cache hit after the DM-
SCAN scheme.

T, T T; Tpy
cee - cee
(a)
Ti Ti+1 TP[ r T;
(b)
T,' Ti+1 r; TP([) T
(c)

Fig. 3. Three cases for CARDS algorithm. (a) 7j is guaranteed to be cache hit and thus no
movement is needed as it is scheduled before the T, . (b) No movement is needed for 7j be-

P(i)°
cause its ready time is after the start time of 7, . (c) By moving 7j in front of 7, , 7j thus can
be cache hit.

P{) FI )?

4.3 Feasibility Checking

As shown in Fig. 4, when task 7, is rescheduled, some tasks are influenced by an
increased or decreased delay of finish time. Therefore, feasibility checking must be
performed when rescheduling a task and, if an infeasible schedule is produced, this
rescheduling operation cannot be activated. The checking for feasibility involves
computing start-time and finish time for each request in a schedule and thus a naive



96 H.-P. Chang et al.

computation algorithm has O(n) complexity. To accelerate the checking process, the
concept of a conjunction group is introduced.

A T B T C
i =

Fig. 4. The condition when a task T is moved from c to 5. Tasks in region A are not influ-
enced. However, tasks in the region B may be delayed. Besides, tasks within the region C may
be delayed or advanced for execution depends on whether T’s access results in a cache hit or
miss at location 5.

Definition 4: Conjunction Group

Given a set of real-time disk tasks T = T,T,...T,, a conjunction group G, is defined
as a number of continuous tasks G, = T\T,,,...T,,,, with each task T, for k =i +1 to i+m
satisfiesr, <f . U

Therefore, tasks in a conjunction group will be executed one by one without any
free time slice between them. Note that, as shown in Fig. 5, conjunction groups may
be merged or split when a rescheduling operation is taken place. By the idea of con-
junction group, following lemmas assist to simplify the checking process.

Ga fl‘l r'p Gb Ti Tz GC
[ | B | E4 [ E
Ti fl‘l:rb Gc Ti Ga ﬁz ry G},
EE| ] ] B | | ML |
(a) (b)

Fig. 5. Conjunction groups may be merged or split when a rescheduling operation is occurred.
(a) Ti is rescheduled to the front of Ga. As a result, conjunction group Ga and Gb are merged
into Ge since rb < fa. (b) Ti is rescheduled out from Gc. As a result, conjunction group Gc is
split into Ga and Gb since fa < rb.

Lemma 1. Assume that a conjunction group G, = T,T,,,...T, and task T, is resched-
uled from position a to 5. If T, i€ [k, I-1], is influenced by a delayed execution of €,
then for all tasks T;, j&€ [i + 1, 1], their execution are also delayed by ¢ .

Proof. For a real-time task T, , s,,, = max{r,, f} and f  =s_ +e_, wheree_, de-

i+17 Vil i i+l i+1? i+l

notes T,,’s execution time. Since T, € G,, from the definition of conjunction group,
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Si+l :fi. andfi.ﬂ = si+l + ei+l :fi. + ei ° (6)

Because T, is delayed by ¢, i.e., f, is increased by ¢, thus from Equation (6), s,
and f_, are also delayed by ¢ . Following the same arguments, task TJ., TJ., JEL+2,1],
is also influenced by an delayed execution of € Q.

Lemma 2. Assume that a conjunction group G, = T,T,,,...T, and a task T is re-
scheduled from positiona to 5. If T, i€ [k, | - 1], i.e., T, is within G,, is thus influ-
enced by an advanced execution of ¢ , then for all tasks Tj, Jj€E€ [i + 1, 1], their execu-
tion are also advanced by ¢, if G, is not split.

Proof. The proof can be derived as the proof of Lemma 2. O

Given the set of tasks in a schedule, we define the slack |, of task T, as follows.
L=d-f. (7

That is, the slack I, represents the duration for which T, can be delayed without vio-
lating its deadline. As lemma 1 and 2 show, the increase/decrease of finish time is the
same for all tasks in a collaboration group. Accordingly, we only maintain the small-
est value of slack for each collaboration group rather than maintaining it for individ-
ual requests. As a result, when a movement operation is done, we only have to check
the task with the smallest value of slack to see whether its deadline is missed, if a
delayed execution is occurred. Besides, the checking process is stopped when a free
time slice, i.e., no task is executed, is encountered. Note that, conjunction groups may
be merged or split as a delayed or advanced execution, and thus the slack value
should be updated correspondingly. From above, the overhead of feasibility checking
is significantly reduced by the introduction of slack and conjunction group. There-
fore, CARDS can quickly verify whether a movement of a task results in an infeasible
schedule or not.

S Experimental Results

In this section, the performance of the CARDS is evaluated. Section 4.1 shows the
platform used for our experiments and the characteristics of input workload. In Sec-
tion 4.2, the experimental results of the CARDS are presented to compare their per-
formance.

5.1 Experiment Platform

As stated above, the characteristics of on-disk cache must be explored so that cache-
aware scheduling scheme can then be applied. Because disk manufactures consider
their on-disk cache implementation scheme a technical secret, thus we use the disk
drive parameters derived from [7], which uses the techniques of on-line extraction [6,
19]. Table 1 shows some important parameters of Quantum Altas 10K MAG 3091,
which is used as the target disk in our experiments [7, 12]. The seek time cost is cal-



98 H.-P. Chang et al.

culated by the extracted data from [7]. The rotational latency is assumed half of the
time of a full track revolution. The on-disk cache parameters of Quantum Altas 10K
MAG 309, which is based on the extracted data of [7], are shown in Table 2.

Table 1. Quantum Atlas 10K: MAG3091 disk parameters

Year 1999
Capacity 9.1 GB

No. of cylinders 10,042

No. of surface 6

No. of sectors per track  |334

Sector size 512 bytes
Revolution speed 10,000 RPM

Table 2. Quantum Atlas 10K: MAG3091 disk cache parameters

Size 2 MB

No. of buffer segments |10
Segment size 374 sectors
Transfer time 0.184 ms

There are two kinds of workloads in our experiments, one is random and the other is
sequential. The workload of random tasks is uniformly distributed over the disk sur-
face. For sequential workload, it consists of a number of sequential streams and ran-
dom requests. Each sequential stream in our simulations emulates the sequential ac-
cess pattern and consists of five sequential requests; the accessed block of first re-
quest is also randomly distributed over the disk surface. Then, the following requests
access the block immediate after their previous tasks. In addition, the number of ran-
dom requests in a sequential workload is selected as one third of the total requests.
The accessed blocks of these random tasks are also uniformly distributed over the
disk surface. The size of data accessed by each request, either sequential or random, is
normally distributed with a mean of 36 KB. For random workload, if there are n ran-
dom tasks, the ready times of tasks are randomly generated from O to 6*n ms. After a
random time interval, 0~5*n ms, the related deadlines are uniform distributed within
0~10*n ms. For sequential workload, if there are m sequential streams, the total num-
ber of input tasks n = 1.5 * (5%m). Since there are five sequential tasks in a stream,
the ready time of each sequential task in a stream is randomly generated between O
and 2*n/5 ms after its previous task and its deadline is uniform distributed within
0~20*n/5 ms after a random time interval, 0~10*n/5 ms. For the random tasks in the
sequential workload, their ready times are random generated between 0 and 2*n ms.
After a random time interval, O~10*n ms, their related deadlines are uniformly dis-
tributed within 0~20%n ms. The cache replacement scheme is assumed LRU. If a
cache miss occurs, the cache logic will read ahead a data size of 354 sectors (177KB),
including the requested one, into a least-recently-used cache segment. In all following
experiments, fifty experiments are conducted with different seed for random number
generation and the average value is measured.
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Fig. 6. Throughput improvement of CARDS under different number of random tasks. The
throughput improvement is compared to EDF.
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Fig. 7. Throughput improvement of CARDS for sequential workload with different number of
sequential streams. The throughput improvement is compared to EDF.

5.2 Experimental Results

If the same number of real-time tasks is given, a well-behaved scheduling algorithm
must maximize data throughput under guaranteed real-time constraints. Given ran-
dom access workload, the data throughput improvements of DM-SCAN and CARDS
under different number of input tasks are shown in Fig. 6. The derived throughput
improvement is compared with EDF. Fig. 7 presents the same experiment for differ-
ent sequential workloads. Besides, the minimum, maximum, and average schedule
fulfill time of two approaches with a sequence of twenty-five random tasks are also
presented in Table 3. Table 4 presents the same performance metrics but under se-
quential workload with ten streams.

On-disk cache works on the premise that the input workload follows the principles
of temporal and spatial locality. Thus, given random tasks, the throughput improve-
ments presented in Fig. 6 shows little differences between CARDS and DM-SCAN.
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Table 3. Given 26 random tasks, the minimum, maximum, average schedule fulfill-time, and
throughput improvement compared with EDF for different schemes.

Algorithms Schedule Fulfill-Time (msec)

minimum  |maximum average improvement
EDF 262.10 355.86 309.74 0.0 %
DM-SCAN  [230.48 314.60 267.05 15.66%
CARDS 230.48 314.60 267.05 15.68%

Table 4. Under sequential workload with 10 sequential streams, the minimum, maximum,
average schedule fulfill-time, and throughput improvement compared with EDF for different
schemes.

Algorithms Schedule Fulfill-Time (msec)

minimum  |maximum average improvement
EDF 453.31 543.15 498.51 0%
DM-SCAN  |376.99 473.61 413.24 17.11%
CARDS 327.04 442.02 376.32 24.51%

There is little possibility that a random task will hit the data cached in the on-disk
cache. Therefore, cache-aware scheduling has no means to increase the cache hit
probability.

In contrast, as shown in Fig. 7, if input is sequential workload, CARDS obtains
larger data throughput than DM-SCAN. Observe that, the performance of CARDS
performs better than DM-SCAN with the increase of number of sequential streams.
Since the number of cache segment is ten, when the number of cache segments is
considerably larger than that of sequential streams, the on-disk cache capacity is thus
larger enough to sustain a great deal of blocks accessed by each sequential task. Thus,
the derived throughput difference between DM-SCAN and CARDS is not significant.
However, when the number of sequential streams is increased, CARDS increases the
on-disk cache utilization and obtains further data throughput than DM-SCAN.

6 Conclusions

To be in competitive edge in the market, disk manufactures consider their disk im-
plementation as a technical secret. However, if the information of on-disk cache is
explored, the disk scheduling algorithm can exploit this information to derive a
schedule minimizing the cache miss probability. In this paper, we thus propose the
CARDS algorithm that considers the caching effect during the scheduling. As a re-
sult, the disk scheduling scheme can also be actively involved in reducing the cache
miss ratio. In addition, the timing analysis is more accurate since the on-disk cache is
considered during scheduling and thus, if a cache hit occurs, cache transfer time is
used as the task’s execution time for schedulability analysis without assuming the
worst case that each disk task incurs a physical disk mechanical operation. The ex-
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periments demonstrate that the proposed schemes indeed obtain larger data through-
put than DM-SCAN. For example, under sequential workload with 10 sequential
streams, the data throughput of CARDS is 1.1 times of DM-SCAN.

The CARDS is based on the static manner of an on-disk cache; that is, the sched-
uling scheme is aligned to the on-disk cache’s behavior. However, in recent design of
on-disk cache, the number (and hence size) of cache segment is configurable. In ad-
dition, read-ahead can be enable/disable dynamically. As a result, our future work
would propose an aggressive cache-aware real-time disk scheduling scheme that
changes the behavior of on-disk cache dynamically during the scheduling.
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Abstract. A new approach is proposed for the probabilistic assessment
of schedulability of periodic tasks with uncertain characteristics in dy-
namic multi—processor scheduling. It is aimed at non—critical real-time
applications such as multimedia, which allow some leeway with respect
to compliance with timing requirements, provided that certain minimum
Quality of Service (QoS) requirements are met. Uncertainties are taken
into account through random variables at the task arrival times and by
characterising subsequent task characteristics in probabilistic terms. By
examining each pair of possible computation time and deadline of a given
task at each time unit in relation to the same of other tasks, an execu-
tion pattern is derived. This forms the basis for computing various QoS
attributes such as probability of successful execution, latency in response
time, jitter, etc. Illustrative examples address, amongst others, the per-
formance of two particular algorithms, EDF and LLF, in the presence of
uncertainties in task characteristics.

1 Introduction

It is a common practice in real-time scheduling algorithms to assume that task
characteristics such as computation time and deadline are known precisely, some-
times in advance, and remain constant throughout the life time of the task. How-
ever, this is rarely the case in practice and the lack of precise prior knowledge
about task characteristics remains a major concern in scheduling. This applies
especially to non—critical real-time applications such as multimedia systems,
computer vision, real-time tracking based on radar or sonar. Computational
tasks in them tend to vary widely in execution times depending on the com-
plexity of the specific task instance being handled. In addition, tasks may or
may not arrive at fixed periodic intervals. Experiments in [12] show deviations
of actual periods from the nominal ones and a tendency for them to alternate
between short and long periods in consecutive instances. In the face of such un-
predictabilities, task deadlines too are subject to change in order to indirectly
account for uncertainties in task execution times and request times.

A common approach to dealing with uncertainties so arising is to adopt a
worst—case strategy and to assign an extreme value to the computation time,
regardless of its frequency relative to its other possible values and its represen-
tativeness. This is an acceptable solution in critical applications but is an overly
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demanding one in non—critical applications. In applications such as multimedia
user perception is not affected often by such variation to the same degree, while
in other applications there are more tolerant alternative ways to dealing with
occasional failures. Under such circumstances under—utilisation of computing re-
sources resulting from worst—case considerations could seriously undermine the
cost—effectiveness of such applications. This underlines the importance of arriv-
ing at an acceptable balance between the Quality of Service (QoS) and the over-
all system performance, such as throughput and resource utilisation in terms of
processor workloads. However, uncertainties in task characteristics must still be
dealt with, because missing deadlines result in both QoS violations and wastage
of computing resources, to the detriment of the balance between both factors
mentioned above.

For tasks with uncertain parameters, on—line and off-line scheduling algo-
rithms and schedulability analysis have been proposed in the literature. Zhou et.
al [12] propose a modified rate-monotonic schedulability analysis, incorporating
two new experimentally determined parameters to account for uncertainties in
operating system overheads, namely, a constant representing the CPU utilisation
of operating system activities and a worst—case timer delay factor. A Statisti-
cal Rate-Monotonic Scheduling approach [1], with an implementation described
in [2], allows scheduling of periodic tasks with highly variable execution times
expressed through a probability density function. It also allows the consider-
ation of statistical QoS requirements defined in terms of the probability of a
random instance of the task chosen from an arbitrarily long execution history
meeting its deadline. Recently, Manolache et al [9] have presented an approach
to performance analysis of periodic task sets with their execution times speci-
fied as a continuous probability distribution. Although it is a non preemptable
and is confined to single processor environments, the approach is elegant and
shares the same objective as this paper. Dealing with the so—called monotone
processes, i.e., those where the quality of the result keep improving after sur-
passing a minimum threshold computation time, Chung et. al [3] propose an
imprecise computational model that involves a mandatory initial part and an
optional follow—on part. Mandatory parts of all tasks are to be executed within
the deadline of each task, while the optional part is left free to execute longer,
if it can be accommodated, thus refining and improving the result. Hamann
et. al [7] extends the imprecise computational model by incorporating an addi-
tional minimum reservation time for each task that assures a certain probability
of successfully completing a given percentage of its optional parts. In assessing
computational times of real-time tasks, there have been several attempts such
as [11] based on deterministic code analysis. Recognition of their inappropri-
ateness is evident from works such as [8] devoted to an estimation of execution
times statistically from past observations. As is demonstrated in [6] using Gum-
bel distribution for estimating the worst—case execution time (WCET), statistical
models are likely to result in a more realistic assessment of execution times.

The works devoted to uncertainties in task characteristics are extensive. The
above are a small selection illustrating a range of approaches addressing, in differ-
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ent ways, how to improve the quality of computations, or the QoS as understood
in modern computer applications, while maintaining a high resource utilisation
level.

In this context, our previous work [10] dealt with a probabilistic analysis of
dynamic multi—processor scheduling with emphasis on the overall performance
of the scheduling environment as a whole. In contrast, this paper shifts the focus
to the scheduling of individual tasks, addressing at the same time the overall per-
formance of the scheduling environment. The paper shows how an appropriate
balance between the QoS or system performance and resource utilisation could
be achieved purely from a scheduling perspective. The tasks are periodic but oth-
erwise can be of any general form with respect to uncertainties in computation
times and deadlines. As in [10], the framework is tied to a sufficiently general
scheduling environment, namely, a multi-processor dynamic environment. It is
based on a completely probabilistic characterisation of the problem that can be
achieved within a discrete model. The paper examines, in particular, the perfor-
mance of two well-known scheduling algorithms: Least Laxity First (LLF) and
Earliest Deadline First (EDF). Using examples, it also illustrates how the QoS
parameters are affected by various factors, among them, the number of avail-
able processors, the scheduling strategy, as well as the effect of computational
requirements of the tasks on one another.

Organisation of this paper is as follows. Section 2 presents the core ideas
of the proposed framework. Following on, Section 3 examines practically useful
performance and QoS indicators. Section 4 presents a detailed illustration of the
potential uses of the proposed framework, with respect to QoS and algorithmic
superiority. Section 5 concludes the paper with a summary of achievements.

2 Analytical Framework

2.1 Representation of Tasks

In this work, computation times and deadlines of tasks are assumed to vary
over time in an unpredictable manner, while their arrival times are left fixed
at periodic intervals. Whatever the sources of uncertainties are, such uncertain
parameters may be expressed in the form of probabilistic distributions. Alterna-
tively, such uncertain parameters may originate from the problem specification,
possibly, in a probabilistic form as Quality of Service targets to be achieved.
As a result, the chosen variable task parameters can be described, in general,
in the form of distribution functions over a given sampling space. Supposing
that there are n tasks in the system, computation time of each of the tasks 7,
for i = 1,2,---,n, at its arrival time is denoted by C; and its laxity (urgency,
measured as the length of time from current time to the deadline minus the
computation time) by L;. Each task 7; is requested periodically with a fixed
period of T; starting from time zero. It is important to note that C; and L; are
two random variables because at the time of 7;’s arrival their values are totally
unpredictable, except in a probabilistic sense. Let the sampling spaces of C; and
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L; be the sets 1 .. ¢z and 0 .. l,4; respectively, where the notation z .. y
denotes the set of numbers from z to y inclusively. Subsequent to 7;’s arrival, its
computation time and laxity are still described probabilistically over the same
spaces, though no longer as random variables. Let us refer to the area enclosed
within -1 < [ <€ lpee and 0 < ¢ < Cpae in a two—dimensional coordinate
system with axes [ and ¢ as the task domain and denote it by S. Note that
the laxity value -1 is intended solely for keeping track of tasks that have failed
so that the line [ = -1 contains only those tasks that may have already failed.
Mathematically, S is the Cartesian product -1. .lyaz X0. . Cmae , but excluding the
point (-1, 0). S can be partitioned into a scheduling domain, denoted by S, and
an exit domain, denoted by E. The former is defined as S = 0.. lLyaz X 1.. Cmaz,

while the latter as F =5 — S.
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Fig. 1. Task representation in the scheduling domain

For the purpose of visualisation, Figure 1 illustrates the above in a determin-
istic setting, with ‘tokens’ showing the location of tasks at a particular instant
in time and the coordinates [ and ¢ indicating, respectively, the laxity and the
computation time of each task. As time progresses, each token moves either
downward, signifying its execution, or leftward, signifying its non—execution. In
a multi—processor environment with m identical processors, the scheduler’s task
at each clock tick is to move at most m tokens one division downwards. An
underlying assumption of this execution model is that tasks are not bound to
particular processors and that the migration cost of tasks between processors
is negligibly small. A token reaching the [-axis at such an instant signifies the
successful completion of the relevant task, whereas a token crossing the c-axis its
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failure to meet the deadline. All tasks currently under execution are thus located
within the bounds of the scheduling domain S and the tasks which have already
gone through the system are in the exit domain E. Tasks in F comprise the
tasks which have failed to meet their deadlines (remaining on [ = -1 after reach-
ing it) and the tasks which have been successfully executed by their deadlines
(remaining on ¢ = 0 after reaching it), both with certain non—zero probabilities
in the probabilistic setting. The tasks in both S and E are the only ones in the
task domain.

Following the usual convention, the joint probability mass function (PMF) of
the two random variables L; and C; is denoted by pr, ¢, (I, c) or, for brevity,
by p;i(l,¢). As a function of two random variables, it describes the probability
of 7; arriving at a point (I, ¢), i.e., the probability of 7; having a laxity | and
computation time ¢ at the time of 7;’s arrival. Thus

pi(l,¢) =pr, c,(l,c)=P(L;=1,C; = ¢)
=P c[{U,):lI'=1,c=c}]. (1)

The jointly distributed random variables L; and C; are jointly discrete, for it is a
requirement that the sum of the joint probability mass function over the points
(1, ¢) where p;(l,¢) > 0 is equal to one. Though the latter PMF is defined over
the whole task domain, our interest is only in those points where pr, ¢, (1, ¢) > 0.

At the time of arrival, every task has, as described by (1), a totally random
value for its PMF. However, as the tasks are executed, the values of their PMFs
change with time. In this respect, let us adopt an extended notation for dealing
with their evolution over time. First, let us refer to the probability of 7; having
the value (I, ¢) in its PMF at time ¢ as p!(l, ¢). At times ¢ when ¢ mod T; is equal
to zero, that is, when 7; is freshly requested, p!(l, ¢) is to have a random value
described in accordance with (1). At other times, p!(l, ¢) is not random and is
determined by p/ ~1(1, ¢) and the manner in which 7; has been executed at time
(t —1). This can be expressed as

pl(l,¢) = p™(l, c) if t mod T; =0,

= nextf(p!=*(1, ¢)) otherwise . (2)
where pi™(l, c) is an initialisation PMF (1) to be used at request times of 7;,
while next; is a function updating the PMF that existed at time (¢ — 1) taking
into account whether 7; has been executed at (¢ — 1) or not. For any task 7; at a
point (I, ¢) in E, the following holds: pf(l,c) # 0 = p/t(l,¢) = pt(1, ¢) for all
t, with the exception of time values just prior to fresh requests, and either [ = -1
or ¢ = 0. In other words, failures and successes are irreversible, despite the fact
that in a probabilistic paradigm their occurrence is not necessarily definite. The
purpose of this study is, essentially, to characterise the functions next;s in (2) for
each and every task in the system and, thereby, to establish execution patterns
of tasks and other execution metrics of practical interest.



108 A. Leulseged and N. Nissanke

2.2 Scheduling Algorithms and Selection of Tasks for Execution

A task 7;, which is at a point ([, ¢) at time ¢ with some non—zero probability,
at time (¢ + 1) would be either at the point (I,¢ — 1) with some probability,
say, v}(l, c), if 7; has been executed (moved vertically downward) at t, or at the
point (I — 1, ¢) with a probability of A!(l,c) = (1 — v!(l, ¢)), if it has not been
executed (moved horizontally leftward) at ¢. Thus, v] (l ¢) denotes the execution
probability of 7; while at (I, ¢) at time ¢. This Would depend on several factors,
including the scheduling algorithm being used to schedule the tasks in the system
and, hence, the level of priority the task has been assigned.

For generality, let the scheduling algorithm be expressed using a (linear)
function f(I, ¢) of I and ¢ defined on natural numbers. Let the scheduler assign
task priorities depending on the value of f at each point. To be specific, for
example, let this function be of the form f(I,¢) = al+ b ¢, with a and b being
constants and let us assume the scheduler to work in such a manner that tasks
with smaller values of f(I, ¢) are assigned higher priorities. As particular cases,
with ¢ = 1 and b = 1, constant value of f(I, ¢) corresponds to EDF while with
a =1 and b =0, it corresponds to LLF.

The generality of the function f calls for some clarifications. Firstly, it is to be
noted that the range of f should occupy a contiguous stretch of natural numbers
starting from 0 or 1, depending on the scheduling algorithm. Any non-arbitrary
priority assignment should aim at ensuring that lines of constant values of f (I, ¢)
result in a regular pattern of contours, each one unit apart, over the schedul-
ing domain. Using appropriate forms for f, a variety of scheduling algorithms
is conceivable within the chosen representation. Despite their theoretical and,
possibly, practical interest, this avenue is not pursued here any further.

For a task 7; at (I, ¢) at time ¢ with a non-zero probability, this would result
in a certain (non—negative) value K for f(l, ¢). At each point (mass value) (', ¢)
in S where pf(l’, ¢’) is greater than zero, 7; will thus generally have a different
value of f. At this point in time, the tasks in the system can be classified into
three sets: 2} representing the set of all tasks each having a value of f(I’, ') <
K, % representing the set of all tasks, including 7;(l, ¢), each having a value
of f(I',c') = K and, finally, ¢ representing the set of all tasks each having
f',¢") > K or has been already either executed successfully or has failed.

Letting {2 be the set of all tasks in the system, we note that 2 = U .

Provided that p!(l, ¢) > 0, the sets 2!, which are also dependent on (I, c_), can
be defined as

Qi(le)={m |kel..nA3(z,y) € S« (ppz,y) > 0 A f(z,y) < f(l,¢))}.(3)
Q(le)={m [k el..nA3(z,y) € Se (pp(z,y) >0 f(z,y) = f(l,c))}.(4)
QlLe)={m|kel..nA3(z,y) €S« (pi(z,y) >0Af(z,y) > f(l,¢))} U

{tm|mel..nA3(z,y) € E.pl(z,y)>0}. (5)

For better readability, let us simply write from now on (2} instead 2}(,c)
defined above, for k = 1,2, 3, unless the omission of (I, ¢) causes an ambiguity
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otherwise. Let us also write p% (£2}) for the probability of 7; being in the set 2}
at time ¢.

It is important to note that the sets in (3)—(5) are not necessarily pairwise
disjoint since a task can belong to more than one set at the same time. In other
words, for j = 1,2,...,n, 7; can be in one, two or all three sets of (2}, for
k =1,2,3, simultaneously, in each case with a probability of pﬁj (£2!). Obviously,

3
0 < pr(£2;) < 1 but Zpﬁ}(ﬁ}i) = 1. As our concern here is to calculate
k=1
probability of 7;(l, ¢) being executed at time ¢, let us introduce the notation
Q2F = 2I\{7}, for k =1,2,3, so that as a result 7; is excluded from the set £2}.
Letting 7; continue to be the task under consideration for scheduling, let us
now select the sets w}, , for k = 1,2, 3, such that

a) wi C 2} (i.e., each is a subset of the corresponding set in (3)-(5))

b) wiUwsUwl = 2\{r:} (i.e., together they account for all the tasks in the
system, except for ;)

¢) wiNwp =0 for j,k =1,2,3 and j # k (i.e., they are pairwise mutually
disjoint)

Let pr, a non—negative integer, represents the number of tasks in each of
the sets wl, for & = 1,2,3, in such a way that p; + po + p3 = n — 1. As an
implication, task distribution in the scheduling domain is such that at the given
point in time, among the tasks other than 7;, at least p; tasks will be in §2},
at least py tasks in £24 and at least ps tasks in £25. This is one of the possible
scenarios. Since 0 < py | (_Z,i [, the number of such possible scenarios can be
determined mathematically. For the time being, let R}*(I, ¢) denote the set of
all such possible scenarios, i.e., the set of 3-tuples of the form (w},w}, wk).

2.3 Task Execution Probability

When 7; is under consideration for execution at a particular point (I, ¢) in any
of the scenarios r € Rf “(1, ¢) described above, it will be executed with some
probability v/ (I, ¢), obviously with 0 < v/,.(l,¢) < 1. The value of v}, (I, c)
depends on three factors: a) the probability of realisation of the scenario 7,
b) the number of processors available for executing the tasks in r, and ¢) the
number of other tasks in r competing with 7;, if any, at the same priority level as
defined by f(l, ¢). The probability vit,T(l , ¢) is a conditional probability because,
in effect, we are considering external factors affecting 7;’s execution, assuming
that 7; is at (I, ¢).

Dealing with (a) first, let sz, k = 1,2,3, represents the product of the
probabilities of tasks in w! being in that set. That is

H pr, (W) if wp #0,
(=) et ©
1 ifwp=0.

P,
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Then, the probability of realisation of the particular scenario r is the product
of P, values defined above for k = 1,2 and 3. Turning to (b) and (c), suppose
that there are m processors. Letting p be the probability of 7; being executed
by any one of the m processors in the face of any competition offered by other
tasks operating at the same priority level, p can be determined as

1 fpr+p<m-1,
P=1q poii fpp<m—1Ap1+p>m-—1, (7)
0 otherwise .

The above constrains the manner in which the tasks can be chosen for execution
and, thus, limits the number of scenarios eligible for execution.

The probability of 7; being executed as described above in the scenario r
may now be given as

’Uzt,ra’ C) = P‘*"i X Pw; X Pwé X p. (8)

In computing 7;s overall probability of execution at (I,c¢) at time ¢, that is
vi(l, ), all possible scenarios in R;*(l,¢) must be taken into consideration.
That is

vit(l’ )= Z Uzt,r(h c). 9)

re R:’w(l,c)

Having obtained the conditional probability v} (I, ¢) of 7; at (I, ¢) at time ¢,
it is now possible to derive the actual execution probability of 7; as the joint
probability of the event captured in (9) in conjunction with the event that 7; is
actually at (I, ¢). An analogous reasoning applies to the corresponding probabil-
ity of 7; missing execution (non-execution) at (I, ¢) at time ¢. Let ex/(l, ¢) denote
the probability of 7; being executed at (I, c) at time ¢ and, likewise, ms!(, c)
the probability of 7; missing execution. These can be defined as

ex(l,¢) = p;(l,¢) x vi(l,¢). (10)
msi(l,¢) = pl(l,c) x hi(l,¢) = pi(l,c) — ex}(l,c). (11)

Consequently, the probability of 7; being at (I, ¢) at the next time unit (¢ + 1)
depends on the probability of 7; having been executed at (I, ¢+ 1) at time ¢ and
the probability of 7; having missed execution at (I + 1, ¢) at time ¢. This results
in

pit(1,c) = exf(l,e+ 1) +msf(1+1,¢). (12)
With the derivation of (12), it is time to revisit the function next!, introduced
in (2). In fact, our discussion from Section 2.2 onward, and the derivations made
since then, constitute the definition of next!, albeit implicitly. The above rea-
soning applies to all the time values over the period of a given instance of every
task. This process of computation can be continued over any desired interval
time.
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Let us outline the computations involved in next in the form of an abstract
algorithm. It is defined here as a recursive algorithm next® with respect to time
t covering all tasks (and not just for 7; as indicated by the notation next!). It
is to be executed for each time value in the simulation period — typically the
Least Common Multiple (LcM) of the task periods. It performs the necessary
calculations for all tasks and, as appropriate, for all points in the task domain.
As its result, next? returns a three-dimensional matrix. If this matrix is referred
to as p' so that its elements can be referred to as p'(i,[,c), it is clear that
p(i, 1, ¢) is essentially an interchangeable notation for p!(l, c).

1. algorithm next’

2. Dbegin

3. if ¢t >0 then p':= next'™!

4. for 1 €1..n do

5. if t mod T; =0 then p'(i,[,c):= p™t(i,l,c) for (I,c) € S
6. end for

7. if t =0 return p’

8. for ¢€1..n do

9. for K from K,,;, to K, do

10. calculate {2; k¢ for j from 1 to 3

11. if i € {25 k then calculate ez/(l,c¢) and ms!(l,c)
12. end for

13. end for
14. for 1 €1..n do

15. for (l,c)€ S d

16. result(i,l, ¢) := exf(l c+1)+mst(l+1,¢) if (l,c) €S

17. result (i, l ) == pl(l, c)+ms (l+1 c) if (I = —1)and (¢ > 0)
18. Tesult(z,hc) = pl(l,c)+ext(l,c+1) if (I > 0)and(c = 0)
19. end for

20. end for

21.  return result

22. end algorithm next!

In Lines from 3 to 6, the algorithm computes the p!(l, ¢) for each task 7; at
time unit ¢. In effect, this is achieved using either the function nezt'~! (computed
in the previous time step) if ¢ is greater than zero and is not a renewal time of
7i, or the specified initial value of p!™(l, c) if ¢ is a renewal time of ;. The
latter applies also to the case when ¢ = 0. In the case of a renewal, a distinction
is to made depending on whether the point (I, ¢) concerned is in the scheduling
domain or in the exit domain. For this reason, p*(i, [, ¢) in Line 5 is to be defined

as
init

it [ _ p7, (l? C) lf (l7 C) € Sv

P (”I’C)_{o it (Ie)cE. (13)
According to Line 7, for ¢ = 0 the algorithm terminates by returning the matrix
pt as its result. The rest of the algorithm applies therefore only for ¢ > 0. The
loop within Lines 9 and 11 is executed for the range values, say, from some
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Kppin to some K4, of the priority assignment function f. Within this loop,
£2; ks are computed for j = 1,2,3 (Line 10). Then for all tasks sharing the
priority level K, the functions ez and ms are computed (loop within Lines 8-
13). Then in Lines from 14 to 20 the result to be returned as the value of the
function next! is computed. As noted above, it is a three-dimensional matrix
of probabilities covering the points in the whole of the task domain for each of
the n tasks. At each of the points in the scheduling domain, these probabilities
are computed as the sum of exr and ms functions applied, as appropriate, to
the point above it and to the point on its right (Line 16). If a task misses its
execution while on the [ axis, then the associated probability is added to the
probability of it having already failed, i.e. the probability of it already lying on
the line = -1 (Line 17). Likewise, if a task is executed while on the line ¢ =1,
then the associated probability is added to the probability of it having already
successfully computed, i.e. the probability of it already lying on the line ¢ = 0
(Line 18).

3 Performance and Quality of Service Issues

Once the relevant quantities are computed using the concepts introduced in
Section 2, they may be used to compute other practically more meaningful in-
dicators. Among them are the probability of successful execution, or failure, of
a given task instance within its period and other Quality of Service measures
such as jitter (irregularity in successful termination time between successive task
instances), the number of processors required to guarantee a pre-specified QoS
performance measure and so on.

First, let us introduce several common assumptions and notations. Let L de-
note the LCM of the periods of the n tasks under consideration. All tasks are
assumed to arrive for the first time simultaneously at time zero and thereafter
each task 7; repeats itself within L every T} time units. S;°; k denotes the proba-
bility of successful execution of 7; ;, i.e. jth instance of 74, at the kth time unit
in its period, where j = 1,2,---,L/T; and k = 1,2,---, T;. Analogously, Fz-’fj
denotes the probability of failure of 7; ; at the kth time unit. It is assumed that
the request time for the 7, ; coincides with the end of the period of (j — 1)th
instance. Note that 7; ; can terminate only from next time unit onward since it
must last at least one unit of time.

Expressions (10) and (11) are of immediate use in the computation of the
probabilities Sk- and F;’ k Lettlng Si,; and F;; denote the sum of these two
respective probablhtleb over 7;;'s period, they can be defined as

Si,j = ]zl: <§f e:v l 1 ) (14)

k=(j—1)Ti+1

JTs Cmaz
F,; = Z (Z msk (0, c)) . (15)

k=(j—1)T;+1 \c=1
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Letting R;; be a variable representing the response time of 7; ; the proba-
bility of it successfully terminating within the first d; time units of its period,
0 < d; < T;, can be defined as

Pr(R; Z SUmITE, (16)

and the mean of R;; within 7, ;’s period is

Z kS(J DTitk (17)

If desired, the above may be further averaged over the whole LCM. The measures
(14) and (15) could also be used in assessing the value of partial computations in
monotone processes, mentioned in Section 1, and acceptable limits of loss rates
in applications such as multimedia transmissions.

Turning to jitter control, suppose that the jth instance of task 7; successfully
terminates at the kth time unit in its period and the (j+1)th instance at the Ith
time unit in its own period. The irregularity in the response times of consecutive
instances of 7; can then be defined as g =| k — [ |; see [4]. Let J; be a variable
denoting the mean regularity success jitter of 1;, i.e., the mean regularity jitter
between consecutive instances of a given task terminating with some probability
of success in their respective periods. The probability of 7; experiencing a mean
regularity success jitter g, 0 < g < T}, can be defined as

L; 3T
Pr(i=g)=)_ S SESERT 4 sy ) (18)

j=1 \k=(j—1)Ti+1

where L; = LCM/T;. The probability of mean regularity success jitter J; not
exceeding a value g is

g L; 3T
Pr(Ji<g)=)_ Yoo sHSHATT ST (19)
z=0j=1 \k=(j—1)Ti+1

Probability of successful execution of a task, or a set of tasks, is an important
measure in guaranteeing a required level of any QoS attribute. If S;(m, n) denotes
the probability of successful execution of task 7; in an environment with m
processors and a total of n tasks, then an increase in m is generally expected
to raise S;(m,n) while an increase in n to lower it. However, these effects are
not necessarily linear or simple. This is because the task parameters also play a
role in affecting one another’s execution. Though the interplay of these factors
has not been a subject addressed in this work, an example later (see Section 4
and Figure 9) illustrates the effect of the number of processors on successful task
executions.
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4 An Illustrative Example

In order to illustrate the capabilities of the proposed framework, this section
considers three examples. These share certain tasks in common and comprise
five tasks altogether. In order to distinguish them, let us refer to these examples
through the set of tasks used in each, namely, as Task Set 1, 2 and 3 respectively.
Task Set 1 consists of the tasks in { 71, 72,73 }, Set 2 the tasks in {7, 72, 73,74 }
and, finally, Set 3 the tasks in { 71, 72, 73, 74, 75 }. Task Sets 2 and 3 are intended
to illustrate the effect of the increased workload due to competition offered by 74,
and 74 and 75, respectively on the execution of tasks in Set 1, i.e., 71,75 and 3.
Characteristics of tasks are partly shown in Figure 2. For example, according to
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Fig. 2. Characteristics L; and C; of tasks 7, ¢ = 1,---,5, at request times

Figure 2(a), the probability of task 71 arriving with a laxity 1 and a computation
time 2 is 0.3, whereas it can arrive with the same laxity but a computation time
3 with a probability of 0.5. The periods of the five tasks, 7;, ¢ = 1,2,---,5 are
4, 6, 5, 5 and 6 respectively. Unless otherwise stated, the number of processors
used are 2.

Turning to the results, Figure 3 shows the ‘patterns’ of successful execution
of tasks 7;, ¢ = 1,2 and 3, in Task Set 1. This covers an interval of time spanning
over 30 units of time, that is, half the LcM of the task periods. Each point on a
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curve gives the probability of successful execution of the task concerned at the
corresponding unit of time ¢, i.e. Sit’j for 7; ;, introduced in Section 3. Obviously,
there should have been a companion figure accompanying this, not shown for
reasons of space, giving the probabilities of task failures at each time unit and
for each task. Figure 3, which is essentially the PMFs of successful execution of
successive task instances adjoined together, is intended primarily at giving an
initial insight into the computations involved. What counts in subsequent com-
putations of QoS indicators is the cumulative probability of successful execution
of each task instance, that is, S; ; for 7; ; introduced in (14).
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Fig. 3. Patterns of successful execution of 71,72 and 73 in LLF in Task Set 1

Figure 4 shows the cumulative probabilities of successful execution of tasks
71,7 and 73 only in the EDF regime over their respective periods in all three
Task Sets over the the LCM of task periods. It illustrates the adverse effect of
the increased workload due to 74 in Task Set 2, and 74 and 75 in Task Set 3 on
the execution of 7,75 and 73. Figure 5 gives the same for execution in the LLF
regime, showing a noticeable improvement in the performance of tasks 7 and
73 compared to that in the EDF regime, though 7 is worse off under LLF. Direct
comparisons are made in Figures 6 and 7 to expose the nature of this effect; in
Figure 6 with respect to 71, 75 and 73 in Task Set 3 and in Figure 7 with respect
to 71 in all three Task sets. Despite their inadequacy for drawing any general
conclusions, these examples tend to suggest a link between the algorithms and
the more dominant task characteristic on the probability of successful execution.

Based on (18), the probability of tasks 7, i = 1,2,3,4, experiencing mean
regularity success jitter ranging from 0 to their respective periods, T}, has been
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calculated and is shown in Figure 8. Though these tasks have different charac-
teristics, these probabilities are found to reach their peak values for a mean
regularity success jitter of one unit of time. Figure 9 illustrates the dependence

a) Task 1 b) Task 2
£ 0.5
c
Q
= 04 3
S = —&—In Task Set 1 = ——In Task Set 1
P S b~
ZE03 4 ) — @ — In Task Set 2 3 ~ 8 In Task Set 2[—
57 \ - &--In Task Set 3 = - & --In Task Set 3
8 02 = i
e \ 38
& 01 2
0 ' 0 1 2 3 4 5 6
0 1 4
Jitter Jitter
c) Task 3 d) Task 4
0.5 05
c c
3 04 n 3 04
s PP et ——In Task Set 1 = ——In Task Set 2
5 =031 . — @ InTaskSet2|— | 6 x 0.3 PN —
e "l SN\ n task se >8 . ’//"‘-_ — # — In Task Set 3
£E N - -4 --In Task Set 3 == - S
-Eﬂoz ‘.~ Eﬁozlr
H 3
© 0.1+ 'Y ° 0.1
o - o
0 T T * * 0 T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Jitter Jitter

Fig. 8. Effects of workload on probability of mean regularity success jitter

of the average of the probabilities of successful execution over the LCM on the
available number of processors as it is varied from 1 to 5. This kind of infor-
mation could be a particularly useful as a design tool as it enables a direct
quantified comparison of the trade-off between resources and the level of QoS to
be achieved.

5 Conclusions

This work has developed an entirely new probabilistic framework for investigat-
ing schedulability issues in the presence of uncertainties. It is aimed at dynamic
multi—processor scheduling environments involving periodic tasks with uncer-
tainties in computation times and deadlines. Such a framework becomes espe-
cially relevant in the context of modern non-critical real-time applications such
as multimedia, computer vision, on—line recognition systems, etc. A common
denominator of such applications is that, within limits, certain failures are not
fatal for the successful delivery of their functions. This kind of flexibility is often
expressed in terms of Quality of Service attributes such as latency, loss and drop
rates, jitter, etc., often expressed in statistical terms. The task of guaranteeing
QoS measures is often compounded by uncertainties in the parameters of various
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computational tasks. Both these factors are suggestive of the appropriateness of
probabilistic paradigm in the study of such issues.

Each task is represented by a fixed period and a set of non-zero probabili-
ties characterising the task having certain random pairs (points) of computation
times and laxities at its arrival time. In between arrival times, computation times
and the laxities are continued to be described probabilistically, though not in a
random manner. Then considering each such point separately, the probability of
the task concerned being executed is examined in different scenarios involving
other tasks. Knowing the probability of realisation of each scenario, any compe-
tition due to tasks operating at the same priority level for the available number
of processors as well as the probability of the task concerned being there, the
probability of it being executed is computed. This enables the computation of
execution patterns of all tasks over a desired interval of time. This forms the
basis for calculating several important QoS measures, such as those mentioned
above. A range of examples demonstrate the capabilities of the framework as
well as unique benefits of probabilistic analysis.

Novelty of the proposed approach has raised several important issues re-
quiring further research in relation to its practical applicability. This includes,
amongst others, an assessment of complexity of the approach as proposed, an
exploration into heuristic techniques for managing this complexity in relation to
problem sizes encountered in practice, and a verification of the approach using
stochastic simulations.
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Abstract. Generalized rate monotonic scheduling (GRMS) theory has now been
widely adopted in practice and supported by open standards. This creates strong
incentives for the avionics industry to migrate from traditional cyclical executive
based system to a GRMS based systems. This paper presents some of the impor-
tant considerations in the migration of a cyclical executive based system to a
GRMS based system.

1 Introduction

In the past, avionics software systems used a federated architecture, where each
subsystem had its own processor, with cyclical executives. As processors become
faster, and the analytic hard real-time scheduling method — Rate Monotonic Analysis
(RMA)— 1is supported by open standards, industry would like to:

* Port and integrate old software subsystems to a modern processor with minimal re-
certification needs,

* Incrementally develop new soft-
ware using RMA.

From the perspective of software
porting, integration and recertification,
the most important property to preserve
is the Isolation property: under the
federated architecture, each subsystem
has its own physical processor; the
execution of tasks on one processor
cannot interfere with the execution of
tasks on other processors. We must
ensure this logically in the system
architecture of fast modern processors.

A software architecture on a proces- Fig. 1. A Major Cycle
sor, where its partitions satisfy the
isolation property, is called a Logical

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 123-135, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Federated Architecture (LFA). Each partition in LFA is called a Real-Time Virtual
Machine (RTVM), which is a virtual machine with protected timing properties.

From a scheduling perspective, LFA can be realized easily by using a simple TDM
scheduler. From a scheduling perspective, this is a special form of two level sched-
ulers [5] and is not the most efficient one in terms of realizable schedulability for
RTVMs. However, it has the best backward compatibility to legacy avionic software
written with cyclical executives. Those legacy software was typically written in a way
that assumes a deterministic usage of time slots in its task dispatching table. TDM
provides fixed slots and thus preserves the structure of the dispatching table, resulting
in easy porting and recertification. In avionics, the cost of recertification dwarfs
hardware costs.

As illustrated in Figure 1, a RTVM is simply a sequence of time slots in the major
cycle. For example, RTVM, uses {1, 3, 4}, RTVM, uses {2, 5, 7} and slots {6, 8} are
reserved for future use. The major cycle should be no longer than the shortest period
of all the tasks, unless we use equally spaced R7TVMs with a temporal distance be-
tween adjacent RTVMs less the period of the shortest period. Experience shows that
letting major cycle to be shorter than the shortest period of all tasks tends to make
RTVM reconfiguration easier during system evolution. In the rest of this paper, we
assume that the major cycle is shorter than all the periods. The results can be easily
generalized if we wish to remove this assumption.

From an application perspective, each RTVM can have its own scheduling policy, thus
facilitating porting and integration of legacy applications. When the software in a leg-
acy RTVM needs to be modified significantly, it is time to convert it to an RMA based
RTVM and take advantage of RMA’s optimality, flexibility and schedulability analysis.
Independent of scheduling policies, subsystems with different criticality can be assigned
to different RTVMs to facilitate certification. New subsystems should use RMA based
RTVM. The objective of this study is to extend the results of RMA in the context of
RTVM. RMA based RTVM can add/subtract integer numbers of time slots and then ap-
ply schedulability analysis.

Although theoretically RMA can have slots with fractional sizes, this creates com-
plexity in implementation without significant practical value. Thus, we assume that all
the slots are of equal size and only an integer number of slots are allocated to any
RTVM.

e  RMA presumes that the processor can be taken away from a task at arbitrary
instances of time.
o When a slot of a RTVM becomes active, the highest priority ready
task, if any, in the RTVM is executed.
o  When this slot ends, the executing task, if any, will be suspended.

e Cyclical executive assumes that it owns the processor for each of the as-
signed time slot.
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Legacy subsystems using cyclical executives should first pick the slots of their
RTVMs. RMA based RTVMs are more flexible, and they can use any leftover slots.

Finally, it is important to remember that R7VM is a simulation of the federated archi-
tecture on a shared physical processor. And the key property we want to ensure is the
isolation property. To ensure the validity of the isolation property, the software engi-
neering process shall enforce the following rules:

1. Each RTVM should have its own address space, simulating the memory pro-
tection offered by separated physical processors.

2. Data sharing between applications in different R7VMs should use message
passing, simulating how applications communicate under the federated ar-
chitecture. The strong coupling caused by the use of global shared variables
among subsystems in different R7VMs violates the isolation property.

3. All the computing resources, e.g., memory, CPU cycles (time slots) and
communication ports, should be pre-allocated, simulating different proces-
sors with their private resources. Dynamic physical and logical resource al-
location would lead to interactions between RTVMs, violating the isolation
property.

4. Device I/O should be initiated and completed within a single slot, simulating
private I/O in separated physical processors.

5. The worst-case kernel service time across a slot boundary, denoted as Ky,
should be kept small and deterministic. An application task may initiate a
kernel service, e.g., lock or unlock a semaphore, at or near the end of a slot.
Nevertheless, a kernel service, once started, should continue until it is com-
pleted, even if the execution runs across the nominal boundary of a slot. Un-
der this policy, Ky is simply part of the overhead time when we switch from
one slot to another.

Remark: Kernel services are shared by all the RTVMs. A sufficient condition to pre-
vent the creation of dependency between RTVMs via the use of kernel services is the
following rule: when crossing any slot boundary, the kernel must finish its existing
services before passing the control to the applications in the next slot. Theoretically,
we only need to cut off kernel service dependency across the boundaries of RTVMs.
But cutting off the dependency at each slot boundary keeps the kernel code simple,
independent of how slots are assigned at the application level. This allows for the
flexible reassignment of slots to RTVMs.

Remark: An application task can, of course, hold a lock on semaphore across the
boundary of slots. This would only block other application tasks in the same RTVM,
since we do not permit shared variables across RTVMs. What is important is that sys-
tem calls, e.g., lock a semaphore, must be finished before next slot starts. This has to
be verified at the application level.
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2 Schedulability Bounds

The schedulability bounds of RMA depend on the availability of information about the
size of the RTVM and the application task parameters. Up to a limit, the more we
know about the parameters, the larger will be the bound. Different parameters will
become available at different stages of system development and have different degrees
of volatility. For example, we usually know the number of tasks and their frequencies
before knowing their execution times. Task frequencies are also much less likely to
change than execution times. We will know the task set parameters more accurately as
design and implementation processes. From an application perspective, there are dif-
ferent types of schedulability bounds based on application needs.

1) RTVM Bound: the scheduling
bound when only the size of the
RTVM is known. A set of tasks is
schedulable as long as its total utiliza-
tion is less than the RTVM Bound.
This bound is conservative because it
assumes the worst possible combina-
tion of parameters. However, it is use-
ful for initial sizing of RTVM and
hardware sizes where conservatism is
a virtual.

2) RMA Exact Schedulability Check:
In the late stage of system develop-
ment, we know RTVM size, task fre-
quencies and their worst-case execu-
tion times and would like to have a
higher degree of schedulability.

Fig. 2. VM Slot Assignment Analysis

In order not to clutter the exposition, we shall first derive the fundamental results un-
der the following assumptions:

e All tasks are independent, that is, they do not synchronize with one another.

e  Context switching time of application tasks is zero.

e The slot switching overhead time is zero.

e Task frequencies are constants. They do not drift.
All these assumptions will be removed once the key result is obtained.

2.1 Modeling the Effect of Slot Assignments

From the perspective of a task in a given real-time virtual machine, RTVM,, the proc-
essor will be taken away for two reasons: 1) a high priority task becomes ready, and
2) the current slot of RTVM; is ended, and a slot in another RTVM has started.

In the schedulability analysis of a given Task T;, the effect of a higher priority periodic
Task t, = (C,, T,) is that Task T, will take away the processor Cj, units of time every
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T}, units of time when Task T; is active!. The effect of an unassigned slot in the major
cycle 7; is that the processor will be taken away from Task T; one slot time every 7;
units of time when Task 7; is active. Thus, we can model the effect of an unassigned
slot as a high priority periodic task, called a Slot Task, with execution time that is
equal to the slot time, and period that is equal to the major cycle.

Example 1: As illustrated in Figure 2, from the perspective of a task in RTVM, = {1,
4, 5%, we can account for the effect of the five slots not assigned to RTVM;, Slots 2, 3,
6, 7, 8, by five Slot Tasks: {(Slot_2_time, 7;), (Slot_3_time, 7;), (Slot_6_time, T;),
(Slot_7_time, T;) and (Slot_8_time, 7,)}.

When we model a RTVM, we must keep in mind that the slots used by a virtual ma-
chine should be kept flexible to allow for reassignments. That is, we should be able to
replace RTVM,’s slots {1, 5, 4} with another three slots, e.g., {6, 7, §}, without redo-
ing the schedulability analysis.

Theorem 1: For tasks in a given RTVM,;, the effect of slots not assigned to RTVM, can
be represented by a single periodic task, called the VM Periodic Task, whose period is
that of the major cycle, 7;, and whose computation time is equal to the sum of the
length of all the slots not assigned to RTVM,.

Proof: First, each slot not assigned to RTVM; is modeled by a Slot Task whose pe-
riod equals to 7, and whose computation time equals to the slot time. Next, we assign
each Slot Task a priority P that is higher than the priorities of all the application tasks
in RTVM,, since a Slot Task will always take away the processor from an application
task. By Liu and Layland’s critical instance theorem[1], we know that the maximal
preemption from these Slot Tasks occurs when all of the tasks start at time ¢ = 0, the
starting of the first slot assigned to R7VM;. Under the critical instance arrangement,
all the Slot Tasks will have the same period, T;, the same starting time ¢ = 0, and the
same priority P. Hence their combined preemption can be modeled by a single peri-
odic task, the VM Periodic Task, with period, T;, and execution time C; equal to the
sum of the length of all the slots not assigned to RTVM;. QED.

Remark: Slot Tasks, by the physical nature of the major cycle, cannot all start at the
same time. Having all the tasks starting at the same time, however, is an accurate
logical model of the situation: we would like our application tasks to start at the origin
of the major cycle, but the slots assigned to the RTVM for our application tasks are
those at the end of the major cycle.

Example 2: In Example 1, the VM Periodic Task is the combination of the five Slot
Tasks represented by (Sum_of_5_slot_Times, T;). In the rest of the paper, we shall
denote the VM Periodic Task as T, = (C}, T)).

In summary, we model the effects of the slots not assigned to a RTVM by a single
high priority periodic task, the VM Periodic Task, whose computation time is the sum

! That is, Task 7, is executing or ready to execute.
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of all the unavailable slots and whose period is that of the major cycle. This worst-
case modeling method allows for flexible reassignment of time slots without redoing
the schedulability analysis. We shall use this method throughout this report.

Notation: When we have n application periodic tasks in a RTVM, the schedulability
model for these n tasks will have n+1 tasks, {T,...T,+}. In this paper, Task 1, models
the VM Periodic Task. Tasks {7,...T,+; } are the n application tasks in the RTVM.

Definition: The size of a RTVM, U,,, is defined as the percentage of CPU cycles as-
signed to a RTVM.

Remark: U, is just the sum of the duration of all the assigned slots divided by the
period of the major cycle.

Notation: The total utilization of tasks {T...T,+1} is denoted as U(l..n+1), and the
total utilization of application tasks {T,...T,+ } is denoted as U(2..n+1).

Definition: A utilization bound for » application tasks in a RTVM, Up(2..n+1), is said
to be sufficient, if the n application tasks will always meet their deadlines as long as
U2.n+1) <Up(2.n+1),

Remark: There are infinitely many sufficient bounds, since any bound that is less than
a known sufficient bound is also a sufficient bound.

Notation: The scheduling bound for n application tasks in a RTVM plus the corre-
sponding VM Periodic Task is denoted as Up(1..n+1).

Notation: The maximal sufficient bound for n tasks in a RTVM, U, (2..n+1), is
defined as the largest one in the set of all the sufficient bounds. The bound Up.
max(1..n+1) denotes the largest sufficient bound of the »n application tasks plus the VM
Periodic Task.

Remark: If the bound is independent of the number of application tasks, we will drop
the parameter (1 (or 2)..n+/) in the notation of utilization, e.g., U(1 (or 2)..n+1), and
in the notation of a scheduling bound, e.g., Ug,(I (or 2)..n+1),. That is, we will use
U and Us,,,,, when the bound is independent of the number of application tasks.

2.2 Real-Time Virtual Machine Bound with only Utilization Information

This bound gives the maximal flexibility, for it assumes that we only know the per-
centage of the CPU available for the R7VM and nothing else. The price to pay for
this flexibility and robustness is a low schedulability bound, since we must assume
the worst possible combination of all the parameters.

Let U, denote the utilization of the VM Periodic Task and let U,,, represent the utili-
zation of the RTVM. We have U,,, = (I —U,).
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Theorem 2: Given an arbitrary number of independent periodic application tasks with
deadlines at the ends of their periods, total utilization U, and a RTVM with capacity
U,.., these tasks are schedulable on the R7TVM using the rate monotonic scheduling
algorithm, if:

U< UBmax =In (2/(2 - Uvm))

Proof: Given n tasks executing within a RTVM with capacity U, , by Theorem 1, the
effect of all the unassigned slots is modeled by the VM Periodic Task. Thus, we have
the task set {7...To1 } = {(C;, T}), (C5, T5), ... (Cyip, Tpiy)}. Weassume T; <7, ... <
Tn+1.

For independent periodic tasks, Liu and Layland[1] proved that the worst case for
Task 1; occurs when: 1) all the higher priority tasks and Task T; start at the same in-
stant, and 2) the ratio between any two tasks is less than 2, i.e., 7,,/7T; <2, and 3)
the computation time, C;, of each task is the difference between 7;,; and 7;. That is,
C,=T,-T,..,C=Ty~-T,and Cpyy =T,4; —=2(C;+...+ C,) = 2T, - T,1s,.

The maximal sufficient bound is found by identifying the schedulable task set with

the minimal utilization under the worst-case condition [1]. To minimize the task set
utilization under the worst-case condition defined above:

Letri: Ti+1/Ti, 1 <i <n. Note that Tn+1/T1 :rjrz...rn,andthat U] = C]/T] =r -1

The total processor utilization including that of the VM Periodic Task for unassigned
slots is:

U(I..n+1): (T2 _TI)/TI +...+ (2T1—Tn+])/Tn+]
=rtrt. ottt 2/ ) — (ntl)

Since Uj is a given constant, it follows that r; is a constant. Let k£ = r; for notational
clarity, since we use r to denote a variable. We have:

Uld.n+l)=k+r,+... +r,+2/kr,..r,)— (nt+l)

Let dU(1.n+1)/dr; =0, 2 < i <n, we have:
k-rl-r, -1, =2

2 —
k-r,-ry--r,=2

kv, ry -1} =2
Taking a ratio between two successive equations, we have r; = r;, 13 =7y4,..., I'n.y = I'n.
Let r = r, 2 <i <n and solve for r, we have 7 = (2/k)"" . It follows that

Uld.n+tl)=k+ry+... +r,+2/kr,..r,)— (n+l)
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= k+ (n-Dr + 2/(k r"") — (n+1)

Substituting the solution of 7 into the equation above, we obtained the minimal task
utilization and thus the maximal sufficient bound. Recalling that k = r;, = U;+1, we
have:

Uy (Ln+l)= k+(n—1)(%)? +(%) —(n+)

1\

I-n

k=D +E)) * ~(n+)

=k+n(%)% —(n+1)

1

=U,+1+n " —n—1
: (Ul Iy
1
= U n(=y =
U +1
2 1
=U, +n " =1
| ((U1 7"
Recalling that U, =1-U,,, the maximal utilization bound for the » application tasks alone is:
2 2 o
Uppae 2.n+1)=n ") =n -1
s ) ((U1+1) ) ((2_Um) )

2
Ugpx =1 —> o0, ED.
pmax n(Z—UwJ as n Q

Remark: If the RTVM gets 100% of the processor, RTVM bound becomes the well-
known result of 1n(2).

2.3 Exact Bounds

The objective of our RTVM formulation is to keep things simple: simple to imple-
ment, simple to integrate, simple to analyze and simple to re-certify. Indeed, by
Theorem 1, the schedulability analysis of a set of n application tasks in a RTVM is
equivalent to the schedulability analysis of a set of n+/ tasks that includes the VM
Periodic Task. Hence the exact test can be used without modification. The exact
schedulability test developed in [3] is described here for completeness. For each
Task T
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i1 i
t
Lin=Ci+) T—" C, where {, = C,
=Y

J J=1

Test terminates when #,,, > 7, (not schedulable)
or when ¢,,, =¢, <7, (schedulable)

Furthermore, we note that the exact schedulability analysis is in fact an efficient
simulation of fixed priority scheduling. Thus, it is equally applicable to RMA or any
other fixed priority assignment method.

2.4 Relaxation of Assumptions

Again by Theorem 1, the schedulability analysis of a set of n application tasks in a
RTVM is equivalent to the schedulability analysis of a set of n+/ tasks that includes
the VM Periodic Task. As a result, methods for context switching and blocking that
were described in [2] are directly applicable. We first examine the context switching,
the blocking, and the frequency drift in isolation. We will then integrate them with the
use of the scheduling bounds developed in this report.

2.4.1 Application Task Context Switching Time and Slot Switching Time

Each job (or instance) of a periodic task could generate at most two context switches
— the starting context switching and the completion context switching.

Example 3: As illustrated in Figure 3, low priority Task T; starts and preempts the
system idle task at r+ = 0 with its starting context switching. Context switching times
are colored in white. At time ¢;, Task 7, starts and preempts this low priority Task T,
with its starting context switching. At #,, high priority Task T, starts and preempts
Task 1, with its starting context switching. Task T, executes to completion at #; with its
completion context switching, and the processor is given to Task 7,. At ¢,, Task 1,

n—” h—” T1

1 1 | I

to t t t3 ty ts to t7

Fig. 3. Context Switching
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finishes with its completion context switching and the processor is given to Task 7.
Finally, at ts, Task T3 completes and ends with its completion context switching, and
the processor is passed to the system idle task, which does not terminate.

Nevertheless, to account for the worst- case context switching, we need to add two
worst-case context switching times to the execution time of each application task.

Finally, as illustrated in Figure 1, whenever we switch from one slot to the next, there
is one context switching for task executions. In addition, there is the worst-case kernel
service time across a slot boundary, K. Hence, the computation time of the VM
Periodic Task with n slots should be: C; = n*(Slot_time + S + Ky,;), where S is the
worst case slot switching time.

2.4.2 Blocking

Although there are better real time synchronization protocols available, only the pri-
ority inheritance protocol is currently available in most commercially available real
time operating systems. Thus, we review the blocking under this protocol. Under the
Priority Inheritance Protocol [4], a task can be blocked multiple times or even dead-
locked. However, we shall assume that deadlock is avoided by not using nested locks
or by totally ordering the sequence of locking. We assume that a real-time task will
not suspend itself inside a critical section so that the duration of each critical section
can be measured and that a job (an instance) of a periodic task will not unlock and
then lock the same semaphore again. These assumptions imply that proper real-time
software architecture is followed to handle the interface with external activities such
as screen and disk I/O so that large and varying delays from such activities will not
negatively impact the real-time loops.

Example 4: Figure 4 illustrates the direct blocking and indirect blocking that can be
experienced by a task. At time #,, Task 14 starts and it locks semaphore SEM, at ;. At
15, both Task 73 and Task T, become ready. Since Task T, has higher priority, it exe-

] -

) t 1 t3 1 ts ts t; ts ty t1o t 2

Fig. 4. Blocking under Priority Inheritance Protocol
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cutes. At ¢;, Task T, locks semaphore SEM,. At time t, Task T, preempts T, and starts
to execute. At ¢5, Task 1y tries to lock Semaphore SEM,. Since SEM, is locked by Task
T,, Task 1, is blocked by Task 7, via SEM,. So Task T, resumes its execution and
inherits T,’s priority. At #5; Task T, unlocks SEM, and returns to its assigned priority.
Task 7, locks SEM,, preempts Task 1,, and executes. At ¢, Task 1, unlocks SEM, and
tries to lock SEM;. However, SEM;’s lock is held by Task 1,. So Task 14 inherits Task
T,’s priority and resumes its execution of its critical section. Note that at this point,
Task 7; is blocked by Task 7,. At fg, Task 14 unlocks SEM; and returns to its assigned
priority. Task T, locks SEM; and resumes its execution. At 7y, Task 7, finishes its exe-
cution. Task T, resumes and finally finishes at 7;. Task T3 begins its execution and
finishes at #;;. Task T4 resumes then finishes at #;,.

In this example, there are two forms of blocking going on. First, direct blocking due
to conflicts on semaphores. Task T, shares two semaphores with lower priority tasks
and thus experiences direct blocking. The worst case of direct blocking for a task is
one blocking per semaphore shared with lower priority tasks under the assumptions
listed in the beginning of this section. Task T, shares two semaphores with lower pri-
ority tasks, and it encounters two blockings in this example. Second, there is also the
indirect blocking experienced by Task T3, which does not use locks. However, it has
still to wait for the execution of Task 14’s critical section in interval [¢,, t5]. This is an
example of indirect blocking. A task will experience an indirect blocking whenever a
higher priority task and a lower priority task share a lock. The worst-case blocking of
a task is, therefore, the sum of its direct blocking time plus the sum of its indirect
blocking time.

In summary, the worst-case number of direct blockings is once per semaphore. The
worst-case number of indirect blocking is once per semaphore shared by a higher and
a lower priority task. The worst-case blocking time associated with a semaphore is the
longest critical section used by a lower priority task plus two context switching times
associated with the execution of a critical section.

In new software development, the blocking time is best tracked by a tool, although a
simple spreadsheet program is often adequate. However, it is very time consuming to
find out all the blocking time details in legacy software. Fortunately, there is an easy
way out at the expense of CPU cycles. One can write a program to scan the source
code and to count the number of semaphores. Suppose there are n semaphores. The
worst-case is that every task experiences n blockings, directly or indirectly. This is
because the same semaphore cannot cause both direct and indirect blockings to the
same task. So the worst-case blocking time for any task, except the lowest priority
task which always has zero blocking time, is the total number of locks times the sum
of the longest critical section and two context switching time. This method looks very
inefficient and it is. But in the big picture of system development, it is often justifi-
able. Real-time software, except real-time database applications, tends to use a
smaller number of locks and the critical sections tend to be short. Second, when old
software is ported, the new hardware is usually many times faster, and there often are
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some CPU cycles to burn. And it is often cheaper to waste a little hardware than to
reverse-engineer all the details.

2.5 Integration

We now put everything together. First, we shall use the highest frequencies to guard
against frequency drifts. Second, we need to measure the worst-case context switch-
ing time and let it be S. Finally, we need to compute the worst-case blocking time for
each task. Let the blocking time of Task t; be B..

U,, =n(slot _time—2S)/T,, where T, is the period of the major cycle.

Using the most general R7VM bound, the task set is schedulable if

C2+2S+Bz+m+Cn+2S+Bn+Cn+1+2SSln( 2 )
7—'2 T;l ]:Hl 2_Uvm

Finally, to use the exact schedulability analysis, the steps are:

1. Construct the VM Periodic Task whose period is that of the major cycle and
whose computation time C; = k*(slot_time+2S§), where k is the number of slots
unavailable to the RTVM.

2. Replace the computation time of each task C; with C;+2S, 2 <i < n+1.
3. Replace the deadline 7; with (7; — B;)

4. Perform the exact schedulability analysis for the task set {T; ... T, }.

3 Summary and Conclusion

In this paper, we have carefully specified a model of RTVM that is easy to implement
and preserves the vital isolation property of federated architecture that use multiple
physical processors. We call this architecture the Logical Federated Architecture (LFA).
LFA makes software easier to port and integrate. It also allows us to isolate software
with different criticality levels. We have developed a comprehensive set of bounds
with different information requirements. From an application perspective, there are
five bounds:

1) RTVM Bound: the scheduling bound when only the size (utilization) of the RTVM
is known. A set of task is schedulable as long as its total utilization is less than the
RTVM Bound.

2) RMA Exact Schedulability Check: This gives the largest bound, but we need to
know RTVM size, task frequencies and their worst-case execution times.
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Abstract. Lately the demand for real-time data services has increased
in applications where it is desirable to process user requests within their
deadlines using fresh data. The real-time data services are usually pro-
vided by a real-time database (RTDB). Here, since the workload of the
RTDBs cannot be precisely predicted, RITDBs can become overloaded.
As a result, deadline misses and freshness violations may occur. To ad-
dress this problem we propose a QoS-sensitive approach to guarantee a
set of requirements on the behavior of RTDBs. Our approach is based
on imprecise computation, applied on both data and transactions. We
propose two algorithms to dynamically balance the workload and the
quality of the data and transactions. Performance evaluations show that
our algorithms give a robust and controlled behavior of RTDBs, in terms
of transaction and data quality, even for transient overloads and with in-
accurate run-time estimates of the transactions.

1 Introduction

Lately the demand for real-time data services has increased and applications
used in manufacturing, web-servers, e-commerce etc. are becoming increasingly
sophisticated in their data needs. The data used span from low-level control
data, typically acquired from sensors, to high-level management and business
data. In these applications it is desirable to process user requests within their
deadlines using fresh data. In dynamic systems, such as web servers and sensor
networks with non-uniform access patterns, the workload of the databases cannot
be precisely predicted and, hence, the databases can become overloaded. As
a result, deadline misses and freshness violations may occur during transient
overloads. To address this problem we propose a quality of service (QoS) sensitive
approach to guarantee a set of requirements on the behavior of the database,
even in the presence of unpredictable workloads. Our scheme is important to
applications where timely execution of transactions is emphasized, but where it
is not possible to have accurate analysis of arrival patterns and execution times.
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Our approach is based on imprecise computation [9], where it is possible
to trade off resource needs for quality of requested service. This has success-
fully been applied to applications where timeliness is emphasized, e.g., avionics,
engine control, image processing [4,11], networking [12], and approximation algo-
rithms for NP-complete problems [18]. In our work, the notion of impreciseness
is applied on both data and transactions, and the goal is to satisfy a QoS specifi-
cation, in terms of data and transaction impreciseness, giving the desired quality
of the provided service. We propose two dynamic balancing algorithms, FCS-IC-
1 and FCS-IC-2, to balance the quality of the data and the transactions. Main
challenges include unpredictability of workload, in terms of unknown arrival
patters and inaccurate execution time estimates, but also effective balancing be-
tween transaction and data quality. To solve this issue, we apply feedback control
scheduling [10] to provide robustness under these conditions.

The suggested algorithms, FCS-IC-1 and FCS-IC-2, are designed such that
the behavior of a RTDB can be controlled, even in the presence of load variation
and inaccurate execution time estimates. We have carried out a set of experi-
ments to evaluate the performance of the algorithms. In the simulation studies
we have applied a wide range of workload and run-time estimates to model po-
tential unpredictabilities. The studies show that FCS-IC-1 and FCS-IC-2 give
a robust and controlled behavior of RTDBs, in terms of transaction and data
quality, even for transient overloads and when we have inaccurate run-time esti-
mates of the transactions. This has been shown by comparing the performance
against selected baseline algorithms.

The rest of this paper is organized as follows. A problem formulation is given
in Section 2. In Section 3, the assumed database model is given. In Section 4, we
present our approach and in Section 5, the results of performance evaluations
are presented. In Section 6, we give an overview on related work, followed by
Section 7, where conclusions and future work are discussed.

2 Problem Formulation

In our model, data objects in a RTDB are updated by update transactions,
e.g. sensor values, while user transactions represent user requests, e.g. complex
read-write operations. The notion of imprecision is applied at data object and
user transaction level. The data quality increases as the imprecision of the data
objects decreases. Similarly, the quality of user transactions increases as the
imprecision of the results produced by user transactions decreases. Note that
quality of user transactions is related to quality of data. Since user transactions
access and read data objects, decreasing the quality of data may lead to a de-
crease in the quality of user transactions. However, in this work we model user
transaction quality and data quality as orthogonal entities and, hence, quality
of data and quality of user transactions are considered to be independent. In the
future, we will extend our model to capture more advanced relations between
user transaction quality and data quality.
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In practice, a database administrator (DBA) specifies a desired QoS level in
terms of steady-state and transient-state behavior of data and user transaction
quality. The goal is to adapt the behavior of the RTDB such that the given
QoS specification is satisfied. This is achieved by balancing the workload among
update and user transactions. In general, lowering the user transaction workload
leads to increased resources available for update transactions, resulting in an
increase in data quality. Similarly, lowering the update transaction workload
results in an increase in user transaction quality.

Starting with data impreciseness, for a data object stored in the RTDB and
representing a real-world variable, we can allow a certain degree of deviation
compared to the real-world value and if such deviation can be tolerated, arriv-
ing updates may be discarded. In order to measure data quality we introduce
the notion of data error. Let d; denote an arbitrary data object and Tj a trans-
action updating d;. The data error, denoted DE;, of a data object d; is defined
as a function of the current value (denoted CurrentValue;) of d; and the up-
date value (denoted UpdateV alue;) of the latest arrived update transaction, T},
ie. DE; = &(CurrentValue;, UpdateValue;). The data error of a data object
gives an indication of how much the value stored in the RTDB deviates from
the corresponding value in the real-world, given by the latest arrived update
transaction.

The workload of updates is adjusted by manipulating the data error, which
is done by considering an upper bound for the deviation between the values of
the data objects stored in the RTDB and the corresponding values in the real-
world. The upper bound is given by the mazimum data error (denoted MDE)
and is set based on a set of performance variables giving the current state of
the RTDB (e.g. quality of user transactions). The data error is adjusted by the
following criteria. An update transaction (7}) is discarded if the data error of
the data object (d;) that is to be updated by Tj is less or equal to MDE (i.e.
DE; < MDE). In contrast, an update transaction is executed and committed
if the corresponding DF; is greater than M DE.

If MDEFE increases, more update transactions are discarded as we tolerate
greater data error, hence, lower data quality. Similarly, if M DFE decreases, fewer
update transactions are rejected, resulting in a lower data error, and conse-
quently, greater data quality. The goal of our work is to derive algorithms for
adjusting data error, such that the data and the user transaction quality satisfy
a given QoS specification. A major issue is how to compute M DE, depending
on the user transaction quality.

3 Data and Transaction Model

3.1 Database Model

We consider a firm RTDB model, in which tardy transactions, i.e., transactions
that have missed their deadlines, add no value to the system and therefore are
aborted. We consider a main memory database model, where there is one CPU
as the main processing element.
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3.2 Data Model and Data Management

In our data model, data objects can be classified into two classes, temporal and
non-temporal [14]. For temporal data, we only consider base data, i.e., data that
hold the view of the real-world and are updated by sensors. A base data object
d; is considered temporally inconsistent or stale if the current time is later than
the timestamp of d; followed by the absolute validity interval of d; (denoted
AV I), i.e. CurrentTime > TimeStamp; + AV ;.

Define the the data error of a data object d; as,

DE: — 100 x |CurrentValue; — UpdateV alue,|

(%)

|CurrentV alue;]|

where UpdateV alue; is the value of the latest arrived transaction updating d;.

3.3 Transaction Model

Transactions are classified either as update transactions or user transactions.
Update transactions arrive periodically and may only write to temporal data
objects (i.e. base data objects). User transactions arrive aperiodically and may
read temporal and read/write non-temporal data. The inter-arrival time of user
transactions is exponentially distributed.

User and update transactions (7;) are assumed to be composed of one manda-
tory subtransaction (M;) and #0; optional subtransactions (denoted O; ;, where
1 < j < #0;). For the remainder of the paper, let,

t; € {Mi, Oity.y Oi,#Oi}

denote a subtransaction of T;.

We use the milestone approach [9] to transaction impreciseness. Thus, we
have divided transactions into subtransactions according to milestones. A man-
datory subtransaction is completed when it is completed in a traditional sense.
The mandatory subtransaction gives an acceptable result and it is desired to
complete the mandatory subtransaction before the transaction deadline. The
optional subtransactions depend on the mandatory subtransaction and may be
processed if there is enough time or resources available. While it is assumed that
all subtransactions (t;) arrive at the same time as the parent transaction (7;),
the first optional subtransaction (i.e. O; 1) becomes ready for execution when
the mandatory subtransaction completes. In general, an optional subtransaction,
0;,j, becomes ready for execution when O; ;_1 (where 2 < j < #0;) completes.
Hence, there is a precedence relation given by,

M; <0;1 <02 < ... <0j 40,

A transaction is completed once its mandatory subtransaction is completed.
We set the deadline of all subtransactions to the deadline of the parent trans-
action. A subtransaction is terminated if it is completed or has missed its dead-
line. A transaction (73) is terminated when its last optional subtransaction (i.e.
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O;,40,) is completed or one of its subtransactions has missed its deadline. In the
latter case, all subtransactions that are not completed are terminated as well.

For update transactions we assume that there are no optional subtransac-
tions (i.e. #0; = 0). Hence, each update transaction consists only of a single
mandatory subtransaction. This assumption is based on the fact that updates
do not use complex logical or numerical operations and, hence, have a lower
execution time than user transactions.

In our transaction model, the estimated average utilization of the transactions
is known. However, the average or the actual utilization is not known. Hence,
a feature in our model is that it models systems in unpredictable environments
where the actual CPU utilization of transactions is time-varying and unknown
to the scheduler.

4 Approach

Below we describe our approach for managing the performance of a RTDB in
terms of transaction and data quality. First, we start by defining QoS and how
it can be specified. An overview of a feedback control scheduling architecture is
given, followed by issues related to modeling of the architecture and design of
controllers. Finally, we present the algorithms FCS-IC-1 and FCS-IC-2.

4.1 Performance Metrics and QoS Specification

In our approach, the DBA can explicitly specify the required database QoS,
defining the desired behavior of the database. In this work we adapt both steady-
state and transient-state performance metrics. The metrics are as follows:

— Deadline Miss Percentage of Mandatory User Subtransactions (M™). In
a QoS specification the DBA can specify the deadline miss percentage of
mandatory subtransactions given by,

#DeadlineMiss™
#Terminated™

MM =100 x (%)
where # DeadlineMiss™ denotes the number of mandatory subtransactions
that have missed their deadline, and #Terminated™ is the number of termi-
nated mandatory subtransactions. We exclusively consider user transactions
admitted to the system.

— Deadline Miss Percentage of Optional User Subtransactions (M©). MO is
the percentage of optional subtransactions that have missed their deadline.
MO is defined by,

#DeadlineMiss®

MC =100
* #Terminated®

(%)

where # DeadlineMiss® denotes the number of optional subtransactions
that have missed their deadline, and #Terminated® is the number of ter-
minated optional subtransactions. We exclusively consider user transactions
admitted to the system.



Algorithms for Managing QoS for Real-Time Data Services 141

— Mazimum Data Error (M DE). This metric gives the maximum data error
tolerated for the data objects, as described in Section 2.

Overshoot (M,) is the worst-case system performance in the transient-state
(see Figure 1) and it is given as a percentage. The overshoot is applied to
MO, MM and MDE.

— Settling time (Ty) is the time for the transient overshoot to decay and reach
the steady-state performance (see Figure 1).

Utilization (U). In a QoS specification the DBA can specify a lower bound
for the utilization of the system.

value

reference

Fig. 1. Definition of settling time (7%) and overshoot (M)

We define Quality of Data (QoD) in terms of M DE. An increase in QoD
refers to a decrease in M DE. In contrast a decrease in QoD refers to an increase
in MDE. We measure user transaction quality in terms of deadline miss per-
centage of optional subtransactions, i.e. M©. This is feasible in the case when
optional subtransactions contribute equally to the final result.

The DBA can specify a set of target levels or references for MM, M€ and
MDE. A QoS requirement can be specified as the following: MM = 1% (i.e.
reference M™), MCP = 10% (i.e. reference M?), MDE, = 2% (i.e. reference
MDE), U > 80%, Ts < 60s, and M, < 30%. This gives the following transient
performance specifications: MM < MM x (M, + 100) = 1.3%, M© < 13%, and
MDE < 2.6%.

4.2 Feedback Control Scheduling Architecture

In this section we give an overview of the feedback control scheduling archi-
tecture. Further, we identify a set of control related variables, i.e., performance
references, manipulated variables, and controlled variables.

The general outline of the feedback control scheduling architecture is given in
Figure 2. Admitted transactions are placed in the ready queue. The transaction
handler manages the execution of the transactions. At each sampling instant, the
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controlled variables, miss percentages and utilization, are monitored and fed into
the miss percentage and utilization controllers, which compare the performance
references, M, M?, and U,, with the corresponding controlled variables to
get the current performance errors. Based on these the controllers compute a
change, denoted AU, to the total estimated requested utilization. We refer to
AU as the manipulated variable. Based on AU, the QoD manager changes the
total estimated requested utilization by adapting the QoD (i.e. adjusting M DE).
The precision controller then schedules the update transactions based on M DFE.
The portion of AU not accommodated by the QoD manager, denoted AU,,¢,,
is returned to the admission control, which enforces the remaining utilization
adjustment.

Controller

Miss Percentage M

Miss Percentage 0 Miss Percentage

CPU Utilization

Utilization

AU ‘ MDE

>
(@

new
oD e .
Mgnager Monitor
[ N
U T . Miss Percentage
ser Transactions Y MDE
Source R
1 Admission Precision
Control Control
Source
m
. Dispatched -
Update Transactions Y _— | Transaction Handler
Stream 1 .
- | oo EM | cC | B
Stream Ready Queue
Block
Block Queue

Fig. 2. Feedback control scheduling architecture

The streams (Stream;) generate update transactions, whereas user transac-
tions are generated and submitted by sources (Source;).

The transaction handler provides a platform for managing transactions. It
consists of a freshness manager (FM), a unit managing the concurrency control
(CC), and a basic scheduler (BS). The FM checks the freshness before accessing
a data object, using the timestamp and the absolute validity interval of the
data. If a user transaction is accessing a stale data object and the transaction
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deadline is later than the next update arrival, the transaction is blocked. It
is then made ready when the corresponding update commits. However, if the
transaction deadline is earlier than next update arrival, the stale data object is
used. We use earliest deadline fist (EDF) as a basic scheduler to schedule user
transactions. Conceptually, transactions are scheduled in a multi-level queue
system. Update transactions and mandatory user subtransactions are placed in
the highest priority queue, whereas optional user subtransactions are placed in a
lower priority queue. We employ two-phase locking with highest priority (2PL-
HP) [1] for concurrency control, where a conflict is resolved by allowing the
transaction with the highest priority to lock the data object. 2PL-HP is chosen
since it is free from priority inversion and has well-known behavior.

Admission control is applied to control the flow of transactions into the
database. When a new transaction is submitted to the database, the admission
controller (AC) decides whether or not it can be admitted to the system.

Precision controller discards an update transaction writing to a data object
(d;) having an error less or equal to the maximum data error allowed, i.e. DE; <
MDE. However, the update transaction is executed if the data error of d; is
greater than M DFE. In both cases the time-stamp of d; is updated.

4.3 System Modeling and Controller Design

We have modeled the controlled system, i.e. RTDB, according to the analytical
approach proposed in [10]. The approach has been adapted such that it supports
mandatory and optional subtransactions. For derivation and tuning of the model
we refer to [2].

We employ two feedback control scheduling policies, called FC-M and FC-
UM [10], to control user transaction quality in the presence of unpredictable
workload and inaccurate execution time estimates. Depending on the algorithm
used, we apply different feedback control scheduling policies. FCS-IC-1 uses the
FC-UM policy, while FCS-IC-2 employs FC-M.

FC-M uses a miss percentage control loop to control the system miss per-
centage with regards to a reference. Here, separate control loops are used for
mandatory and optional subtransactions. Miss percentages of mandatory and
optional subtransactions, M™ and M, are monitored and controlled with re-
gards to the specified references, i.e. M and MC.

FC-UM, on the other hand, employs utilization and miss percentage con-
trollers. This has the advantage that the DBA can simply set the utilization
reference to a value that causes the desired deadline miss percentage in the
nominal case (e.g. based on profiling), and set the miss percentage references
(MM and MQ) according to the application requirements. For all controllers,
the control signal AU is computed to achieve the target miss percentage given
by the references.

We have extended FC-UM in a way that the reference utilization, denoted U,.,
is constantly updated online. The utilization reference is dynamically updated
according to a linear increase and exponential decrease scheme. Initially, U,
is set to an initial value. As long as the utilization controller has the control
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(i.e. the miss percentages are below their references), the utilization reference is
increased by a certain step. As soon as one of the miss percentage controllers
takes over (i.e. miss percentage above the reference), U, is reduced exponentially.
This is to prevent a potential deadline miss percentage overshoot due to an too
optimistic utilization reference. Note that this approach is self-adapting and does
not require any knowledge about the underlying workload model.

We have adapted and tuned the feedback controllers, but we do not include
these details in this paper due to space limitations. The interested reader is
referred to [2].

4.4 Algorithm Specification

We present two algorithms for managing data and user transaction imprecise-
ness. Both are based on adjusting the utilization and the miss percentages using
feedback control. The utilization adjustment is enforced partially by adjusting
the QoD, which requires setting M DFE according to the utilization adjustment
(AU), as described in Section 4.2. We adapt the following notation of describing
discrete variables in the time-domain; A(k) refers to the value of the variable A
during the time window [(k — 1)W, kW], where W is the sampling period and k
is the sampling instant.

Given a certain AU (k), we need to set M DE(k+ 1) such that the utilization
(or resources) gained when discarding update transactions correspond to AU (k).
Remember that setting M DE(k + 1) greater than M DE(k) results in more dis-
carded update transactions and, hence, an increase in gained utilization. Simi-
larly, setting M DE(k + 1) less than M DE(k) results in fewer discarded update
transactions and, hence, a decrease in gained utilization. In order to compute
MDE(k + 1) given a certain AU(k), we use a function f(AU(k)) that returns,
based on AU (k), the corresponding M DE(k + 1). The function f holds the fol-
lowing property. If AU(k) is less than zero, then M DE(k + 1) is set such that
MDE(k+1) is greater than M DE(k) (i.e. QoD is degraded). Similarly, if AU (k)
is greater than zero, then M DE(k+1) is set such that M DE(k+ 1) is less than
MDE(k) (i.e. QoD is upgraded). We will return to the concepts around f in
section 4.5.

FCS-IC-1. FCS-IC-1 (Feedback Control Scheduling Imprecise Computation 1)
is based on the extended FC-UM policy (as described in Section 4.3). By using
an adaptive scheme where the utilization reference is constantly updated, the
utilization yielding the target miss percentage can be approximated. The expo-
nential utilization reduction used with FC-UM decreases the risk for a potential
miss percentage overshoot. In addition to this, FCS-IC-1 performs the following.

The system monitors the deadline miss percentages and the CPU utilization.
At each sampling period, the CPU utilization adjustment, AU(k), is derived.
Based on AU (k) we perform one of the following. If AU(k) is greater than zero,
upgrade QoD as much as AU (k) allows. However, when AU (k) is less than zero,
degrade the data according to AU, but not beyond the highest allowed M DFE
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(i.e. MDE, x (M, +100)). Degrading the data further would violate the upper
limit of M DE, given by the QoS specification. In the case when AU (k) is less
than zero and M DE equal to MDE, x (M, + 100), no QoD adjustment can be
issued and, hence, the system has to wait until some of the currently running
transactions terminate. An outline of FCS-IC-1 is given in Figure 3.

Monitor M™ (k), M€ (k), and U (k)
Compute AU (k)
if (AU(k) > 0 and MDE(k) > 0) then
Upgrade QoD according to MDE(k + 1) := f(AU(k))
Inform AC about the portion of AU (k) not accommodated by QoD upgrade
else if (AU(k) < 0 and MDE(k) < MDE, x (M, + 100)) then
Downgrade QoD according to MDE(k + 1) := f(AU(k))
Inform AC about the portion of AU (k) not accommodated by QoD downgrade
else if (AU(k) < 0 and MDE(k) = MDE, x (M, + 100)) then
Reject any incoming transaction
else
Inform the AC of AU (k)
end if

Fig. 3. FCS-IC-1

FCS-IC-2. In FCS-IC-2, the FC-M policy is used (as opposed to FCS-IC-1,
where FC-UM is applied). In the case of FCS-IC-1, the miss percentages may
stay lower than their references, since the utilization is exponentially decreased
every time one of the miss percentages overshoots its reference. Consequently,
the specified miss percentage references (i.e. MM and M) may not be satisfied.
In FCS-IC-2, the utilization controller is removed to keep the miss percentages
at the specified references.

One of the characteristics of the miss percentage controllers is that as long
as the miss percentages are below their references (i.e. MM < MM and M© <
MP), the controller output AU will be positive.! Due to the characteristics of f
(i.e. AU(k) < 0= MDE(k+1) > MDE(k) and AU (k) >0= MDE(k+1) <
MDE(k)), a positive AU is interpreted as a QoD upgrade. Consequently, even
if the miss percentages are just below their references, QoD remains high. We
would rather that the miss percentage of optional subtransactions (M), which
corresponds to user transaction quality, increases and decreases together with
data quality (M DE). For this reason, in FCS-1C-2, the QoD manager is extended
such that M DFE is set not only by considering AU, but also according to the
current transaction quality given by M©. When AU is less than zero (miss

L If we have transient oscillations, AU, may temporally stay positive (negative) even
though the ATE has changed from being below (above) the reference to be above
(below) the reference value. This is due to the integral operation, i.e., due to earlier
summation of errors, which represents the history and therefore cause a delay before
a change to the utilization is requested and has effect.
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percentage overshoot), M DE is set according to f. However, when AU is greater
or equal to zero, M DE is set according to the moving average of M©. The moving
average of M© is computed by,

My a(k) = aMO (k) + (1 — a) My 4 (k = 1)

where a (0 < o < 1) is the forgetting factor [16]. Setting « close to 1 results in a
fast adaptation, but will also capture the high-frequency changes of M€, whereas
setting « close to 0, results in a slow but smooth adaptation. The latter results
in the data quality varying with the transaction quality. When MAO/[ 4 is relatively
low compared to MTO7 MDE is set to a low value relative to M DE,.. As M]\%A
increases, M DE increases but to a maximum value of M DE, x (M, + 100). A
further increase violates the QoS specification. The algorithm outline is given in
Figure 4.

Monitor M™ (k) and M (k)
Compute AU (k)
if (AU(k) > 0) then
Adjust MDE(k + 1) according to
MDE(k+1) := min(%MDET, MDE, x (M, + 100))
if (MDE(k) < MDE(k + 1)) then
Add the utilization gained after QoD degrade to AU (k)
else
Subtract the utilization lost after QoD upgrade from AU (k)
end if
Inform AC of the new AU (k)
else if (AU(k) < 0 and MDE(k) < MDE, x (M, + 100)) then
Downgrade QoD according to MDE(k + 1) := f(AU(k))
Inform AC about the portion of AU (k) not accommodated by QoD downgrade
else
{i.e. AU(k) < 0and MDE(k) = MDE, x (M, + 100)}
Reject any incoming transaction
end if

Fig. 4. FCS-IC-2

4.5 QoD Management

The preciseness of the data is controlled by the QoD manager which sets
MDE(k) depending on the system behavior. When f is used to compute
MDE(k + 1) based on AU(k) (as in FCS-IC-1 and some cases in FCS-IC-2)
the following scheme is used.

Rejecting an update results in a decrease in CPU utilization. We define gained
utilization, GU(k), as the utilization gained due to the result of rejecting one or
more updates during period k. GU (k) is defined as,

#RU; (k)
GU(k)=>_ AT, () EU;

%
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where #RU; (k) is the number of rejected update transactions 7T; generated by
Stream;, #AU;(k) the number of arrived update transactions T;, and EU; is
the estimated utilization of the update transactions T;.

An important issue is how to set M DE(k + 1) given a certain AU (k). Basi-
cally, we want to set M DE(k + 1) such that,

[ GU(k) — AU (k), AU (k) < GU(k),
GU(k+1) = {0, AU(K) > GU (k).

This requires that we can predict GU(k + 1) induced by M DE(k + 1). Note
that given M DE(k+ 1) we can only estimate the corresponding GU (k4 1) since
our problem is of probabilistic nature. For this mentioned reason, we introduce
the notion of predicted gained utilization,

PGU = g(MDE)

where given an M DE, the corresponding GU can be predicted. We derive g based
on system profiling, where we measure GU for different M D FEs. The function g
is then derived by linearizing the relationship between GU and M DE. By taking
the inverse of g,

MDE = g~ (PGU) = i x PGU (1)

we can compute a M DE(k + 1) based on a PGU (k + 1) where,

| GU(k) — AU(k), AU (k) < GU(k),

PGU(k+1) = {0, AU(K) > GU (k). (2)

Since RTDBs are dynamic systems in that the behavior of the system and
environment is changing, the relation between GU and M DF is adjusted on-line.
This is done by measuring GU (k) for a given M DE(k) during each sampling
period and updating u. Note that on-line profiling also has the advantage of
requiring less accurate parameters computed from off-line analysis.

By applying Equation (1) and (2), we compute M DE(k + 1) according to
the following,

MDE(k +1) = f(AU(k)) =
=min(y x PGU(k+ 1), MDE, x (M, + 100)).
Since M DE is not allowed to overshoot more than M DE, x (M, + 100), we use

a min operator to guarantee this.

5 Performance Evaluation

In this section a detailed description of the performed experiments is given. The
goal and the background of the experiments are discussed, and finally the results
are presented.
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5.1 Experimental Goals

The main objective of the experiments is to show whether the presented algo-
rithms can provide guarantees based on a QoS specification. We have for this
reason studied and evaluated the behavior of the algorithms according to a set
of performance metrics. The performance evaluation is undertaken by a set of
simulation experiments, where a set of parameters have been varied. These are:

— Load (Load). Computational systems may show different behaviors for dif-
ferent loads, especially when the system is overloaded. For this reason, we
measure the performance when applying different loads to the system.

— Execution Time Estimation Error (EstErr). Often exact execution time
estimates of transactions are not known. To study how runtime error affects
the algorithms, we measure the performance considering different execution
time estimation errors.

5.2 Simulation Setup

The simulated workload consists of update and user transactions, which ac-
cess data and perform virtual arithmetic/logical operations on the data. Update
transactions occupy approximately 50% of the workload. Note that the load ap-
plied to the database is based on submitted user and update transactions and the
tested approaches may reduce the applied load by applying admission control.

In our experiments, one simulation run lasts for 10 minutes of simulated
time. For all the performance data, we have taken the average of 10 simulation
runs and derived 95% confidence interval, denoted as vertical lines in the figures.
The following QoS specification is used: MM = 1%, M? = 10%, MDE, = 2%,
U > 80%, Ts < 60s, and M, < 30%.

We use the following notation where the metric X; refers to the trans-
action T;, while X;[t;] is associated with the subtransaction t; (where ¢; €
{Mi, Oi71, ey Oi,#Oi})~

Data and Update Transactions. The simulated DB holds 1000 temporal data
objects (d;) where each data object is updated by a stream (Stream;, 1 < i <
1000). The period (P;) is uniformly distributed in the range (100ms,50s) (i.e. U :
(100ms, 50s)) and estimated execution time (EET;) is given by U : (1ms, 8ms).
The average update value (AV;) of each Stream; is given by U : (0,100). Upon
a periodic generation of an update, Stream; gives the update an actual ex-
ecution time (AET;) given by the normal distribution N : (EET;,/EFET;)
and a value (UpdateValue;) according to N : (AV;, AV; x VarFactor), where
VarFactor is uniformly distributed in (0,1). The deadline is set according to
D; = ArrivalTime; + P;.

User Transactions. Each Source; generates a transaction T}, consisting of one
mandatory subtransaction and #0; (1 < #0,; < 3) optional subtransaction(s)
(1 <5 <#0;). #0; is uniformly distributed between 1 and 3.
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The estimated (average) execution time of the subtransactions (EET;[t;])
is given by U : (10ms, 20ms). The estimation error EstErr is used to intro-
duce execution time estimation error in the average execution time given by
AET;[t;] = (1 + EstErr) x EET;[t;]. Further, upon generation of a trans-
action, Source; associates an actual execution time to each subtransaction,
which is given by N : (AET;[t;], /AET;[t;]). The deadline is set according
to D; = ArrivalTime; + EET; x SlackFactor. The slack factor is uniformly
distributed according to U : (20, 40).

It is assumed that the number of data accesses (#DA;t;]) for each subtrans-
action is proportional to EET;[t;]. Hence, longer subtransactions access more
data. Upon a transaction generation, Source; associates an actual number of
data accesses given by N : (#DA;[t;], /#DA;[t;]) to each subtransaction of T;.
The data set accessed by a transaction is partitioned among the subtransactions
such that the partitions are mutually disjoint. However, the data sets accessed
by transactions may overlap.

5.3 Baselines

To the best of our knowledge, there has been no earlier work on techniques for
managing data impreciseness and transaction impreciseness, satisfying QoS or
QoD requirements. Previous work within imprecise computing applied to tasks
focus on maximizing or minimizing a performance metric (e.g. total error). The
latter cannot be applied to our problem since in our case we want to control a
set of performance metrics such that they converge towards a set of references
given by a QoS specification. For this reason, we have developed two baseline
algorithms, Baseline-1 and Baseline-2. We use the baselines to study the impact
of the workload on the system. Here, we can establish the efficiency of FCS-IC-1
and FCS-IC-2 by comparing the operational envelope of the algorithms, i.e., we
can compare the resistance to failure of the algorithms with regard to applied
load and/or run-time estimation errors. The baselines are given below.

Baseline-1. The preciseness of the data is adjusted based on the relative miss
percentage of optional subtransactions. Conceptually, M DE increases as M©

increases. M DF is set according to MDE(k+1) = min(%gc)MDEr, MDE, x
(M, +100)). A simple AC is applied, where a transaction (7;) is admitted if the
estimated utilization of admitted transactions and Tj is less or equal to 80%.

Baseline-2. In Baseline-1, a significant change in M DE may introduce oscilla-
tions in miss percentages. Baseline-2 is similar to Baseline-1, but here M DFE
is increased and decreased stepwise. The outline of the algorithm is as fol-
lows. If MO (k) is greater than zero, increase M DE(k) by a step (MDEg.,)
until MDE, x (M, + 100) is reached (i.e. MDE(k + 1) = min(MDE(k) +
MDZEge,, MDE, x (M, + 100))). If M© (k) is equal to zero, decrease M DE(k)
by a step (M DEj,) until zero is reached (i.e. MDE(k+1) = max(MDE(k) —
MDEgicp,0)). The same AC as in Baseline-1 is used here.
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5.4 Results of Varying Load

The setup of the experiment is given below, followed by the presentation of the
results. Figure 5 shows the average M© and M DE.

Experimental setup. We measure M, M© MDE, and U. The experiment
setup is as follows. We apply loads from 50% to 200%. The execution time
estimation error is set to zero (i.e. EstErr = 0).

801 —<+ FCS-IC1 p!
—- FCS-IC-2
— L —+— Baseline-1
s 60 "
B —©- Baseline-2
Q — - Reference
S 40
20
Ok &
50
Load (%)
3
25} <~ FCS-I1C—1 2
—- FCS-IC-2
2t+— —-— —+ Baseline-1 - - - — - — — — — . A . . .
9 -©- Baseline-2
w15k — - Reference
=}
=
1L
0.5

o8
50 100 150 200
Load (%)

Fig. 5. Average performance for Load = 50, 75, 100, 150, and 200%, E'stErr = 0

Average Miss Percentage of Mandatory Subtransactions. Miss percent-
age of mandatory subtransactions (M™) has been observed to be zero? for all
four algorithms and, therefore, this has not been included in Figure 5. The
specified miss percentage reference (M,M ), have been set to 1% and this is not
satisfied. This is due to higher priority of mandatory subtransactions compared
to optional subtransactions. According to our investigations, the miss percentage
of mandatory subtransactions start increasing when the miss percentage of op-
tional subtransactions is over 90% [2]. Consequently, since the miss percentage of
optional subtransactions does not reach 90%, the miss percentage of mandatory
subtransactions remains at zero.

Average Miss Percentage of Optional Subtransactions. For Baseline-1
and Baseline-2, the miss percentage of optional subtransactions (M?) increases
as the load increases, violating the reference miss percentage, MY, at loads
exceeding 150%. In the case of FCS-IC-1, M© is near zero at loads 150% and

2 We have not observed any deadline misses.
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200%. Even though the miss percentage is low, it does not fully satisfy the QoS
specification. This is in line with our earlier discussions regarding the behavior
of FCS-IC-1. The low miss percentage is due to the utilization controller since
it attempts to reduce potential overshoots by reducing the utilization, which in
turn decreases the miss percentage. FCS-IC-2 on the other hand shows a better
performance. The average M© at 150% and 200% is 8.5 + 0.1%, which is fairly
close to M?. In our model tuning of the controlled system, we have assumed
worst-case setups and set E'st Err to one. In this experiment we have set EstErr
to zero, resulting in a certain model error®. If EstErr is set to one, we can see
that that the average M© is close to M. This is shown in Section 5.5.
Average MDE. The average M DE for Baseline-1 and Baseline-2 violates the
reference M DE set to 2%. In contrast, in the case of FCS-IC-1, M DF is signif-
icantly lower than M DE,.. Since the miss percentages are kept low at all times,
they are not likely to overshoot. Consequently, the control signal from the miss
percentage controllers is likely to be positive, which is interpreted by the QoD
manager as an QoD upgrade and, hence, M D E will not reach the level of M DFE,..
This is further explained in Section 5.6, where the transient performance of the
algorithms is discussed. FCS-IC-2 provides an average M DFE closer to M DE,.,
given by 1.78 £0.024% at loads 150% and 200%. However, M DE does not reach
MDE, since MDE is set according to the relative M© (which does not reach
MO),

Average Utilization. For all approaches, the utilization satisfies the QoS spec-
ification as it is above the specified 80% for loads between 100-200%, reaching
almost 100% at 200% applied load.

5.5 Results of Varying EstErr

The setup of the experiment is given below, followed by the presentation of the
results. Figure 6 shows the average M© and M DE.

Experimental setup. We measure M M©, MDE, and U. The experiment
setup is as follows. We apply 200% load. The execution time estimation error is
varied according to EstErr = 0.00, 0.25, 0.50, 0.75, and 1.00.

Average Miss Percentage of Mandatory Subtransactions. As in the pre-
vious experiment (see Section 5.4), MM is zero for all approaches and EstErr.
The discussion regarding average miss percentage of mandatory subtransactions
given in Section 5.4 also apply here and are not further discussed.

Average Miss Percentage of Optional Subtransactions. As expected,
Baseline-1 and Baseline-2 do not satisfy the QoS specification. In fact, M© in-
creases as EstErr increases, reaching a value close to 90% for both algorithms.
As we can see, FCS-IC-1 and FCS-IC-2 are insensitive against varying EstErr.
Note that when analyzing FCS-IC-2, we can see that MY grows towards M
as EstErr increases in value. M© for EstErr set to zero and EstErr set to
one is 8.47 + 0.036% and 9.23 + 0.17%, respectively. This is the result of the

3 By model error we mean the deviation of the model used compared with the actual
system being controlled.
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Fig. 6. Average performance for EstErr = 0, 0.25, 0.50, 0.75, and 1.0, Load = 200%

discussions given in Section 2. As EstErr increases, the model error decreases
and, hence, the controlled system becomes closer to the actual model. This gives
a more accurate picture of the system and the controllers are therefore able to
control the system in a more correct way.

Average MDE. Baseline-1 and Baseline-2 violate the specified M DFE reference.
For FCS-IC-1 average M DFE does not change considerably for different EstErr.
In the case of FCS-IC-2, average M DE grows towards M DE,, with increasing
EstErr. The adjustment of M DE depends on the relative M© and, hence, the
average M DE grows as the average M© grows, reaching a value of 1.9740.03%.

5.6 Transient Performance

Studying the average performance is often not enough when dealing with dy-
namic systems. Therefore we study the transient performance of FCS-IC-1 and
FCS-1C-2 when Load is set to 200% and EstErr set to one. Figures 7 and 8
show the transient behavior of FCS-IC-1 and FCS-IC-2. The dash-dotted line
indicates maximum overshoot.

Starting with FCS-IC-1, we can note that M is kept low at all times. This
is expected since the average M© was shown to be low. The reader may have
noticed that M DE is greater than zero in the interval 20-150 where M© is zero.
Since M DFE is greater than zero, it is clear that AU may become negative during
that period. This is due to the behavior of the utilization controller. Initially, the
utilization is below the reference (U,). As the utilization increases and no miss
percentage overshoots are observed, U, increases linearly until a miss percentage
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Fig. 7. Transient performance for FCS-1C-1. EstErr = 1.0, Load = 200%

is observed (one of the miss percentage controllers takes over) in which case U,
is reduced exponentially. In FCS-IC-1, U,. is only increased if the utilization
controller has taken over. Our investigations show that the utilization controller
takes over once the utilization overshoots U,., resulting in a negative AU and,
hence, U, being increased too late. Consequently, the negative AU leads to an
increase in MDE.

FCS-IC-2 shows a more satisfying result as both M© and MDE increase
and decrease together. Both M© and M DE are kept around M? and M DE,,
respectively. Although the average M© is close to M, we can see that M© often
overshoots its reference. The highest M© has been noted to 25.7%. This is higher
than the specified maximum miss percentage of 13% (i.e. M© < 13%). One
cause to such overshoot is the various disturbances like data conflicts, resulting
in restarts or aborts of transactions. Further, we have set EstErr to one, which
yields a higher overshoot than in the case when EstErr is set to zero (i.e. no
execution time estimation error). The results of setting EstErr to zero is shown
is Figure 9. Here we can see that the variance of miss percentage is much smaller
than in the case when EstErr is set to one.

5.7 Summary of Results and Discussions

It has been shown that FCS-IC-1 and FCS-IC-2 are insensitive against load
variations and inaccurate execution time estimations. FCS-IC-1 can manage to
provide near zero miss percentage for optional subtransactions. We have also seen
that FCS-IC-1 can efficiently suppress miss percentage overshoots. However, the
performance of FCS-IC-1 does not fully comply with the given QoS specification.
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Fig. 9. Transient performance for FCS-1C-2. EstErr = 0.0, Load = 200%

Miss percentages and M DE are kept significantly lower than the references,
violating the given QoS specifications. This is due to the exponential decrease
in utilization every time M© overshoots its reference.
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In FCS-1C-2, M© and MDE are consistent with their specified references.
In addition, we have seen that the data and user transaction quality increase
and decrease together. FCS-IC-2, however, produces overshoots higher than the
maximum allowed overshoot, as given by the QoS specification.

We conclude that FCS-IC-1 should be applied to RTDBs where overshoots
cannot be tolerated, but where consistency between the controlled variables and
their references is relaxed, i.e., we do not require the system to produce the
desired miss percentages and M DE. The experiments show that FCS-IC-2 is
particularly useful when consistency between the controlled variables and their
references are emphasized, but some overshoots higher than the maximum al-
lowed can be accepted.

6 Related Work

In the past few years, feedback control scheduling has been receiving special at-
tention [10,13,3]. Lu et al. have presented a feedback control scheduling frame-
work, where they propose three algorithms for managing the miss percentage
and/or utilization [10]. In the work by Parekh et al., the length of a queue of
remote procedure calls (RPCs) arriving at a server is controlled [13]. Changing
the periodicity of a set of tasks in response to load variations has been suggested
in [3]. If the estimated load is found to be greater than a threshold, task periods
are enlarged to find the desired load. In contrast to FCS-IC-1 and FCS-1C-2,
aperiodic tasks are not considered in their model.

Labrinidis et al. introduced the notion of QoD [8]. Here, web pages are cached
at the server and the back-end database continuously updates them. Their pro-
posed update scheduling policy can significantly improve data freshness com-
pared to FIFO scheduling. Kang et al., presented a feedback control scheduling
architecture used to control the transaction miss percentage and utilization of
a real-time database by dynamically balancing update policies (immediate or
on-demand) of a set of data [7].

Liu et al. proposed an imprecise computation model [9]. They presented a
set of imprecise scheduling problems associated with imprecise computing and
also gave an algorithm for minimizing the total error of a set of tasks. Shih et al.
presenting two algorithms for minimizing the maximum error for a schedule that
minimizes the total error [15]. Hansson et al. proposed an algorithm, OR-ULD,
for minimizing total error and total weighted error [5]. The approaches presented
by Liu, Shih, and Hansson require the knowledge of accurate processing times
of the tasks, which is often not available in RTDBs. Further, they focus on
maximizing or minimizing a performance metric (e.g. total error). The latter
cannot be applied to our problem, since in our case we want to control a set of
performance metrics such that they converge towards a set of references given
by a QoS specification.

The correctness of answers to databases queries can be traded off to enhance
timeliness. Query processors, APPROXIMATE [17] and CASE-DB [6] are exam-
ples of such databases where approximate answers to queries can be produced
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within certain deadlines. However, in both approaches, impreciseness has been
applied to only transactions and, hence, data impreciseness has not been ad-
dressed. Further, they have not addressed the notion of QoS. In our work, we
have introduced impreciseness at data object level and considered QoS in terms
of transactions and data impreciseness.

7 Conclusions and Future Work

The need for real-time data services has increased during the last years. As the
run-time environment of such applications tends to be dynamic, it is imperative
to handle transient overloads efficiently. It has been shown that feedback con-
trol scheduling is quite robust to errors in run-time estimates (e.g. changes in
workload and estimated execution time). Further, imprecise computation tech-
niques have shown to be useful in many areas where timely processing of tasks or
services is emphasized. In this work, we combine the advantages from feedback
control scheduling and imprecise computation techniques, forming a framework
where a database administrator can specify a set of requirements on the database
performance and service quality. We present two algorithms, FCS-IC-1 and FCS-
IC-2, for managing steady state and transient state performance in terms of
data and transaction impreciseness. FCS-IC-1 and FCS-IC-2 give a robust and
controlled behavior of RTDBs, in terms of transaction and data quality, even
during transient overloads and when we have inaccurate run-time estimates of
the transactions.

For our future work, we are establishing techniques for managing data and
user transaction impreciseness in a distributed environment and we develop poli-
cies for handling derived data. Different approaches to modeling the controlled
system will be considered.

Acknowledgment. The authors wish to thank Kyoung-Don Kang at the Uni-
versity of Virginia, Charlottesville, for providing and helping us with the simu-
lator used to perform the experiments.
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Abstract. The medium access protocol of Ethernet, CSMA/CD, has an inherent
limitation in providing real-time guarantees. Since Ethernet is the most commonly-
used local area network (LAN) technology due to its low cost, high bandwidth
and robustness, it is very important to overcome this problem so that Ethernet can
be used as a network for soft real-time applications like multimedia. An adap-
tive traffic smoother (ATS) was proposed as a kernel-level software solution that
provides soft real-time guarantees on Ethernet.

This paper addresses the reconfigurability, scalability and portability of ATS.
First, a mechanism to read and adjust several user-specific parameters of ATS
is discussed, and metrics or parameters to indicate the achievement of the
user-required Quality-of-Service (QoS) are developed since these parameters are
indirectly related to the user-specific QoS. Our experimental evaluation validates
the feasibility of enhancing the reconfigurability and portability of ATS. Second,
ATS is extended to a switched Ethernet which is commonly used for scalability.
Our solution employs an ATS for each port of the switch for real-time packet
delivery guarantees. Finally, a prototype of the user-level ATS is implemented and
evaluated to enhance the portability of ATS. The performance of this user-level
ATS is shown to be comparable to that of the kernel-level implementation,
while enhancing both the reconfigurability and portability of real-time Ethernet
solutions.

Keywords: Ethernet, CSMA/CD, adaptive traffic smoother (ATS), real-time
communication, reconfigurability, scalability, portability

1 Introduction

Ethernet [3] is the most popular local area network (LAN) technology connecting end-
hosts due to its low cost, high bandwidth and robustness. Ethernet adopts the carrier
sense multiple access with collision detection (CSMA/CD) protocol for its medium ac-
cess control (MAC) protocol. In the CSMA/CD protocol, upon detection of a collision,
each host takes a random amount of time before making a retransmission attempt ac-
cording to the binary exponential backoff algorithm, to resolve the contention. Since the
backoff time is decided randomly by each host, the packet may collide again with other
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packets during its retransmission. Thus, it is difficult to provide real-time guarantees on
Ethernet. However, predictable delay guarantees are important for many time-sensitive
applications, and the demand for such applications is growing.

The timely delivery of control messages between programmable logic controllers
(PLCs) is required in factory automation systems. Traditionally, the proprietary networks
such as Allen-Bradley’s Universal Remote I/O Link [4] or CAN Bus [5] are commonly
used in such a system to provide real-time guarantees for control messages. But these
proprietary networks are expensive while their bandwidth is generally low. Thus, the
manufacturing automation industry has been pursuing use of commercial off-the-shelf
network products to replace or back up the proprietary networks. The low price and
proven robustness of Ethernet make it an attractive candidate if it can provide real-time
guarantees.

Real-time guarantees are also crucial to multimedia applications. The increase of
network bandwidth along with the processor’s computing power has enabled the real-
time transmission of multimedia data such as voice over IP (VoIP), video conferencing,
streaming audio/video and home entertainment systems. These applications require the
real-time delivery guarantees of multimedia data. Most of the research on providing the
Quality of Service (QoS) for these applications focused on wide area networks (WAN’s)
instead of LANS, as there is more unpredictability in a WAN than in a LAN due to its
complex topology. However, it is not possible to provide end-to-end delay guarantees
without providing such guarantees on end-hosts’ LAN. Since Ethernet is the dominant
LAN technology, we will focus on how to provide real-time guarantees on Ethernet.

Numerous approaches have been taken to overcome the inherent limitations of Eth-
ernet. A typical approach is to modify the Ethernet MAC layer to provide timeliness
guarantees [6,7,8,9,10,11]. Even though real-time guarantees can be achieved with these
approaches, changing already-installed network interface cards (NICs) is very expensive
and difficult, if not impossible.

Switches such as IEEE802.1p or IEEE802.12 [14] can be used, instead of a hub, to
support real-time guarantees. With a full-duplex switch, a collision domain is separated,
and thus, the transmission delay of real-time packets can be bounded. However, the most
commonly-deployed topology for Ethernet is the segmented Ethernet since the cost of
a switch is much higher than that of a hub. Thus, the real-time guarantee on Ethernet is
still important to provide the end-to-end real-time guarantees.

Also proposed are software solutions without modifying the hardware. Rether [12] is
a virtual token ring implementation on top of the Ethernet without modifying the Ethernet
MAC layer. RTCC [13] is another example of this approach. It uses a centralized node
to gather state-related information such as real-time packet arrival time, and determine
when and how to send a packet for each participating node. The existing NICs can be
used for this approach, but both of these examples require a significant modification to
operating systems to handle token management or to elect the central node. Thus, the
implementation or the porting of such a solution is very expensive.

Kweon and Shin [2] proposed an adaptive traffic smoother (ATS) to provide soft
real-time guarantees on an Ethernet, which also takes a purely kernel-level software
approach. They installed an ATS on each host between the Ethernet MAC layer and the
IP layer. The ATS regulates the generation rate of non-RT traffic on each host, and the
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traffic generation rate is adapted to the underlying network load condition. Since there
is no explicit method to measure the network load on Ethernet, packet collisions on the
medium are used as an indirect indicator of the network load. Under the ATS, the traffic
generation rate is increased slowly in the absence of collision, while it is reduced to a
half when the outgoing packet experiences a collision. This simple scheme is shown to
be very effective in reducing the deadline miss ratio of RT messages while maintaining
an acceptable level of non-RT traffic throughput. However, there are three important
limitations in this approach. First, there are several parameters that control the behavior
of ATS. However, these parameters cannot be adjusted in the original implementation of
ATS, and are not directly related to the QoS that the end-user may require. Second, the
original ATS focused only on a single Ethernet while the use of switched-Ethernets is
very common for the scalability of the LAN. Finally, the portability of the original ATS
is poor since it is implemented inside the kernel.

In this paper, we improve the ATS in [2] to solve the above problems as follows. First,
a reconfiguration mechanism is provided to adjust the user-specific parameters of ATS,
and a performance monitoring mechanism is developed and added. Second, the adaptive
traffic smoothing scheme in ATS is adopted for each port of a switch for its extension
to the switched-Ethernet. A prototype of such switch is implemented on a Linux box
and its performance is compared to other setups. Finally, a user-level ATS is proposed
to increase the portability.

The rest of the paper is organized as follows. Section 2 describes the adaptive traffic
smoother. The problem statement and approaches are described in Section 3. The im-
plementation details are given in Section 4, and the performance evaluation is presented
in Section 5. The paper concludes with Section 6.

2 Adaptive Traffic Smoother

The detail of an ATS is given in [2], but it is described briefly here for completeness. The
main idea of a traffic smoother is to reduce the probability that a real-time packet collides
with other packets by regulating a host’s traffic injection into the Ethernet. A traffic
smoother is inserted between the Ethernet MAC layer and the IP layer, and smoothes
non-RT traffic. A fixed-rate traffic smoother [1] is the original traffic smoother, in which
the network load is regulated under a certain limit, named a network-wide input limit.
Each host has a portion of the network-wide input limit, called a station input limit,
and a host’s outgoing traffic is kept under its station input limit. This traffic smoother is
effective in providing real-time guarantees on Ethernet, but it is inflexible and inefficient
in transmitting non-RT traffic since (i) each node is assigned a constant bandwidth
regardless of the network load condition, and (ii) the station input limit is decreased as
the number of hosts increases. When all hosts do not synchronously generate non-RT
traffic, which is usually the case, the bandwidth reserved for those hosts not generating
non-RT traffic is left unused, thus seriously degrading the throughput of non-RT traffic.

The adaptive traffic smoother, on the other hand, changes adaptively its station input
limit according to the current network load. Since the direct information on the current
network load is unavailable to the local node on Ethernet, the collision status report
provided by NIC is used to estimate the load. In the absence of collision, the station input
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limit is increased while it is decreased in the presence of collision. More specifically,
the ATS uses the Harmonic-Increase and Multiplicative-Decrease Adaptation (HIMD)
mechanism. HIMD provides traffic control similar to that of TCP, which increases the
traffic generation rate additively in the absence of congestion detection, but decreases it
multiplicatively upon detection of congestion or packet loss.

The ATS works similarly to a leaky-bucket filter, maintaining two parameters, credit
bucket depth (CBD) and refresh period (RP). A credit of CBD bytes is replenished every
RP seconds, so the station input limit can be given as CBD/RP. The CBD is fixed at
the maximum transmission unit (MTU) of Ethernet to reduce the burstiness and the RP
is changed according to HIMD. RP is decreased by A every 7 seconds in the absence
of collision, thus increasing the station input limit harmonically. On the other hand, it
is checked if there has been a collision within o seconds after the previous change of
RP. Upon detection of a collision, RP is doubled, thus decreasing the station input limit
multiplicatively, and the current credit is vacated. Also the value of RP is bounded by
RP,,in and RP,, 4, i.e., RP is no less than RP,,;, and no greater than RP,,,,. Here
a, A, T, RPyin, and RP,,,, are user-specific parameters. The ATS will show different
characteristics when these parameters are altered.

3 Problem Statement and Solution Approach

3.1 Support of Reconfigurability

The original implementation of ATS did not provide any means of altering the user-
specific parameters; these parameters are hard-coded in the kernel, and cannot be adjusted
without recompiling the kernel. However, different applications may have different QoS
requirements. For example, RT control messages may be required to be delivered within
50 ms of their generation with 99% probability in an automated manufacturing system,
while voice packets may be required to be delivered within 100 ms with 95% probability.

We designed and developed a reconfiguration mechanism to dynamically adjust the
user-specific parameters without recompiling or rebooting. With this mechanism, ATS
parameters can be easily adjusted for different application requirement. By adjusting ATS
parameters, one can make a tradeoff between the non-RT throughput and the deadline
miss ratio of RT messages, i.e., one can get higher bandwidth at the expense of increas-
ing RT message deadline misses. This can be analyzed qualitatively as follows. If A is
increased, RP decreases faster, i.e., more traffic is generated. Thus, the non-RT through-
put will increase while the deadline miss ratio increases. Similarly, the larger RP,;;p,
the lower the maximum bandwidth consumed by a node. Thus, as RP,,;, is increased,
the maximum non-RT traffic decreases, thus improving RT performance. However, it
should be noted that a large R P,,;, costs non-RT throughput even though only one host
is generating the traffic.

We also developed metrics to monitor and characterize the performance at run-time.
Since the quantitative change of performance is difficult to predict a priori, the user can
exploit these metrics when s/he adjusts the ATS parameters. The metrics we used are the
number of transmitted packets, 74,47, and the number of packets that miss the deadline,
Nmiss- 1f the desired delay bound is set by the user, both the number of the transmitted
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RT packets and the number of the packets taken longer than the specified bound will be
identified and counted. The deadline miss ratio can be inferred from these numbers by
a simple calculation: deadline miss ratio = Nupiss/Mtotal-

The delay measured here is the transmission delay, i.e., the interval from the time
when a packet is passed to the device, and to the time when a packet is successfully
transmitted. This delay excludes the protocol processing time on both the sender and
the receiver sides plus the propagation delay on the medium. This interval may vary due
to collisions and backoffs, which are the source of Ethernet’s unpredictability and the
main focus of this paper.

3.2 Switched-Ethernet Extension

The original ATS was designed for a single Ethernet, while switches are commonly used
in today’s LANs as the number of hosts increases. Use of switches can dramatically
improve the overall throughput and delay of a LAN, as they separate the collision domain
and forward packets from one collision domain to another only when necessary. Thus,
one can improve scalability by using ATS in a switched-Ethernet.

However, the performance of ATS can be degraded significantly when applied to the
switched-Ethernet, because bursty traffic on an Ethernet can be generated by the switch.
Each port of a switch generates traffic following the CSMA/CD protocol like a host on a
single Ethernet. Since it does not observe the HIMD policy, it can generate bursty traffic,
which may collide with RT packets and delays their transmission. We, therefore, propose
to enforce the HIMD policy at each port of the switch. Each switch port as well as hosts
on the Ethernet will then follow the HIMD policy, thus guaranteeing the timely delivery
of packets. Since it is the current trend to add flexible configuration and programming
features to a switch, this approach will soon be feasible. In such a case, each port should
maintain the traffic smoother parameters, such as the current credit and the last collision
time, to reflect the fact that a different ATS shows a different traffic-generation behavior.

3.3 User-Level Implementation

The implementation of ATS depends heavily on the underlying operating system, since
the interface between the IP layer and the device driver differs from one operating system
to another. Thus, implementing the ATS on one operating system requires OS-dependent
code, which is typically difficult and time-consuming to develop and debug. The original
ATS in [2] requires kernel modification including the device driver for Linux and building
a new network driver interface specification (NDIS) [15] driver for Windows NT.

The portability of ATS will be enhanced if it is built in the application level and
requires a minimum change to the underlying operating system, while there are a few
potential problems in this approach. When the ATS is implemented in the user-level, the
most significant change is its position in the protocol stack as shown in Fig. 1. A user-
level ATS sits on top of the UDP or TCP/IP layer while a kernel-level ATS lies between
the Ethernet MAC layer and the IP layer. The potential problem of this approach is that
there may be some packets being processed in the TCP/IP (or UDP/IP) protocol stack
when a collision occurs. Since such packets are beyond the control of a user-level ATS,
they will be transmitted by the host and they may result in more collisions with RT
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(a) Kernel-level ATS (b) User-level ATS

Fig. 1. Comparison between the kernel-level adaptive traffic smoother and the user-level adaptive
traffic smoother. The kernel-level adaptive traffic smoother resides between the IP layer and the
MAC layer, while the user-level adaptive traffic smoother resides on top of transport layer.

packets from other hosts, thus causing the RT packets to miss their deadlines. Another
potential problem is that one application is ignorant of the traffic generated by another
application since each application has its own ATS, i.e., each application smoothes its
own traffic independently of others’. However, each traffic smoother will reduce its
traffic-generation rate upon detection of a collision. Therefore, the overall behavior of
a user-level ATS will be more sensitive to collisions when more than one application
inject non-RT traffic at the same time.

4 Implementation

4.1 Enhanced Reconfigurability and Scalability

The ATS is re-implemented on Linux 2.2.19 to enhance its reconfigurability. The new
implementation improved the reconfigurability by enabling the end-user to alter the user-
specific parameters and observe the resultant QoS changes. The ATS is also modified to
work independently as a per-Ethernet device so that a Linux box may emulate a switch.

The ATS uses two queues to prioritize RT packets over non-RT packets. RT packets
can be differentiated from non-RT packets by the type-of-service (ToS) field in the IP
header, which can be set by setsockopt() system call in Linux. When the device is ready,
the high-priority queue is checked, and the packet at the head of the queue, if any, is sent
to the device. A packet in the low-priority queue can be dequeued and sent to the device
only when a positive credit is available.

The ATS needs to know when the most recent collision has occurred. Ethernet devices
have status reporting features that can be used for this purpose. The device driver for
the NIC should be modified such that the time of the most recent collision is recorded.
The Ethernet device generates, or can be set to generate, an interrupt when a packet
is successfully transmitted or a packet is discarded after experiencing a pre-specified
number of collisions. In the interrupt handling routine, a small size of code is inserted to
record the time when the last transmitted packet experienced a collision. The time unit
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# cat /proc/net/tsmoother

Inter- current last QoS |# trans-| #
face | RP |RPmax |[RPmin| credit [CBD| « | A |enabled|collision|bound| mitted |missed
ethO [3000{100000| 3000 | 1514 [1514{10000{100| 1 [4065717| 2 8611 | 1192
# echo “ethO min 1000” > /proc/net/tsmoother
# cat /proc/net/tsmoother
Inter- current last QoS |# trans-| #
face | RP |RPmax |RPmin| credit [CBD| « | A |enabled|collision|bound| mitted |missed
eth0 [{1000{100000| 1000 | 1514 [1514{10000{100| 1  [4076586| 2 8611 | 1192

Fig. 2. Example of getting/setting parameters through the proc file system. The output is formatted
in the table for better readability. The real output is similar to the above table.

used here is jiffies.! Every device driver needs to be modified, but this modification was
very minor: in most cases, less than 10 lines of code.

The proc file system of Linux is exploited to facilitate the reading and setting of
the ATS parameters. The proc file system is a pseudo file system which resides in main
memory. Various types of system information can be conveniently retrieved and/or set
through the proc file system. One entry (/proc/net/tsmoother) is added for ATS. When
this file is read, it prints out the parameters of the traffic smoothers in all the active
devices. Also, it can be written with appropriate data to change the ATS parameters,
including enabling/disabling it.

Fig. 2 shows the use of the proc file system to get and set the parameters of ATS.
As shown in this example, the current value of the ATS parameters can be read from
/proc/net/tsmoother. Also some parameters can be changed by writing the appropriate
data to the file. To write data to the proc file, we use “device param value”, where device
indicates the network device name used in Linux such as ethQ; param is the appropriate
parameter name; and value is the new value for the specified parameter. In the above
example, the value of R P,,;,, is changed to 1000, which means 1 ms. Table 1 summarizes
the information reported by reading the proc file and the corresponding parameter names
used to alter their values. Here 7 cannot be altered since it depends on the system time
resolution and is fixed to 1 ms in the current implementation. The unit of the parameters
is s except for goal whose unit is ms.

The required upper bound of a delay of real-time packet transmission, which can
be considered as a deadline, can be set. Once the deadline is set, the number of real-
time packets transmitted and the number of real-time packets that missed the deadline
are recorded. It is straightforward to calculate the deadline miss ratio with these two
numbers. The delay measured here is the transmission delay as mentioned earlier.

In order to emulate a switch that follows the HIMD policy, a Linux box with multiple
NICs is used. Each NIC on the Linux box emulates a port of the switch. For each NIC,
the ATS parameters can be set independently, thus yielding independent and different
behaviors of the ATS.

! Jjiffies is the time unit maintained in the Linux kernel. It is incremented by 1 every time interrupt,
which is 10 ms by default. But the time resolution is changed at 1 ms for finer granularity
measurements in the implementation.
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Table 1. The field reported by the proc file system and its meaning, and the parameter names used
to change their values.

Field Name Parameter
When Read  Name
RP the current RP
RPmax max_rp RPmax
RPmin minrp RPpn

Description

netshare the current credit
cbd cbd CBD
alpha alpha «
delta delta A
en enabled enabled(1)/disabled(0)
last coll the jiffies when the most recent collision occur
goal qos the required delay
Xmit the number of RT packets transmitted
missed the number of RT packets delayed longer than specified bound

Table 2. The functions provided by a prototype of the user-level adaptive traffic smoother library.

Function Name Description
ts_init(struct ts_params *tsp) initialize an adaptive traffic smoother
ts_set(struct ts_params *tsp) set the parameters to a new value
ts_get(struct ts_params *tsp) get the current parameters

ts_send(int fd, const void *msg, a wrapper function to the existing socket function
size_t len, int flags)
ts_thread() a background thread for refresh

4.2 User-Level Adaptive Traffic Smoother

A user-level traffic smoother is designed as a user-level library so that it can be linked
with other application programs that require ATS. The functions provided by this library
are summarized in Table 2.

A user-level program can initialize the user-level adaptive traffic smoother by in-
voking ts_init() function. It initializes the ATS with the given parameters and generates
a background thread using the POSIX thread library. The background thread executes
the ts_thread() function, which decreases the refresh period periodically and replenishes
the credits once every refresh period. Since this procedure is implemented at user-level,
the interval between two successive invocations of this procedure may not be uniform.
Thus, the refresh period is decreased proportionally to the time elapsed since the last
invocation.

The ts_send() function can be used as a wrapper of the socket function to transmit a
data such as send(). All the parameters of this function are identical to those of send()
provided in the UNIX environment. When this procedure is invoked, the send() function
is invoked only when the current credit is positive.
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Fig. 3. Testbed setup used to measure the performance. Hosts exchange RT messages with each
other, and non-RT messages with the monitor station.

The parameters of user-level traffic smoother can be easily queried and adjusted with
ts_get() and ts_set(), respectively. The argument taken by these functions is a pointer to
struct ts_param, which is defined as follows.

struct ts_param {
unsigned long rp; /* RP x/
unsigned long rp_max; /* RPmax */
unsigned long rp_min; /* RPmin */
unsigned long alpha; /* alpha */
unsigned long delta; /* delta */

unsigned long tau; /* tau */

int cbd; /* cbd */

volatile int ns; /* the current credit */

int enabled; /* whether enabled */

int congested; /* to indicate the recent collision */

};

The names of the most fields are self-explanatory and correspond to the ATS param-
eters. The enabled field indicates if the smoothing is enabled, and the congested field is
set by the background thread to indicate whether there is a collision recently.

A user-level ATS still requires a very small (less than 10 lines of code) kernel mod-
ification to get the information of the most recent collision: a device driver should be
modified to record the time when the collision occurred.

5 Performance Evaluation

5.1 Experimental Setup

To validate our solutions, we performed experiments on a testbed that mimics a factory
automation system. In a typical automated factory system, PLCs exchange RT messages



On Soft Real-Time Guarantees on Ethernet 167

Switch
( Linux box )

O O

host 1 host 2 Monitor Station host 3 host 4

Fig. 4. Testbed setup used to measure the performance of ATS in the switched-Ethernet. Linux box
with multiple NICs emulates a switch, and separates the collision domains. As in single Ethernet
environment, hosts exchange RT messages with each other, and non-RT messages with the monitor
station.

with each other, and non-RT messages with a monitoring system. Our testbed is shown
in Fig. 3. Four Pentium 75 MHz laptops with 24M RAM are used as hosts to emulate
PLCs, and one Pentium 133 MHz laptop with 32M RAM is used as the monitor station.

Each host generates a 1-Kbyte-long RT message every 100 ms. At the same time,
each host sends non-RT traffic to the monitor station continuously to saturate the network.
The roundtrip delay is measured for RT messages since it is very difficult to measure
the one-way delay without precise time synchronization. The delay is measured at the
application layer, i.e., the delay will include the protocol processing time as well as
the packet transmission time. In addition to the RT roundtrip delay, the overall non-RT
throughput is measured.

Fig. 4 shows the testbed setup used to measure the performance of the ATS extended
to the switched-Ethernet. Four hosts and a monitor station exchange the same traffic. But
the collision domain is separated into 3 domains by the switch. Two collision domains
contain two hosts each, and the third collision domain is used for the monitor station.
Since the monitor station consumes more bandwidth than the hosts, it is natural to allocate
one separate collision domain (i.e., a port in the switch), to the monitor station.

The parameters throughout the performance evaluation are, unless specified other-
wise, set as: RP,,i, = 3 ms, RPya: = 50 ms, a = 10 ms, A = 100 ps. For most
of the experiments, we adjusted the A value since the performance is sensitive to this
parameter, and the non-RT throughput is not sacrificed significantly.

5.2 Validation of Reconfigurability Enhancement

The usability is enhanced in the new implementation of the ATS as shown in the previous
sections. To verify its usability enhancement, the sensitivity of the ATS parameters is
plotted in Fig. 5. Also the metrics to show the QoS achievement are evaluated.
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Fig. 5. The roundtrip delay of RT messages with (a) original Linux, (b) A = 100, (c) A = 50, and
(d) A=10.

Fig. 5 shows the roundtrip delay of the RT packets with different parameters. Fig. 5(a)
shows the roundtrip delay measured without the ATS, while Fig. 5(b)-(d) show the
roundtrip delay with different A values. With the ATS, the roundtrip delay is significantly
reduced and well-bounded. Also it can be observed that the delay characteristics vary
with different A values.

Fig. 6 and 7 present more quantitative analyses of the performance. Fig. 6 shows
the deadline miss ratio for different A values. The x-axis of the graphs is the deadline in
terms of ms and the y-axis is the deadline miss ratio. Obviously, the deadline miss ratio
decreases as the deadline increases. Fig. 7 shows the throughput of non-RT traffic for
different A values. As A gets larger, the RP decreases faster, i.e., the traffic generation
is increased faster. Thus, as A increases, the non-RT throughput will increase while the
deadline miss ratio will increase.

The above graphs have shown that the behavior of the ATS is affected by the A
value. The parameters other than A also affect the performance of ATS. Generally, the
deadline miss ratio is higher when the overall throughput is high, but it may be possible
that one set of parameters gives a lower deadline miss ratio and a higher throughput than
another set of parameters. The parameters can be changed easily to observe their effects
on the performance of ATS.

Fig. 8 shows the deadline miss ratio inferred from the new metrics measured. Here
the delay is measured as an interval from the time when a packet is copied to the device
to the time when the packet is successfully transmitted by the device. This delay will
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Fig. 6. The deadline miss ratio (of roundtrip delay) with different A values. A is adjusted to 10,
25, 50, and 100 psec. The performance varies significantly depending on A value.
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Fig.7. The throughput of non-RT traffic with different A values. The throughput as well as the
deadline miss ratio varies depending on the A value. There is a tradeoff between the throughput
and the deadline miss ratio.
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Fig. 8. The deadline miss ratio inferred from the metrics of the enhanced adaptive traffic smoother.

be affected most by the current network utilization, i.e., the number of collisions that a
packet has experienced with other packets. Note that the delay is the roundtrip delay of
a RT packet measured at the application layer for most of the other graphs representing
the deadline miss ratio. However, the delays presented here exhibit a similar trend to the
delays measured at the application layer as shown in Fig. 6. This validates the fact that
the transmission delay reported by the enhanced traffic smoother is a major factor of the
variance in the delay. Thus, the deadline miss ratio inferred from the new metrics can
be used as a proper indicator of the user-specified QoS achievement. With the help of
these metrics, the parameters of ATS may be adjusted to achieve the desired QoS.

5.3 Performance of the ATS in a Switched Ethernet

The performance of ATS when it is applied not only to end-hosts but also to the switch
is compared to other cases, to validate the extension of ATS to the switched-Ethernet.
Four sets of experiments are performed when (a) ATS is used on a single Ethernet, (b)
ATS is not used at all in the switched-Ethernet, (c) ATS is applied only to hosts on
the switched-Ethernet, and (d) ATS is applied to both hosts and the switch ports in the
switched-Ethernet.

Fig. 9 and 10 show the roundtrip delays and the deadline miss ratio, respectively.
The performance of the switched-Ethernet without the ATS is poorer than that of a
single Ethernet with the ATS. When the traffic smoother is applied only to hosts on
the switched network, the performance is no better than that of the traffic smoother on
the single Ethernet. Only when the ATS is applied to both hosts and the switch, the
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Fig. 9. Real-time message delay in different situations: (a) ATS is used on a single Ethernet, (b)
ATS is not used at all in the switched-Ethernet, (c) ATS is applied only to hosts on the switched-
Ethernet, and (d) ATS is applied to both hosts and the switch in the switched-Ethernet.

performance is improved significantly as compared to that of the single Ethernet with
the ATS.

5.4 Performance of User-Level ATS

To validate the feasibility of the user-level ATS, the same set of experiments is performed
with both the user-level and the kernel-level traffic smoothers in the testbed described
in Section 5.1. Fig. 11 plots the deadline miss ratio of the user-level traffic smoother
vs. that of the kernel-level traffic smoother when A is adjusted to 25 ps and 100 us,
respectively. Two observations can be made from these graphs. First, it is observed that
the performance curve of the user-level ATS shows a similar trend to that of kernel-
level ATS. This implies that we can change the characteristics of the user-level ATS by
adjusting the parameters. Second, the performance of the user-level ATS can be adjusted
similarly to that of the kernel-level ATS by adjusting the parameters. As shown in the
graph, the performance of the user-level ATS is poorer than that of the kernel-level ATS
when the same parameters are used. This is because the packets in the TCP/IP stack
which are beyond the control of the user-level ATS may be transmitted even right after
a collision, and may collide with other packets. However, the performance of user-level
ATS can be improved by adjusting the parameters such that the performance obtained
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Fig. 10. The comparison of the deadline miss ratio when (i) ATS is used on a single Ethernet,
(i) ATS is not used at all in the switched-Ethernet, (iii) ATS is applied only to hosts on the
switched-Ethernet, and (iv) ATS is applied to both hosts and the switch in the switched-Ethernet.

from the user-level ATS is comparable to or better than the performance of the kernel-
level ATS with the different parameter.

The potential problem of the user-level ATS is that the performance may become
worse if more than one application generate non-RT traffic on a given host since each
application adapts its traffic generation. To address this issue, experiments are performed
by changing the number of applications generating non-RT traffic on one host. A con-
tinuous stream of non-RT traffic is generated by each application, and the number of
applications (i.e., the number of non-RT streams) is changed from 1 to 3 while keeping
the RT traffic intact.

Fig. 12 shows the deadline miss ratio when the number of non-RT streams is changed.
While the number of non-RT streams ranges from 1 to 3, the performance of the kernel-
level ATS remains almost unchanged since it smoothes traffic at the Ethernet MAC layer
which all the packets go through. One interesting result is that the deadline miss ratio of
the user-level ATS is affected little when the number of non-RT streams on one host is
changed. Also, the overall throughput of the user-level ATS is only 2 ~ 7% lower than
that of the kernel-level ATS, and the overall throughput remains stable regardless of the
number of non-RT streams. Throughout these experiments, we were able to verify the
feasibility of the user-level ATS. Even though its performance is somewhat poorer than
the kernel-level ATS, the user-level ATS can be used for soft real-time guarantees with
the minimum modification on the underlying operating system.
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6 Concluding Remarks

ATS is a software solution to provide soft real-time guarantees on Ethernet by regulating
each host’s traffic generation rate according to the network utilization. Even though it
is shown to be effective in providing real-time guarantees in a heavily-loaded network
without degrading the throughput unacceptably, it has some limitations. First, it provides
no means of adjusting its several user-specific parameters for different QoS requirements
and to monitor its performance at run-time. Second, it is designed only for a single
Ethernet while switches are commonly used for scalability. Third, it has relatively poor
portability since it is designed and implemented in the kernel. This paper addressed all
of these problems.

To enhance the reconfigurability, a mechanism to retrieve and modify the ATS pa-
rameters at run-time is developed using the proc file system on a Linux machine. Also,
the metrics to represent the QoS achievement with the given parameters are made avail-
able, when the delay bound of transfer delay is specified. We applied these enhanced
reconfigurability mechanisms and evaluated the ATS performance for different parame-
ter values. With the help of these mechanisms, user-specific parameters can be adjusted
to meet the QoS requirement. It will be convenient to the user if these parameters are
adjusted automatically when the desired QoS is specified. This is left as future work,
but its difficulty lies in the fact that those parameters are dependent on each other, thus
making it difficult to modify them.

The ATS is extended to the switched-Ethernet, which is the common topology of
LANSs. More specifically, we applied the HIMD policy to every port of a switch. A switch
is emulated using a Linux box, and the performance is evaluated and compared to the
performance on a single Ethernet. Our experimental results have shown that performance
can be improved only when the HIMD policy is applied to every port of the switch under
heavy network loads.

A prototype of the user-level ATS was designed, implemented, and evaluated to
address the portability issue. The user-level ATS requires only the minimum change
on the operating system, and hence, is easier to port to different platforms. Its perfor-
mance is slightly worse than, but comparable to, that of the kernel-level ATS. Also the
user-level ATS shows the stable performance even when the number of non-RT stream
changes whose traffic-generation rate is adjusted independently. These results validate
the feasibility of the user-level traffic smoother.
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1 Introduction

Bandwidth plays an important role in quality of service of network applications.
For example, clustering systems and parallel systems in a LAN environment,
communications and data transmissions between hosts are large. If the network
bandwidth is not enough, real-time packets may be delayed and miss their tim-
ing constraints [3,11]. Therefore, bandwidth management is very important. Fur-
thermore, in many server applications, transactions with real-time constraints
or priorities need to be processed and send results back as soon as possible.
Although we can use several network adapters at a host to obtain higher band-
width, but one IP address is needed for each network adapter and thus is not
practical in large-scale systems.

In TEEE 802.3 network specification [17], Link Aggregation Standard is pro-
posed to merge bandwidth and specify many other features. As shown in Fig-
ure 1, it comprises an optional sublayer between MAC Client and MAC Control
sublayers. This standard is mainly targeted at routers and there are products of
many manufacturers which support Link Aggregation Standard using hardware
or software approaches, such as CISCO EtherChannel [19], Intel Link Aggrega-
tion [5], Sun Trunking [14], and Linux Bonding [9]. Although bandwidth can be
increased, these approaches need special switching hubs with Link Aggregation
Standard support, which means extra costs are needed.

OSI
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Fig. 1. IEEE802.3 Link Aggregation Layer

In [20], Srinidhi Varadarajan and Tzi-cker Chiueh proposed the design and
implementation of a real-time Fast Ethernet switch , EtheReal, which provides
bandwidth guarantees to real-time applications running on Ethernet using a
personal computer. When a real-time application attempts to set up a real-time
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connection, it sends a reservation request to a user-level process (RTCD) on
the same host, which sends the reservation request to the EtheReal switch to
which the sending host is directly connected. The connected switch forwards this
request to the next switch, and so on, until it reaches the destination node. If the
real-time connection request is admitted, resources, including bandwidth, CPU
cycle and data buffer, on EtheReal switches are reserved and dedicated to the
service of the real-time connection.

Nowadays, switching hubs which support 100BASE-TX and Full-Duplex are
very inexpensive and still have very high packet filtering/forwarding rate. We
would like to make use of these inexpensive devices and make use of several
network adapters simultaneously with only one IP address to increase band-
width between hosts connected with regular inexpensive switching hubs. By
scheduling packets in data link layer, real-time packets can be dispatched into a
higher-priority queue so that the packets can be transmitted through the phys-
ical Ethernet interface right away [13,16]. Furthermore, real-time applications
can transmit real-time packets via one or several dedicated network adapters
which create real-time message channels between hosts and thus reduces the
transmission delay and the jitter of real-time packets massively [8,12] without
modification to the hardware on both host machines and connected switching
hubs.

The proposed approach comprises two Linux kernel drivers [1,4,7,15]. Bond-
ingPlus driver module is a pseudo Ethernet device driver responsible for receiving
packets from upper network layer and dispatching packets to multiple physical
Ethernet interfaces. ARP+ protocol module maintains an ARP+ table, which is
a mapping table between each IP address and its corresponding MAC addresses
of multiple physical network adapters in a LAN environment. When Bonding-
Plus driver transmits a packet, it queries ARP+ table and changes the source
and destination addresses of the packet.

The rest of this paper is organized as follows. The next section describes
background knowledge used in the proposed approach, including switching hub
operations, Linux packet flow, and Ethernet Bonding Driver. Section 3 details the
design issues and the solutions we propose. Section 4 shows the implementation
details of our work in a Linux LAN environment. In Section 5, we measure and
analyze the performance of BondingPlus. This paper is concluded in Section 6.

2 Background

In this section, we introduce how packets are handled in a switching hub and
Linux network traffic control which can give us a good view of how to manipulate
a packet before it is sent to the buffer of a network adapter. We also introduce
Linux Ethernet Bonding Driver, which is a software implementation of Link
Aggregation standard in Linux.
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Fig. 2. Brief Architecture of Switching Hub(RealTek RTL8308B)

2.1 Packet Handling in Switching Hub

In a switching hub, there is a controller that controls the flow of input packets.
For example, Figure 2 shows the brief architecture of RealTek RTL8308B, an
8-port 10/100Mbps Ethernet switch controller [6]. It can operate in full-duplex
mode and supports non-blocking 148800 packets/second wire speed forwarding
rate and flow control. RealTek RTL8308B has a 2M-bit packet buffer. When
packets come into the FIFO queue, they will be copied into the packet buffer and
manipulated by the switching logic. There is an 8K-entry address hashing table
which contains the mappings between ports and destination MAC addresses.
When a packet is received from a port, the switching logic records the source
MAC address of this packet and creates a mapping in the address hashing table.
Then it hashes the destination MAC address of the packet to get a location
index of the address hashing table. If a valid location index is found, the packet
is forwarded to the corresponding destination port. Otherwise, the incoming
packet is broadcasted to all ports.

2.2 Packet Flow in Linux Protocol Stack

As shown in Figure 3, Linux protocol stack is based on TCP/IP and is normally
considered as a 4-layer system [18]. Linux uses a common packet data structure
(called socket buffer structure) to represent a packet throughout all protocol
layers. Parameters and payloads would not need to be copied between different
protocol layers. Figure 4 is the abstraction of the Linux traffic path. When an
application generates a packet, the packet is sent to transport layer (TCP or
UDP layer) through a socket. After the packet is handled in transport layer,



sends packet
to transport layer

'

180 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan
Application FTP, Telnet, DNS, SNMP,
Layer SMTP, ... NFS, ...
Transport TCP UDP
Layer
Network ICMP —— 1P IGMP
Layer
Data Link ARP Network RARP
Layer Interface
Physical Transmission Media
Layer
Fig. 3. Linux Network Protocol Stack
ASIZ 1:11 ;L;ati::kzl{sr Application Layer
sopcke t receives the packet
Socket Layer Socket Layer

sends packet
to application

i

Transport Layer Transport Layer
sends packet sends packet
to socket

to network layer

[y

IP Layer

sends packet
to transport layer

looks up route
to destination

Forward Packet

sends packet
to device

T—\

A4

device transmits packet

device receives packet

Fig. 4. Linux Traffic Path

it is then sent to network layer (IP layer). The network layer is responsible for
determining the route of packets. If the packet is for another computer, the
network layer sends it to data link layer. The data link layer sends packets via



BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 181

an available output device, such as Ethernet adapter, serial port, printer port,
etc.

When a packet is arrived, the input interface checks whether the packet is for
this computer, for example, an Ethernet adapter checks the destination MAC
address field when receiving a packet. If so, the network interface driver sends
the packet to the network layer. The network layer checks the destination of the
packet. If the packet is for this computer, the network layer sends it to transport
layer and finally to the application. Otherwise, the packet is sent back to an
output device.

2.3 Linux Generic Packet Scheduler

Linux provides a rich set of traffic control functions [2]. For an Ethernet device,
the default queuing discipline is Linux Generic Packet Scheduler. When Linux
Generic Packet Scheduler is being initialized, the initial function creates three
queues (called 3-band FIFO queue, the first, the second, and the third queue
respectively) for socket buffers. Linux Generic Packet Scheduler provides a set
of functions to access the 3-band FIFO queue, such as to enqueue a packet, to
return the next packet in queue eligible for sending, to put a packet back into the
queue after dequeuing, etc. When a packet is needed for sending, Linux Generic
Packet Scheduler searches the first queue to find one. If there are packets in the
first queue, it returns the first packet. Otherwise, Linux Generic Packet Scheduler
searches the second queue and then the third queue. Packets in the second and
the third queue will not be processed while there are still packets waiting for
transmitting in the first queue. Therefore, packets in the first queue have the
highest priority when sending and should be processed as soon as possible.

Linux Generic Packet Scheduler also creates a mapping table between the
priority of a socket buffer and the 3-band FIFO queue. The mapping table is
illustrated in Figure 5. The priority value is extracted from a packet and used
as an index to look up the corresponding queue number in the mapping table
when enqueuing. For example, if the priority of a packet is 1 and the number in
the mapping table is 2, this packet should be queued in the third queue.

2.4 Linux Ethernet Bonding Driver

Linux Ethernet Bonding Driver is a kernel driver that can aggregate traffic over
several ports [9]. It has two main features: high availability and load balancing.
In this section, we will focus on the implementation of load balancing. Figure 6
is the architecture of Linux Ethernet Bonding Driver.

When Linux Ethernet Bonding Driver is initialized, it creates a pseudo Eth-
ernet device and registers itself in Linux Kernel. The Linux kernel then initializes
the pseudo Ethernet device and creates a link list which is responsible to contain
physical Ethernet devices (called slaves) which can be used by the pseudo Eth-
ernet device. To make the pseudo Ethernet device work, we have to assign an
IP address and add routing setting to it. The pseudo Ethernet device is set as a
master device of the slaves and adds them into its link list. The MAC address of
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the pseudo Ethernet device is set as the same as the first physical Ethernet de-
vice of its slave list. All the MAC addresses of the subsequent physical Ethernet
devices are set as the same as the pseudo Ethernet device.

When a packet from upper network layer (usually is IP layer) is needed to
be transmitted by the Bonding driver, the kernel passes the socket buffer to
it. The Bonding driver selects an active physical Ethernet device from its slave
list, changes the output device of the socket buffer to the selected device and
then enqueues the packet into the queue of the selected physical Ethernet device
driver. The physical Ethernet device is responsible for sending the packet when
the NET_TX_SOFTIRQ softirq of Linux kernel is activated.

When a packet is received by one of the slaves, the driver of this slave device
creates a new socket buffer and copies the data of the received packet into the
socket buffer. Then the driver stores the socket buffer into an appropriate queue
for latter handling. When NET_RX_SOFIRQ softirq is activated, the Linux ker-
nel processes the packet queue. The Bonding driver changes the input device of
the socket buffer to the pseudo Ethernet device. Thus when a packet received
from any of the slave devices, the kernel will regard that the packet as received
from the pseudo Ethernet device. Furthermore, the Bonding mechanism operates
under TCP/IP layer, so it is fully compatible with upper layers.

3 Design Issues

We intend to use regular switching hubs to dispatch network packets between
connected computers with multiple Ethernet adapters in a LAN environment
without modification to the hardware on both host machines and connected

1,2,2,2,]1,2,0,0/1,1,1,1,1,1, 1, 1

The First Queue —

The Second Queue —

The Third Queue [~

Fig. 5. Mapping Between Socket Buffer Priority and 3-band FIFO Queue
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switching hubs. Packets are scheduled in data link layer so that real-time pack-
ets are sent via one or several dedicated network adapters which create real-time
message channels. Real-time packets need not to compete for the network band-
width against non-real-time packets. Moreover, non-real-time packets can be sent
simultaneously via other network adapters.

We design the BondingPlus pseudo network driver to dispatch packets from
upper network layer to physical Ethernet adapters. The BondingPlus driver is
responding for receiving socket buffer from upper network layer and changing
the output device of the socket buffer and then sends it to the corresponding
queue of the physical Ethernet adapter. When the socket buffer is to be sent on
the BondingPlus driver, the Linux kernel fills the MAC address of one of the
physical Ethernet interface in the source address field and uses ARP protocol
to query the destination MAC address while building the Ethernet header of
this packet. But ARP protocol is a one to one mapping between IP address
and MAC address, which means although we can send packets through multiple
network adapters, but always receives packets from one of the network adapters.
Real-time input packets would have to compete with lower priority packets. In
order to solve this problem, we design a new protocol, ARP+ protocol, to keep
the mapping between an IP address and all of the MAC addresses of the host.

3.1 BondingPlus Architecture

As shown in Figure 7, in the proposed approach, there is a pseudo Ethernet
driver, BondingPlus, which resides between IP layer and physical Ethernet in-
terface driver. BondingPlus is responsible for changing the attributes of socket
buffer; including source MAC address, destination MAC address and output

‘ Higher Layers ‘

‘ IP Layer ‘

|

‘ Linux Ethernet Bonding Driver ‘

ﬂ\

Queue Queue Queue
Physical Physical Physical
Ethernet Ethernet Ethernet
Driver Driver e Driver
NIC NIC NIC

Fig. 6. Linux Ethernet Bonding Driver Architecture
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device. After the attributes are changed, BondingPlus finds an active physical
Ethernet interface to send the socket buffer. The ARP+ protocol also resides
between IP layer and physical Ethernet interface driver. When an ARP+ packet
is received, the kernel calls the ARP+ protocol handling routine and passes the
ARP+ packets to it. The ARP+ protocol handing routine then parses the ARP+
packet and updates the corresponding ARP+ table.

3.2 BondingPlus Driver

When the BondingPlus pseudo Ethernet driver is installed into Linux kernel,
it creates a pseudo Ethernet master device and registers it to kernel. Bonding-
Plus also creates a physical Ethernet interface pool (slave list) and an ARP+
table. After IP address initialization has been done, IP address, MAC address
and the suffix of the IP address of the BondingPlus driver are copied into the
corresponding entry of the ARP+ table. The MAC address of the BondingPlus
driver is obtained by the first slave device of its slave list.

BondingPlus diver sets a SLAVE flag and a NOARP flag to all its slave de-
vices. Packets received from a slave device with SLAVE flag set are considered as
received from its master device. NOARP flag forbids slave devices from replying
an ARP query. Only the master device should reply a ARP query so that it
would not cause other hosts to update their ARP table frequently. After set-
ting all slave devices, BondingPlus broadcast the MAC addresses of all its slave
devices using ARP+ protocol.

3.3 ARP+ Protocol

Traditional ARP protocol is a one to one mapping between IP address and
MAC address which can not meet our requirement in using regular switching

‘ IP Layer ‘

|

‘ Linux BondingPlus Driver ‘<—>

ARP+
Table [

Queue Queue ‘ Queue ‘ Queue ‘
Physical Physical Physical Physical
Ethernet Ethernet Ethernet Ethernet
driver driver driver driver
NIC NIC NIC NIC

! ! ] !

Fig. 7. BondingPlus Architecture
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hubs because only the MAC address of one of the physical network adapters
of the destination host can be obtained and thus real-time input packets may
have to compete with other lower priority packets. In order to achieve a one to
many mapping between an IP address and multiple MAC addresses, we design a
proprietary packet which can only be understood and interpreted by the ARP+
protocol without interfering existing protocols. Figure 8 shows our proprietary
ARP+ protocol packet. There are four types of ARP+ packet:

— ARPP_BROADCAST: When a host is loaded with BondingPlus driver and
ARP+ protocol module, it broadcasts an ARPP_BROADCAST packet con-
taining all the MAC addresses of its physical network adapters, so that hosts
can obtain the MAC address list of every newly joined host.

— ARPP_REPLY: When a host receives an ARPP_BROADCAST packet, it
unicasts an ARPP_REPLY packet to notify the newly joined host with its
MAC addresses. It ensures newly joined hosts can obtained the latest MAC
address list of other hosts.

— ARPP_CHANGE: When a host changes its MAC address list, such as adding
or removing one or more physical network adapters, it broadcasts an ARPP
_CHANGE packet. Hosts receiving an ARPP_CHANGE packet update the
corresponding entry in their ARP+ tables.

— ARPP_CLEAR: When a host is going to unload or ready to shut down,
it broadcasts an ARPP_CLEAR packet to notify other hosts. Hosts receiv-
ing an ARPP_CLEAR packet clear the corresponding entry in their ARP+
tables.

After the ARP+ header are the IP address and MAC addresses of the sender.
Currently, we limit an ARP+ packet to contain at most 8 MAC address entries.
It is practical because most personal computers have no more than 8 PCI and
ISA slots to accommodate 8 Ethernet adapters.

The ARP+ protocol module is to maintain the ARP+ table passed from
BondingPlus driver. Every ARP+ table contains a pointer array of 256 entries
which point to a dynamic allocated array containing MAC addresses. The suffix
of an IP address is used as an index of the ARP+ table for finding the corre-
sponding MAC addresses.

3.4 Backward Compatible

The BondingPlus driver parses every received socket buffer and gets information
from it. If an outgoing socket buffer is not an IP protocol packet, the BondingPlus
driver only changes the output device of the socket buffer and then puts it into
the queue of the output device. If the socket buffer is a valid IP protocol packet,
the BondingPlus driver extracts the suffix of the IP address and uses it as an
index to query the ARP+ table to get the destination MAC addresses. If the
destination MAC address is not found, which means the destination host is not
loaded with BondingPlus driver, the BondingPlus driver of the sending host
chooses an active physical Ethernet device, assigns it to the output device of the



186 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

0x700A
arpp_hln, hardware address lenght

arpp_pln, protocol address length
arpp_nha, number of hwadware address

type, ARP+ packet type

l

Ethernet Ethernet frame Sender Sender Sender Sender
destination addr| source addr | type IP addr | MAC addr | MAC addr | MAC addr | * " "
6 bytes 6 2012 2 2 2 4 6 6 6
Ethernet Header ARP+ Header

Fig. 8. ARP+ Protocol Packet Type

socket buffer, and then puts the socket buffer into the queue of the output device.
If the destination MAC addresses is found in ARP+ table, the BondingPlus
driver selects one of the available MAC addresses of the destination host, copies
it to the destination MAC address field of the socket buffer, and then selects an
active physical Ethernet device to send the packet.

There are several scenarios between two hosts. If host A is loaded with Bond-
ingPlus driver but other host B is not. When host A wishes to connect to host B,
it issues an ARP request and host B replies host A with an ARP reply. Host A
and host B can obtain the MAC address from the other host by ARP protocol.
When host A is going to send a packet to host B and can not find the MAC
addresses of host B in the ARP+ table. Host A selects an active physical Ether-
net device and simply sends the packet without modifying the destination MAC
address which is obtained by ARP protocol. It is similar as above when host B
wishes to connect to host A. Although there is packet scheduling of outgoing
traffic of Host A, but there is no real-time traffic control between two hosts.

If both hosts are loaded with BondingPlus driver, but only host A has multi-
ple physical Ethernet interfaces. When host A wishes to connect to host B, host
A and host B can obtain all MAC addresses from each other by ARP+ protocol.
When host A is going to send a packet to host B, it selects an active physical
Ethernet device to send the packet. When host B is going to send a packet to
host A, it can select a MAC address of host A from its ARP+ table and modifies
the destination MAC address of the packet. In this scenario, although there is
packet scheduling of both output and input network traffic of Host A, but there
is still no real-time traffic control between two hosts.

If two hosts are both loaded with BondingPlus driver and both the hosts
have multiple physical Ethernet adapters. Both hosts can obtain all the MAC
addresses from each other by ARP+ protocol. By similar steps described above,
there is packet scheduling of both output and input network traffic in both hosts.
Moreover, real-time channels can be established between two hosts.
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Table 1. Test Bed

System Parameters Settings
CPU Intel Celeron 1.2GHz
Memory 256MB
Operating System Mandrake 8.1
Kernel Version 2.4.18
Network Adapter Intel 21143
Switching Hub | DLink DES-1024R+

Table 2. Bandwidth Overhead Test

Without BondingPlus|With BondingPlus
Bandwidth 94.05Mb/s 94.01Mb/s

Table 3. System Utilization Overhead Test

Without BondingPlus|With BondingPlus
Minimum User Time 0Os 0Os
Maximum User Time 0Os 0Os
Minimum System Time 2.11s 2.33s
Maximum System Time 2.32s 2.49s
Average System Time 2.25s 2.40s

4 Performance Evaluation

In order to evaluate the performance of our work, we design the following exper-
iments. Section 4.1 measures the overhead of the proposed approach. Section 4.2
and Section 4.3 show the results of reducing the delay when transmitting higher
priority packets using TCP and UDP respectively. We use two Intel machines to
perform the experiments and the system parameters are listed in Table 1. There
are four network adapters on each machine which are directly connected to the
switching hub.

We use Netperf [10], a networking performance benchmark, to measure the
performance. Netperf is design in client/server architecture. One machine exe-
cutes its client, netperf, and the other executes its server, netserver. The client
generates packets and sends them to the server. In order to reduce the impact
of I/O operations, we use 32KB as sending and receiving buffer size.

4.1 Overhead Evaluation

In order to measure the effect on system by the proposed approach, we perform
the following experiments. The first experiment is to measure the overhead on
network bandwidth. We use one adapter on each machine with the default kernel
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driver as a comparison and then execute Netperf to measure the performance.
We perform the same experiment but use BondingPlus driver for instead. The
results are shown in Table 2. Our approach only decreases network bandwidth
for less than 0.05%.

The second experiment is to measure the overhead on CPU utilization. We
execute Netperf to send and receive packets for 60 second and measure the user
time and system time consumed by Netperf. As the results show in Table 3, our
approach only increase 6.6% of CPU time.

4.2 Real-Time Packet Transmission over TCP

When Linux kernel allocates a new socket buffer, the priority of the buffer will
be set to the default value, 0. Every packet is put in the same queue of the
Linux generic packet scheduler. If the load of a network adapter is high, real-
time packets may be delayed by other packets. In order to reduce the delay when
transmitting real-time packets, we put real-time packets in the first queue of the
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Fig. 9. TCP Transmission Time from Application to BondingPlus
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Linux generic packet scheduler. Furthermore, we can send real-time packets and
other packets using different physical network adapters.

One of the testing programs generates 1400 bytes real-time packets (can be
regarded as higher priority packets) periodically and the other is taken to be an
interference source which continuously generates a large buffer of lower priority
packets. Three different scenarios are tested:
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Fig. 10. TCP Transmission Time from BondingPlus to Physical Ethernet Driver

— One Channel Priority 0: In this scenario, real-time packets and the interfer-
ence packets have the same priority, 0. They are put in the second queue
of the Linux Generic Packet Scheduler and are processed by the physical
Ethernet driver.

— One Channel Priority 6: The priority of real-time packets are set to higher
priority, 6, using setsockopt() system call and the priority of the interference
packets are set to 0. Real-time packets are put in the first queue of the Linux
Generic Packet Scheduler and are processed first.
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— Two Channel: This scenario sends and receives the real-time packets via a
dedicated physical network adapter in each machine and so do the lower
priority packets.

Figure 9 shows the maximum, minimum, average and the standard deviation
of TCP transmission time from application to BondingPlus driver. The time is
mainly spent in TCP and IP layer which are not controlled by the proposed
approach. The average transmission time is between 42us to 49us and there are
almost no different between 3 scenarios.
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Fig. 11. TCP Transmission Time from Application to Physical Ethernet Driver

Figure 10 shows the maximum, minimum, average and the standard deviation
of TCP transmission time from BondingPlus driver to physical Ethernet driver.
The results show that when all packets are transmitted in the same queue of a
network adapter, the transmission time of real-time packets from BondingPlus
driver to physical Ethernet driver is very long because they must compete with
lower priority packets. The transmission time can be reduced dramatically if we
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put real-time packets in the first queue, but it is still interfered by the lower pri-
ority packets because the standard deviation is still large. Only transmitting the
real-time packets and the lower priority packets using different physical network
adapters can obtain the lowest transmission overhead and jitter.

Figure 11 are the maximum, minimum, average and the standard deviation of
TCP transmission time from application to physical Ethernet driver. The time
from application to BondingPlus driver is almost constant time and thus the
time from BondingPlus driver to physical Ethernet adapter is the main factor
of packet transmission time. Although One Channel Priority 6 transmissions
highly reduce the packet transmission time of real-time packets, Two Channel
transmissions obtain the best improvement.
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4.3 Real-Time Packet Transmission over UDP

We perform the same experiments on real-time packet transmissions over UDP.
The results are similar to the transmission over TCP, but UDP packet trans-
mission time is shorter than TCP packet transmission time. Still, the time from
application to BondingPlus driver is almost constant time and thus the time
from BondingPlus driver to physical Ethernet adapter is the main factor of
packet transmission time. As shown in Figure 12, although One Channel Pri-
ority 6 transmissions highly reduce the packet transmission time of real-time
packets, Two Channel transmissions obtain the best improvement.

5 Conclusion

We propose ARP+ protocol to maintain the mapping of an IP address and its
corresponding MAC addresses of hosts in a Linux LAN environment. We also
design and implement the BondingPlus pseudo Ethernet device driver which can
schedule packets in data link layer and make use of multiple physical network
adapters connected to regular switching hubs simultaneously. The proposed ap-
proach is implemented as Linux kernel modules and is flexible, backward compat-
ible and transparent to users. Real-time packets can be dispatched into a higher
priority queue so that the physical Ethernet interfaces can transmit the pack-
ets first. Furthermore, real-time packets can be transmitted via one or several
dedicated network adapters which create real-time message channels between
hosts and thus reduces the transmission delay and the jitter of real-time packets
dramatically.
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Abstract. In this paper we put forth a switch design in terms of architecture and
service discipline for real-time multicast traffic in packet switching networks. A
parallel switching architecture called POQ (parallel output-queued) is em-
ployed, which take the advantages of both OQ (output-queued) and IQ (input-
queued) switch architectures, i.e., non-blocking and low speedup of switch
buffer. Basing on the POQ architecture we propose a hierarchical service disci-
pline called H-EDF-RR (hierarchical earliest-deadline-first round-robin), which
intends to simultaneously schedule both unicast and multicast traffic composed
of fixed-length cells with guaranteed performances. Analyses show that this de-
sign can provide tight delay bounds and buffer requirements, and has computa-
tional complexity of O(1). These properties make the proposed switch design
well suitable in real-time distributed systems.

Keywords: Packet Switching Network, Quality of Service, Real-Time Com-
munications, Multicasting, Earliest Deadline First Round Robin

1 Introduction

Along with the tremendous development in computer and communication network,
the wide use of optical fiber, packet switching and etc. enables many new distributed
applications such as digital audio, digital video and teleconference. These applications
are often characterized by quality of service (QoS) in terms of bandwidth, delay, jitter
and loss rate. Similarly in many industrial automation and transportation systems,
networking presents the opportunity for system optimization as subsystems can be
integrated and operated cooperatively.

One example is the aircraft databus, which is aimed to support various traffic types
coming from cabin entertainment systems, passage intranet, and avionics instruments.
Under many application scenarios in aircraft communication networks, real-time data
acquisition systems need to send acquired data to multiple destinations with stringent
delay requirements. Usually we can use some traffic models to represent this kind of
multicast traffic. The delay requirement of the multicast traffic can also be stated as
deadlines. It is more important that we build deterministic communication networks,
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which can efficiently transport both unicast and multicast traffic subject to deadline
constraints. In packet switching networks, switches are developed intending to pro-
vide statistical multiplexing and QoS-guaranteed transmission services. Unicasting,
also known as point-to-point, is common in most QoS-guaranteed applications. How-
ever many applications such as video-on-demand, distance learning, and data acquisi-
tion in avionics systems produce multicast traffic, requiring that the same piece of
data (a packet or a cell) from a source is transmitted to multiple destinations. For
transferring multicast traffic efficiently in switching networks, there must be a thor-
ough consideration in terms of architecture and scheduling in switch design.

Multicasting in a packet switch means that a packet arriving at an input port is for-
warded to more than one output ports in the switch. Even though the effect of multi-
casting can be achieved by transferring the same packet from the source to multiple
destinations in multiple times as unicast does, special switches supporting multicast
traffic are preferred because doing multicasting with point-to-point communication
may result in significant load increase to the network. Presented in [1], a survey of
multicast switches indicates that multicast switches should include a packet-
replicating function in order to efficiently convey multicast traffic. Among different
multicast switch fabrics, crossbar network is attractive since it is based on simple
mesh network and thus has no internal blocking inherently. According to different
buffer positions, there are two types of crossbar networks, i.e., OQ (output-queued)
and 1Q (input-queued).

In an OQ switch, all packets that arrive from different input ports and are destined
to the same output port are buffered into a queue located at the output port. The serv-
ice scheduler repeatedly selects a packet from the output queue for transmission. Be-
cause of absence of input contention points OQ switches are non-blocking inherently.
As far as QoS is concerned, there are numerous service disciplines that support guar-
anteed performances with OQ switches [7]. Since all packets are buffered in their own
destination queues as they arrive, the copies of a multicast packet can be delivered to
their destination queues as well. However OQ switches are subject to a fatal drawback
that the speedup factor, defined as the ratio of buffer memory rate to line rate, is as
high as N for an NxN OQ switch since the number of packets that want to enter a
given output buffer in a packet slot can be as large as the number of input ports. The
demand of high buffer rate constrains OQ switches in broadband networks. To avoid
this limitation, designers proposed to limit the number of packets that can be trans-
ferred into an output buffer in one packet slot. Nevertheless packet drop is inevitable
in this case, which is not allowed in most real-time applications.

In an IQ switch, packets arriving on each input port are placed into smoothing
buffers, prior to the placement in the destination output ports. During each scheduling
slot, the head packets in all the buffers are candidates for being transferred to their
output ports. If several head packets contend for the same output port, only one of
them is selected according to contention resolution scheme, while the rest remain in
the buffers and contend again in the next packet slot. In contrast with OQ switches
that require high switch fabric speed, the switch fabric speed of I1Q switches is the
same as that of input or output lines. The ease of speedup factor leads to a wide use of
1Q switches.

Unfortunately IQ switches suffer from a phenomenon known as head of line (HOL)
blocking. The effect occurs when a packet in any given buffer is denied to access to
its output port, even though there are no other packets requiring the same output port,
simply because the packet in the head of that buffer was blocked in a contention for a
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totally different output port. In fact, the delay for a given packet may grow unbounded
even for an offered load less than 100%. Therefore it is very difficult, if not impossi-
ble, to guarantee the required QoS for each individual traffic flow. Hence most sched-
uling disciplines in IQ switches are best-effort instead of hard real-time [11] [12] [13].

The non-deterministic delay caused by HOL blocking can be resolved by a VOQ
(virtual output-queued) structure [4], in which there are N buffers for each input port,
one for each output port in an NxN switch. However we cannot avoid the matching
problem involving high computational complexity in order to find the maximal flow
between input and output ports during each scheduling slot. Also IQ switches have to
face a difficult issue in supporting packets intended for more than one output ports,
i.e., multicasting. If a head packet is of this kind, it has to contend simultaneously for
all the outputs it is intended for. HOL blocking can be aggravated if the contention
resolution schemes are applied independently during each scheduling slot.

Whereas IQ switches require a lower fabric speedup, OQ switches provide higher
throughput. To take both advantages of the two architectures, a new switch structure,
combined input and output queuing (CIOQ) switch, was proposed such that a com-
promise is made between these two aspects. In the CIOQ structure, there exist buffers
in both input and output sides. Researchers have proved that CIOQ switches can
achieve 100% throughput for unicast traffic with a speedup factor of 2 [5]. Contrary
to the case of unicast traffic, for which IQ switches can yield the same throughput as
0OQ switches, it has been shown in experiments and analytical modeling that a
throughput limitation exists in IQ switches (including CIOQ switches since CIOQ
switches have 1Q architecture essentially) loaded with multicast traffic [4].

As for scheduling disciplines of multicast switches, there are two basic strategies,
non-fanout splitting and fanout splitting [4]. The fanout is defined as the number of
different destinations that a multicast packet has. During each scheduling slot, the de-
cision about which backlogged packets can be transferred is made according to a
scheduling discipline. The fact that multicast packets have multiple destinations im-
plies that some scheduling disciplines, called non-fanout splitting, may elect to trans-
fer in just one scheduling slot the multicast packet to all destinations, while others,
called fanout splitting, may elect to transfer the packet in several scheduling slots,
reaching non-overlapping and exhaustive subsets of destinations.

In discussion of scheduling disciplines, work-conserving policies are significant in
the sense that they transmit as many packets as possible in each scheduling slot [6].
Obviously when scheduling multicast traffic, non-fanout splitting is non-work con-
versing policy, while fanout splitting may be work conserving. With the assumption
that the scheduler has no knowledge of the multicast copies of HOL packets, it has
been shown that work-conserving policy provides more throughput than non-work
conserving policy [6]. Thus, in terms of throughput, a fanout splitting discipline could
be better off than a non-fanout splitting discipline. On the other hand, it might intro-
duce a side effect of variant jitters as multiple copies are scheduled for transmission at
different slots. We have known that in addition to imitate a unicast OQ switch with a
speedup factor of 2, a CIOQ can attain an equivalent performance as an OQ switch
for multicast traffic by making copies of each multicast packet in each input buffer
with a speedup factor of F+1 where F is the maximum fanout [5]. We should note
that there is a constraint that the copies of a multicast packet cannot be transferred to
output ports simultaneously. To get extra performance, an intrinsic multicast CIOQ
switch is of our interest, which can transfer copies of a multicast packet simultane-
ously. The intrinsic performance loss of IQ architecture with respect to OQ architec-
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ture loading with multicast traffic is shown in [4]. The speedup requirement of 1Q
switch that offers 100% throughput for multicast traffic depends upon the cardinality
of input or output ports. There is no result about the exact relationship of the two pa-
rameters.

QoS-based scheduling for multicast traffic has been investigated recently. Results
in [2] show that HOL FCFS (first come first served) discipline has a performance su-
perior to that of the non-FCFS disciplines and assigning priority according to packet
age in queue is a worthwhile feature for multicast packet switches. In fact, the core of
a multicast traffic scheduler is basically a contention resolution algorithm. Chen and
Hayes [3] suggested a priority-based scheme called cyclic priority scheme to schedule
multicast traffic from the point of view of electronic circuit implementation, using the
revision scheduling, a sequential combination of a non-fanout splitting discipline and
a fanout splitting discipline. The revision scheduling performs well in the terms of
delay-throughput performance. In general, most research results on switching of mul-
ticast traffic are based on the perspective of statistical analysis rather than determin-
ism investigation [9].

The complication of multicast scheduling may come from the traffic imbalance
between input and output sides of a switch. Since a multicast packet coming from an
input port is destined to multiple output ports, the traffic injected to the output ports
from multicast traffic could be much larger than that from unicast traffic. Moreover,
given that multiple copies are created at same time, the traffic pattern is quite bursty.
The most multicast disciplines we introduced above cannot be used in hard real-time
communications in that they either assume a statistical model or allow packets to be
dropped.

Integrating unicasting and multicasting scheduling with QoS guarantees is a chal-
lenge for IQ switches. However, recognizing that a multicast packet can be consid-
ered as multiple unicast packets in parallel, we can employ switches with parallel
structure to achieve the advantages of both OQ and IQ switches, i.e., no-blocking and
low speedup factor. In the rest of this paper we will introduce a parallel switching ar-
chitecture equipped with a hierarchical service discipline that can transfer both unicast
and multicast traffic with guaranteed performances. Detailed analyses of delay bounds
and buffer requirements suggest that the proposed approach is appropriate for distrib-
uted real-time systems loading with multicast traffic.

The rest of this paper is organized as follows. In Section 2 we describe the pro-
posed switching architecture, called POQ (parallel output-queued), and how it sup-
ports multicast traffic. Section 3 introduces the H-EDF-RR (hierarchical earliest-
deadline round-robin) scheduling discipline designed for this parallel architecture.
Section 4 presents the delay bound and buffer requirement analyses for H-EDF-RR
discipline under POQ architecture. Finally the conclusions are given in Section 5.

2 A Parallel Switch Architecture — POQ (Parallel Output-Queued)

Subject to HOL blocking, a pure 1Q switch has a limited throughput of 58.6% with
FIFO input buffers in the worst case [15]. To avoid HOL blocking, the VOQ switch
architecture can be constructed as shown in Fig. 1 where separate queues for all out-
put ports are added at each input port. Thus a buffered packet cannot be blocked by
the packets destined to different output ports. If the fabric speedup factor of VOQ
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switches is greater than 1, buffers are required on the output side. Although the VOQ
architecture removes HOL blocking, they still suffer from the problem of input and
output matching because VOQ switches only permit one head packet of all queues in
each input port to be transmitted during each scheduling slot. To increase output
throughput we have to find an optimal match, e.g. maximum, maximal or stable
matching [16]. Almost any optimal matching can involve high computational com-
plexity that is not acceptable in implementing high-speed switching networks. In fact,
for multicast traffic, simulation results and analytical modeling in [4] suggest that IQ
switches cannot yield the same throughput as OQ switches. In other words, 100%
throughput may be attained for any multicast traffic pattern in IQ switches, however,
in the cost of too high speedup factor preventing from physical implementation for
high-speed networks. The computational complexity of matching algorithm and the
high-speedup requirement restrained VOQ switches from applications in transferring
hard real-time multicast traffic.

Due to the difficulties of VOQ switches in supporting real-time traffic, especially
QoS guarantees for multicast traffic, in this paper we bring in a parallel output-queued
(POQ) switch architecture shown in Fig. 2. The architecture of POQ can be regarded
as a derivative of VOQ. The most obvious difference between VOQ and POQ is that
multiple head packets in the queues of an input port in POQ can be transmitted to
their destinations in the same scheduling slot whereas only one can be done under
VOQ. This modification in structure results in a substantial performance improve-
ment. In addition, output buffers are not necessary in POQ architecture. A similar
POQ architecture is discussed in [8] where the authors numerated more drawbacks
than advantages. We will probe the merits of POQ switches under real-time multicast
traffic. Basing on the architecture of POQ switches, we can easily observe its attrac-
tive characteristics as follows.

e  Buffer speed is only required to be the same as the line speed for both read-
ing and writing operations. In other words, a speedup factor of 1 is enough

Input Buffers

Qutput Buffers
Out 1
I +—»

[
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Fig. 1. VOQ switch architecture
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for POQ switches for any traffic patterns. When a unicast packet arrives it is
routed to a buffer according to its destination. Similarly when a multicast
packet arrives all its copies are demultiplexed to the corresponding buffers in
a parallel way. During each scheduling slot any output port can take one
packet as long as there are some buffered packets destined to it.

e The throughput of a POQ switch can reach 100%. An NxN POQ switch can
be thought as N Nx1 OQ switches that work in parallel, one for each output
port. In contrast to VOQ switches, there is no need to find any optimal
matching.

e  Since a POQ switch is essentially OQ switch, all service disciplines devel-
oped so far for OQ switches can be applied to POQ switches. There are a
number of service disciplines for OQ switches that support performance-
guaranteed services [7]. Instead of using a centralized scheduler, a distrib-
uted approach can be adopted such that a scheduler is located at each output
port.

e It is possible to integrate the scheduling of unicast and multicast traffic with
guaranteed performance in a POQ switch. This originates from the fact that
POQ switches, belonging to OQ switches in essence, have the ability of
transmitting multicast traffic inherently. Unicast traffic can just be thought as
a special case of multicast traffic that the fanout of any packet is one.

For expressly describing multicasting service discipline, we shall clarify several
terms used in the following text. A session is a connection in a packet switching net-
work from one source node to one destination node. For unicast traffic, a unicast ses-
sion can be establish with QoS parameters and will be used to transmit packets be-
tween applications at the source and destination nodes. On the contrary, a multicast
session, consisting of multiple overlapping sessions with a unique source and multiple
destinations, is used for multicast traffic. The path of a session is defined as the con-
secutive switch sessions along the session and each switch session is a pair of input
and output ports of a switch. Under the POQ architecture, a switch session is uniquely
identified by a packet buffer connecting the same pair of input and output ports. When

Buffers

In 1 Out 1

Demultiplexer

In 2 Out 2

OQut N

Fig. 2. A parallel switch structure - POQ
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a packet of a unicast session arrives at an input port, it will be queued in the buffer on
its session path. On the other hand, for an arriving packet of a multicast session, mul-
tiple copies will be inserted to the corresponding multiple buffers. As each buffer is
shared by multiple sessions, we must take into account the issues of fairness and
bandwidth reservation for each switch session. In the next section, we will apply a hi-
erarchical service discipline to POQ architecture such that the performances of both
unicast and multicast sessions are guaranteed.

3 Hierarchical Earliest Deadline First Round Robin Scheduling

In a network constructed with POQ switches, we can think a session as a connection
that traverses a sequence of switch buffers from a source node to a destination node.
The buffers are allocated in the switches along the session path and may be shared by
multiple sessions. If we are not concerned about how packets of multiple sessions are
multiplexed inside a buffer, N distributed schedulers, one at each output port, can be
deployed to select a buffer from which the head packet is transmitted to the output
port. We call a scheduler in this level output scheduler. On the other hand, arriving
packets of multiple sessions may join a buffer according to a FIFO order or an order
based on deadline and QoS requirements. We need a scheduler at this level called in-
put scheduler. Thus, an input scheduler institutes a service discipline among the ses-
sions sharing a switch session and an output scheduler determines the order in which
the switch sessions traversing the same output port are served. Apparently, both
schedulers must address the issues of fairness and QoS requirements. As we reveal
the necessity of two levels of schedulers in routing packets in POQ architecture for
both unicast and multicast traffic, we introduce an efficient performance-guaranteed
discipline, H-EDF-RR (hierarchical earliest-deadline-first round-robin), in which
EDF-RR (earliest deadline first round robin) schedulers are used in both the two lev-
els.

EDF-RR proposed in [10] is an O(1) algorithm based on fixed-length cells for OQ
switches. As shown in Fig. 3, it is a frame-oriented round-robin algorithm in nature. A
frame is composed of a number of cells. A session reserves a portion of bandwidth by
holding some cell slots in a frame. Instead of arranging the cells reserved by all active
sessions in any arbitrary or dynamic order, EDF-RR tries to transfer them in an order
such that cells attached to an active session are distributed in a frame as uniformly as
possible. In other words, EDR-RR does its best to mimic ideal GPS (generalized
processor sharing) scheduler with the constraint of non-preempted fixed-length traffic
unit, cells.

To describe EDF-RR, we define that a frame consists of #n fixed-length cells. A cell
has, for convenience, the length of 1 in terms of the time that it takes to transmit a cell
from a switch’s buffer to the corresponding output port. Alternatively we just nor-
malize the length of a cell slot to 1. Let K be the total number of active sessions asso-
ciated with an output port and m, (1 <i < K) be the number of cell slots occupied by
the session i in a frame. 5/ m, is defined as session i period. The non-preemptive non-

idling EDF (earliest-deadline-first) algorithm is used to schedule the order of trans-
mitting cells in a frame. If a session is idle, it will be skipped during the transmission
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and the cell slots it occupies can be reclaimed for backlogged sessions. The EDF-RR
discipline is given as follows.

EDF-RR Discipline
(a) An n-cell frame is partitioned among K active sessions (all unused band-

EDF-RR
Scheduler Output Port
— >

Session 1

Session 2

Session K

Fig. 3. An EDF-RR scheduler for multiple sessions

width can be considered as one idle active session) such that session i (1 <
< K) transfers m, cells in the frame. Session i is assumed to have cells arrived
at time jp, (suppose a frame starts from time 0) with corresponding deadlines
at (j+1)p,, where p,=nlm, andj=0,1,2,...m-1.

(b) If all K sessions are backlogged, the frame described in (a) is transferred re-
peatedly such that in every frame the cells are transmitted in a non-
preemptive non-idling EDF order. Determining transmission order is needed
only when there are sessions established, cancelled or updated, which happen
infrequently. The associated overhead can be ignored since a new transmis-
sion order can be computed in parallel to the current transmission, and is
swapped at the next frame boundary.

(c) If there is not backlog any more for a session during the current frame, their
cell slots in a frame are skipped. The remaining backlogged sessions are
transferred in the same order as in (b). In this case the size of a frame is re-
duced.

Table 1 shows the scheduling order of an example frame with the size of 10, in

which sessions 1, 2 and 3 shares 5, 3 and 2 cell slots respectively (the numbers in Ta-
ble 1. denote the relevant sessions).

Table 1. The example of scheduling order in a frame

L f 2] o] 3] 1] 2 1] 2] 1] 3]

According to [10] we have the following two theorems for EDF-RR discipline on
delay bound and buffer requirement.
Theorem 1. If session i traffic flow that consists of a sequence of cells is constrained

by traffic model 4 4, (in cells), the delay a cell experiences passing through an
n

EDF-RR scheduler is not more than (o, +2)£ cell slots.
m.

[}
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Theorem 2. If session i traffic flow that consists of sequence of cells and is con-

strained by traffic model 4 4" ;(in cells) passes through an EDF-RR scheduler
n

without buffer overflow, the buffer size the scheduler needs is no more than o, +2

cells.

Theorem 1 gives the delay bound of a cell with EDF-RR. For characterizing delay
bounds of H-EDF-RR scheduler, we need the following lemma.
Lemma 1. For any P backlogged cells of session i scheduled by an EDF-RR sched-
uler, the time interval from the moment of transferring the first cell to that of the P"

cell is at most " p cell slots.
mi

This property is trivially true by considering that there is one cell transferred every
7 cell slot in any busy interval after the first cell is scheduled [10].

m;

H-EDF-RR service discipline is divided into two levels each of which is an EDF-
RR discipline. In the high level, an output scheduler is located at every output port
guaranteeing fairness among the switch sessions to the port. In the low level, an input
scheduler is located at each buffer to guarantee the fairness among sessions that share
the same switch session. In other words, an input scheduler decides which cell in the
current queue is available for the scheduling of the corresponding output scheduler.

H-EDF-RR Discipline
(A) Output Scheduling
An n-cell high-level frame for an output port is partitioned among K ac-
tive switch sessions destined to the output port such that m, cell slots in a
frame can be used to transmit the cells from switch session i (1 < i < K).
EDF-RR is applied to schedule these K switch sessions.
(B) Input Scheduling
A n-cell low-level frame for switch session i is partitioned among K, ac-
tive sessions associated with switch session i such that m,, cell slots in the
frame can be used to transmit the cells from session # (1 < h < K)). EDF-RR
is applied to schedule these K, sessions.

Since the first step of EDF-RR for both output scheduling and input scheduling
needs to do only if bandwidth sharings of uincast or multicast sessions are updated,
which we suppose to be infrequent events, H-EDF-RR has the computational com-
plexity of O(1) resulting from the fact that it is frame-oriented round-robin. Because
the idle cell slots in any high-level or low-level frame are skipped, H-EDF-RR is a
work-conserving policy.

4 Analysis of Delay Bounds and Buffer Requirements

For analyzing delay bounds and buffer requirements of the H-EDF-RR discipline un-
der a POQ switch, we assume (o, p) traffic model for all active sessions. Denote a
session S, the /" session in switch session i. Then for S, that is constrained by (o,
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p,), there are at most o, +p,t units of traffic during any time interval 7. At an output
port of a POQ switch armed with a H-EDF-RR scheduler, the output scheduler is in
charge of K active switch sessions. A n-cell high-level frame is partitioned among the
K switch sessions such that m, cell slots are allocated to switch session i. Similarly an
n~-cell low-level frame is partitioned among K, sessions that share switch session i
such that m,, cell slots are allocated to session S,. Therefore we have Theorem 3 giv-
ing the delay bound for a POQ switch with a H-EDF-RR scheduler.

Theorem 3. If the traffic flow of S, is constrained by traffic model & ™ ™, the

n, n
delay that a cell of S,, experiences in a POQ switch with a H-EDF-RR scheduler is not
more than (g +2)-" 427

l T, m

Proof. A H-EDF-RR scheduler can be considered as two EDF-RR schedulers in se-
rial. Thus the delay that a cell in S, experiences is composed of three parts. One is the
delay that comes from the source flow’s burstiness. The other two result from input
and output EDF-RR schedulers respectively.

The burstiness delay can be bounded by the expression as follows, which can be
regarded as the delay of a cell in S, when passing through a GPS scheduler with rate
My Mi reserved for S,

n, n

i

I ()
O i
m; m;

The input scheduler delay can be understood as the delay experienced by a cell of a
uniform traffic flow of rate " " passing through the input scheduler, an EDF-RR
n.n

i

scheduler of output rate % . By Theorem 1 (note that in Theorem 1 we assume the
n

output rate of a EDF-RR scheduler is 1 cell per cell slot), this part of delay is bounded
by 2n,/my, time units, where one time unit is 7/ m, cell slots. Thus the input sched-

uler delay is bounded by
n, n (2)

Similarly the output scheduler delay can be understood as the delay experienced by

a cell of a uniform traffic flow of rate i passing through the output scheduler with
n
output rate of 1 cell per cell slot. By Theorem 1, the output scheduler delay is
bounded by
, (€)
m

i

Making a summation of the three parts of delay bounds gives the total delay bound.
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“)

n;

[(o) +2)

+21%
my, m;
|
The portion of the delay of a session S, cell as shown in (2) results from the block-
ing of cells of other sessions in switch session i. The portion of delay shown in (3)
comes from the blocking of cells of other switch sessions traversing the same output
port. Since (3) is relatively the small term of (4), it may be ignored in some applica-
tions. In the proof of Theorem 3, we just individually get the worst-case delays of uni-
form traffic for both input and output schedulers. In fact the two worst cases cannot
happen simultaneously and thus the delay bound in Theorem 3 can be as tight as

n 0 5)

ih i

(04 +2)

Instead of using formal proof, we give an explanation of (5) below. For simplifying

n, n

the explanation, we assume that S, has uniform traffic model of rate "ix " originally,

accordingly ignoring its burstiness as we considered the delays of input and output
schedulers in the proof of Theorem 3. A cell ¢ of S, may experience the worst-case
total delay caused by the H-EDF-RR scheduler when it is the first transferred cell of a
busy interval of §,. We consider the following three cases. (i) There are no other cells
except ¢ backlogged in switch session i buffer from c¢’s arrival to departure. But in
this case, we can simplify the total delay of ¢ caused by the H-EDF-RR scheduler

to2n (<o " )by Theorem 1. (ii) In addition to c, there are some cells backlogged
m; my, m;

in switch session i buffer from c¢’s arrival to departure whereas none of these cells was

being transferred when ¢ arrived. Then according to EDF-RR service discipline the

worst-case delay of ¢ caused by the H-EDF-RR scheduler cannot exceed

o M where 2n and " " result from output and input schedulers respec-
m; g, m m; my, m;

i i

n;

tively. If <2, ¢ will get chance to transfer in the next cell slot available for

my,
switch session i according to EDF-RR scheduling, and thus the delay of ¢ caused by

the H-EDF-RR scheduler will be at most 2" (< 2&&). If " >, instead, the
m; my, m; n,

i

delay will be at most , " " (<, ™ ") (iii) In addition to c, there are some
m; - my m, m, m;

cells backlogged in switch session i buffer from ¢’s arrival to departure and one of

these cells was being transferred when c arrived. Then there are at most 2n, cells that

my,

need to be transferred before ¢ since the input EDF-RR scheduler can have at most

2n, cells from other sessions that block ¢’s transfer. According to Lemma 1, the

m,
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m m,, m,;

ih
output rate of switch session i buffer is % cells per cell slot according to bandwidth
n
reservation scheme of the output EDF-RR scheduler. In other words, the delay caused
by the H-EDF-RR scheduler to ¢ is not more than 5 #: " in this case. Following
mih mi
the above analysis and also considering the delay from the original burstiness of S,,
we have (5). In the particular scenario that n, is equal to m,, we may think an EDF-RR
scheduler at the output port that switch session i passes through schedules all sessions
passing this output port such that session S, shares m, cell slots in a n-cell frame.

ih
The delay bound can be easily extended to the multiple-node case. We suppose that
session §, traffic flow traversing k nodes is constrained by o+g, where p is the

minimum bandwidth reservation for S, on all the k nodes. The upper delay bound of a
cell in S, as the cell passes through the k nodes is given by o +2k .
P

In order to use memory efficiently for POQ switches, we assume that a buffer may
be shared by multiple sessions. Therefore cells from any session can be buffered to
the corresponding switch session buffer as long as the buffer is not full. The detailed
buffer sharing mechanism [14] is beyond the scope of this paper. Basing on this as-
sumption, we have Theorem 4 giving the buffer requirement for a POQ switch armed
with a H-EDF-RR scheduler.

Theorem 4. 1f the traffic flow of session S, (h =1, 2 ... K, where K, is the number of
active sessions in switch session 7) in switch session i, which consists of a sequence of

cells and is constrained by traffic model o ™", passes through a H-EDF-RR
n

scheduler without buffer overflow, the buffer size that switch session i requires is not
KY
more than Zo-ih + 7 cells.
h=1
Proof. Denote R,(t,, t,) the traffic coming in [z, ¢,] for S, and R(%,, t,) the amount of
traffic arriving in [¢, ,] for switch session i. Then we have

my, m; ,h:1,2,...,K
R, (t,t;)S 0, + nh T(tz - 1)

i

Therefore,

= Ry(tt, )<Za,h+(2
h=1
m

K!
According to bandwidth allocation for switch session i, ZJ <1- Hence
h=1 n,'

R(tl’t)<zo-zh+ (t _tl)

h=
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This means that switch session i traffic satisfies model (i o, ,Mi ). Since the
o on
switch session i flow passes through the output EDF-RR scheduler, by Theorem 2 we
have the buffer requirement as follows.

K i
Y oo, +2
h=1
|
The H-EDF-RR discipline can guarantee performance of sessions. However it re-
quires N’ input schedulers and N output schedulers for an NxN POQ switch. This cost
may not be acceptable in terms of electronic implementation. For simplifying the
scheduling, we can remove input schedulers and leave output schedulers only. Theo-
rem 5 shows that even not as good as original H-EDF-RR, this simplification still can
guarantee multicasting delay bound as long as multicast traffic rate is constrained.
Theorem 5. If the traffic flow of session S, (i =1, 2, ... K, h =1,2 ... K, where K is
the number of active switch sessions of an output port and K, the number of active
sessions in switch session 7) in switch session i, which consists of a sequence of cells

. . . .. Ky
and is constrained by traffic model &, 1 p,t and the condition > pusle
n — h

passes through only an output EDF-RR scheduler, the delay a cell in S, experiences is
not more than (i G, +2) n,
ih
=1 m;
Proof. Refer to the proof of Theorem 4, we know that switch session i traffic satisfies

model (i o »). Since switch session i flow passes through only the output EDF-
ih
=l n

RR scheduler, by Theorem 1 we have the upper delay bound as follows.
K;

- n

(Z; 0, +2) m
|
In the analysis above, we do not assume any difference between unicasting and mul-
ticasting in that unicasting is looked as the special case of multicasting. Normally
switching networks offer connection-oriented services for real-time traffic. In a net-
works composed of POQ switches and served by H-EDF-RR disciplines, the process of
setting up a multicast session involves two levels of bandwidth reservation along multi-
ple paths since a multicast session is established from one node to multiple nodes. This
increases the time of establishing multicast sessions. We need to design efficient con-
nection-establishing algorithms to fully employ the advantages of POQ and H-EDF-RR.
Also we have to face some application-dependent problems, for instances, how to de-
termine and optimize frame size for both input and output schedulers and how to deter-

mine cell length. These subjects are beyond the discussion of this paper.

5 Conclusions

In this paper, we propose a solution to integrate unicast and multicast traffic schedul-
ing in packet switching networks with guaranteed performances. A parallel switching
architecture, POQ, is introduced that takes the advantages of both OQ and IQ switch-



An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 207

ing architectures, i.e., non-blocking and the low rate of switch buffer up to line speed.
Therefore POQ architecture is endowed the attractive capability of supporting multi-
cast traffic. For efficiently scheduling multicast traffic for POQ architecture, a hierar-
chical service discipline working on fixed-length cells, H-EDF-RR, is employed
based on EDF-RR discipline that serves OQ switches. Guaranteed performances for a
POQ switch armed with H-EDF-RR disciplines is analyzed in terms of delay bounds
and buffer requirements while loading with multicast traffic. Analytical results show
that guaranteeing performance of multicast traffic is possible in this solution in terms
of both architecture and service discipline.
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Abstract. Despite Java’s initial promise of providing a reliable
and cost-effective platform-independent environment, the language
appears to be unfavourable in the area of high-integrity systems and
real-time systems. To encourage the use of Java in the development of
distributed high-integrity real-time systems, the language environment
must provide not only a well-defined specification or subset, but also a
complete environment with appropriate analysis tools. We propose an
extensible distributed high-integrity real-time Java environment, called
XRTJ, that supports three attributes, i.e., predictable programming
model, dependable static analysis environment, and reliable distributed
run-time environment. The goal of this paper is to present an overview
of our on-going project and report on its current status. We also raise
some important issues in the area of distributed high-integrity systems,
and present how we can deal with them by defining two distributed
run-time models where safe and timely operations will be supported.

Keywords: Real-Time Java (RTJ), High-Integrity Systems, Distributed
RTJ, Static Analysis Environment, Distributed Run-Time Environment

1 Introduction

There is a trend towards using object-oriented programming languages, such
as Java and C++, to develop high-integrity real-time systems because the use
of such languages has several advantages, for instance reusability, data accessi-
bility and maintainability. Typically, high-integrity systems, where failure can
cause loss of life, environmental harm, or significant financial penalties, have
high development and maintenance costs due to the customised nature of their
components. Therefore, the use of object-oriented programming in such systems
may offer a number of benefits including increased flexibility in design and imple-
mentation, reduced production cost, and enhanced management of complexity
in application areas.

* This work has been funded by the EPSRC under award number GR/M94113.
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© Springer-Verlag Berlin Heidelberg 2004
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The Java technology with its significant characteristics, including cost-
effective platform-independent environment, relatively familiar linguistic seman-
tics, and support for concurrency, has many features for developing real-time
and embedded systems. It also provides well-defined Remote Method Invocation
(RMI) features which support distributed applications on the Java architecture.

However, despite Java’s initial promise, the language appears to be un-
favourable in the area of high-integrity systems [22] and real-time systems [7].
Its combination of object-oriented programming features, its automatic garbage
collection, and its poor support for real-time multi-threading are all seen as
particular impediments.

The success of high-integrity real-time systems undoubtedly relies upon their
capability of producing functionally correct results within defined timing con-
straints. In order to support a predictable and expressive real-time Java envi-
ronment, two major international efforts have attempted to provide real-time
extensions to Java: the Real-Time Specification for Java (RTSJ) [5] and the
Real-Time Core extensions to Java [9]. These specifications have addressed the
issues related to using Java in a real-time context, including scheduling support,
memory management issues, interaction between non-real-time and real-time
Java programs, and device handling, among others.

However, the expressive power of all these features, along with the regular
Java semantics, means that very complex programming models can be created,
necessitating complexity in the supporting real-time virtual machine and tools.
Consequently, Java, with the real-time extensions as they stand, seems too com-
plex for confident use in high-integrity systems. Furthermore, in addition to
the difficulties with analysing applications developed in these frameworks with
all the complex features, there is no satisfactory static analysis approach that
can evaluate whether the system will produce both functionally and temporally
correct results in line with the design at run-time.

For the above reasons, to encourage the use of Java in the development
of high-integrity real-time systems, the language environment must provide not
only a well-defined specification or subset, but also a complete environment with
appropriate analysis tools. Hence, we propose an extensible distributed high-
integrity real-time Java environment, called XRTJ, that supports the following
attributes:

— Predictable programming model
— Dependable static analysis environment
— Reliable distributed run-time environment

The XRTJ environment has been developed with the whole software devel-
opment process in mind: from the design phase to run-time phase. The XRTJ
environment includes: the Ravenscar-Java profile [23], a high-integrity subset
of RTSJ; a novel Extensible Annotations Class (XAC) format that stores ad-
ditional information that cannot be expressed in Java class files [18]; a static
analysis environment that evaluates functional and temporal correctness of appli-
cations, called XRTJ-Analyser [18]; an annotation-aware compiler, called XRTJ-



210 E.Y.-S. Hu, A. Wellings, and G. Bernat

Compiler; a modified real-time Java virtual machine, called XRTJ-Virtual Ma-
chine that supports a highly reliable run-time environment.

The aim of the paper is to present an overview of our on-going project and
report on its current status. The rest of the paper is organised as follows. Sec-
tion 2 presents an overview of the XRTJ environment. Further details of the
static analysis environment and distributed run-time environment are provided
in Section 3 and 4 respectively. Section 5 shows a simple example that demon-
strates how our approach can be used in a practical application. Section 6 gives
a brief review of related work while Section 7 presents the current status of the
project. Finally, conclusions and future work are presented in Section 8.

2 XRTJ Environment Overview

The major goal of our project is to provide a predictable and portable pro-
gramming environment to develop distributed high-integrity real-time systems.
The XRTJ environment is targeted at cluster-based distributed high-integrity
real-time Java systems, such as consumer electronics and embedded devices,
industrial automation, space shuttles, nuclear power plants and medical instru-
ments.

To encourage the use of real-time Java in high-integrity systems, we have
introduced the Ravenscar-Java profile [23]. The profile or restricted programming
model excludes language features with high overheads and complex semantics,
on which it is hard to perform temporal and functional analyses. Further details
of the profile are given in Section 2.1.
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Fig. 1. A basic block model of the XRTJ environment

Based on the Ravenscar-Java profile, we propose a highly dependable and
predictable programming environment to develop distributed high-integrity real-
time applications. As shown in Figure 1, the XRTJ environment can be divided
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into two main parts: a Static Analysis Environment, which offers a number of
tools that conduct various static analyses including program safety and timing
analysis; a Distributed Run-Time FEnvironment, in which highly predictable and
dependable distributed capabilities are provided.

Before a detailed discussion of each environment, two major components
of the XRTJ environment will be introduced. In our environment, to facilitate
the various static analysis approaches and provide information that cannot be
expressed in either Java source programs or Java bytecode, an extensible and
portable annotation® class format called Extensible Annotations Class (XAC)
file is proposed [18]. To generate XAC files, an annotation-aware compiler, named
XRTJ-Compiler, which can derive additional information from either manual an-
notations or source programs, or both, is also introduced. Taking advantage of
the knowledge accumulated with the compiler, different analysis tools may be in-
tegrated into the XRTJ-Compiler to carry out various verifications or validations
either on source programs or Java bytecode.

Essentially, the static analysis environment supports various analysis tech-
niques by means of the XRTJ-Analyser where program safety analysis and timing
analysis can be statically carried out. In the XRTJ environment, Java programs
extended with specific annotations, such as timing annotations or model check-
ing annotations?, are compiled into Java class files and XAC files by either a
simple XAC translator and a traditional Java compiler or the XRTJ-Compiler.
A conformance test that verifies whether the applications obey the rules defined
in the Ravenscar-Java profile or whether the manual annotations are correct can
also be conducted during the compilation. The XAC files, together with the Java
class files, are used by the XRTJ-Analyser to perform various static analyses.
As shown in Figure 1, various static models, such as a Virtual Machine Timing
Model (VMTM)?, can be provided to perform different static analysis approaches
on the XRTJ-Analyser. Further aspects of the static analysis environment are
discussed in Section 3.

The distributed run-time environment provides mechanisms for underlying
systems to facilitate both functionally and temporally correct execution of ap-
plications. This infrastructure is targeted at cluster-based distributed infrastruc-
ture where remote objects are statically allocated during the design phase. In
order to accommodate a diverse set of the implementations on the underlying
platforms or virtual machines, two run-time environments with different levels
of distribution are supported in the XRTJ run-time environment. This will be
explored further in Section 4.

! The term annotations, in this paper, means both manual annotations and annota-
tions generated by the XRTJ-Compiler automatically.

2 Model-checkers, such as JPF2[6], which requires special annotations, may be em-
ployed in our architecture to facilitate safety checks of concurrent programs.

3 VMTM is a timing model for the target virtual machine including a list of the
worst-case execution time of native methods and Java bytecode instructions.



212 E.Y.-S. Hu, A. Wellings, and G. Bernat

2.1 Ravenscar-Java Profile

We have presented a Java profile for the development of software-intensive high-
integrity real-time systems in [23]. The restricted programming model removes
language features with high overheads and complex semantics, on which it is
hard to perform timing and functional analyses. The profile fits within the J2ME
framework [31], fullfils the NIST Real-Time Java profile requirements [7] and is
consistent with well-known guidelines for high-integrity software development,
such as those defined by the U.S. Nuclear Regulatory Commission [16].

Initialisation Phase

Mission Phase

main() invoked

Initialise all necessary
objects and real-time

— threads TNew Thread T]
Create Initialiser e o/ Rnainhicast B
thread i s
7 R
v Start all // g v New Thread
_ . threads | ™~
main() terminates N

\‘1 | New Thread | |

i i ;

Heap Memory Immortal Memory Scoped Memory

Allocatable Memory

Fig. 2. Two execution phases of Ravenscar Virtual Machine

Its computational model defines two execution phases, i.e. initialisation and
mission, as shown in Figure 2. In the initialisation phase of an application, all
necessary threads and memory objects are created by an Initializer thread,
whereas in the mission phase the application is executed and multithreading is
allowed based on the imposed scheduling policy. There are several new classes
that should ultimately enable safer construction of Java programs (for example,
Initializer, PeriodicThread, and SporadicEventHandler), and the use of
some existing classes is restricted or simplified due to their problematic features
in static analysis. For instance, the use of any class loader is not permitted in
the mission phase, and the size of a scoped memory area, once set, cannot be
changed.

Further restrictions include (see [23] for a full list)

— No nested scoped memory areas are allowed,
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— Priority Ceiling Emulation must be used for all shared objects between real-
time threads,

— Processing groups, overrun and deadline-miss handlers are not supported,

Asynchronous Transfer of Control is not allowed, and

— Object queues are not allowed (i.e. no wait, notify, and notifyAll oper-
ations).

Restrictions are also imposed on the use of the Java language itself, for ex-
ample

— continue and break statements in loops are not permitted, and
— Expressions with possible side effects must be eliminated.

Most subsets of Java or the RTSJ (e.g. [3,28]) overlook some important el-
ements of the language, for example, multithreading and the object-oriented
programming model. Thus many of the advantages of Java are lost. However,
the Ravenscar-Java profile attempts to cover the whole language issues, as well
as the run-time model. The profile is expressive enough to accommodate today’s
demanding requirements for a powerful programming model, yet concise enough
to facilitate the implementation of underlying platforms of virtual machines.

3 Static Analysis Environment

The static analysis environment consists of two components: program safety
analysis and timing analysis. The former highlights program safety in terms
of functional correctness and concurrency issues, such as safety and liveness,
whereas the latter emphasises the analysis of timing issues in terms of temporal
correctness. For the most part, these static analysis approaches may be carried
out individually or combinatorially. A block diagram of the XRTJ architecture
for the static analysis environment is given in Figure 3 and further details of
each major component are discussed in subsequent sections.

3.1 XAC (Extensible Annotation Class) File

One of the key components in the XRTJ architecture is the XAC format that
provides information for the various analysis tools that cannot be stored in
Java class files without making them incompatible with the traditional Java
architecture [18]. The XAC format has been designed with two main goals in
mind: portability, to support both platform independence and language inde-
pendence, and extensibility, to hold extra information needed for other analysis
tools. Therefore, the XAC files are easy to extend for various purposes or apply
in annotation-aware tools or JVMs.

Each XAC file is generated for a specific Java class file, and so the relationship
between a Java class file and an XAC file is one to one. Essentially, the offset
numbers of bytecode in a method are stored with the associated annotations in
the XAC file. Therefore, the corresponding bytecode and annotation may easily
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Fig. 3. A block diagram of the XRTJ architecture for static analysis environment

be reconstructed in analysis tools. A checksum is also provided in XAC files to
facilitate analysis tools or JVMs to verify the consistency between the Java class
file and the XAC file. Further details of the XAC file are discussed in [18].

In addition, using XAC files has benefits for distributed systems as XAC files
do not increase the size of traditional Java class files. Therefore, if the XAC files
are not required at run-time, they do not need to be either loaded into the target
JVM or transferred among distributed machines.

3.2 XRTJ-Compiler

Compiler techniques have been applied to analysis approaches, such as worst-case
execution time analysis and program safety analysis, in order to achieve more
accurate results. For example, Vrchoticky [35] has suggested compilation support
for fine-grained execution time analysis, and Engblom et al. [13] have proposed
a WCET tool called Co-transformation, integrated with compilation support,
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to achieve safer and tighter estimation of timing analysis approaches. These
approaches show that compilation support can not only address the optimisation
issues introduced by compilers, but also provide additional information that may
accumulate from the source code level for particular analysis tools.

In the XRTJ environment, an annotation-aware compiler (XRTJ-Compiler)
is introduced in order to both manipulate annotations and validate that the
contexts of source program code obey those rules defined in the Ravenscar-
Java profile. On the whole, the XRTJ-Compiler extracts both manual annota-
tions introduced for timing analysis and specific annotations that can be de-
rived from source code level for particular purposes. For instance, the XRTJ-
compiler derives Abstract Syntax Trees(AST) and Worst-Case Execution Fre-
quency (WCEF)?* vectors of specific applications to facilitate the WCET anal-
ysis (Section 3.4). Furthermore, the requirements of other static analysis tools,
such as information needed for model checkers and other safety analysis tools,
may also be produced by the XRTJ-Compiler and can be stored in associated
XAC files.

It can be observed that the XRTJ-Compiler may provide valuable information
not only to achieve more precise and reliable results from analysis tools, but also
to facilitate the implementation of various static analysis tools on the XRTJ
infrastructure.

3.3 Program Safety Analysis

The inherent complexity in the verification of non-trivial software means that
unsafe programs could be produced and used under critical situations. This is
increasingly the case as today’s programming models become more complex. Our
Ravenscar-Java profile [23] has been developed with such concerns in mind, so
that programs become easier to analyse, and the run-time platform will also be
simpler to implement.

By program safety, we mean that a program will behave according to its
functional (and temporal) specification, and not exhibit any erroneous actions
throughout its lifetime. Erroneous actions include data races, deadlocks, and
memory overflows. Also, in the context of real-time Java and the Ravenscar pro-
file, we also need to ensure that the rules defined in the profile and RTSJ are
observed. These rules are checked when programs are compiled and tested for
conformance to the profile. This conformance test alone will remove many possi-
ble errors in the program. For example, deadlocks, and side effects in expressions
can be prevented. The following subsections address some issues that are not di-
rectly addressed by the profile, but which are still important in validating the
safety of a Java program.

4 WCEF vectors represent execution-frequency information about basic blocks and
more complex code structures that have been collapsed during the first part of the
portable WCET analysis.
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Verification of the Java Memory Model’s effect. As reported in [26,29],
the Java memory model (JMM) in [14] is a weaker model of execution than those
supporting sequential consistency. It allows more behaviours than simple inter-
leaving of the operations of the individual threads. Therefore, verification tools
that simply examine Java source code or even bytecode are prone to producing
false results [29]. Because the semantics of the JMM can lead to different im-
plementations, some virtual machines may support sequential consistency, while
others may not for performance reasons. This does not match the Java’s write
once, run anywhere® philosophy.

However, we can develop restricted fragments of Java programs for which the
JMM guarantees sequential consistency (as opposed to the approach in [29]),
given that there is a means to efficiently analyse Java bytecode to locate only
necessary synchronizations. Libraries will still be considered because such an
analysis tool will operate at the bytecode level. The point-to and escape analysis
[8,30] can be used to trace escaping and possibly shared objects, as well as
improving overall performance by allocating non-escaping objects in the stack
of a method. This approach, in fact, is how our analysis algorithm has been
designed to uncover data races.

The underlying assumption of our algorithm is that any reads and writes on a
shared object in a method must be enclosed within the same synchronized block
(or method) in order not to have any data races. In other words, any syntactical
gap between a read and write that are not covered by a single synchronized
block will cause possible data races in a multithreaded environment because
either a read or write action can be lost. This is true even when a shared object
is indirectly read and updated using a local object. For example, an interleaving
of another thread that may update the shared object can occur in between the
indirect read and a (synchronized) write in the method, resulting in a lost write.
Thus, any indirect reads and writes should also be treated in a similar manner
to direct ones on a shared object.

Another similar case is the following: even when both a read and write are
synchronized, there can still be data races if the two blocks are guarded by
two different synchronized blocks and can be interleaved by other threads in
between. Our algorithm is capable of analysing all such conditions, thus detecting
problematic data races by tracing all shared objects and checking whether they
are properly guarded by synchronized blocks or methods [21].

Memory Usage Analysis. Shortage of memory space at run-time can be
devastating in high integrity systems, but at the same time, oversupply of it will
be costly. Considering the new memory areas introduced in the RTSJ, we may
need a different means of estimating the worst-case memory space that a program
requires at run-time, so that only the required amount of memory for each area
will be allocated. For this purpose the RTSJ defines the SizeEstimator class,
but the getEstimate () method does not return the actual amount of memory
that an object of a class and its methods dynamically use, but simply the total

® Programs may still run anywhere, but possibly with different or unsafe behaviours.
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size of the class’s static fields. In this sense, the class is not readily usable in
estimating the required memory size for an RT'SJ application.

However, the Ravenscar-Java profile places some restrictions on the use of
RTSJ’s memory areas; for example, access to scoped memory areas must not be
nested and such memory areas cannot be shared between Schedulable objects
[23]. These restrictions greatly ease the development of an algorithm that will
inspect each thread’s logic to discover all classes it instantiates. After that, by
making use of control and data flow information extracted from the code and
the XAC file (such as loop bounds), the algorithm will be able to tell how many
instances of each class are created by a thread. This information can then be
used to produce a tight upper bound of the amount of memory that a thread
utilises at run-time by applying reserve() and getEstimate () methods of the
SizeEstimator class at the target platform before system despatching. This
thread-oriented memory usage analysis algorithm is currently being developed.

Other Pre-runtime Analyses. In addition to the ones introduced above, our
static analyser (XRTJ-Analyser) is also intended to do the following analyses:

— Exception propagation analysis, and
— Dynamic memory access check analysis.

The first analysis stems from the fear that the propagation of any unchecked
exceptions at run-time can be hazardous, while the latter is concerned with
eliminating unpredictable runtime overheads caused by dynamic checks of the
virtual machine. Memory access checks can be prevented by means of the point-
to and escape analysis [8,30], which will be integrated in our XRTJ analyser
together with an efficient exception propagation analysis technique.

3.4 Timing Analysis

Timing analysis is crucial in real-time systems to guarantee that all hard real-
time threads will meet their deadlines in line with the design. In order to ensure
this, appropriate scheduling algorithms and schedulability analysis are required.
Typically, most scheduling algorithms assume that the Worst-Case Execution
Time (WCET) estimation of each thread has to be known prior to conducting
the schedulability analysis. Therefore, estimating WCET bounds of real-time
threads is of vital importance. In addition, having accurate timing estimations
enables the developer to allocate resources more precisely to the system during
the design phase.

On the whole, most WCET approaches [13,35,27] are tied to either a partic-
ular language or target architecture. Moreover, RT'SJ has kept silent on how the
WCET estimations can be carried out on the highly portable Java architecture.
Consequently, it is unlikely to achieve Java’s promise of ”write once, run any-
where” or perhaps more appropriately for real-time “write once carefully, run
anywhere conditionally” [5].
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Hence, in order to offer a predictable and reliable environment for high-
integrity real-time applications, a number of timing analysis issues need to be
addressed, for example:

How the WCET analysis can be carried out on a highly portable real-time
Java architecture,

— How the run-time characteristics of Java, such as high frequency of method
invoking and dynamic dispatching, can be addressed,

How schedulability analysis can be conducted statically, and

What techniques need to be provided to take account of the supporting
distributed run-time environment.

The subsequent sections explore how these issues can be addressed in the
static analysis environment of the XRTJ infrastructure to be able to ensure that
real-time threads will meet their time constraints.

Portable WCET Analysis. A portable WCET analysis approach based on
the Java architecture has been proposed by Bernat et al. [4], and extended by
Bate et al. [2] to address low-level analysis issues. This section presents how
the portable WCET analysis can be adapted for our environment to be able to
perform the WCET analysis statically [18].

The portable WCET analysis uses a three-step approach: high-level analysis
(i.e. analysing the annotated Java class files and computing the portable WCET
information in the form of Worst-Case Execution Frequency (WCEF) vectors [2,
4]), low-level analysis (i.e. producing a Virtual Machine Time Mode (VMTM)
for the target platform by performing platform-dependent analysis on Java byte
code instructions implemented for the particular platform), and conducting the
combination of the high-level analysis with the low-level analysis to compute the
actual WCET bound of the analysed code sections.

In our environment, the XRTJ-Compiler analyses the annotated Java pro-
grams and extracts the WCEF vectors during the compilation. The WCET vec-
tors and WCET annotations are stored in the XAC file by the XRTJ-Compiler
automatically. Therefore, after compilation, the class files and XAC files are
ready for WCET analysis tools. To be able to build VMTMs of various plat-
forms for real-time and embedded Java-based systems in an efficient way, we
are developing a timing analysis benchmark that can build a VMTM of a target
platform automatically simply by providing a native method that can access
the machine cycle of the target platform. A WCET analysis tool in the XRTJ-
Analyser, then, performs the combination of the high-level analysis with the low
level VMTM to compute the actual WCET bound of the analysed code sections.

WCET Annotations. Dynamic dispatching issues have been considered in
compiler techniques for a number of years [1,11,12]. Unfortunately, these ap-
proaches cannot be directly applied to WCET analysis since they are solely op-
timising dynamic binding and do not guarantee that all dynamic binding will be
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resolved before run-time. However, in WCET analysis for hard real-time systems,
the execution time of every single method has to be known prior to executing
it. Therefore, most approaches in the WCET analysis field have simply assumed
that dynamic dispatching features should be prohibited. It is possible that these
restrictions could make applications very limited and unrealistic because they
might eliminate the major advantages of object-oriented programming [17].

In [17], we have explored the ways in which dynamic dispatching can be
addressed in object-oriented hard real-time systems with the use of appropriate
annotations. Our approach shows that allowing the use of dynamic dispatching
can not only provide a more flexible way to develop object-oriented hard real-
time applications, but it also does not necessarily result in unpredictable timing
analysis. Moreover, it demonstrates how to achieve tighter and safer WCET
estimations.

It is an open question for most annotation-based approaches as to how to ver-
ify if the provided annotations are correct. Combining optimisation techniques,
such as Class Hierarchy Analysis (CHA) [11] or Rapid Type Analysis (RTA) [1],
with our approach allows the annotations to be verified, if there is no dynamic
linking at run-time. For example, applying the CHA approach, we can easily get
the maximum bound of the class hierarchies information from the Java bytecode.

Schedulability Analysis. This section demonstrates how schedulability can be
carried out for our real-time Java architecture in line with the portable WCET
analysis. In [18], we have illustrated how real-time parameters, including priority
and dispatching parameters, for the set of threads and WCET estimates can be
produced from the Java class files and XAC files. Given the WCET estimates
and real-time parameters, the schedulability analysis can be conducted easily.
In the XRTJ-Analyser, only the system configuration information is needed.
Following the system configuration, the XRTJ-Analyser loads the scheduling al-
gorithm and carries out the schedulability analysis. Scheduling algorithms must
provide scheduling characteristics, algorithms which can calculate other schedul-
ing parameters, such as release-jitter, blocking time, response-time, and resource
access protocols which are provided to manage the priority inversion problems.
The XRTJ-Analyser produces the result of the analysis of the system. The out-
put file provides not only the result of the analysis, but also includes timing and
scheduling information, such as response time, release-jitter, and blocking time.

Support for Distributed Features. It should be noted that analysing the
WCET bound of real-time threads in a distributed run-time environment differs
from a standalone run-time environment. In particular, there are a number of
issues that need to be clarified to achieve safe and tight WCET estimation and
schedulability analysis of real-time threads containing remote method invoca-
tions. In the XRTJ infrastructure, we assume that one compatible virtual ma-
chine resides on each node in the cluster network and no recursive remote method
invocations are allowed. In accordance with these assumptions, the WCET esti-
mation and schedulability can be carried out as follows.
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Fig. 4. The Java’s RMI architecture [19]
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Based on Java’s RMI architecture shown in Figure 4, a stub® needs to be
provided on the local virtual machine, whereas a skeleton” resides on the remote
virtual machine [19]. In line with this architecture, holistic schedulability analysis
can be performed [33,25]; the response time estimations of all remote methods
and the skeleton on the server node have to be analysed as sporadic threads
during the schedulability analysis.

As to the client node, the WCET estimation of a real-time thread that holds
remote method invocations differs from those that only comprise local method
invocations. One should note that the WCET estimation of a remote method on
the client node should not take into account the execution time of the remote
method because a remote method is translated by the stub that resides on the
local virtual machine and is executed on remote virtual machines. The WCET
bound of a remote method invocation, therefore, should only take account of the
execution time of the stub.

4 Distributed Run-Time Environment

This section is mainly concerned with the distributed run-time environment of
the XRTJ infrastructure, which is targeted at cluster-based distributed high-
integrity real-time systems. Moving from a centralised environment to a dis-
tributed environment requires the following issues to be addressed:

— How objects are allocated to nodes in the cluster,

— What form of communication is supported between distributed objects,

— How the model of communication can be integrated into Ravenscar-Java,
and

What impact the model has on the XRTJ environment.

For high-integrity environments, objects should be statically allocated to
each node in the cluster. Therefore, the term distributed in this paper means

6 A stub is a class that automatically translates remote method calls into network
communication setup and parameter passing.

T A skeleton is a corresponding class that accepts these network connections and trans-
lates them into actual method calls on the actual object.
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statically distributed whereby remote objects are allocated to nodes during the
design phase. Although there have been many different communication models
proposed for distributed Java programs (tuplespaces, distributed events, etc)
most are based on top of the Java’s RMI mechanism. XRTJ assumes the existence
of a real-time RMI facility [36], such as that proposed by Miguel [10].

To accommodate existing practice, which is a stated goal of the project, two
static distributed run-time environments are introduced, including Initialisation
Distributed Environment, in which RMI is only allowed for use in the initiali-
sation phase of an application, and Mission Distributed Environment, where a
restricted real-time RMI model [36] can be used during the mission phase. The
following subsections give further details on each of these and show how those
issues mentioned previously can be addressed.

4.1 Initialisation Distributed Environment

The Ravenscar-Java profile does not support any remote interfaces on its main
classes. Neither are they serialisable. Consequently, no remote operation can be
applied to periodic threads or sporadic event handlers. This implies that they
cannot be passed over the network during the mission phase of the RVM.

However, in order to provide not only high predictability and reliability, but
also some degrees of support for distributed applications, which may reduce
the development and maintenance costs of overall systems, the initialisation
distributed environment is introduced. The motivation of providing this environ-
ment can be observed by a simple example given in Section 5. In such systems,
communications between a server and each node, including loading data and
reporting status, is essential and this can be achieved easily if the run-time
environment provides distributed features in the initialisation phase.

In line with the framework proposed for integrating the RTSJ and Java’s
RMI [36], the standard RT'SJ may offer a distributed environment with a minimal
distribution level, defined as Level 0 integration by Wellings et. al. [36]. Following
this approach, the initialisation distributed environment can be applied to either
a standard Real-Time Java Virtual Machine (RTJVM) or a Ravenscar Virtual
Machine (RVM). In such a run-time environment, both RTJVMs and RVMs can
support a distributed environment defined as Level 0 distribution in [36] before
all real-time threads are started (i.e. the initialisation phase of Ravenscar-Java).

In the mission phase of the RVM or after executing the real-time threads
in a standard RTJVM, no remote method invocation is allowed. However, if
the Ravenscar-Java profile supports aperiodic or non real-time threads, it is
possible to use RMI in such threads with lower priority than real-time threads.
Obviously, there is no modification required for standard RTJVMs or RVMs
to support distributed high-integrity real-time Java-based applications in this
environment.
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4.2 Mission Distributed Environment

Supporting distributed features in the mission phase makes it necessary to ad-
dress more issues, such as how to guarantee statically that all hard real-time
threads will meet their deadlines, when distributed virtual machines can enter
the mission phase and when real-time RMI can be used without rendering hard
real-time tasks unsafe.

To offer a more flexible way to develop distributed high-integrity applica-
tions in the XRTJ environment without loss of predicability and dependability,
the mission distributed environment is introduced. To support this distributed
environment, three execution phases are proposed in the XRTJ-Virtual Ma-
chine (XRTJ-VM), including initialisation phase, pre-mission phase and mission
phase.

In the mission distributed environment, all remote objects are allocated dur-
ing the design phase and the XRTJ-VM supports Level 1 (i.e. real-time RMI)
distribution defined by Wellings et. al. [36]. The program safety and timing
analysis can be carried out with static analysis tools as mentioned in Section 3.4
during the static analysis phase. Note that the response time of all remote objects
and threads, and the skeleton on the server node can be analysed as sporadic
threads during the schedulability analysis, since they are allocated during the
design phase.

The initialisation phase of the XRTJ-VM can be assumed to be the same as
the initialisation the RVM mentioned previously. However, it should be noted
that allocations, registrations, reference collections of all remote objects that are
allowed for use in the mission phase have to be done during the initialisation
phase.

Since the invocations of real-time RMI [36] are allowed in the mission phase
of the XRTJ-VM, one should note that a virtual machine executing in its mission
phase must not attempt to invoke a remote method on another virtual machine
that is not running under the mission phase. The use of such invocations may
result in unpredictable and unanalysable real-time threads running in the mission
phase. To address this issue, synchronisation needs to be provided to decide when
distributed virtual machines can enter into the mission phase at the same time.
In line with the synchronization, all XRTJ-VMs in the same cluster network can
be in the waiting stage after initialising. This phase is named the pre-mission
phase of the XRTJ-VM.

The only difference between the mission phase of the RVM and the mission
phase of the XRTJ-VM is that the invocations of pre-instantiated remote objects
are allowed during the mission phase of XRTJ-VM. Furthermore, the XRTJ-
VM supports the notion of real-time remote objects, real-time RMI, and simple
distributed real-time threads [36] to enable the development of high-integrity
real-time systems with greater flexibility.
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5 Example

In this section, we present a simple example, which we hope is realistic enough
to illustrate the application of our approach. Assume that there is an automated
industrial production line where a number of multi-purpose robots and their
controllers are employed. Each robot station (i.e. a robot and its controller) is
linked over a network to the main server that will provide them with tailor-made
instructions or tasks, depending on the models of products®. Once robot stations
are set up with particular tasks, they will remain unchanged until new tasks are
required to manufacture different products.

Our first distribution model, the Initialisation Distributed Environment de-
scribed in Section 4.1, can be utilized in this situation, minimizing complexity in
program analysis and in the implementation of underlying systems. In this man-
ner, dependable software can be developed using our restricted programming
model (i.e. the Ravenscar-Java profile), and static program safety and timing
analysis techniques integrated in the XRTJ-Analyser. In the initialisation phase
of all the robot stations, they will be given specific tasks by the main server by
means of RMI. Having passed the initial phase, all the robots can begin their
assigned operations, but are not allowed to invoke remote methods any more. A
brief list of pseudo code for the robot controller is shown in Figure 5.

However, there are many other situations where robot controllers need to
communicate with the server while in operation. For instance, a robot may in-
spect products using an overhead camera, send images to the server and require
real-time feedback, assuming that the server has more powerful processors and
resources to process images and distinguish faulty goods. In such cases, our sec-
ond distribution model, the Mission Distributed Environment (see Section 4.2)
is a valid approach. As with the code given in Figure 5, robot stations may in-
voke remote methods in the initialisation phase, as well as in the mission phase
to cooperate with the server in a real-time manner as explained in Section 4.2.
The pre-mission phase may be required to synchronize operations of the robots.
However, in this more tolerant model of system distribution, static timing and
schedulability analysis become more challenging, thus as we discussed briefly
in Section 3.4 a holistic schedulability analysis should be performed to obtain
response times of real-time threads communicating across a network.

6 Related Work

A consortium of European companies and research institutes have been working
on a high-integrity distributed deterministic Java environment called HIDOORS
[34]. The targeted applications of HIDOORS are similar to ours, but the project
is mainly based on the Real-Time Core Extension specification [9], whereas our
project is in line with the Real-Time Specification for Java [5]. However, there
is a limited amount of information available on the HIDOORS project, and it is

8 Robots need to be able to handle different models or versions of products manufac-
tured in volume.
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routine

ravenscar .;
// Initialisation

import
public class RobotController extends Initializer {
public void run() {
// Get Server’s instructions/tasks via RMI
// Set up real—time threads and sporadic event handlers
// with appropriate parameters. For example,
PeriodicThread robotRoutinel = new PeriodicThread (
new PriorityParameters (10), // Priority:10
new PeriodicParameters(
// Start time
// Period

new AbsoluteTime (0, 0),
new RelativeTime (5333, 0)
// Application

)
new Runnable () { logic
public void run () {
// Logic for the robot controller
// Here, real—time RMI may be used
in the mission distributed environment
// Events may be fired
// Start of Mission Phase!

3

}

)
robotRoutinel . start ();
}
public static void main (String [] args) {
RobotController init = new RobotController ();

init.start ();

Fig. 5. An industrial automation environment
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not clear how program safety analysis and timing analysis can be carried out in
their preliminary report [34]. It should be noted that the HIDOORS project has
attempted to provide a predictable implementation of the full Java langauge,
whereas our project relies on the Ravenscar-Java profile.

Moreover, there has been considerable work in the area of formal verifica-
tion of Java programs and bytecode, and Hartel and Moreau [15] systematically
review most of this. Of particular interest to us are the verification techniques
for Java Card applications based on the J2ME architecture [31], and Leroy [24],
who recently developed an efficient on-card bytecode verifier. Leroy’s approach
is superior to other existing work in that it requires much less memory at run-
time, and it handles additional features of the Java language (e.g. subroutines).
Although our work does not directly deal with formal verification techniques
at the moment, we feel encouraged by such developments, and may be able to
incorporate them into our XRTJ-Analyser in the future.

7 Current Status

Currently we are modifying the Kopi Java compiler [20] to facilitate development
of the XRTJ-Compiler. Our prototype XRTJ-Compiler can extract annotations
from the source code and produces XAC files during compilation. The implemen-
tation of our prototype involved modifications to abstract syntax trees in order
to map the annotation to the associated Java bytecodes. The prototype shows
the feasibility of providing extra information that cannot be expressed in both
Java programs and Java bytecode for static analysis tools. We are also working
on the XRTJ-Compiler in order to provide a virtual machine timing model of a
particular virtual machine automatically for the portable WCET analysis.

In addition, program safety and timing analysis tools are under development
and will be integrated into the XRTJ-Analyser. The goal of the XRTJ-Analyser is
to provide a user friendly graphic interface for the static analysis environment in
future. We are also working on the reference implementation of RTSJ (RTSJ-RI),
which is released by TimeSys [32], on Linux platform. A number of modifications
will be conducted on the RTSJ-RI to be able to support mechanisms enforced
both functionally and temporally correct results of applications in the distributed
run-time system.

We have also created a website (http://www.xrtj.org) on which the most
up-to-date information on this project can be found.

8 Conclusion and Future Work

In this paper, we have presented an overview of the XRTJ environment that is
expected to facilitate the development of distributed high-integrity real-time sys-
tems based on Java technology. The three main aims of the XRTJ are to develop
a predictable programming model, a sophisticated static analysis environment,
and a reliable distributed run-time architecture.
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Bearing these aims in mind, we have addressed several of the problemati-
cal features of the Java language, its run-time architecture, and the Real-Time
Specification for Java. Our novel approaches include the Ravenscar-Java pro-
file, program-safety and timing analysis techniques, and a distributed run-time
environment. However, the profile may be supported by different architectures,
and the analysis techniques are versatile enough to apply to other programming
models. We have also raised some important issues in the area of distributed
high-integrity systems, and presented how we can deal with them by defining
two distributed run-time models, i.e. Initialisation Distributed Environment and
Mission Distributed Environment, where safe and timely operations will be sup-
ported.

There are also some open issues, including design methodologies and tools;
these should facilitate formal verification of systems at design stage. We intend to
work towards these issues in the course of our implementation. We consequently
feel confident that the XRTJ environment will provide a logical and practical
base for future high-integrity real-time systems.
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Abstract. Often real-time embedded software is specified as a set of interacting
tasks that have local deadlines on subtasks and global deadlines on each task.
Currently available scheduling algorithms guarantee only a single level of
deadlines, either all local or all global, but not both. We propose a quasi-dynamic
scheduling algorithm for simultaneously guaranteeing both types of deadlines,
while satisfying all precedence constraints among subtasks and among tasks.
Through this scheduling procedure, we are able to formally synthesize real-time
embedded software from a network of Periodic Time Petri Nets specification.
Application examples, including a driver for the Master/Slave role switch in
Bluetooth wireless communication devices, are given to illustrate the feasibility
of the scheduling algorithm.

Keywords: Real-time embedded software, Periodic Time Petri Nets, quasi-
dynamic scheduling, software synthesis, local and global deadlines

1 Introduction

Often a real-time embedded system task is composed of some constituent subtasks, each
of which has its own local deadline, while the task itself has a global deadline. Current
scheduling algorithms do not explicitly consider such multilevel deadlines leading to
the necessity for work-around efforts. We propose a scheduling algorithm to resolve
this issue and show how it can be used for synthesizing real-time embedded software
specifications into actual program code.

As a motivating example depicted in Fig. 1, consider the Modular Mobile Dispatch-
ing System (MMDS) [19], which consists of a GPS receiver, a GIS database, a GSM
communication module, and other I/O peripherals for dispatching of vehicles through a
call center. Besides the local deadlines on each GPS, GIS, and GSM task, there is also
a global deadline on each scenario which is composed of several tasks with precedence

! This work was supported in part by a project grant NSC91-2213-E-194-008 from the National
Science Council, Taiwan.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 229-243, 2004.
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Fig. 1. Modular Mobile Dispatching System

and concurrency relationships. A typical scenario would be that of a vehicle driver en-
countering an emergency situation, in which the driver uses MMDS and expects to get
help within 4 minutes from the time a call is made from the vehicle to the call center.
Within this time span, MMDS must get GPS location information, transmit it to the call
center through GSM communication, the call center must plot the driver’s location on
a digital map using GIS, locate the nearest help on the map, dispatch help (such as an
ambulance) to the location by notifying the target help through GSM, while providing
navigation guidelines through an active GIS database.

There are several issues involved in such a typical real-time scenario, as detailed in
the following.

— How to determine which subtasks are concurrently enabled at any point of execution?

— How to check if each subtask completes execution within its local deadline, while
satisfying all precedence constraints among the subtasks?

— How to check if each task completes execution within its global deadline?

— How to obtain an optimal schedule of all system tasks such that shortest execution
time is guaranteed, if one exists?

— How to estimate the amount of memory space required for the execution of a real-
time embedded software system?

Corresponding to each of the above issues, we propose a set of solutions in the form
of a scheduling method called Quasi-Dynamic Scheduling (QDS), which incorporates
the respective solutions as briefly described in the following. Details will be given when
the algorithm is described in Section 4.

— Concurrently Enabled Group: We maintain a group of concurrently enabled sub-
tasks, while the system’s behavior is statically simulated to satisfy all precedence
relationships.

— Tentative Schedulability Check: Since the group of concurrently enabled subtasks
changes dynamically with system execution, its schedulability can be checked only
tentatively for the current group.
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— Global System Timer: A global system timer is maintained that keeps count of the
current total amount of processor time taken by the execution of all tasks.

— Pruned Reachability Tree: Because schedulability checks are only tentative for a
group of subtasks, a reachability tree is created so that an optimal schedule can be
found. Heuristics are applied to prune the tree on-the-fly while it is being created.

— Maximum Memory Estimation: Using various memory estimation techniques, both
static and dynamic memory space allocations are statically counted, including mem-
ory spaces for both local and global variables.

Basically, quasi-dynamic scheduling is a combination of quasi-static scheduling and
dynamic scheduling. Data dependent branch executions are statically decomposed into
different behavior configurations and quasi-statically scheduled [20]. For each quasi-
statically decomposed behavior configuration, dynamic scheduling is employed to satisfy
all local deadlines of each subtask, all precedence constraints among subtasks, and all
global deadlines of each task.

To illustrate the importance of this research result, consider how existing scheduling
approaches must be applied to a system with both local and global deadlines. In this case,
there is a need for work-around methods such as making global deadline the sum of all
local deadlines in a critical path of the task. The user is burdened with the responsibility
of analyzing a task and finding the critical path, a non-trivial task in some cases, apriori
to scheduling. Further, this work-around method only works if the global deadline is not
smaller than the sum of all local deadlines in a critical path of a task, because otherwise it
would amount to restraining each local deadline, thus making an otherwise schedulable
system unschedulable. In summary, the work presented here is not only a flexibility
enhancement to current scheduling methods, but also a necessary effort in checking
schedulability for real systems.

This article is organized as follows. In Section 2, we delve on some previous work
in quasi-static scheduling and real-time scheduling related to the synthesis of real-time
embedded software. In Section 3, we formulate our target problem to be solved, our
system model, and give an illustrative example. In Section 4, we present our quasi-
dynamic scheduling algorithm and how it is applied to the running example. Section 6
concludes the article giving some future work.

2 Previous Work

Since our target is formally synthesizing real-time embedded software, we will only
discuss scheduling algorithms that have been used for this purpose.

Due to the importance of ensuring the correctness of embedded software, formal syn-
thesis has emerged as a precise and efficient method for designing software in control-
dominated and real-time embedded systems [6,11,20,21]. Partial software synthesis was
mainly carried out for communication protocols [18], plant controllers [17], and real-
time schedulers [1] because they generally exhibited regular behaviors. Only recently has
there been some work on automatically generating software code for embedded systems
[2,16,20], including commercial tools such as MetaH from Honeywell. In the follow-
ing, we will briefly survey the existing works on the synthesis of real-time embedded
software, on which our work is based.
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Previous methods for the automatic synthesis of embedded software mostly do
not consider temporal constraints [15,16,20,21], which results in temporally infeasible
schedules and thus incorrect systems. Some recently proposed methods [11,14] explic-
itly take time into consideration while scheduling, but have not solved the multilevel
deadlines issue. Details of each method are given in the rest of this section.

Lin [15,16] proposed an algorithm that generates a software program from a concur-
rent process specification through intermediate Petri-Net representation. This approach
is based on the assumption that the Petri-Nets are safe, i.e., buffers can store at most
one data unit, which implies that it is always schedulable. The proposed method applies
quasi-static scheduling to a set of safe Petri-Nets to produce a set of corresponding state
machines, which are then mapped syntactically to the final software code.

A software synthesis method was proposed for a more general Petri-Net framework
by Sgroi et al. [20]. A quasi-static scheduling (QSS) algorithm was proposed for Free-
Choice Petri Nets (FCPN) [20]. A necessary and sufficient condition was given for a
FCPN to be schedulable. Schedulability was first tested for a FCPN and then a valid
schedule generated by decomposing a FCPN into a set of Conflict-Free (CF) components
which were then individually and statically scheduled. Code was finally generated from
the valid schedule.

Later, Hsiung integrated quasi-static scheduling with real-time scheduling to synthe-
size real-time embedded software [11]. A synthesis method for soft real-time systems
was also proposed by Hsiung [12]. The free-choice restriction was first removed by Su
and Hsiung in their work [21] on extended quasi-static scheduling (EQSS). Recently,
Gau and Hsiung proposed a more integrated approach called time-memory scheduling
[6,13] based on reachability trees.

A recently proposed timed quasi-static scheduling (TQSS) method [14] extends two
previous works: (1) the QSS [20] method by handling non-free choices (or complex
choices) that appear in system models, and (2) the EQSS [21] by adding time constraints
in the system model. Further, TQSS also ensures that limited embedded memory con-
straints and time constraints are also satisfied. For feasible schedules, real-time embedded
software code is generated as a set of communicating POSIX threads, which may then
be deployed for execution by a real-time operating system.

Balarin et al. [2] proposed a software synthesis procedure for reactive embedded
systems in the Codesign Finite State Machine (CFSM) [3] framework with the POLIS
hardware-software codesign tool [3]. This work cannot be easily extended to other more
general frameworks.

Besides synthesis of software, there are also some recent work on the verification
of software in an embedded system such as the Schedule-Verify-Map method [8], the
linear hybrid automata techniques [7,9], and the mapping strategy [5]. Recently, system
parameters have also been taken into consideration for real-time software synthesis [10].

3 Real-Time Embedded Software Synthesis

Our target is the formal synthesis of real-time embedded software, with local and global
deadlines, using scheduling techniques. A system is specified as a set of concurrent tasks,
where each task is composed of a set of subtasks, with precedence relationships. Time
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constraints are classified into two categories: local deadlines and global deadlines. A
local deadline is imposed on the execution of a subtask, whereas a global deadline is
imposed on the execution of a task in a system model [6,13].

Previous work on software synthesis were mainly based on a subclass of the Petri net
model (introduced later in Section 3.1). We also adopt the Petri net model for software
requirements specification, but we associate explicit semantics to the firing time inter-
vals, which will explained when our system model Periodic Time Petri Net (PTPN) is
defined. Just like Time Complex-Choice Petri Nets (TCCPN) used in [14], PTPN places
no free-choice restriction on the model expressivity and adds timing constraints on each
transition, which represents a subtask. Thus, a wider domain of applications can be pre-
cisely modeled by PTPN. Details on the PTPN system model, our target problem, and
an illustrative example will be described in Sections 3.1, 3.2, and 3.3, respectively.

3.1 System Model
We define PTPN as follows, where A is the set of positive integers.

Definition 1. Periodic Time Petri Nets (PTPN)
A Periodic Time Petri Net is a 5-tuple (P, T, F, My, T), where:

— P is a finite set of places,
— T is a finite set of transitions, PUT # 0, PNT = (), and some of the transitions
are source transitions, which fire periodically,
- F: (PxT)U(T x P) = N is a weighted flow relation between places and
transitions, represented by arcs. The flow relation has the following characteristics:
e Synchronization at a transition is allowed between a branch arc of a choice
place and another independent concurrent arc.
e Synchronization at a transition is not allowed between two or more branch arcs
of the same choice place.
e A self-loop from a place back to itself is allowed only if there is an initial token
in one of the places in the loop.
— My : P — N is the initial marking (assignment of tokens to places), and
- 7:T = Nx(NUx),ie.,7(t) = (a, 3), wheret € T, cvis the transition execution
time, and (3 is transition local deadline. We will use the abbreviations 7, (t) and T5(t)
to denote the transition execution time and deadline, respectively. a

Graphically, a PTPN can be depicted as shown in Fig. 2, where circles represent
places, vertical bars represent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights as defined by F'. A place
with more than one outgoing transition is called a choice place and the transitions are
said to be conflicting. For example, pg is a choice place and 1 and ¢ are conflicting
transitions in Fig. 2.

3.2 Problem Formulation

A user specifies the requirements for a real-time embedded software by a set of PTPNs.
The problem we are trying to solve here is to find a construction method by which a set



234 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

Ny t(2,6)

(2, 4) P

Fig. 2. Tllustration Example

of PTPNs can be made feasible to execute on a single processor as a piece of software
code, running under given finite memory space and time constraints. The following is a
formal definition of the real-time embedded software synthesis problem.

Definition 2. Real-Time Embedded Software Synthesis

Given a set of PTPNs, an upper-bound on available memory space, and a set of real-time
constraints such as periods and deadlines for each PTPN, a piece of real-time embedded
software code is to be generated such that:

— it can be executed on a single processor,
— it satisfies all the PTPN requirements, including precedence constraints and local

deadlines,

— it satisfies all global real-time constraints, including PTPN (task) periods and dead-
lines, and

— it uses memory no more than the user-given upper-bound. a

As described in Section 1, there are five issues involved in solving this problem
and the solutions to these issues are integrated into a quasi-dynamic scheduling method,
which will be presented in Section 4. Due to page-limit, we leave out the code generation
part of software synthesis [21].

3.3 Illustration Example

This is a simple toy example to illustrate how our proposed scheduling method works.
The PTPN model for this example is shown in Fig. 2, which consists of two nets
N1 = (P17T1,F1,M017T1) and N2 = (PQ,TQ,FQ,MOQ,TQ), where P1 = {po,pl},
Pg{pg,pg,p4}, T1 = {to,tl,tg,tg}, T2 = {t4, t5,t6}, the flow relations Fl, FQ, and
the firing intervals 7y, 7o are obvious from the numbers on the arcs and transitions,
respectively. The initial markings My, My are all empty.

4 Quasi-Dynamic Scheduling

To solve the several issues raised in Section 1 for synthesizing real-time embedded
software, a Quasi-Dynamic Scheduling (QDS) method is proposed. QDS employs both



Quasi-Dynamic Scheduling for the Synthesis 235

quasi-static and dynamic scheduling techniques. Details of the QDS algorithm are pre-
sented in Tables 1, 2, 3. Rather than going into the details of each step of the algorithms,
we present the main ideas as follows.

— Data dependent branch executions are statically decomposed into different behavior
configurations and quasi-statically scheduled using EQSS [20,21]. (Step 1 of Table
1)

— For each quasi-statically decomposed behavior configuration, dynamic scheduling
is employed to satisfy the local deadline of each subtask, all precedence constraints
among subtasks, and the global deadline of each task as follows.

e A global system clock is maintained for each schedule to record the elapse of
time on the execution (firing) of each transition. Similarly, a global memory
usage record is kept for each schedule.

e To find a feasible schedule, a reachability tree is constructed in a depth-first
search manner (Step 15 of Table 2), where each node represents a marking that
is associated with a group of enabled transitions and each edge represents the
firing of a selected transition. Exhaustive construction of the tree is avoided
by pruning it under appropriate conditions (heuristics), which are described as
follows.

* Negative Laxity: There is not enough time left for at least one of the enabled
transitions to execute until completion. (Steps 4, 5 of Table 3)

* Local Deadline Violation Forecast: After a simulation-based analysis of the
group of enabled transitions, if it is found that none of the transitions can be
executed last in the group, then that group of transitions is not schedulable.
(Steps 6-10 of Table 3)

* Global Deadline Violation: The system clock has exceeded the global dead-
line of at least one of the PTPN. (Steps 4, 5 of Table 2)

* Memory Bound Violation: The memory usage has exceeded a user-given
upper bound. (Steps 6, 7 of Table 2)

e For each node in the tree, not all successor nodes are generated. Some nodes
are not generated under various conditions as described in the following. (Steps
11-25 of Table 3)

« If there is at most only one urgent transition, with execution time (7,,())
same as its remaining time (p(t)) (i.e., 7,(t) = p(t) — zero laxity), then
only one successor node is generated.

* All transitions whose execution can be deferred such that even if they are
the last ones to execute among the currently enabled transitions, they will
still satisfy their respective deadlines, then their corresponding nodes are
not generated. This heuristic is applied provided some successor node can
be generated.

Some advantageous features of QDS are as follows.

— Noneed of WCET analysis: After quasi-dynamic scheduling, we have total execution
time for each system schedule, which is smaller than the total worst-case execution
time (WCET) of all the transitions in that schedule.
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Table 1. Quasi Dynamic Scheduling

QDS(S, p, )
S={A;| Ai = (P, T;, F;, My, 7),i =1,2,...,n};
W integer; // maximum memory

1: global real-time constraints; // periods, deadlines, etc.

m = EQSS(S, u, H); /l'm = |H|, H: EQSS schedules [21] )
for(j = 055 <m;j++){ (2)
G = initial_group(H, j); 3)
if(schedule_tree( H, G, S, 1, 1)) output(H, j);  // refer to Table 2 4)
else return Unschedulable_Error; (®)]
}
}
Table 2. Schedule Tree Traversal in Quasi Dynamic Scheduling
schedule_tree( H, G, S, 1, i)
H: set of EQSS schedules;
G group of concurrently enabled transitions;
S': set of PTPN;
1: global real-time constraints; // periods, deadlines, etc.
(: integer; // maximum memory
{
if(choose_schedulable(G, G') == False) return False; @))]
for each transition t € G’ { 3)
STime =t — exec + G — STime; “4)
if (STime > deadline(v)) continue;  // Global Deadline Violation 5)
SMem =t — mem + G — SMem; 6)
if (SMem > p) continue;  // Memory Bound Violation (@)
G = copy(G); (8)
G" — STime = STime; G” — SMem = SMem; 9)
fire_trans(t); (10)
if (last_firing(t)) G” = G"\{t}; (11)
for each transition t’ € successor(t, S) (12)
G" =G" U{t'}; //add newly enabled transitions (13)
if(G"” == NULL) return True;  // end of schedule (14)
if(schedule_tree(H, G"', S, 1, 1)) return True;  // DFS traversal (15)
}
return False; (16)

}

— Optimal schedules: QDS always generates a set of optimal schedules because all

feasible schedules are explored using the reachability tree.

— Efficient scheduling: QDS uses several different heuristics to avoid searching ex-
haustively in the solution space and these heuristics are proven to be helpful, but

harmless, that is, they do not eliminate any optimal schedule.
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Table 3. Selection of Schedulable Transitions in Quasi Dynamic Scheduling

choose_schedulable(G, G')
G: group of concurrently enabled transitions, G’: group pointer
G3=G;G4=NULL; [//G1,G2,G3,G4 : pointers to group of transitions (1)
while(True) { 2)
G1=G2=NULL; 3)
for each transition t € G3 {  // check remain time > execution time “4)
if(t — remain < t — exec) return False; (®)]
Gtime +=t — exec; 6)
} // end of for

for each transition t € G3 {  // divide G3 into two subgroups: G3 = G1UG2  (7)
if(t — remain >= Gtime) G1 = G1U {t}; 8)
else G2 = G2U {t}; }//end of for )
if (G1 == NULL) return False;  // no last one to fire, so stop building node (10)
else if (comp_group(G1,G3)) { // G1 == G37? (11)
G’ = G3; (12)
return True; } (13)
else {  //choose the transitions which will fire next time (14)
G3=NULL; (15)
Gtime = 0; (16)
for each transition t € G2  Gtime +=t — exec; 17)
for each transition t € G1 { (18)
Gtime' = Gtime +t — exec; (19)
for each transition t’ € G2 { (20)
if ¢’ — remain >= Gtime') { G3 = G3 U {t}; break; } } } (1)
G3=G2UGS3; (22)
if (comp_group(G3, G4)) { (23)
G’ = G3; return True; } (24)
G4 =G3; }/lendelse (25)

} // end of while

}

— Multi-objective optimizations: Since both time and memory constraints are consid-
ered during scheduling, QDS allows a user to easily optimize the resulting schedules
in terms of either shortest schedule time or smallest memory usage. Trade-offs are
inevitable between these two objectives, and QDS leaves such trade-off analysis to

the user.
— All issues solved: All the issues presented in Section 1 are solved by QDS.

Limitations of QDS are as follows.

— Predefined transition parameters: Execution time and local deadlines must be user
given or derived from some analysis of the software code represented by a transition.
— Interrupt handling: QDS must be extended to handle interrupts. This part of the work
is still ongoing and the basic idea is to include the set of allowable interrupts to the
parameters of each transition and to consider the worst-case of interrupts arriving
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Fig. 3. EQSS schedules for Illustration Example

during the execution of each transition. Some heuristics can be applied here to avoid
obtaining too large an estimate.

— Different periods and deadlines: Currently, in QDS it is assumed that all PTPN have
the same periods and deadlines. This restriction can be easily removed by scheduling
a time slot that spans the least common multiple of all periods.

— Different phases (arrival times): QDS cannot handle different phases or arrival times
of PTPN. Currently, it is assumed that they all arrive at the same time.

To illustrate how QDS works, we use the running illustrative example given in Fig. 2.
First of all, EQSS is applied to the two PTPN. The resulting conflict-free components and
corresponding schedule for each of those components are given in Fig. 3. There are totally
three such components: R;; and Ry for N; and Ry; for Ns. But, the EQSS schedule
for each component has some degree of choices in the repeated firings, for example in
the schedule for Ryy, (t3,t3,¢3), it can also be scheduled as (t2,t1,3,3,t1,t3). QDS
explores this degree of choices for satisfying the local deadlines and global deadlines of
each system configuration, where a system configuration is a combination of one conflict-
free component from each PTPN. Thus, there are totally two system configurations for
this example, namely {R11, Ro1} and {R12, Ro1}-

On applying QDS to this example, we found that it is indeed schedulable and satisfies
all local and global deadlines. Though there are two reachability trees for the two system
configurations, we present only one of them for illustration. The reachability tree for
{R12, Ro1} is presented in a tabular form in Table 4. The first column is the index of
the nodes in the tree and the last column gives the child nodes of the corresponding
node from the first column. G is the group of concurrently enabled transitions in the
marking represented by that node. « is the execution time (earliest-firing time) of each
transition. p is the time left before a transition deadline is reached. ST'ime and SMem
are the current global records of system time and memory, respectively. G’ C G is the
subset transitions that are chosen for possible scheduling in the generation of successor
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Table 4. QDS scheduling for R12 and Ra1

lnode[G[a[ p = —now [STz'me[SMem[ﬁreable?[ﬁred![ next node

0 [to]l 3 0 0 Yes to 1
tq|1 4 Yes

1 |to|l 3 1 1 Yes to 2
tq|1 3 Yes

2 |tol|l 3 2 2 Yes to 3
tq|1 2 Yes

3 |ta|2 4 3 3 No
t4 1 1 Yes t4 4

4 t2 2 3 4 4 Yes t2 5
ta|l 4 Yes

5 |ts|3 9 6 3 No
t4 1 2 Yes t4 6

6 t3 3 8 7 4 Yes t3 7
ts|3 8 Yes

7 |ts|3 5 10 2 Yes ts 8

8 |ts|3 8 13 14 Yes te 9

9 |te|3 8 16 7 Yes te |Schedule Found!

Schedule Time & Memory| 19 14

Table 5. EQSS Schedules for Bluetooth M/S Role Switch

[PTPN _ [[T[][P|[d:][m:]|QI[EQSS Schedules | Time]

Host A 71 5|45(45| 4|A = <t0,t1,t2,t4,t5,t6>, [20,41}
Ao = <to,t1,t2,t4,t7> [8,40}
A13 = <t0,t1,t3,t5,t6> [18,34}
Ara = (o, t1,t3,t7) [6, 33]

HC/LM A| 21| 15[45[45] 6|As1 = (to, b1, o, ta, Lo, b7, 1o, t11, b1z, L1a) [17,35]
A22 = <t0,tl,t3,t5,t6,t8,t10,t14> [15,29}
Azz = (to, t1,t2,ta, ts, t7, t10, t11, t13, t15, 16, t1s) 20, 40]
Azq = (to, t1,t2, ta, t7,t11, t13, t1s, tie, t1s) (18, 37]
Ass = (to,t1,t2,ta, te, t7, to, t11, t13, t1s, t17, t19, t20)|[21, 42]
Ase = (to, 1,13, t5, 6, to, t15, t17, L9, t20) [18, 35]

Host B 5/45|45| 4 Same as for Host A

HC/LM Bj| 21| 15|45|45| 6 Same as for HC/LM A

|T'|: number of transitions, | P|: number of places, d;: PTPN deadline,
m;: PTPN period, |Q|: number of EQSS schedules.

nodes. The 8th column consists of the actual transitions that are fired and thus also
gives the schedule that is generated by QDS. At the end of Table 4, it is found that the
system configuration is schedulable. The total time and memory used are 19 time units
and 14 memory units, respectively. Similarly, when QDS is applied to the other system
configuration { R11, Ro1}, it is schedulable and the total time and memory used are 28
time units and 18 memory units, respectively.
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5 Application Example

The QDS method for software synthesis was applied to several real-world applications
such as ATM virtual private network scheduling, Bluetooth wireless communication
protocol, motor speed control system, and medic-care system. For purpose of illustration,
we describe one of the examples, which is a real-time embedded software driver for
the master-slave role switch between two wireless Bluetooth devices. In the Bluetooth
wireless communication protocol [4], a piconet is formed of one master device and seven
active slave devices.

In our PTPN model of an M/S switch between two devices A and B, there are totally
four Petri nets as follows. Host of device A as shown in Figure 4, Host Control / Link
Manager (HC/LM) of device A as shown in Figure 5, host of device B similar to that
for A, and HC/LM of device B similar to that for A. Timings for the transitions are
allocated as follows. A Bluetooth device times out after 32 slots of 6255 each, which
is totally 0.02 second. Thus in our model, we take 0.01 second as one unit of time.

The proposed QDS algorithm (Table 1), was applied to the given system of four
PTPN. First, EQSS is applied. The results of EQSS scheduling are given in Table 5.
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Table 6. QDS scheduling for A11 and Ass

[node] G Jalp = B — now[STime][SMemf[fircable?[fired!]  nextnode |
0 [t10]2 4 0 0 No
ta.0 2 6 No
tae |1 2 Yes ta 6 1
1 tio]2 3 1 1 No
tao |2 5 No
ta 10| 1 1 Yes |t2,10 2
2 tio]2 2 2 0 Yes t1,0 3
t2,0 2 4 No
3 t11 |2 4 4 1 No
too |2 2 Yes t2.0 4
4 t11 |2 2 6 2 Yes t1,1 5
to1 2 4 No
5 t12|1 3 8 2 No
to 1 2 2 Yes to 1 6
6 t12|1 1 10 2 Yes t1.2 7
to 2 2 4 No
7 ta 2 2 3 11 2 Yes ta 2 8
t1,4 2 5 No
8 to 4 1 2 13 2 Yes to 4 9
t1,4 2 3 No
9 t1,4 2 2 14 2 Yes t1,4 10
to 7 2 5 No
10 to 7 2 3 16 2 Yes to 7 11
ti,5 [12 24 No
11 ta 11 2 5 18 2 Yes ta 11 12
t15 |12 22 No
12 |t2,13]|3 5 20 2 Yes |t213 13
t15 12 20 No
13 |t2,15] 1 2 23 2 Yes |t2,15 14
t1,5 [12 17 No
14 |t 17| 2 3 24 2 Yes |ta 17 15
t1,5 [12 16 No
15 |t2,10] 1 2 26 2 Yes |ta 19 16
t1,5 12 14 No
16 |t1,5 |12 13 27 2 No
t2 20 1 1 Yes t2 20 17
17 | t1,5 |12 12 28 1 Yes t1,5 18
18 |t1,6 |1 1 40 1 Yes t1,6 |Schedule Found!
Schedule Time & Memory 41 2
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The last column in Table 5 gives the best-case and worst-case execution times of each
net EQSS schedule. Further, reachability trees were constructed for all the 24 different
configurations. All deadlines and periods are given as 45 time units. For illustration
purpose, the application QDS to one of the configurations { A1, Ags} is given in Table
6, which has a schedule time of 41 time units and memory usage of 2 memory units. It

is finally derived that the system is schedulable.

6 Conclusion

No more workarounds are needed when both local and global deadlines are to be satisfied
because quasi-dynamic scheduling (QDS) has solved this problem in the context of real-
time embedded software synthesis. QDS has integrated static and dynamic scheduling to
efficiently derive an optimal schedule time or memory based on some simple heuristics.
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Application examples show that we can avoid the worst case analysis when QDS can
used for scheduling. Through a real-world example on the master/slave role switch
between two wireless Bluetooth devices, we have shown the feasibility of our approach.
In the future, we plan to extend QDS in several ways: to handle dissimilar periods and
deadlines, to handle interrupts during scheduling, and to estimate transition parameters
such as execution time.
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Abstract. This paper presents a framework-oriented approach to efficient de-
velopment of embedded real-time systems. A framework is an architectural
pattern in development approaches that, based on object-oriented techniques,
provides a reusable template to extend applications. The creation of framework
is quite difficult although a well-defined framework is powerful in significantly
improving the productivity of developers. The basic concept underlying this
approach is that applications can be developed effectively through integrating
domain-specific design patterns. The presented framework is developed with
three mature design patterns, namely task scheduling pattern, ceiling priority
pattern and static allocation pattern, as a basis to address the common issues
such as task scheduling and resource management in the development of em-
bedded real-time systems. The task scheduling pattern provides a priority-based
scheduling mechanism. The ceiling priority pattern implements the ceiling pri-
ority protocol to resolve the problems of unbounded blocking while the static
allocation pattern provides a mechanism on memory optimization for objects
and message queues used by tasks. Developers using this framework simply
need to add required application-specific classes and customize some compo-
nent classes according to the design specifications.

1 Introduction

While applications based on embedded real-time system products are being widely
used today, successful deployment of embedded real-time systems and applications
depends on reduced development cost and time-to-market in which the degree of
reuse and tailorability are important factors. The main issues in developing embedded
real-time systems arise from the complexity of managing data resources and sched-
uling of tasks with interaction. Scheduling tasks with timing constraints has been the
most important issue. Although cyclic executive is one popular approach to address
both the issues of scheduling and resource contention at the same time, priority-based
scheduling has been a widely accepted approach, especially when concerns such as
flexibility, reusability and reconfigurability are taken into account [1]. Priority-based
task scheduling relies on proper priority assignment. The priority of a task can be
fixed and remains unchanged during its execution such as Rate Monotonic Schedul

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 244-253, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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ing (RMS) [2]. In dynamic priority systems, a task is assigned its priority at run-time
based on some strategy such as Earliest Deadline First (EDF) [2].

When there are interactions among tasks, more complicated issues arise. For ex-
ample, priority inversion occurs when sharing resources in multitasking environment
[19]. If a low priority task locks a resource and then is preempted by a high priority
task that needs the locked resource, the high priority task it is blocked from executing
by the low priority task. Worse, tasks with intermediate priority may preempt the low
priority task thereby lengthens the blocking time experienced by the blocked high
priority task. This blocking, if not bounded can cause missing deadline. The famous
priority-inheritance protocol is developed to solve this problem [3]. As another ex-
ample, heap fragmentation is one problem in managing data resources. Fragmentation
can arise when different sized blocks are allocated and released asynchronously from
a heap. Overtime, the free space on the heap might fragment into small blocks. It
might lead to allocation failures when a request is made which exceeds the size of the
largest available block even though more than enough memory is available.

Task scheduling, unbounded blocking and memory fragmentation are just some of
the common issues in developing embedded real-time systems. There have been so-
lutions proposed to individually address these problems. In this paper, a framework-
based approach is presented as an integrated resolution. A framework [4] is an archi-
tectural pattern that provides an extensible template for applications within a domain.
The basic concept underlying this framework-based approach is that applications can
be developed effectively through integrating domain-specific design patterns. Within
the OO arena, an object-oriented application framework (OOAF) is a reusable, “semi-
complete” application that can be specialized to produce customized applications [5].
OOAFs are application-domain-specific reuse methods proposed for general-purpose
systems. However there are relatively few works on applying framework to the de-
sign of an embedded real-time system.

This paper is organized into the following sections. Section 2 discusses some re-
lated works. The concept of our framework construct is presented in Section 3 by
elaborating the framework-based design approach with pattern views and class views.
Section 4 describes briefly how to apply the framework construct. Finally, Section 5
gives a summary of this work.

2 Related Works

Framework is not a new idea. There have been quite a few literatures on various as-
pects of framework. However, there appears relatively few works on applying
framework to the development of embedded real-time systems. In the following, three
frameworks proposed for real-time systems are discussed.

The Object-Oriented Real-Time System Framework (OORTSF) presented by
Kuan, See and Chen [6] is a relatively simple framework-based developing environ-
ment. Their framework construct was built upon the classes used in real-time applica-
tion development without notions of design patterns. Since no design patterns specific
to developing real-time system application were proposed, it might result in difficult
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comprehension of the collaboration among the classes. In addition, applying
OORTSF in developing a system might introduce complication when the design pat-
terns are unclear. The flexibility of specifying real-time objects, the ease of using
OORTSEF, the benefits of applying OORTSF, and other issues related to OOAFs ap-
peared unclear from the work.

RTFrame is an application framework solution developed especially for real-time
system design by Hsiung [7]. It consists of five components, namely Specifier, Ex-
tractor, Scheduler, Allocator, and Generator. Together with RTFrame, several design
patterns for developing real-time systems were presented. It therefore has a clear
process for designing an embedded real-time system. However, the dependency rela-
tionship between those components needs to be clearly identified. The circumstance
emerges easily when using RTFrame to design a new application and developers must
be careful in coping this issue.

Hsiung et al presented VERTAF through integration of three technologies, namely,
object-oriented technology, software component technology and formal verification
technology [8]. It uses formal verification technology for model check in design
phase to guarantee the system correctness. VERTAF is an improvement of RTFrame.
However, the same issue exists as in RTFrame.

3 Framework-Based Design

A framework is rendered as a stereotypically package in UML [4]. A framework is
composed of a set of elements, including, but certainly not limited to, classes, inter-
faces, use cases, components, nodes, collaborations, and even other frameworks.
Frameworks have been in many cases target technology for developing embedded
real-time systems. However, based on the fact that embedded systems are application-
specific, it is not easy, if not impossible, to develop a general framework that can be
applied to all kinds of embedded real-time systems. The framework proposed in this
paper is designed for the environment of single processor running a multitasking
preemptive kernel and employing priority-based scheduling. It is presented in the
following from two structural aspects: the pattern view and the class view.

3.1 Pattern View

A pattern is defined as a solution to a problem that is common to a variety of contexts
in software development [4]. The pattern view presents the framework that encom-
passes a collection of patterns that work together to solve the problems in designing
embedded real-time systems. Three patterns are developed in the framework pro-
posed here: task scheduling pattern, ceiling priority pattern and static allocation pat-
tern. The task scheduling pattern is designed for priority-based task scheduling. It is
able to process non-periodic tasks and tasks with dynamic priority assignment. The
ceiling priority pattern addresses unbounded blocking with the ceiling priority proto-
col [9]. The static allocation pattern provides a memory optimization mechanism.
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Certainly, there are many kinds of patterns for designing a system. What we proposed
here is developed specifically for developing embedded real-time systems.

Task Scheduler
CSu ;zggz;iiipe Scheduler ~ ___----mmmmmm——e
Y £ _—————----=7"" Task Scheduling Pattern Sy
Priority Assignment( ) NNl - -
TaskTypeSense( ) 1 _Acceptor P R
prae I \
1 ! |-~ - ' \\\
//’/,I Task Inanlpger \\ Task
A | \
Acceptor 1 \VA
PriorityDecider TaskManager Active Object
11
AcceptanceTest( ) 1 1
PriorityDecide( )
1
1
ErrorHandler
SignallD
Recovery()

Fig.1. Task Scheduling Pattern

3.1.1 Task Scheduling Pattern

The task scheduling pattern (Fig.1) assumes a priority-based scheduling policy of
either static priority assignment or dynamic priority assignment is employed. The
priority decider class is designed for decide dynamic priority at run time. The ready
task with the highest priority will then be selected and dispatched. Developer can
implement his particular scheduling policy by overriding the method of this class.

As shown in Fig. 1, there is another auxiliary class, namely acceptor class in this
pattern. The acceptor class is designed for scheduling non-periodic tasks with a task
acceptance test which can be overridden by developer supplied method. The basic
task acceptance test checks whether or not a task can be scheduled to meet its dead-
line by simply comparing the available system slack time based on current system
workload to the worst-case execution time of that task [1]. The task will be admitted
if the system has enough remaining capacity, otherwise the task is denied and an error
handler will be invoked.

3.1.2 Ceiling Priority Pattern

The ceiling priority pattern (Fig. 2) in fact implements the ceiling priority protocol
which is one member of the well-known priority inheritance protocol family devel-
oped to address the issue of unbounded blocking due to resource sharing among
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tasks. Its basic idea is that each resource is associated with an attribute called its pri-
ority ceiling and the task allocated this resource executes at the priority of its priority
ceiling [1]. A task thus has two related attributes: nominal priority and current prior-
ity. The nominal priority of a task is its normal executing priority which is assigned
according to a certain static priority assignment rule such as rate monotonic schedul-
ing (RMS) [2] or deadline monotonic scheduling (DMS) [10]. The current priority of
a task is the actual priority at which the task is executing. The value of the priority
ceiling attribute of a resource is the highest nominal priority of any task that would
use that particular resource. The current priority of a task is changed to the priority
ceiling of a resource the task has locked as long as the latter is higher.
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Fig. 2. Ceiling Priority Pattern

When a task wants to enter a critical section, it needs to request locking a resource
semaphore to protect its critical section. The locking service of resource management
module sets the current priority of this task to the priority ceiling before task execu-
tion proceeds. Since the priority ceiling is the highest nominal priority of all tasks that
use the same resource, the scenario is that once a task is granted locking a semaphore
it will not be blocked by lower priority tasks. In addition, tasks with priority higher
than the running task’s but no higher than the priority ceiling will be blocked. When
the task exits from a critical section and unlocks the semaphore, its current priority
resumes to the previous value (if there is one). The ceiling priority pattern identifies
interacting objects and implements the ceiling priority protocol to realize the above
scenario. The pattern can be extended when the priority of task is dynamically as-
signed and the concept of dynamic priority ceiling is applied [11].

3.1.3 Static Allocation Pattern

The underlying concept of static allocation pattern (Fig.3) is to pre-allocate all objects
and create the maximum number of message objects when the system starts up. If a
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sending object needs to communicate with another object, it must send a request to
the message manager to get a free message object. The receiving object returns the
message object to the message manager after it is consumed. No other memory object
is allocated after the system is initialized to run and no object is deleted before the
system is shutdown. Because memory is never released, heap fragmentation will not
occur. In addition, system overhead is minimized during run-time because there is no
need to invoke object constructors.

If a task wants to request a message, it must acquire a free message object from the
message queue object. The message queue class is designed for messages manage-
ment. This service accepting message request of a task will check whether any free
message object is available or not. The state of the first free message object will be set
to a flag marking it has being assigned and its pointer will be returned if the first free
message is available. Otherwise, NULL will be returned. If a message is consumed, a
service of the message queue object will be requested to release this message object.
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Fig. 3. Static Allocation Pattern

3.2 Class View

The framework provides classes such as timers, threads, semaphores, state machines,
states, events, and a set of operating system abstractions. These classes have well-
defined structural and stable relationships. Designer can reuse these classes of the
framework by inheriting or associating. The classes implementing the above patterns
and others are described below. The names are prefixed by FW which stands for
FrameWork.

In embedded real-time systems, a task is a thread which reacts to events. It is im-
plemented via instantiating an active class [12], which is associated with a message
queue. The supper class of an active class is called FWTask. An active class inherits
this class will has a thread and a private message queue. Attributes associated with an
active class of a task are nominal priority, current priority, relative deadline, period,
worst-case execution time and task type. The nominal priority is the task’s assigned
priority when it is released. The current priority is the task’s priority at a particular
time instant of interest. The relative deadline, worst execution time and period specify
the basic timing properties of the task. The type of a task can be periodic or non-
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periodic. The scheduler will carry out an acceptance test for a non-periodic task. Op-
erations of an active class include suspend, resume, destroy, start, stop, sendEvent,
receiveEvent and dispatchEvent. The first five operations are the operations for sus-
pending, resuming, destroying, starting and stopping a thread. The last three operate
on events for a thread.

An embedded real-time system is usually event-driven. Each task maintains a pri-
vate message queue. It receives messages by the message queue and dispatches mes-
sages to another object. The FWEventQueue class is responsible for the management
of a message queue. Its operations are add, delete, isEmpty, front and rear. The
FWEvent class is the base class for the message. In the context of statecharts, mes-
sages can trigger transitions between states.

Semaphores are used to control access to a shared resource, signal the occurrence
of an event and allow tasks to synchronize their activities. The class FWSemaphor
implements this mechanism. It has an attribute, ceiling priority, which has been de-
scribed earlier. The associated operations are lock and unlock.

The FWAcceptor class is a specific class, which is designed for the acceptance test.
The scheduler calls for the operation of acceptance test acceptTest first when a non-
periodic task arrives. If the deadline can not be met, the error event is asserted and an
error handler is dispatched. The FWPriorityDescider class is designed for dynamic
scheduling policy such as EDF. The operation, priorityDecide is a virtual function for
the designer to implement the application-specific dynamic scheduling policy. These
two classes are designed for implementation of the task scheduling pattern.

The FWTimerManager is responsible for managing the central timer in an embed-
ded real-time system. It is an additional thread that provides timer support for the
application. The application therefore contains at least two threads, one thread for the
application and the other for the timer management. The FWTimerManager class
manages timeout requests and issues timeout events to the application objects. It is a
singleton object in the execution framework. Singleton means only one instance can
be created [12]. The FWTimerManager has a timer that notifies it periodically when-
ever a fixed time interval has passed. At any given moment, the FWTimerManager
holds a collection of timeouts that should be posted to the thread when their time is
up.

Another singleton class is FWMain which stands for the entry point to launch the
application, similar to the main() function for C/C++ language. The FWMain class is
a special case of FWTask. The operations associated with FWMain are initHardware,
initOS, createThread and start. These operations must be invoked in that sequence.
The initHardware and initOS operations are virtual functions for the designer to im-
plement respectively the properties dependent of the selected hardware platform and
operating system. Application tasks are created by the createThread operation. The
start operation set the system into running after constructing the thread of time ticker.
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4 Applying Framework

Developers using this framework simply need to add required application-specific
classes and customize some component classes according to the design specifica-
tions. Classes of new objects can be defined using the classes of this framework by
inheritance. In some special cases, developer may need to extend the framework. It
is not difficult to do so because new design patterns can be added without impact
on the three basic patterns.

In general, there are three steps in using this framework-oriented development
process. The first step is defining the tasks and the values of their attributes. The
task scheduling policy is chosen in this step. The second step is designing applica-
tion classes and mapping them into active classes. Classes of new objects are added
to the framework during this step. Third, setting the information related quality of
service and task interaction such as resource sharing. Information provided in this
step will be used to derive attribute values of the active classes.

The three patterns and the component classes mentioned previously have been
implemented using C++ programming language to construct the framework. An
application wizard is currently being implemented. It can guide the developer in
the process of constructing a prototype of the application and producing skeleton
source code including the framework service classes and the application classes.
The developer can then modify the generated code to finish the application devel-
opment.

S Summary

A framework-oriented approach to efficient developing embedded real-time sys-
tems is presented in this paper. Using framework for system development has dem-
onstrated the benefit in significantly improving the productivity of developers. The
issue concerned by developers is how to build a good framework construct as it is
difficult to devise a single framework adaptable to all kinds of systems. This is the
same in developing embedded real-time systems. The presented framework is com-
posed of three well-defined patterns as a basis specifically for developing embed-
ded real-time systems. The patterns implement mechanisms of priority-based task
scheduling, ceiling priority protocol, and memory optimization. In this framework,
since attributes of classes representing abstraction of the system are fixed, the
operations of classes will bind the behavior of developed system to a predicable
state. Developers using this framework simply need to add required application-
specific classes and customize some component classes according to the design
specifications.
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Abstract. OVL (Open Verification Library) is designed to become a
standard assertion language of the EDA (Electronic Design Automa-
tion) industry and has been adopted by many companies. With OVL,
verification process can blended seamlessly into the development cycles
of complex systems. We investigate how to use OVL assertions for the
verification of dense-time concurrent systems. We have designed a C-like
language, called TC (timed C), for the description of real-time system
with OVL assertions between code lines. We explain how to translate
TC programs into optimized timed automata, how to translate OVL
assertions into TCTL (Timed Computation-Tree Logic) formulae, and
how to analyze assertions when not satisfied. The idea is realized in our
translator RG (RED Generator).

In addition, we have developed several new verification techniques
to take advantage of the information coming with OVL assertions
for better verification performance. The new techniques have been
incorporated in our high-performance TCTL model-checker RED 4.0.
To demonstrate how our techniques can be used in industry projects,
we report our experiments with the L2CAP (Logical Link Control and
Adaptation Layer Protocol) of Bluetooth specification.

Keywords: Assertions, specification, state-based, event-driven,
model-checking, verification

1 Introduction

In the last decade, many formal verification tools with proprietary (i.e., com-
mercial or tool-specific) assertion languages have emerged in the industry
[4,12,16,20,21,27]. However, as Forster discussed, the lack of standards in as-
sertion languages not only can frustrate engineers but also can create significant
chaos and damage to the healthy progress of verification technology [7]. But what
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should a standard assertion language look like 7 A good assertion language must
blend seamlessly into the development cycles of system designs. In real-world
projects, engineers naturally describe their systems in programming languages
and insert comment lines to assert some intuitive properties between codes, such
as preconditions or post conditions. If a verification tool asks engineers to rewrite
their C-codes in automata descriptions or Petri net descriptions and to make up
some assertions offline of the programming cycle, then the engineers will more
likely be reluctant to accept the tool in fear of extra workload and deadline
misses. Thus, providing a natural method to bridge this gap in the verification
of real-time concurrent systems is one main goal in this paper.

OVL (Open Verification Library) [7,23] is a new initiative in VLST industry
for unifying the many commercial EDA (Electronic Design Automation) tools,
by providing a set of predefined specification modules instantiated as assertion
monitors. It is supported by EDA industry companies and donated to Accellera
(an electronic industry standards organization) in anticipation to make OVL an
industry standard. With OVL, engineers can write assertions as comment lines
in their HDL (Hardware Description Language [6,26]) programs.

OVL was originally designed for the assertions of VLSI circuits, which are
highly synchronous discrete-time systems. In the cycle-based environment, they
have no notion of time within a clock cycle and evaluate the logic between state
elements and/or ports in the single slot. Since each logic element is evaluated
only once per cycle ,with the coming of multi-multimillion-gate SOC (System-
on-a-Chip) [25] in the new century, we believe that clock skews may eventually
invalidate the synchrony assumptions. In the event-based environment, opposite
to the cycle-based environment, a design element may be evaluated several times
in a cycle because the different arrival time of inputs and the feedback of signals
from downstream design elements and this provides a highly accurate enviroment
[25]. However, today’s industry projects usually only use static timing analysis
[22,24] to guarantee real-time properties Thus it will be of great interest if we
can extend OVL assertions to dense-time model in formal verification.

Such an extension will also allow embedded system engineers to take advan-
tage of verification technology with minimum effort in their development cycles.
And that is also the motivation of this research. To blend seamlessly into the
development cycles, it is important that system designs can be described in a
format close to programming languages. In section 5, we define a new language,
called Timed C (TC), with C-like syntax and OVL assertions as comment lines.
TC is designed for efficient mechanical translation from C-programs into input
languages of our TCTL model-checker RED 4.0 for formal verification. The input
to RED 4.0 consists of a timed automata [3] (with synchronization channels [18])
and a TCTL (Timed Computation-Tree Logic) [1] specification. In section 5, we
discuss how to mechanically translate TC programs to optimized (for verification
performance) timed automata with synchronizers.

In section 7, we present four types of OVL assertions and demonstrate how
to translate these OVL assertions, with dense-time semantics, to TCTL formu-
lae. In some cases, we have to create auxiliary processes and state-variables to
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monitor the satisfaction of OVL assertions. We have realized all these ideas in
a translator, RG (RED Generator), which translates TC programs into input
format to RED [28,29, 30,31, 32, 33|, a high-performance TCTL model-checker
for timed automata.

The positions of OVL assertions in a program may also shed light on the
possibility of verification performance enhancement. If an assertion is declared
specifically in a process’ program, usually it means that the assurance of the
assertion is strongly linked to the behavior of this process. Then by carefully
abstracting out state information of other processes, state-space representation
can be significantly simplified and performance improvement in verification can
be obtained. This intuition has led us to the design of several localized abstrac-
tion functions, which are explained in section 8. Unlike the previous work on
approximate model-checking [35], our new abstraction technique is specially tai-
lored to take advantage of the information hidden in OVL assertions. And our
experiment with this new technique of localized abstract reduction indeed shows
that performance improvement can be gained in verification with the information
hidden in OVL assertions.

To demonstrate the usefulness of our techniques for real-world projects, in
section 9, we have experimented to model and verify the L2CAP (Logical Link
Control and Adaptation Layer Protocol) of Bluetooth specification [10]. Blue-
tooth, a wireless communication standard, has been widely adopted in industry.
We model two devices, communicating with the L2ZCAP of Bluetooth, in TC
and carry out experiments to verify various properties between the two devices.
The experiments are by themselves important because of the wide acceptance
and application of the protocol.

Moreover, since OVL assertions are written in between code lines, their dis-
satisfaction may provide valuable feedback for code debugging and direction to
system refinement. When there are more than one assertions in a TC program
and some of them are not satisfied, RED is capable of identifying which asser-
tions are not satisfied. It is also possible to use the counter-example generation
capability of RED to better understand the system behavior and diagnose the
design bugs.

The remainder of this paper is organized as follows. Section 2 discusses the
verification tool framework. Section 3 and 4 introduce the input language to
RED 4.0, i.e., synchronized concurrent timed automata (SCTA) and TCTL. Sec-
tion 5 discusses the language of TC(Timed C) and algorithms for translating
TC constructs into optimized SCTA subgraphs. Section 6 describes OVL asser-
tions. Section 7 discusses how to translate OVL assertions into TCTL formulae.
Section 8 introduces our localized abstraction technique specially tailored for
performance verification of OVL assertions. Section 9 reports our verification
experiments with L2CAP. Section 10 concludes the paper with remarks on fu-
ture plan of the work.

Formal semantics of SCTA and TCTL can be found in appendices A and
B respectively. An example of TC program with OVL assertion and its corre-
sponding optimized SCTA can be found in appendices 7?7 and ?? respectively.
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Fig. 1. Software architecture

2 Verification Tool Framework

The software architecture of our verification framework is shown in figure 1. On
the top, users describe the system designs in our C-like language, TC, with OVL
assertions as comments between code lines. After parsing and analyzing a TC
program, our translator RG generates a file, in the format of input language
to our TCTL model-checker RED, with an SCTA and a TCTL formulus. An
SCTA includes a set of process automata communicating with each other with
binary synchronizers [18] and global variables. The global automaton for the
whole system is the Cartesian product of the process automata. Some process
automata describe the system behaviors while others monitor the satisfaction of
the OVL assertions.

The TCTL formulus is derived from the OVL assertions. If there are more
than one assertions, then their corresponding TCTL formulae conjunct together
to construct the final TCTL formulus.

We use two phases in the generation of SCTAs. The first phase generates
an SCTA, which is further optimized in the second phase. The optimization
program used in the second phase can also be used independently to help users
of RED in optimizing their system descriptions.

After the SCTA and TCTL-formulus are generated, users may feed them
to RED [28,29, 30,31, 32], our TCTL model-checker. Our RED is implemented
with the new BDD-like data-structure of CRD (Clock-Restriction Diagram) [30,
31, 32,33]. If RED says that the SCTA does not satisfy the TCTL formulus,
RED can identify among the many OVL assertions which ones are not satisfied
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?TRAIN_NEAR
Y2 =03

v1 > 10
~1 := 0; train_status:=ATCROSSING;|

Y2 = 20
gate_status:=DOWN;

7TRAIN_LEAVE

ITRAINLEAVE 71 > O
71 =03

gate_status : =NOT_DOWNN;

(a) monitor (b)gate_controller

Fig. 2. Process automata of the railroad crossing system

and may generate counter-example traces in some situations. Users can use this
information as feedback to fix bugs and re-execute this verification cycle. On the
other hand, if RED says the SCTA satisfies the TCTL formulus, the correctness
of the system design is formally confirmed.

3 Synchronized Concurrent Timed Automata (SCTA)

We use the widely accepted model of timed automata [3] with synchronizers
[18]. A timed automaton is a finite-state automaton equipped with a finite set
of clocks which can hold nonnegative real-values. At any moment, the timed
automaton can stay in only one mode (or control location). In its operation,
one of the transitions can fire when the corresponding triggering condition is
satisfied. Upon firing, the automaton instantaneously transits from one mode to
another and resets some clocks to zero. In between transitions, all clocks increase
their readings at a uniform rate.

In our input language, users can describe the timed automata as a syn-
chronized concurrent timed automata (SCTA). Such an automaton is in turn
described as a set of process automata (PA). Users can declare local (to each
process) and global variables of type clock, integer, and pointer (to identifier
of processes). Boolean conditions on variables can be tested and variable values
can be assigned. Process automata can communicate with one another through
binary synchronizations. Each transition (arc) in the process automata is called
a process transition.

In figure 2, we have drawn two process automata, in a railroad crossing
system. One process is for train-monitor and one for the gate-controller.
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The monitor uses a local clock v; while the controller uses 2. In each mode, we
may label an invariance condition (e.g., 1 < 300). Along each process transition,
we may label synchronization symbols (e.g. ! TRAIN_NEAR), a triggering condition
(e.g., v1 > 100), and assignment statements (e.g., 71 := 0;). When the monitor
detects that a train is approaching the crossing, it sends out a !TRAIN _NEAR
signal to the controller. On receiving the signal, the train will reach the crossing
in 100 to 300 time units while the gate will be lowered down in 20 to 50 time
units.

A process transition may not represent a legitimate global transition (LG-
transition). Only LG-transitions can be executed. Symbols TRAIN NEAR and
TRAIN_LEAVE, on the arcs, represent channels for synchronizations. Synchroniza-
tion channels serve as glue to combine process transitions into LG-transitions.
An exclamation (question) mark followed by a channel name means an output
(input) event through the channel. For example, ITRAIN_NEAR means a sending
event through channel TRAIN_NEAR while 7TRAIN_NEAR means a receiving event
through the same channel. Any input event through a channel must match, at
the same instant, with a unique output event through the same channel. Thus, a
process transition with an output event must combine with another process tran-
sition (by another process) with a corresponding input event to become an LG-
transition. For example, in figure 2, process transitions 77 — T and C7; — Cs
can combine to be an LG-transition while Ty — T5 and Cy — C3 cannot. Also
process transition 7o — T35 by itself can constitute an LG-transition since no
synchronization is involved. The formal semantics of SCTA is left in appendix A.

4 TCTL (Timed CTL)

TCTL (Timed Computation-Tree Logic) [1] is a branching-time temporal logic
for the specification of dense-time systems. An interval Z specifies a continuous
time segment and is denoted as the pair of (open) starting time and (open)
stopping time like (¢, d), [c,d), [c,d], (¢,d] such that ¢ € N, d € N'U {oc}, and
¢ < d. Open and closed intervals are denoted respectively with parentheses and
square brackets.

Suppose we are given a set P of atomic propositions and a set X of clocks,
a TCTL formulus ¢ has the following syntax rules.

pu=plrr—xa~ |1V 2| 1| To1UT P | Vo1l

Here p € P, 21,29 € X, ¢ € N, ¢; and ¢ are TCTL formulae, and Z is an
interval.

3 means “there exists a computation.” V means “for all computations.”
¢1U 12 means that along a computation, ¢; is true until ¢o becomes true and
¢ happens at time in Z. For example, with a specification like

Vtrain_status = ATCROSSING
U[Oylo)train,status = NOT_ATCROSSING
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we require that for all computations, train_status becomes NOT_ATCROSSING
in 10 time units.

Also we adopt the following standard shorthand : true for —false, ¢1 A ¢o for
—\((—\(151) V (_‘¢)2)), (151 — ¢2 for (—|¢1) vV ¢2, E|<>I(;51 for dtrue Z/[Igbl, VDI¢1 for
—E|<>I—|¢)1, VOI(Zﬁl for Virue u1¢1, E“:'Id)l for _‘v<>I_‘¢1-

The formal semantics of TCTL formulae is left in appendix B.

5 Timed C

Engineers are trained to write programs in traditional programming languages,
like C, C++, Verilog, ..., etc. Timed C (TC) is designed to bridge the gap be-
tween the engineering world and the verification research community. It supports
most of the programming constructs in traditional C, like sequences, while-loops,
and switch-statements. It also provides syntax constructs to abstract unimpor-
tant details for mechanical translation to SCTA. Moreover, we have added new
constructs to make it easy to describe event-driven behaviors, like timeouts.

5.1 The Railroad Crossing Example

The TC program in table 1 models a simple railroad crossing system. The system
consists of two processes: monitor and gate_controller, both executing infinite
while-loops. In the beginning, we declare two variables of enumerate type, as in
Pascal. The first value in the enumerated value set is the initial value of the
declared variables.

After sending out a synchronization signal !TRAIN_NEAR, train_status
will be assigned value ATCROSSING in 100 to 300 time units. If in between two
statements there is no interval statements, it is equivalent to the writing of in-
terval [0, 00). Lines beginning with // are comments, in which we can write OVL
assertions.

In this program, there are two OVL assertions which are explained in sec-
tion 6.

5.2 Mechanical Translation to SCTA

The real-time system model-checkers nowadays are based on mathematical mod-
els, like SCTA, Petri net, hybrid automata, ... [8,9,14,19, 34,30, 31, 35,36]. To
make the model-checking technology more attractive, it will be nice if we can
mechanically translate C-programs to SCTAs. The language of TC (Timed C)
serves as a middle language from C-programs to SCTAs.

The SCTA (generated from RG) for the TC-program in table 1 is exactly
the one in figure 2.

For convenience, given a TC program construct B, let RG(B) be the subgraph
in an SCTA representing the behavior of B. The SCTA subgraphs of RG(y = 3;)
(an atomic assignment), RG(B1B2) (a sequence), RG(while (z < 3) B), and
RG(switch (y) { ... }), are shown in figures 3(a), (b), (c), and (f) respectively.
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Table 1. TC program for the modeling of railroad crossing system

enum {NOT_ATCROSSING, ATCROSSING} train_status;
enum {NOT_DOWN, DOWN} gate_status;

process monitor() {
while (1) {
//assert_change #([0,20], 1) Al(train_status == ATCROSSING,\
train_status == NOT_ATCROSSING)
<!TRAIN_NEAR>;
(100,300) ;
train_status = ATCROSSING;
//assert_always(gate_status == DOWN)
[5,10];
train_status = NOT_ATCROSSING;
[0,0];
<!TRAIN_LEAVE>;
[100,00];
}
}

process gate_controller() {
while (1) {

<?TRAIN_NEAR>;
[20,50);
gate_status = DOWN;
<?TRAIN_LEAVE>;
[0,50];
gate_status = NOT_DOWN;

In construct switch(y){...}, y must be of type int. Constructs of if-else can be
treated similarly as construct switch. Since we require the specification of the
range of integer variable in their declaration in TC programs, constructs like
if-else can be treated as special cases of constructs switch(...){...}.

Note that in the subgraphs figure 3(c) and (f) for constructs while and
switch, the test conditions for the cases are directly labeled on the incoming
transitions as additional constraints. This means that the conditional statements
in TC do not take time in our model. This assumption is important for efficient
translation to SCTA, in which a transition with triggering condition testing
and assignments is executed instantaneously. This assumption is suitable for
embedded systems in which dedicated hardware is used for each process.

But the traditional program constructs in C-like languages do not capture
all the elements in the modeling of real-time concurrent systems. One deficiency
is that there is no way to tell at what time the next statement should be exe-



262 F. Wang and F. Yu

T <3
—(x < 3) r <3
v
RG(BY) RG(B)
\
y = 3; fiC(B) Y =(z < 3)

(a) RG(y :=3;) (b) RG(B1By) (c) RG(while(z < 3)B)

RG(B2) Thc first 1hode in RG(Bg)
v=z3 y>3
723
1

O --------- Q 7ack!finish

{
(d) RG(B1[3,5]; B2) (e) RG({?ack!finish);)

switch(y){ switch event{

case v : Bybreak; case <lai7h; ... >: Bibreak;
(f) RG case vy : Bobreak; (o) RG case <?aslby >: Bobreak;

default : Bybreak; timeout|c,d] : Bibreak;

} }

Fig. 3. SCTA subgraphs for TC-program constructs

cuted. In other words, users cannot describe the deadlines, earliest starting time
of the next statement after the execution of the current statement. Here we pro-
pose a new type of statement, the interval statement, in the forms of ”[c, d];”,
"le,d);”, (e, d);”, 7 (e, d];”, where ¢ € N and d € N U {oco} such that ¢ < d
and (¢, o0], [¢, 00] are not allowed. An interval statement, say [c,d], is not exe-
cuted but serves as a glue to bind the execution times of its predecessor and
successor statements. For example, a statement sequence like B1[3, 5]; By means
that the time lap from the execution of the last atomic statement in B; to the
execution of the first statement in By is within [3,5]. The SCTA subgraph of
RG(B1[3,5]; B2) is shown in figure 3(d). Note how we use an auxiliary system
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clock ~ here to control the earliest starting time and deadline of the successor
transition.

From real-world C-programs, interval statements can be obtained by ab-
stracting out the execution time of blocks or sequences of program statements.
Accurate execution time can be obtained with techniques of WCET [15] analy-
sis. In many embedded systems, a processor exclusively executes one process and
the execution time of a straight-line program segment can be obtained by accu-
mulating the execution time (from CPU data-book) of the machine instructions
in the segment.

Event-handling is an essential element in modeling languages for real-time
systems. With different events observed, the systems may have to take different
actions. We design the new construct of

switch event{
case(ssy) : Bibreak;
case(ssa) : Bobreak;

timeoutl|c,d] : B;break;

}

to capture this kind of system behaviors. ssi, sss,... are sequences of synchro-
nization labels, like 7receive, !send, .... The construct means that the system
will wait for any of the event combinations of (ss1),(ss2),... to happen and
take the corresponding actions B1, Bs, ... respectively. But the system will only
wait for a period no longer than d time units because of the timeout event which
will happen between ¢ and d time units. The corresponding SCTA subgraph is
drawn in figure 3(g). Note that the SCTA subgraph does have an auxiliary entry
mode to enforce the timeout.

Finally e also allows programmers to use synchronizers in SCTA for the con-
venience of modeling of concurrent behaviors and construction of LG-transitions.
For example, users can also write an atomic statement like "< 7ack !finish
>;” and RG(< 7ack !finish >;) is shown in figure 3(e).

5.3 Optimization of SCTA

The first phase of RG generates an SCTA, which is clumsy to verify. The SCTA
will have a lot of null states connecting together the SCTA subgraphs generated
for various TC program constructs. Also, many operations on local variables may
create unnecessary partial-ordering and irrelevant intermediate states, which can
only waste resources in the verification tasks for the given OVL assertions. We
borrowed the code optimization techniques from compiler research [5] for the
optimization of SCTAs. After the optimization, the reachable state-space rep-
resentation of the SCTA can be reduced and verification performance can be
enhanced.

A simple but effective technique for locally improving the target code is peep-
hole optimization, a method to improve the performance of the target program
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by examining a short sequence of target instructions and replacing these instruc-
tions (called the peephole) by a shorter or faster sequence [5]. We followed this
idea and developed our SCTA Optimizer. The optimization techniques, which
we employed, include

e bypass of null transitions: For easy mechanical translation, sometimes we
generate null modes and transitions. These modes and transitions can be
eliminated without changing the system behaviors.

e compaction of intermediate local transitions: In SCTA, we can declare local
variables of type integer and pointers. The exact execution time (within an
interval) of assignments to such local variables may not affect the behavior of
peer processes. This kind of situation can be analyzed and we can compact
these local actions into one process transition.

e climination of unreachable modes: After the bypassing of many transitions,
some modes in the original SCTA may no longer be connected to the initial
mode in the SCTA graph. We can simply ignore such modes.

e climination of intermediate temporary variables: In the evaluation of complex
expressions, sometimes we have to declare intermediate temporary state-
variables to store the intermediate results, like the sum of an addition inside
a multiplication. By properly analyzing the structure of the arithmetic ex-
pressions, we can avoid the usage of some intermediate temporary variables.

Because of the page-limit, we omit the details of our implementation here. But
we have carried out experiment on the L2CAP used in section 9. The experiment
reported in section 9 shows dramatic improvement in verification performance
after the optimization.

6 OVL Assertions

We here demonstrate how to translate the following four types of OVL assertions
to TCTL formulae for model-checking with RED.

//assert_always(¢)

//assert never(¢)
//assert_change#(Z, f)ID(¢1, ¢2)
/Jassert tine# (T, f)ID(1, ¢2)

Here ¢, ¢1, ¢ are Boolean predicates on variable values. Z is an interval (as in
section 4). f is a special flag. ID is the name of the assertion.

We choose these four assertion types from OVL as examples because many
other assertion types can be treated with similar technique, which we use
for these four types. In the four assertion types, //assert_always(¢) and
//assert_never(¢) specify some properties at the current state. The first type

//assert_always(g)

means that "now ¢ must be true.” For example, in table 1, the second assertion
in the while-loop of process monitor says that "now the gate must be down.”
The second type
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//assert_never(¢)

means that "now ¢ must not be true.”

The other two assertion types specify some properties along all computations
from the current state. f is a flag specific to assert_change and assert_time.
When f =0,

//assert,change#(l', f)ID(¢1a ¢2) (]‘)

means that from now on, along all traces, THE FIRST TIME WHEN ¢, is true,
from that ¢-state on, ¢o must change value once within time in Z. That is,
every time this assertion is encountered, it will only be used once, when ¢; is
true, and then discarded.

When f =1, assertion (1) means that from now on, along all traces, WHEN-
EVER ¢, is true, ¢ must change value once within time in Z. That is, this asser-
tion will be assured once and for all. For example, in table 1, the first comment
line in the while-loop of process monitor, is an assert_change, which says that
when a train is at the crossing (train_status == ATCROSSING), then Boolean
value of predicate train_status == NOT_ATCROSSING must change within 0 to
20 time units.

We have to make a choice about how to interpret ”THE FIRST TIME” in a
dense-time multiclock system. OVL assertions were originally defined to monitor
events in VLSI circuits with the assumption of a discrete-time global clock [7]. In
synchronous circuits, an atomic event can happen at a clock tick or sometimes
can be conveniently interpreted as true in the whole period between two clock
ticks. We believe the latter convenient interpretation is more suitable for this
work because in concurrent systems, it is not true that all processes will change
states at the tick of a ”global clock.” And this period between two ticks can
be interpreted as a state in a state-transition system. According to this line of
interpretation, we shall interpret assertion (1) as

”from now on, along all traces, in THE FIRST
INTERVAL WITHIN WHICH ¢, is true,
from every state in that interval,
¢2 must change value once within time in Z.

to better fit the need of dense-time concurrent systems. This choice of interpre-
tation may later be changed to fit all domains of applications.
The last assertion

/Jassert tine#(Z, f)ID (61, ¢2) (2)

is kind of the opposite to assert_change. When f = 0, it means that from now
on, along all traces, in THE FIRST INTERVAL WITHIN WHICH ¢, is true,
from every state in that interval, ¢ must not change value at any time in Z.
Similarly, when f = 1, assertion (2) means that from now on, along all traces,
WHENEVER ¢ is true, ¢o must not change value at any time in Z.

In OVL, option f = 0 means that whenever this assertion is encountered, it
will only be used once (when ¢ is true) and then discarded. This is also the



266 F. Wang and F. Yu

default value. Option f = 1 ,oposite to option f = 0, means that this assertion
will be claimed once and for all. Option f = 2 is not addressed here since it’s
used for handling the error message in OVL.

7 From Assertions to TCTL

Suppose we have n assertions aq, ... , a,. For each assertion «, we need a binary
flag b,. Then we label the modes of the automata with by, ... ,bs, to denote
the scope within which the respective assertions are honored. For example, in
the TC-program in table 1, there are two assertions. Suppose the assert_change
assertion on the top is a1 and the assert_always assertion in the middle is axs.
The SCTA of this TC-program is shown in figure 2. Then b, is only labeled at
mode T3 while b,, is only labeled at mode T5.

An assertion like o : //assert_always(¢) is translated to the TCTL formu-
lus, denoted as TCTL(«),

VO((V (g 1abeled with by) 9 = ©)-

Here ”\/(q labeled with by) q” is a predicate, which we generate to signal when
assertion o must be satisfied.
For o : //assert never(¢), TCTL(«) is

VO((V (g 1abeled with by) ©) = 7P)-

For each assert_time or assert_change o with unique name I D, we need
to use auxiliary variables, auxiliary actions, and sometimes auxiliary processes
to monitor their satisfaction. We need an auxiliary Boolean state variable [, to
monitor either

e when ¢; has become true for the first time with option f = 0; or

e when ¢ has become true with option f =1 .
For example, in figure 2, [,, is initially false and set to true at every process
transition to mode T7. [, is never reset to false with option f = 1. (Details are
discussed in the following.)

For « : //assert_change#(Z, f)ID(¢1, p2), no matter whether f = 0 or
f=1, TCTL(«) is

y (V(q labe(led with ISQ) q)
O la A ¢1
-7 (Vogollzpa) V (V¢2UI—'¢2)))

Formulus V—¢oldz¢o captures the trace along which ¢o changes from false to
true at time in Z while V¢gold7¢o captures the trace along which ¢ changes
from true to false at time in 7.

For o : //assert_time#(Z, f)ID(¢1, ¢2), no matter whether f = 0or f =1,
TCTL(w) is the same

(\/ q labeled with b, q)
Ve ( VOl A1) > (VOzm2) v (VDI¢2)))>
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Imoni

Imoni

e )

7setq 'moni
la =1;
7set !monig

7setq !monig

la =1;

a=1

?setq !monig

moni
1 . o
a = 13

la = 0

Imoni

?sety !monig
la =1;

?sety !monig
la =1;

?setq !moni .
o o 7sety moni g

la = 1; lo = 1;

Fig. 4. Auxiliary monitor process with option f =0

Formulus VOz—¢o captures the trace along which ¢5 is maintained false within
7 while VOz ¢, is maintained true within Z.

When the assertions of type either assert_change or assert_time is writ-
ten with option f = 0 ,we need one auxiliary monitor process (AMP) to report,
with the auxiliary state-variable [, when ¢; is true for the first interval. The
AMP’s behavior for « is shown in figure 4. There are four modes in AMP to
reflect all combinations of truth values of [, and ¢;. Every LG-transition in the
original system will now have to synchronize with a transition in the AMP. This
is done with synchronizer moni,. We label the first process transition in each
LG-transition with synchronization ?moni,. In this way, the AMP is tightly syn-
chronized with the original system and the beginning and ending of the assertion
scope are precisely monitored.

When the system transits into the scope of assertion «, the AMP will also
receive a synchronizer 7set,, in addition to the sending out of synchronizer
moni,. On receiving 7set,, the AMP will set the value [, to report that the
scope is entered. Then on every change value of ¢ from true to false in a state
with [, = true, [, will be reset to false. When [, changes from true to false, it
means that the the system has left the first interval in which ¢, is true in the
scope of a.

When the assertions of type either assert_change or assert_time is written
with option f = 1, we need the following minor modification to the process
automata input to RED: for every incoming transition to modes labeled with b,
we need to label it with the auxiliary assignment l, := 1; to indicate that the
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scope of assertion « is entered. This can be seen from label l,, := 1; on the
incoming transitions to mode 7T} in figure 2.

8 Localized Abstract Assertion-Checking

Verification problem is highly complex to solve with the state-space explosion
problem. Thus it is very important to take advantage of whatever ideas, used
in the designs, communicable from the design engineers to the verification en-
gineers. The framework of OVL assertion-checking has advantage in this aspect
because the assertions are given in between lines of process programs. Thus it
is reasonable to assume that an assertion is either assured by the correspond-
ing process or essential for the correctness of the process. Along this line of
reasoning, we have developed three state-space abstraction technique, which we
call localized abstraction. Unlike traditional abstraction techniques [35], our new
technique adjust to the information coming with assertions.
Suppose we have an assertion « given in the program of process p. For «, a
process p’ is called significant if either p = p’ or some local variables of p’ appear
in a. All other processes are called insignificant. For an assertion, the three local-
ized abstractions reduce the state-space representations by making abstractions
on the state-variables of the insignificant processes. The three localized abstrac-
tions are described in the following. Suppose we have a state-space description
7.
o L*(): strictly local abstraction
L*(n) is identical to n except all information about state-variables, except
the operation modes, of insignificant processes are eliminated. The option
can be activated with option -Ad of RED 4.0.

o L5(): local and discrete abstraction
L (n) is identical to n except all information about local clocks of insignifi-
cant processes are eliminated. The option can be activated with option -At
of RED 4.0.

o L% (): local and magnitude abstraction
A clock inequality x — 2’ ~ ¢ is called a magnitude constraint iff either = 0
or ' = 0. LY, (n) is identical to n except all non-magnitude clock difference
constraints of the insignificant processes are eliminated. The option can be
activated with option -Am of RED 4.0.

We report the performance of our three abstractions in section 9.

9 Verification Experiments

The wireless communication standard of Bluetooth has been widely discussed
and adopted in many appliances since the specification [10] was published. To
show the usefulness of our techniques for industry projects, in the following, we
report our verification experiments with the L2CAP (Logical Link Control and
Adaptation Layer Protocol) of Bluetooth specification [10].
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9.1 Modelling L2CAP

L2CAP is layered over the Baseband Protocol and resides in the data link layer
of Bluetooth. This protocol supports higher level message multiplexing, packet
segmentation and reassembly, and the conveying of quality of service informa-
tion. We model the behavior of L2CAP in TC and write specification in OVL
assertions. The protocol regulates the behaviors between a master device and a
slave device. We use eight processes: the master upper (user on the master side),
the master (L2CAP layer), master L2CAP time-out process, master L2CAP
extended time-out process, the slave upper (user on the slave side), the slave
(L2CAP layer), slave L2CAP time-out process, and slave L2CAP extended time-
out process to model the whole system.

The SCTA in figure 5 describes the behavior of a L2ZCAP device described in
the Bluetooth specification [10]. A device may play the role of either master or
slave depending on whether the device starts the connection. Both the master
and the slave use the SCTA in figure 5. A master is a device issuing a request
while a slave is the one responding to the master’s request.

The original TC program has 303 lines of code. The optimized SCTA has
25 modes, 151 process transitions, 6 state variables, and 8 dense-time clocks in
total.

The message sequence chart (MSC) in figure 6 may better illustrate a typical
scenario of event sequence in L2CAP. The two outside vertical lines represent
the L2CA interface from (slave’s and master’s) upper layers to the L2CAP lay-
ers (slave and master respectively). The scenario starts when the master’s upper
layer issues an L2CA_ConnectReq (Connection Request) through the L2CA in-
terface. Upon receiving the request, the master communicates the request to
the slave (with an L2CAP_ConnectReq), who will then convey the request to
the slave’s upper layer (with an L2CA_ConnectInd). The protocol goes on with
messages bouncing back and forth until the master sends an L2CAP_ConfigRsp
message to the slave. Then both sides exchange data. Finally the master upper
layer issues message L2CA DisconnectReq to close the connection and the slave
confirms the disconnection.

We have made the following assumption in the model. When an upper layer
process needs to send out an event in response to the receiving of an event, the
time between the receiving and sending is in [0, 5]. Also, we assume that the
timeout value of RTX timers and ERTX timers are all 60 time units. With one
timeout, the L2CAP process aborts the session and changes to state CLOSED.

9.2 Performance Data
We have experimented with four OVL assertions. The first is
//assert_always(M_Con == 0) (a)

inserted at the beginning of the switch-case W4_L2CAP_CONNECT_RSP
of the master TC process program. M_Con is a binary flag used to check
if connection requests have been received from both master upper and
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1.7L2CAP DisconnectReq!L2CAP_DisconnectRsp
2.7L2CAP_ConfigReq!L2CAP Reject

3.7L2CA ConfigReq!L2CA_ConfigCfmNeg

4.7RTX-timeout!L2CA_TimeOutInd

5.7ERTX_timeout!L2CA_TimeOutInd

6.7L2CAP_ConnectReq!L2CA_ConnectInd

7.7RTX_timeout!L2CA_-TimeOutInd

8.7ERTX_timeout!L2CA_-TimeOutInd

9.7L2CA_ConnectReq!L2CAP_ConnectReq
10.7L2CAP_ConnectRsp!L2CA_ConnectCfm!disable RTX
11.7L2CAP_ConnectRspNeg!L2CA_ConnectCfmNeg!disable RTX!disable_ERTX
12.7L2CAP_ConnectRspPnd!L2CA_ConnectPnd!disable RTX!start_ERTX
13.7L2CA_ConfigRspNeg!L2CAP_ConfigRspNeg

14.7L2CAP_ConfigRsp!L2CA_ConfigCfm, con
15.7L2CAP_ConfigRsp!L2CA_ConfigCfm, con
16.7L2CAP _ConfigReq!L2CA_ConfigInd
17.7L2CAP_ConfigRspNeg!L2CA_ConfigCfmNeg!disable RTX
18.7L2CA_ConfigRsp!L2CAP_ConfigRsp, con == 0
19.7L2CA_ConfigReq!L2CAP_ConfigReq; con
20.7L2CA_ConfigRsp!L2CAP_ConfigRsp, con
21.7L2CAP_ConfigReq!L2CA_ConfigInd; buffer
22.7L2CA_ConfigReq!L2CAP_ConfigReq; buffer
23.7L2CA DataWrite!L2CAP Data

24.7L2CA DataRead; buffer=1;
25.7L2CAP Data!L2CA DataRead; buffer=1;
26.7L2CAP DisconnectReq!L2CA DisconnectInd

27.7L2CA DisconnectReq!L2CAP DisconnectReq!start RTX
28.7ERTX-timeout!L2CA_TimeOutInd
29.7RTX-timeout!L2CA_TimeOutInd

30.7L2CAP DisconnectReq!L2CA_DisconnectInd
31.7L2CA_DisconnectReq!L2CAP_DisconnectReq!start_RTX
32.7L2CA_ConnectRsp!L2CAP_ConnectRsp
33.7ERTX_timeout!L2CA_TimeOutInd
34.7RTX_timeout!L2CA_TimeOutInd
35.7L2CA_ConnectRspNeg!L2CAP_ConnectRspNeg
36.7L2CAP DisconnectReq!L2CA_DisconnectInd
37.7L2CAP DisconnectReq!L2CA DisconnectInd

38.7L2CAP DisconnectReq!L2CA_DisconnectInd
39.7ERTX_timeout!L2CA_TimeOutInd
40.7RTX_timeout!L2CA_TimeOutInd

41.7L2CA DisconnectRsp!L2CAP_DisconnectRsp
42.7RTX_timeout!L2CA_TimeOutInd
43.7ERTX_timeout!L2CA_TimeOutInd

44.7L2CA DisconnectRsp!L2CAP DisconnectRsp
45.7ERTX_timeout!L2CA_TimeOutInd
46.7RTX_timeout!L2CA_TimeOutInd

=0
1

=1

Fig. 5. SCTA of a Bluetooth device
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Fig. 6. A message sequence chart of L2CAP
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slave. The TC program with assertion (a) are presented in appendices ?7.
The assertion is satisfied because at the time process master enters state
W4 _L2CAP_CONNECT_RSP, the master reset M_Con to zero as initial value.

The second OVL assertion is

//assert_never (S_Con==0)

(b)

inserted at the beginning of the switch-case W4_L2CAP_CONNECT RSP of k the
slave TC process program. S_Con is the counterpart of M_Con. The assertion is

thus not satisfied.

The third OVL assertion is

//assert_change #([0,60],1)
c(master_status==W4_L2CAP_CONNECT_RSP,
master_status==W4_L2CAP_CONNECT_RSP)



272 F. Wang and F. Yu

which says that if the master enters state W4_L2CAP_CONNECT_RSP,
then it will eventually leave the state. The assertion is inserted at the
beginning of the master TC process. This is satisfied because of the timeout

issued from timer M_RTX.
The fourth OVL assertion is

//assert_time #([0,00),0)
d(slave_status==W4_L2CAP_DISCONNECT_RSP,
slave_status==W4_L2CAP_DISCONNECT_RSP)

(d)

which says that if the slave enters state WA_L2CAP_DISCONNECT_RSP, then
it will never leave the state. 700” is our notation for infinity co. The asser-
tion is inserted at the beginning of the slave TC process. This is NOT satisfied
because of the timeout issued from timer S_RTX.

The verification performance of RED 4.0 with and without localized abstrac-
tion technique against the four assertions is shown in table 2. The sizes of SCTAs

Table 2. Verification performance of assertions with various options

optimization?|abstraction?| size or performance? ||assertion (a)| assertion (b)
optimized no #modes/#transitions 25/151 25/151
time/memory 21.61s/845k| 23.71s/845k

L*() time/memory 18.83s/845k| 22.36s/845k

30 time/memory 10.295/845k| 19.82s/345Kk

Ly, () time/memory 19.22s/845k| 22.25s/845k

not no #modes/#transitions 258/360 258/360
optimzed time >20min >20min
optimization?|abstraction?| size or performance? ||assertion (c)| assertion (d)
optimized no #modes/#transitions 24/150 28/166
time/memory 34.95s/858Kk|49.27s/1869k

70 time,/memory || 32.63s/858k|48.81s/1869k

L5() time/memory 28.74s/858k|40.63s/1869k

Lo () time/memory 31.46s/858k|47.57s/1869k

not no #modes/#transitions 258/360 262/376
optimzed time >20min >20min

Data collected in cygwin environment on a Pentium 4 with 1.7GHz, 256MB, running MS
Windows XP.

for the four assertions, before and after optimizaton, are also reported. In the
following, we analyze the meaning of the performance data.

9.3 Performance Effect of Optimization

With our optimization techniques discussed in subsection 5.3, significant reduc-
tion in SCTA size is achieved for each of the assertions. In all four assertions,
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the numbers of modes in optimized SCTAs are reduced to around one tenth of
those in unoptimized SCTAs. Also the numbers of transitions are reduced to less
than half. In our experience, the time needed to model-check timed automata is
exponential to the size of input. Thus we do expect that the unoptimized SCTA
will be much harder to verify. This expectation is justified by comparing the
verification performance for the optimized and unoptimized SCTAs. In all cases,
the optimzed SCTAs allow efficient verification within less than 1 min while the
corresponding SCTAs do not allow verification tasks to finish in 20 mins. The
performance data in table 2 shows that our SCTA optimization techniques are
indeed indispensible.

9.4 Performance Effect of Localized Abstractions

In table 2, for each assertion against their optimized SCTAs, we see that the
verification performances with localized abstraction technique are all better than
the one without. This is because that in the L2ZCAP process, there are local
variables M_Con and S_Con and in the upper layer and timeout processes, there are
local clocks metric. For the four assertions, only the process in whose program
the assertion is written is significant. With the localized abstraction technique,
state information on local variables of insiginificant processes can be eliminated
to some extent and the state-space representations can be manipulated more
efficiently. We believe that from the performance comparison, we find that our
localized abstraction technique can indeed be of use in practice.

Among the three localized abstraction functions, we also observe difference
in performance. Initially, since L*() eliminate more state-information than L%, ()
and L5 () do, we expect L*() will result in the most reduced state-space repre-
sentations and the best verification performance. To our surprise, function L*()
performs the worst against three of the four assertions. We spent sometime to
look into the intermediate data generated with L*(). We found that because in-
formation like M_Con==1 can be eliminated, state-space representations with both
M_Con==0 and M_Con==1 will be generated. But the corresponding state-space
with M_Con==0 may otherwise be unreachable without the abstraction of L%().
Such false reachable state-spaces can in turn trigger more transitions, which are
otherwise not triggerable. Thus, with L*(), we actually may waste time/space in
computing representations for unreachable state-spaces. This explains why there
is the performance difference among the three localized abstraction functions.

10 Conclusion

This paper describes a new tool supporting formal OVL assertion-checking of
dense-time concurrent systems. A formal state-transition graph model of the
system and TCTL formulae of the properties are constructed from a descrip-
tion written in the TC language. We show how to mechanically translate TC-
programs into optimized SCTAs. To take advantage of the information coming
with OVL assertions for better verification performance, We demonstrate the
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power of new techniques by verifying the wireless communication L2CAP in
Bluetooth.

Since our framework are based on RED, which supports high-performance full
TCTL symbolic model checking, we feel hopeful that the techniques presented
here can be applied to real world industry projects. The major motivation of this
work is to provide a natural and friendly verification process to reduce the entry
barrier to CAV technology, especially for engineers of real-time and embedded
systems. And our experiment data on the real-world L2CAP indeed shows great
promise of verification in the style of OVL assertion-checking for dense-time
concurrent systems.
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APPENDICES

A Definition of SCTA

A SCTA (Synchronized Concurrent Timed Automaton is a set of finite-state
automata, called process automata, equipped with a finite set of clocks, which
can hold nonnegative real-values, and synchronization channels. At any mo-
ment, each process automata can stay in only one mode (or control location).
In its operation, one of the transitions can be triggered when the corresponding
triggering condition is satisfied. Upon being triggered, the automaton instanta-
neously transits from one mode to another and resets some clocks to zero. In
between transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set ) of modes and a set X of clocks, we use B(Q, X)
as the set of all Boolean combinations of inequalities of the forms mode = ¢ and
x — a' ~ ¢, where mode is a special auxiliary variable, ¢ € @, x,2’ € X U {0},
“~” is one of <, <,=,>,>, and c is an integer constant.

Definition 1. process automata A process automaton A is given as a tuple
(X,E,Q,I,u,T,\ ,m) with the following restrictions. X is the set of clocks. E
is the set of synchronization channels. @ is the set of modes. I € B(Q, X) is the
initial condition on clocks. i : Q — B(0, X') defines the invariance condition of
each mode. T C @ x @ is the set of transitions. A : (E x T') — Z defines the
message sent and received at each process transition. When A(e, t) < 0, it means
that process transition ¢ will receive |A(e,t)| events through channel e. When
(e, t) > 0, it means that process transition ¢ will send A(e, ) events through
channel e. 7 : T+ B(), X) and 7 : T + 2% respectively defines the triggering
condition and the clock set to reset of each transition. |

Definition 2. SCTA (Synchronized Concurrent Timed Automata) An SCTA

of m processes is a tuple, (E, Ay, Ag, ..., Ay,) where E is the set of synchro-
nization channels and for each 1 <p <m, A, = (X, E, Qp, Ip, ttp, Tp, Ap, Tp, Tp)
is a process automaton for process p. |

A waluation of a set is a mapping from the set to another set. Given an
n € B(Q,X) and a valuation v of X, we say v satisfies n, in symbols v |= n, iff
it is the case that when the variables in 7 are interpreted according to v, n will
be evaluated true.

Definition 3. states Suppose we are given an SCTA S = (E, A1, Aa, ..., Ap)
such that for each 1 <p <m, A, = (X, E,Qp, Lp, ttp, Tp, Ap, Tp, Tp). A state v
of S is a valuation of |, <, <,, (X, U {mode,}) such that
e v(modey) € @) is the mode of process ¢ in v; and
o foreach z € J;<y,<,, Xp, ¥(¥) € RT such that R™ is the set of nonnegative
real numbers and v = A\, <, tip(v(mode,)). [ ]

Foranyt € RT,v+tisa state identical to v except that for every clock x € X,
v(r) +t = (v +t)(z). Given X C X, vX is a new state identical to v except
that for every x € X, vX(z) =0.
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Now we have to define what a legitimate synchronization combination is in
order not to violate the widely accepted interleaving semantics. A transition plan
is a mapping from process indices p, 1 < p < m, to elements in T, U { L}, where
L means no transition (i.e., a process does not participate in a synchronized
transition). The concept of transition plan represents which process transitions
are to be synchronized in the construction of an LG-transition.

A transition plan is synchronized iff each output event from a process is
received by exactly one unique corresponding process with a matching input
event. Formally speaking, in a synchronized transition plan @, for each channel
e, the number of output events must match with that of input events. Or in
arithmetic, } 2, o <. 5(,)21 AMe, P(p)) = 0.

Two synchronized transitions will not be allowed to occur at the same instant
if we cannot build the synchronization between them. The restriction is formally
given in the following. Given a transition plan @, a synchronization plan Wg for
@ represents how the output events of each process are to be received by the
corresponding input events of peer processes. Formally speaking, Wy is a mapping
from {1,...,m}? x E to N such that s (p, p’, €) represents the number of event
e sent form process p to be received by process p’. A synchronization plan Vg
is consistent iff for all p and e € F such that 1 < p < m and &(p) #L, the
following two conditions must be true.

i Zlgp'gm;@(p’);éj_ P (p,p'se) = AP(p));

® ZlSpSm;Q(p)iJ_ gj@(plvpa 6) = —/\(@(p))7
A synchronized and consistent transition plan @ is atomic iff there exists a syn-
chronization plan ¥g such that for each two processes p,p’ such that @(p) #£L
and @(p’) #L, the following transitivity condition must be true: there exists a se-
quence of p = py,pa, ... ,pr = p’ such that for each 1 < i < k, there is an e¢; € F
such that either Wg(p;, pit1,€i) > 0 or Ye(piy1, pi,e;) > 0. The atomicity condi-
tion requires that each pair of meaningful process transitions in the synchroniza-
tion plan must be synchronized through a sequence of input-output event pairs.
A transition plan is called an IST-plan (Interleaving semantics Transition-plan)
iff it has an atomic synchronization plan.

Finally, a transition plan has a race condition iff two of its process transitions
have assignment to the same variables.

Definition 4. runs Suppose we are given an SCTA S = (F, A1, Aa, ... , Ap)
such that for each 1 < p < m, A, = (X,,, E,Qp, Ly, ftp, Tp, Ap, Tp, Tp). A run is
an infinite sequence of state-time pair (vo,t0)(v1,t1) ... (Vg tg) -« - such that
vo = I and toty ... tg...... is a monotonically increasing real-number (time)
divergent sequence, and for all k > 0,
o forallt € [0,tp41 — ], vk +t = A<y (Vi (mode,)); and
e cither
— vi(mode,) = V41 (mode,) and vy + (fpt1 — tg) = Viy1; OF
— there exists a race-free IST-plan @ such that for all 1 < p < m,
s either vy (modey) = vg41(mode,) or (v(modey,), vet+1(mode,)) € T,
and

* vp + (tpp1 — te) E AlSpSm@(p)#L Tp (Vi (modep), V41 (mode,)) and
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* (Vg + (te1 — tr))concat<p<ma(p)£L Tp(Vk(mode, ), Vg1 (modey)) =

Vi+1. Here concat(7y1,... ,7n) is the new sequence obtained by con-

catenating sequences 71,... ,7, in order. |

We can define the TCTL model-checking problem of timed automata as

our verification framework. Due to page-limit, we here adopt the safety-analysis

problem as our verification framework for simplicity. A safety analysis problem

instance, SA(A,n) in notations, consists of a timed automata A and a safety

state-predicate n € B(Q, X). A is safe w.r.t. to 7, in symbols A = n, iff for all

runs (vo,to)(v1,t1) o (Vs te) oo ne e , for all k£ > 0, and for all ¢ € [0, tx41 — t1],
v +t =1, i.e., the safety requirement is guaranteed.

B TCTL Semantics

Definition 5. (Satisfaction of TCTL formulae): We write in notations v |=
¢ to mean that ¢ is satisfied at state v in S. The satisfaction relation is defined
inductively as follows.

e The base case of ¢ € B(P, X) was previously defined;
v E ¢V ¢ iff either v = ¢ or v | ¢
vE ¢y iff v ¢y
v = Ip1Uz s iff there exist a v-run = ((v1,1t1), (v2,t2),...) in A, an i > 1,
and a d € [0,t,41 — t;], s.t.

—t;+d6—t € 7,

- v+ o ': ¢23

— for all j,0" s.t. either (0 < j <i)A (8 €[0,tj41 —tj]) or (j =14)A () €

[075))’ vi+ o' ): é1.

v = Vp1Uz s iff for every v-run = ((q1,v1,t1), (g2, Vo, t2), ... ) in A, for some
i>1andd € [O,tH_l — ti},

— t;+0—1t € 7,

- v+ o ': ¢23

— for all j,0" s.t. either (0 < j <i)A (8 €[0,tj41 —t;]) or (j =14)A () €

[075»’ vi+ d' ): ¢1.

Given a shared-variable concurrent timed automaton S and a TCTL formulus
¢, we say S is a model of ¢, written as S |= ¢, iff 0 = ¢ where 0 is the mapping
that maps mode, to ¢, all global variables and all clocks to zeros. |
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Abstract. Ubiquitous computing will dramatically change our lives due
to the enhancement of our real world. Augmented reality (AR) is a
promising technique for realizing the enhancement by superimposing
computer generated images on video images. However, it is not easy
to build applications using augmented reality techniques since the devel-
oper needs to deal with issues like distribution and context-awareness. It
is desirable to provide a software infrastructure to hide the complexities
from programmers.

In this paper, we propose a middleware called TEAR (Toolkit for Easy
Augmented Reality) supporting augmented reality for ubiquitous com-
puting environments. Our middleware provides several multimedia com-
ponents that process video streams using AR techniques. New compo-
nents to provide more complex functionality can be developed by com-
posing these components.

1 Introduction

Ubiquitous computing [20] will change our lives dramatically by enhancing our
real-world with smart objects. Smart objects are everyday objects that contain
very small embedded processors in order to add functionality. Such objects are
connected to a wireless network and can be accessed by the application pro-
grammer. The behavior of smart objects should be changed in a context-aware
fashion.

In ubiquitous computing environments, a user needs technologies to access
the enhanced real-world. Many HCI researchers have proposed various inter-
action devices to control everyday objects, or to retrieve information in our
real-world.

Augmented reality [2] is a promising technology for realizing the enhance-
ment of our real-world by superimposing computer generated digital images onto
video frames. However, it is not easy to build augmented-reality applications in
ubiquitous environments. Complex issues like distribution and context-awareness
need to be addressed by the application programmer [15,19].

In this paper, we propose a middleware called TEAR (Toolkit for Easy Aug-
mented Reality) for augmented reality support in ubiquitous computing environ-
ments. Our middleware provides several components that process video streams.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 279-295, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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We can create an augmented-reality application in a ubiquitous environment by
composing several multimedia components. Complex issues like distribution and
context-awareness are hidden by our middleware. In this way, the application
programmer is not concerned with such complexities and can focus rather on
the application logic. This paper describes the design and implementation of our
middleware, and shows some of our experiences using our resulting system.

The remainder of this paper is structured as follows. In Section 2, we describe
the design issues of our middleware. Section 3 explains the design and imple-
mentation of our middleware. In Section 4, we present two scenarios showing the
effectiveness of our system. In Section 5, we describe related work, and Section
6 concludes the paper.

2 Design Issues

In this section, we describe the design issues involved for building our middle-
ware. First, we present a brief overview of ubiquitous computing and augmented
reality. Then, we show the requirements for building augmented-reality applica-
tions in ubiquitous computing.

2.1 Ubiquitous Computing and Augmented Reality

Augmented reality is a technology offering an augmented real-world to the user.
More concretely, an augmented-reality application presents a view composed
of the real-world and digital information managed by computers. Besides an
augmented view of the real-world, it may provide a seamless human-computer
interface as well.

Developing augmented-reality applications is not easy. Among other con-
cerns, programmers must implement complex algorithms to detect visual mark-
ers. Some toolkits, like the ARToolkit [1], have been developed to equip the
programmers with implementations of typical augmented reality problems.

In ubiquitous environments, computers and networks are accessed implicitly
rather then directly. Most of the time, users are not even aware that they are
connected to a network and accessing multiple computers at the same time. In
the end, users want to deal with the real-world rather then with cyber-space.
This requires a high level of transparency and makes ubiquitous environments
even more complex.

2.2 Requirements

When developing ubiquitous augmented-reality applications, the developer is
faced with the complexities inherent to ubiquitous environments. Existing AR
toolkits are not designed for such environments and consequently do not address
these complexities. We found it is necessary to meet the following three require-
ments when building augmented reality applications in ubiquitous computing
environments.
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High-Level Abstraction: Ubiquitous computing environments consist of various
types of computers and networks. Networks may contain a mix of resource-
constrained and specialized computers. Also, the existing augmented reality
toolkits are platform-dependent. Consequently, application programmers must
develop different software for each platform. A middleware to provide high-
level abstraction to hide such differences from application programmers is
necessary|14,16] in order to reduce the development costs.

Distribution: In ubiquitous computing environments, applications must be dis-
tributed over many processors. Since the environment usually consists of various
types of computers, some may not be appropriate for heavy processing like video-
data analysis. For example, cellular phones and PDAs are usually to weak for
heavy processing, but they might want to utilize augmented-reality features.
However, an application running on low CPU-resource could be distributed such
that heavy processing is performed on strong computers. In ubiquitous comput-
ing, we think that such distribution needs to be hidden from the developer in
order to keep development time and cost as low as possible.

Context-Awareness: In ubiquitous computing environments, applications must
support context-awareness since users need to access computers and networks
without knowing. It is required for an application to adapt itself to the users
situation dynamically. However, implementing context-awareness in an applica-
tion directly is very difficult. An application programmer does not want to be
concerned with such complexities and we think that it is desirable to embed
context-awareness in our framework and hide it from the developer.

3 Middleware Supporting Augmented Reality

In this section, we describe the design and implementation of TEAR, the mid-
dleware we developed to support augmented reality in ubiquitous computing.

3.1 Overview of Architecture

TEAR consists of two layers, as shown in Figure 1. The upper layer is the multi-
media framework (see section 3.3) and the lower layer is a communication infras-
tructure based on CORBA (Common Object Request Broker Architecture). The
support of context-awareness is handled by the communication infrastructure.

An augmented reality application using TEAR consists of an application
composer and several multimedia components. An application composer is a
user-side program that coordinates an entire application. It maintains references
to objects contained by multimedia components, and configures them to build
distributed context-aware applications. For example, as shown in Figure 1, a
multimedia source component (a camera) and a multimedia sink component
(a display) are connected. The setup is achieved by the application composer
through the interface provided by the continuous media framework.
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In TEAR, a proxy object in an application may hold several references to
objects that provide identical functionality. In the example, there are two cam-
era components and three display components. A proxy camera object in the
application composer holds two object references to camera components, and a
proxy display object holds three object references to display components. Which
reference is used in an application is decided upon the context policies, specified
in the application.

continuous
media

component :
model

°%9®%e

communication
infrastructure

application
composer

Fig. 1. Overview of TEAR Architecture

TEAR meets the requirements outlined in the previous section in the follow-
ing way.

High-Level Abstraction: TEAR provides a multimedia framework for construct-
ing augmented reality components in an easy way. Complex programs like detect-
ing visual markers and drawing 3D objects are encapsulated in respective multi-
media components. All the components offer an identical CORBA interface for
standardized inter-component access. In our framework, a complex distributed
and context-aware AR application can be developed with the application com-
poser that configures existing multimedia components. We describe details about
the multimedia framework in Section 3.3.

Distribution: For composing multimedia components in a distributed environ-
ment, we have adopted a CORBA-based communication infrastructure. Each
multimedia component is designed as a CORBA object. Since CORBA hides
differences among OS platforms and languages, the continuous media compo-
nents run on any OS platforms, and can be implemented in various programming
languages.

Context-Awareness: Inthe TEAR framework, the communication infrastructure
is designed as a CORBA compatible system that supports context-awareness.
The infrastructure supports user mobility by automatically reconfiguring media
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streams. Also, the infrastructure allows us to select a suitable component to
process media streams according to the condition of each computer and the
situation of a user by specifying policies.

We describe details about the communication infrastructure in Section 3.2.

3.2 CORBA-Based Communication Infrastructure

As described in Section 2, context-awareness is one of the most important fea-
tures for implementing augmented reality applications in ubiquitous computing.
Therefore, a middleware supporting augmented reality must support context ab-
straction which allows us to specify application preferences about context infor-
mation such as user location. We have designed a context-aware communication
infrastructure based on CORBA which provides dynamic adaptation according
to the current context.

Dynamic Proxy Object. In our system, application programmers use a dy-
namic proxy object to access target objects, contained by multimedia components
described in Section 3.3. The dynamic proxy object contains several object ref-
erences to actual target objects, context information, and an adaptation policy
for specifying how to adapt the invocation to a target object. A dynamic proxy
object is a CORBA object like a multimedia component, and provides the same
interface as actual objects. When a method in a dynamic proxy object is in-
voked, the request is forwarded to the most appropriate object according to the
specified adaptation policy as shown in Figure 2.

client fontva_rd =
program | function reasoning -
call [N
~

adaptation|| context ~
policy  ||information ~
\O
dynamic proxy actual
object objects

Fig. 2. Dynamic Proxy Object

In the current design, an adaptation policy is specified as a set of location
and performance policies. Examples of location policies are ” Choose an object
in the same host with *”  ”Choose the nearest object from *” or ” Any host”.
Performance policies might be ”Light loaded host” or ” Any host”.
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Context Trader Service. To create a dynamic proxy object described in
the previous section, we we have developed a CORBA service called the con-
text trader service. An application program can acquire a reference to the con-
text trader by invoking the resolve\_initial\_reference-method provided
by CORBA.

Figure 3 explains how a client program creates and uses a proxy object. (1)
By invoking the resolve method on the context trader service a developer can
acquire a reference to a proxy object. The method requires three parameters; a
type specifying the proxy object, an adaption policy and the scope for select-
ing the target objects. (2) The context trader service creates a proxy object of
the specified type and registers a target object within the specified scope. (3) A
reference to the proxy object is returned to the client program. (4) Callback han-
dlers may be registered through the reference. (5) Context changes are reported
to the context manager. (6) The context manager notifies the proxy object upon
context change and (7) the client program is notified by invoking the registered
callback handlers.

(7) Call the handler

Client program
Callback > sequence

!\ Handler | | = —°~ + reference
T

(1) resalve (T _ptr_type type,
TEAR: AdaptationPolicy policy, TEAR: Seope scope)

(4) Register a Callback Handlér

Proxy (3) Fointer to
Object Proxy object
L L Context Trader
ORB LA Service
(6) Notify contekt Ehangh Context
£ % | Manager

(5) Context is changed

BOO

Fig. 3. Resolving Dynamic Proxy Object

3.3 Multimedia Framework

The main building blocks in our multimedia framework are software entities
that externally and internally stream multimedia data in order to accomplish a
certain task. We call them components. In the following subsections we describe
components in more detail and provide source code to illustrate how a developer
can configure a component.
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CORBA
Interface

Multi-media
Objects

Fig. 4. General Component

Components. A continuous media component consists of a CORBA interface
and a theoretically unlimited number of subcomponents or objects as shown in
Figure 4. Video or audio data is streamed between objects, possibly contained
by different components, running on remote machines. Through the CORBA
interface virtual connections can be created in order to control the streaming
direction of data items between objects. Components register themselves at the
CORBA Naming Service under a user-specified name. Next, we will discuss the
CORBA interface subcomponents, thread scheduling and virtual connections.

CORBA Interface. A component can be remotely accessed through one of
three CORBA interfaces: Component, Connector and Services.

The Component interface is added to the component to provide a single object
reference through which references can be obtained to other CORBA interfaces.
The benefits of adding such an interface is to give clients access to all inter-
component functionality through a single reference. Such a reference can be
published in the Naming or Trading Service [8], provided by almost any OMG-
compliant ORB vendor. In addition, the Component interface provides functions
to query individual objects and the component as a whole. The Component in-
terface is identical to all components.

The Connector interface provides methods to establish virtual connections
between objects, possibly contained by different components, running on remote
sites. More specific, the interface provides functions to access and update routing
information of individual source objects (see subsection Routing and Virtual
Connections). The Connector interface is identical to all components.

The Services interface provides methods for controlling specific objects
within a component. Clients may find it useful to query and/or change the state
of a multimedia object. For example, a client may want to query a display ob-
ject for the resolutions it supports and may want to change the resolution to its
needs. The Services interface varies from component to component, depending
on the internal objects it contains.

The interfaces are part of the module IFACE and are written in CORBA
IDL [8,11]. Here follows a snapshot of the Connector and Component interface!:

interface MConnlIface

! The Services interface is not included since it varies for different component config-
urations.
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void
addRoutingSeq(in ObjectId id,

in RoutingSeq seq)
raises(InvalidObjectId) ;

boolean
removeRoutingSeq(in ObjectId id,
in RoutingSeq seq)
raises(InvalidObjectId) ;
s

interface MCompIface
{
MConnIface
getConnIface();

MServIface
getServIface();

boolean
isInput(in ObjectId id)
raises(InvalidObjectId);

boolean

isOutput (in ObjectId id)

raises(InvalidObjectId);
3

Subcomponents or Objects. Typically, within a component, several objects
run in separate threads and stream data in one direction. For example, a camera
object may capture images from a video device, and stream the video data to a
display object through a red-blue swapper that swaps the red and blue values
of a video frame as shown in Figure 5.

CORBA
Interface
RBSwapper }—» ‘ Display ‘

Camera =

Fig. 5. Example Component
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In our approach, the central focus is the stream of data from data producers
to data consumers through zero or more data manipulators [10]. Data producers
typically are interfaces to video or audio capture hardware or media storage
hardware. In our framework we call them sources. Data manipulators perform
operations on the media-data that runs through them. Data manipulators get
their data from sources or other data manipulators and stream the modified data
to a consumer or another manipulator. In our framework we call them filters.
Data consumers are objects that eventually process the data. Data consumers
typically interface to media playback devices or to media storage devices. In our
framework we call them sinks. In our example from Figure 5, data is streamed
from our camera source object, through the red-blue swapper filter object, into
the display sink object.

Objects are categorized as input and/or output objects. For example, a filter
object is both an input and an output object, meaning it is capable of respectively
receiving and sending data. Clearly, a source object is of type output and a sink
object of type input.

More concrete, our framework provides the abstract classes MSource,
MFilter and MSink? written in C+4+. Developers extend the classes and over-
ride the appropriate hook-methods [7] to implement functionality. Multimedia
objects need only to be developed once and can be reused in any component.

Components know two specialized objects for handling inter-component data
streaming, namely rtp-in and rtp-out. An rtp-in object is a source object, con-
sequently of type input, that receives data from remote components over a RTP
connections. Semantically this is not strange at all, since from the components
point of view, data is produced by means of receiving it from another compo-
nent. Similarly, rtp-out is a sink object that is responsible for sending data to
other components.

Thread Scheduling. Since all objects run in separate threads, priority values
can be assigned as a criteria for preemption as multiple threads are competing for
the CPU simultaneously. By assigning priority values, the underlying operating
system decides which thread utilizes most CPU cycles during execution. For
example, a developer of a component may assign higher priorities to objects
that perform long calculations.

In our approach, data items are streamed between objects, possibly contained
by different components. Individual objects, running in separate threads, are not
scheduled for the CPU until they receive data for processing. In this way, the
data items function as scheduling tokens for individual threads [10]. Also, idle
objects do not waist any CPU cycles.

Routing and Virtual Connections. A typical augmented reality component
might contain a filter object that adds digital images to a video frame at a

2 The M preceding the class names indicate that they are part of the framework and
stands for multimedia.



288 M. Kurahashi et al.

specified position within the frame. Different client components may want to
use the service at the same time by sending video frames to the component and
afterwards receiving it for playback.

This implies that the data streamed through filter objects within components
might have different destinations. Solely setting up direct connections between
objects does not satisfy the above described scenario. If each client would be
connected to the filter object as a destination, how does the filter object know
which data is to be send to which destination?

To solve the above issue we do not use direct connections between objects.
Rather, source objects add a routing list to the produced data items, consisting
of all its consecutive destination objects. In this approach, after a data item is
processed by the filter object, the next destination is popped from the routing list
and the data is forwarded to the indicated object. We say that the destination
objects in a routing list are virtually connected.

In order to identify an object within a component a unique identifier is as-
signed to each object upon creation. Universally, we use a tuple containing a
Component object reference (see subsection CORBA Interface) and an object
identifier to denote one specific object. Such tuples are used as destinations in a
routing list.

Component Configuration. In our framework, we use a component abstrac-
tion that hides much of the details that deal with CORBA and virtual con-
nections. By extending the abstraction, a developer can configure a component.
More specific, a developer specializes the C++ MComponent class provided by
the framework. In its constructor it typically creates subcomponents, possibly
creates virtual connections and finally adds the objects to the container compo-
nent. Source code for the example component in Figure 5 might look something
like this®:

// The variables starting with m_p
// are member variables declared in
// the derivation of MComponent.

m_pCamera = new Camera;
m_pSwapper = new RBSwapper;
m_pDisplay = new Display;

MRoutingList list = new MRoutinglist;
list.add(0, m_pSwapper->getId());
list.add(0, m_pDisplay->getId());
m_pCamera->addRoutingList (1list);

addObject (m_pCamera) ;

3 Using a 0 for a component reference in the construction of a routing list denotes a
local connection.
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addObject (m_pSwapper) ;
addObject (m_pDisplay) ;

Under the hood, the component registers itself in the Naming Service under
a specified name given on the command line. If successful, the component runs
all its subcomponents and finally blocks control waiting for incoming CORBA
requests.

The above example is an illustration of how to configure a simple component
that streams data locally. Now assume a second component that contains a
similar camera and display object and needs to be configured to swap red and
blue values for the produced video frames. One possibility would be to connect
the camera object to the first components red-blue swapper, and the red-blue
swapper to the display object. Simplified source code for the component might
look like this.

m_pCamera = new Camera;
m_pDisplay = new Display;

// Retrieve the object reference of
// the first component from the Naming
// Service and store it in pCompIface.

// Retrieve the object id of RBSwapper
// from the first component through its
// object reference and store it in

// nObjectId.

MRoutinglList list = new MRoutinglist;
list.add(pCompIface, nObjectId);
list.add(0, m_pDisplay->getId());
m_pCamera->addRoutingList (list);

addObject (m_pCamera) ;
addObject (m_pDisplay) ;

Alternatively, the virtual connections might be created by an external client.
In this scheme, the external client retrieves the object references of both compo-
nents from the Naming Service. Next, it constructs a routing list and invokes the
appropriate function of the Connector interface to add the list to the routing
information of the camera object.

Stream Reconfiguration. Supporting context-awareness by multimedia ap-
plications requires not only dynamic adaptation of object references, but also
dynamic re-direction of continuous media streams. When the current object ref-
erence of a dynamic proxy object is changed, continuous media streams must be
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reconnected dynamically to change the current configuration of continuous me-
dia components according to the current context information. To achieve this, a
callback handler described in Section 3.2.2 is used. It is registered to a dynamic
proxy object by an application, and the handler is invoked when the current
context is changed. Next, we discuss how our system reconfigures the connec-
tions among continuous media components by using the example described in
the previous section.

Suppose a context change is reported to the context manager and a notifica-
tion is triggered to the proxy object holding a reference to the red-blue swapper.
In response, the proxy object might want to change its internal reference to the
red-blue swapper in order to adapt to the new context. If so, its registered call-
back handlers are invoked. Typically, one of the callback handlers is concerned
with updating routing information of affected source objects. Such handlers ex-
pect a parameter holding a reference to the new target object. In the example,
the reference to the red-blue swapper is used to construct a new routing list,
and the routing information of the camera source object is updated to reflect
the new configuration.

By updating the routing information of source objects virtual connections are
added and deleted. Subcomponents that do not appear in routing information of
any source object are not presented any data and consequently reside in an idle
state. By using virtual connections, no notification messages have to be sent to
any filter or sink object to hold them from processing any data. Solely updating
the routing information of source objects is sufficient.

Components for Augmented Reality. Among others, TEAR provides aug-
mented reality components for the detection of visual markers in video frames
and superimposing 3D objects at a specified location within a frame. Such com-
ponents are implemented as objects contained by multimedia components as
described in subsection 3.3. They use the ARToolkit to implement functionality.

A detection filter object expects a video frame as input and looks for visual
markers. Information about visual markers, if any, is added to the original video
frame and send as output. Since different types of visual markers will be avail-
able, the format of the marker information must be defined in a uniform way.
Consequently, filter components detecting different types of visual markers can
be used interchangeably .

A super-imposer object expects video frames with marker information as
input, superimposes additional graphics at the specified location, and outputs
the augmented video frame.

Figure 6 shows how the two components can be used in sequence to enhance
a video stream with augmented reality. In this configuration, video frames are
captured by an input device and sent to the output device through the detection
filter and super-imposer. As a result, visual markers are replaced by digital
images.
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Fig. 6. Components for Augmented Reality

4 Sample Scenarios

This section describes two scenarios showing the effectiveness of TEAR. In the
first scenario, we describe how mobile augmented reality can be used on low CPU-
resource devices such as PDAs and cellular phones. In the second scenario, we
describe a follow-me application that dynamically changes camera and display
devices according to user location.

4.1 Mobile Augmented Reality

In a typical mobile augmented reality application, our real-world is augmented
with virtual information. For example, a door of a classroom might have a visual
tag attached to it. If a PDA or cellular phone, equipped with a camera and the
application program, captures the tag, it replaces it by displaying the todays
schedule for the classroom.

We assume that in the future our environment will deploy many augmented
reality servers. In the example, a near server stores the information about todays
schedule and provides a service for detecting the visual tag and replacing it by
the information about the class room, as depicted in figure 7. Other augmented
reality servers, located in a street, might contain information like what shops or
restaurants can be found in the neighborhood and until how late they are open.

To build the application, an application composer uses components for cap-
turing video data, detecting visual markers, superimposing video frames and
displaying video data. In addition, the composer utilizes a sensor component.
The application composer contacts a context trader service to retrieve a ref-
erence to a dynamic proxy object managing references to augmented reality
server components. In this way, the most suitable server component is selected
dynamically. The sensor component notifies sensing information to the context
manager in a user side ORB, and the context manager might change the context
of the proxy object. If the context is changed, the reference to the actual AR
server component used by the current user is updated and the callback handler
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is called. In the callback handler, the routing information managed by the data
source component is updated to reflect the new configuration. As a result, the
new AR server components are utilized.

Users can utilize services and information provided by the most suitable
server according to users context (location). If the user moves from one area to
another, the actual server managed by its proxy object is updated dynamically
without user intervention. Since the application composer uses the same proxy
object, it is not concerned with the existence of multiple server objects. In this

way, a developer can build context-aware application without to much additional
effort.
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Fig. 7. Mobile Augmented Reality

4.2 A Follow-Me Application

In this section, we consider an application that receives a video stream from
a camera and displays it on the nearest display to the user. As shown in Fig-
ure 8, there are two continuous media components. The first one is a camera
component, and the second one is a display component. The two components
are connected by an application composer. However, the actual display com-
ponent is changed according to user location. An application composer holds a
proxy object managing several display objects and constantly changes the target
reference to a display nearest to the user. Also, the application composer has
a context manager knowing which proxy object should be changed when it is
notified of a context change (e.g. when a user moves).
When the user moves, a location sensor detects the movement of the user. As
a result, the context manager is notified by the location sensor (1). In response,
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the context manager changes the context of the proxy object (2). Therefore, a
method invocation is forwarded to the nearest display component (3). In this
case, when a callback handler in the application composer is invoked, it updates
the routing information held by the camera component (4).

application Communication
COMposer infrastructure

proxy af

camera

,

/ 14} stream ’ . —

y | re-direction
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Fig. 8. Follow-me Application

5 Related Work

ARToolkit[1] is a software library that allows us to develop augmented reality
applications easily. It provides several functions to detect square formed visual
markers in a video frame. We have implemented continuous media components
for augmented reality by reusing programs provided by the ARToolkit.

DWARF[3] is a component based framework for distributed augmented re-
ality applications using CORBA. It aims to develop prototypes easily with ex-
tended XML or UIML. Our system is different from DWARF since our system
offers context-awareness to develop augmented reality applications suitable for
ubiquitous computing.

The VuSystem[10] is a framework for compute-intensive multimedia applica-
tions. It is divided into an in-band partition and an out-of-band partition. The
out-of-band partition is written in Tcl and controls the in-band media process-
ing modules written in C++. Compute-intensive means that computers perform
analysis on multimedia data, and can take actions based on the findings. In our
framework, we intend to use visual marker information contained within video
frames more extensively. A visual marker might contain any kind of information.
For example, a sensor device might use visual markers to estimate location or
analyze what it is monitoring.

Infopipes[9] proposes an abstraction for building distributed multimedia
streaming applications. Components such as sources, sinks, buffers, and fil-
ters are defined, and multimedia applications are built by connecting them.
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In our framework, we explicitly specify the connection among components like
Infopipes, but the connections are dynamically changed according to context
information.

Fault Tolerant CORBA specification[17] allows us to create a replicated ob-
ject to make a service highly reliable. In the specification, when we adopt the
primary/backup scheme, one of the replicated objects actually receive a request.
The primary replica is specified in an object reference that is passed to a client.
When the object reference becomes invalid, the reference to the primary replica
is returned by using the location forward mechanism in the IIOP protocol. The
scheme is very similar to our context-aware support in CORBA.

A programmable network[5] allows us to change the functionalities of the
network according to the characteristics of each applications. Each entity in a
programmable network, like a router, has a programmable interface designed to
change the functionalities. In our approach, an application can configure each
continuous media component according to the characteristics of the application.
The capability is similar to a programmable network.

The LocALE[13] framework provides a simple management interface for con-
trolling the life cycle of CORBA distributed objects. It extends mobility support
to the CORBA life cycle management mechanism. Objects can be moved to any-
where in a location domain by the explicit request from a client. In our frame-
work, on the other hand, objects can be autonomously selected by the dynamic
proxy object described in Section 3.2.1.

6 Conclusion

In this paper, we have described our middleware framework to support aug-
mented reality for ubiquitous computing. We have described the design and the
implementation of our system, and shown some experiences with our current pro-
totype system. Our experiences show that our system is very useful to develop
several augmented reality applications for ubiquitous computing.

In the future, we like to continue to improve our middleware framework, and
to develop attractive augmented reality applications such as game, navigation,
and enhanced communication applications. Currently, our system is running on
Linux, and we like to exploit real-time capabilities provided by Linux to process
video streams in a timely fashion. Also, we are interested to take into account to
use a device proposed in [18] since the device can augment the real world without
a display by projecting computer generated graphics on real objects directly.
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Abstract. This paper proposes ‘“Zero-stop Authentication” system, which re-
quires no intentional interactions between users and authentication applications.
Our Zero-stop Authentication model simplifies the current complicated authen-
tication process by automating detection of users and objects. Our challenge is
to eliminate the necessity for users to wait for a moment to be authenticated
without reducing security level of authentication. To accomplish such real time
user authentication in a physical environment, user mobility needs to be mod-
elled. This paper models and formulates the user mobility and time constraints as
“1/N x 1/M model”, considering user speed, sensor coverage areas, commu-
nication time between the sensors and the server, and processing time consumed
by an authentication process. We also prototyped a library application based on
1/N x 1/M model, and installed it into Smart Furniture [1] which is an experi-
mental platform to examine feasibility of our model.

1 Introduction

Environment surrounding us is becoming pervasive and ubiquitous [2], populated with
mobile devices and various appliances. With the use of these devices, we can access
computational resources with increased mobility. Moreover, sensor technologies make
such an environment smart, and enable proactive behavior of applications. The applica-
tions proactively take the first action for the users by achieving both users’ and objects’
context. An example of the proactive behavior can be found in an automatic door. An
IrDA sensor on top of the door detects a user coming, and opens the door without receiv-
ing any explicit commands from the user. Due to the proactive behavior, users can access
and execute computer services such as check-out applications in supermarkets and li-
braries without the need of intentional interaction with systems. Despite the progress in
above mentioned ubiquitous and mobile computing technologies, authentication system
and its architecture are becoming more complicated. Existing authentication systems
require users to input their names and passwords or show their identification cards to
access computers and software. Let us assume, for example, that a user borrows books,
and checks out of a library. In the library, the user needs to show an identification card
to a librarian, and the librarian checks whether the user is valid. After authenticating the
user, the librarian checks books to lend. In this process, both the user and the librarian
need certain time for the authentication.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 296-311, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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The key challenge is to eliminate users’ waiting time for authentication with security
levels of authentication kept. This paper proposes a sensor-based automatic authentica-
tion: zero-stop authentication, which diminishes user-computer or user-software inter-
action mentioned above, providing “zero-stop” property. We define “zero-stop” property
as a property of an authentication system not to make moving users pause during au-
thentication process. To achieve this property, a system needs to meet the following four
functionalities:

Correctly detecting users and objects.

Providing active authentication that requires no input from users.
Providing real time response.

Presenting feedback of authentication results.

To provide real time response, first user and object mobility need to be modeled.
Modelling free mobility in which users and objects are assumed to move around through
arbitrary physical point and in arbitrary direction can be difficult. Rather, we have mod-
elled one specific class of mobility in which users and objects pass through a certain
physical point in one direction. We can see such mobility pattern in real world, for ex-
ample at gates in public buildings and infront of service counters. We expect that many
applications can benefit if such a mobility class is formalized. Our model is called “Zero-
stop Authentication”. In this model, the aim is not so much as to provide guarantees for
authenticaiton process to complete within certain time constraint. Our aim is to provide
formulas to check if the entire authentication process can be completed within certain
time, given the velocity of the user and system overhead, so necessary compensation can
be provided. To keep the authentication safe, we adopt existing security technologies
such as secure socket layer (SSL) [3] and IPSec [4]. Encryption technologies like DES
[5] and RSA [6] also secure authentication process.

The rest of this paper is structured as follows. Section 2 details requirements to realize
Zero-stop Authentication and our contribution. In Section 3, we compare related work
with our system, and discuss whether current work can achieve the requirements of the
Zero-stop Authentication. Section 4 introduces “Zero-stop Authentication model”, and
formalizes users’ and objects’ mobility in terms of soft real-time operations. Section 5
discusses the user-object binding problem that the system needs to distinguish which
objects are whose, and then Section 6 designs system architecture of the sensor-based
Zero-stop Authentication. In Section 7, we prototyped a library check-out application
based on our Zero-stop Authentication model. Finally, we summarize this paper, and
discuss future work in Section 8.

2 Challenges

Sensing and networking technologies are rapidly developing. Computing devices in gen-
eral are also reducing their size, becoming more energy efficient and inexpensive. They
are becoming pervasively available. These technological developments let us envision a
computing environment where myriad devices actively sense and interact with us. For
example, at the entrance gate in a subway station, users need to take their tickets out
of their purses or their pockets, then put it into the ticket gate and receive it. In this
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context, exploiting an proactive ticket gate which detects the user’s ticket automatically
will decrease users’ stress for handling the ticket.

Turning to our daily activities, situations in which we need to authenticate ourselves
are increasing. For example, we log on to computers, show ID cards when entering
authorized buildings and spaces, show credit cards to purchase merchandises (on-line as
well as off-line), and so on. Making environments proactively authenticate users reduces
stress on users greatly in aforementioned situations. In fact, such applications are starting
to be even commercially available [7] [8]. However, these applications organize sensors,
devices, and software functions on their own. A generic model is yet to be available.

The main challenge of this paper is achieving a sensor based real-time authentication
which authenticates multiple users passing by an authentication gate carrying multiple
objects. In realizing the authentication system, there are mainly two sub challenges:
modeling user and object mobility and object binding.

To support the user’s continuous mobility during the authentication process, the au-
thentication system needs to finish its tasks within a certain time. The necessary time for
authentication strongly depends on the hardware and software performance. Therefore
we need to formalize the mobility of users and objects and utilize this formulation when
designing and installing the zero-stop authentication system. In this formalization, we
have made four models of mobility according to the number of users and objects. In the
first model, there is one user carrying one object in the authentication area. In the second
model, there is one user carrying multiple objects in the area. In the third model, there
are multiple users and each of them brings one object. In the fourth model, there are
multiple users and each of them brings multiple objects.

When multiple users carrying multiple objects go through the authentication area at
the same time, the authentication system needs to distinguish which objects are whose.
If the system fails, some objects might be wrongly assigned to other users. The binding
of users and objects should be done either within the sensor or within the user’s client
device. In the former case, the sensor detects all the users and objects collectively and
distinguish each object. In the latter case, the client device detects all the objects user
choose and the client device informs the sensor collectively. As a result, the sensor can
distinguish the objects by the data sent from the user’s device.

In consideration of aforementioned model, we design and implement the sensor-
based real-time authentication system. The architecture of the system includes sensors
for detecting users and objects, authentication program, and result output devices. A
generic model of authentication system needs to take several kinds of sensors and devices
into consideration. An overall procedure of the new sensor-based authentication needs to
be designed not only to reduce the users’ burden on authentication but also to recognize,
guide, and give feedback to the users. After implementing the zero-stop authentication
system, the system needs to be applied to some contexts and be tested. In the experiment,
multiple users with multiple objects go through the authentication area at a certain speed.
In case the authentication system fails to detect or authenticate the users and objects, the
users needs to be stopped and the system needs to run error recovery program.
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3 Related Work

The ActiveBadge system [9] and BAT system [10] are sensor management systems for
context-aware applications which tracks users and objects. In this tracking system, the
users and various objects are tagged with the wireless transmitters, and their location is
stored in a database. Therefore main goal of the BAT system is detection of users’ and
objects’ accurate location. Since the objective of Zero-stop Authentication system is to
build an authentication system on top of a sensor system, the ActiveBadge and the BAT
can complement our system.

Intelligent Transport System (ITS) [11], especially, the electronic toll collection
(ETC) system [12] allows cars to go through the toll gate without stopping. To realize
non-stop payment at the toll gate, automotive vehicles are equipped with devices capable
of wireless communication with the toll gate. When these vehicles enter the communi-
cation area that a toll gate covers, the toll gate begins to authenticate vehicles, and then
withdraws money from banks. In this authentication process, it is necessary to identify
automotive vehicles or IDs such as a credit card number or a unique number bound to a
credit card number. [13] proposes the method to identify automotive vehicles by using
a retroreflective optical scanner, whereas [14] identifies moving vehicles by smart cards
with radio frequency (RF) or infrared (IR) transponders or RF smart tags. However, the
ETC model does not address the binding problem since it assumes all the vehicles are
serialized. Our model, on the other hand, deals with cases where multiple users bringing
multiple objects need to be authenticated at a time.

Zero-Interaction Authentication (ZIA) [15] is an authentication system in which
a user wears a small authentication token that communicates with a laptop computer
over a short-range wireless link. Whenever the laptop needs decryption authority, the
laptop acquires the decryption authority from the token and authority is retained only
as long as it’s necessary. ZIA is similar to our model in its goal of authenticating the
user without stopping them. The main differences between these two models are that our
model authenticate both users and objects, and formalizes their mobility by considering
the real time aspect.

4 Models for Zero-Stop Authentication

We formulate Zero-stop Authentication in this section. To realize zero-stop operations
of authentication, an authentication server embedded in a gate (gate server) detects users
and objects by cooperating with sensors, and then authenticates users within real time. In
our procedural assumption, the gate server can not process the authentication operations
concurrently, because it runs according to the challenge-response manner. Moreover, we
assume that a task deadline is a soft deadline. The gate server checks this deadline, and
it processes authentication error operations, if a deadline miss occurs.

This paper discusses the following case: a user-detecting sensor observes N users,
and an object-detecting sensor recognizes My objects, where M; is the number of
objects carried by user ¢. The reason why we use two types of sensors is to make the
system practical. It is considered that inexpensive sensors can be used to detect objects,
while richer sensors that can perform authentication protocols are needed for users.
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In this section, we introduce four models of zero-stop authentication. These models
can be applied to several applications such as library applications and supermarket
check-out applications.

(@) 1/1 x 1/1 model
In this model, both the user-detecting sensor and the object-detecting sensor sense
the only one entity at a time.

(b) 1/1 x 1/M model
In this model, the user-detecting sensor detects only one user, while the object-
detecting sensor recognizes multiple objects at a time.

(c) 1/N x 1/1 model
In this model, the user-detecting sensor detects [V users, while the object-detecting
sensor detects an object per user.

(d) 1/N x 1/M model
In this model, a user-detecting sensor observes N users, and one object-detecting
sensor recognizes My objects per user.

4.1 Models of Environment

Figure 1 illustrates the environment we assume. Although coverage-shapes of all sensors
are not circular, many RF sensors with omni-directional antennas such as IEEE-802.11b
standardized devices and RF-ID readers can detect objects appeared in a certain circular
area. Thus, we model that the coverage areas of the user-detecting sensor and the object-
detecting sensor are circles of radius R, and R, respectively. If R, < Ryp; is
satisfied, two sensors and a gate server are placed as Figure 1-(a) shows (each sensors are
located at the gate). Figure 1-(b) depicts the contrary casei.e., in the case of Ry, s > Rop;.
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Fig. 1. Environment of The Zero-Stop Authentication System
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As for user movement, we assume that a user walks straight along the collinear
line of two sensors and the gate server at a constant velocity, V. By the time when a
user reaches a processing deadline point (PDP), the gate server should finish both the
authentication and the object processing. Then the server temporarily stores those results
in its memory or storage. The gate server updates information about the user and objects
by the time when the user passes through the gate (transaction deadline point: TDP).
Users can obtain the feedback of authentication and object-binding by the gate server
while they exist between PDP and TDP. The length between PDP and TDP depends on
applications, since each application consumes different time required for feedback to
users.

4.2 Time Constrained Operations

(a)1/1 x 1/1 Model. In asingle user case, we assume that the user enters the coverage
area of the user-detecting sensor or the object-detecting sensor at time ¢ = 0. In this
condition, the gate server should authenticate the user within the following given time:

Rusr -1
V

where [ stands for the distance between PDP and TDP, « is the processing time of the
user-detecting sensor to discover users, [ stands for the time to transfer a user-ID datum
from the user-detecting sensor to the gate server, and AT is the authentication time.

The velocity of objects can be obtained by approximating user’s velocity. This is
because objects travel at the same velocity V, since the user carries objects. The gate
server should process operations for the object within the time:

—a—-B—-AT >0 (1)

Roy; —1
V
where the parameter - is the processing time of the object-detecting sensor, J is the
communication time to transfer an object-ID datum from the object-detecting sensor
to the gate server, and OT stands for the time taken by the gate server to process the
operation for the single object.

—y—6-0T>0 )

(b)1/1 x 1/M Model. The constraint of the authentication is the same inequality as
formula 1, since the gate server also authenticate a single user in case (b). However, the
gate server processes operations for M objects. Therefore, it should satisfy the following
relationship to realize that the user does not need to stop at the gate:

M

Rori—1 M M
“UT_Z’Yj_Z(Sj_ZOTjZO (3)
j=1 j=1

Jj=1

for1l < j < M, where v; is the processing time consumed by the object-detecting sensor
to discover object j, 7; represents the communication time to send the ID of object j
from the object-detecting sensor to the gate server, and O7Tj is the processing time to
modify the state of object j. Formula 3 assumes that the object-detecting sensor can not
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concurrently scan multiple objects. If it is possible, the new formula becomes simpler:
Zj]\il «y; is substituted with 7,4, Which is the greatest value of all «y;. In addition, the

communication time, Z;\il d;, can be reduced, if object ID data can be transfered by
less than M packets.

(¢) 1/N x 1/1 Model. We consider a more complex case than case (a) and (b): N
users pass through a gate carrying a single object for each. In the multiple users case,
user ¢ enters into the coverage area of a user-detecting sensor or an object-detecting
sensor at time ;. In this case, the time-constrained computation for authenticating user
1 is as follows:

ti+M—ai—ﬂi—AﬂZti )

Vi

for 1 < i < N, where «; represents the time to detect user ¢, 3; is the communication
time between the user-detecting sensor and the gate server, and AT; is the time taken by
the gate server to authenticate user .

If VV; = VYV; (i # j) is met, or operations for each users are serialized like ATM
in a bank, the gate server just authenticates users, following the first-in-first-out (FIFO)
discipline; otherwise the gate server should reschedule the order of authentication op-
erations to minimize deadline misses. To address this issue, we have two approaches.
One is using the earliest-deadline-first algorithm [16] which schedules the user with the
closest deadline first. According to this scheduling policy, the gate server can determine
the priority of each user by calculating D; in the formula:

Rusr —1
D; = ETy + ———— —a; — 3 — AT} 4)
Vi
where E'T; is the time when user ¢ enters the coverage area of the user-detecting sensor.

The other one is building least-slack-time scheduling [17] into the gate server. In
this case, the slack time for authenticating user ¢ at time ¢t is D; — p; — t, where p; is the
processing time to authenticate users.

(d) 1/N x 1/M Model. A model for multiple users carrying multiple objects for
each is discussed here. The order to authenticate all IV users can be determined by user
selection algorithms. To realize Zero-stop operations, the gate server should meet the
following formula to modify the state of object j:

obj —
j=1 j=1 j=1
for1 <i¢ < Nand1 <j < M,;, where M; is the number of objects that user ¢ carries.

5 Object Binding

In both 1/N x 1/1 model and 1/N x 1/M model, the authentication system needs
to bind objects to users. Examples of objects are books in libraries, and merchandises
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in supermarkets. If these objects are appropriately bound to users, applications will be
able to register, or charge them to the user. The main challenge is to correctly sense
and distinguish objects belonging to a user. While mechanisms to sense an object is
maturing, those to distinguish it, and to bind it to an appropriate user is not as thoroughly
investigated.

We introduce three ideas in the following that can be used to effectively distinguish
between objects belonging to a user from others’. In our assumption, objects are tagged
with wireless identification devices, such as RF tags. We will classify these tags into two
groups: Read-Only, and Read-Write.

guidance. The guidance approach is a technique to transform 1/N X 1/1 model or
1/N x1/M modelto 1/1x1/1 model. In this approach, users are physically guided,
so only one user is sensed by the system at a time. This method has analogies to
traditional object binding methods, such as in supermarkets. However users often
queue in supermarkets, so enough gates to realize the zero-stop property is required.

insulation. We use an insulator to obstruct radio wave to or from the tags attached to
the objects. The insulator will likely take the form of specialized containers, such as
shopping carts. In this approach, the authentication system detects a user who exists
close to the gate, and authenticates him or her. After that, the authorized user opens
the container so that the objects are exposed to, or freed to give off radio waves.
The identification of the objects recognized at that point is bound to the target of
the authentication. Other users must not open their container during this process,
because object binding misses occur.

marking. Objects have writable tags attached, and users use devices to write their IDs
to those tags. When objects are sensed, these IDs are also sensed, and reported to
the system, allowing it to bind the objects to the user.

Table 1 classifies each binding method by types of tags and required devices.

Table 1. Binding methods

method \tag type\device

guidance RO gate
insulation RO insulation container
marking |RW marking device

6 System Architecture

There are six modules as shown in Figure2 in our system. We assume that devices such
as sensors, displays, and speakers can be controlled directly over a network, or from a
computer that is connected to a network. The system itself runs on a designated computer.
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Detection module manages sensors which detect users and objects, and throws events or
data obtained from sensors. Event process module processes the raw events or data into
a form that is recognizable to the rest of the system. It passes user identifiers to the au-
thentication module, and object identifiers to the binding module. Authentication module
manages authentication mechanisms and protocols, and conducts user authentication.
If the authentication succeeds, binding module binds objects with the user. Feedback
process module processes commands for output devices, from the feedback information
passed from applications. Output module manages output devices, and dispatches com-
mands to the correct output device based on users’ context or requirements. Applications
may choose to use the feedback functions of the system, or choose not to do so.

Application Application
Zero-stop authentication A
Authentication System result
s
feedback
Authentication Authentication . data
Layer Module Binding Module
L event 7/' \
Data Process Event Process Feedback Process
Layer Module Module
4
+ raw event *command
1/0 Layer Detection Module Output Module

50000

Sensors Devices

Fig. 2. Architecture

In the rest of this section, we describe in detail about four features which our au-
thentication needs to acquire: Recognition and guidance of users and objects, binding
objects to users, maintaining user and object state, and presentation of feedback and
error correction.

6.1 Recognition and Guidance

The system needs to physically recognize and guide users and objects. Recognition may
be done by existing sensor mechanisms. In order to achieve zero-stop property, users
need to be successfully authenticated within a specific period of time. Thus, there are
constraints on sensing overhead.

Guidance is an issue related to recognition. Existing examples of physical guidance
include gates and doors at building entrances, cash counters in supermarkets, and various
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toll gates on roadways. Some sensing technologies have problems in sensing multiple
objects within same physical area, or objects moving in exceedingly high speed. In order
to accomplish the authentication task using such sensing technologies, objects must be
physically guided to support the sensors. Objects are guided to pass a particular area,
managed into sequential queues, and their speed may be reduced.

In case users carry objects that need to be bound to themselves such as merchandises
in supermarkets, the sensors need to distinguish between multiple objects, or between
objects belonging to an user from those that belong to others. If the sensors were not
able to accomplish this task, objects may need to be bundled or separated accordingly.

6.2 User and Object State

The system need to keep track of user and object state. Their physical context should be
mapped accordingly to the internal objects maintained by the system. Figure 3 illustrates
the state graph of users and objects.

The system may loose or mix up users and objects due to sensing problems, and
incorrect binding may occur. The system need to recover from these errors, and allow
users to correct improper transactions.

User Object

sense sensed sense @
authenticatey’ loose track bind loose track

sense', sense
authenticated
ind commit ¥

b
bind time|out processed .
time out
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_>

Fig. 3. State graph of users and objects
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6.3 Feedback and Error Correction

The objective of the feedback is to allow users to acknowledge the result of the au-
thentication, verify if objects were correctly bound to them, and browse other related
information such as a due date of a book or credits withdrawn from their bank accounts.

The presentation of the feedback can be done visually, or through other methods
such as audio synthesizing. Simple results that can be expressed in several patterns, may
be presented using simple and intuitive presentation methods, such as color pattern of
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an LCD. We believe that this kind of presentation method will gain more popularity in
the forthcoming ubiquitous computing environment as a way to output computational
results.

Error correction is another important field for our system to address. Authentication
and transaction might generate errors such as authentication failure, miss-binding of
objects, and unreasonable withdrawal of credits. The system need to permit users to
interact with the system, and correct these errors.

Traditional interaction devices such as keyboards and mice are not an ideal candidate
for our interaction methods, since they are immobile and interaction intensive. One way
to go around this problem is to construct a user interface which is accessible from voice
operation or gesture operation. Their interaction method and physical form may vary
between the different applications that adopt them. Another solution may be to construct
a software agent that automatically corrects the errors on behalf of the users.

6.4 Development

Final point to consider when constructing a Zero-stop Authentication system, is devel-
opment procedure. Usability of the system is limited mainly due to the overhead and
ability of sensor devices and authentication methods. Current technologies may not be
able to permit, for example, tens of automobiles each traveling over 100km/h to be au-
thenticated at once. They are likely to be asked instead to slow down to under 50km/h,
and pass a gate one by one. Development in the sensing and authentication technologies
however, may enable the intended scenario. So, the development and deployment of the
system should be done incrementally, gradually freeing users from physical constraints.

7 Prototype Implementation

We prototyped sensor-based authentication system based on the Zero-stop Authentica-
tion model proposed in this paper. Besides the prototype system of Zero-stop Authenti-
cation, a library check-out application is also implemented using JDK 1.3.1.

7.1 Authentication System and Application

Figure 4 depicts Smart Furniture which is an experimental platform of a gate server.
Two types of sensors are equipped with the gate server, and they are RF-based sensor
devices; a wireless LAN device to detect users and an RFID tag sensor to detect objects.
Hardware composition is explained in Figure 5 with its specification in Table 2 and Table
3.

The prototype authentication system is composed of six modules mentioned in Sec-
tion 6. In our current implementation, the detection module obtains sensor data from
the wireless LAN device and the RFID tag sensor. Therefore, we developed their sensor
driver programs for sending sensor data to the detection module. The wireless LAN
sensor driver program detects users’ portable devices using signal strength, and then
provides the IP address of the user’s terminal with the highest level of signal strength
among others detected by the sensor. To measure signal strength, we utilize IBSS mode
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Fig. 4. Smart Furniture: (a) a testbed for uqibuitous applications; (b) Zero-stop Authentication
system with a library application

IrDA reade) + web camera
(for futur} extension)

fluman + PDA (iPAQ)

AN base station

book + RFID tag

notebook PC inside the base

Fig. 5. Hardware Composition

of an IEEE 802.11b standardized device. After obtaining the IP address, the authenti-
cation module tries to communicate with the host to which the IP address is assigned,
and then it starts an authentication process (simple challenge-response protocol). The
authentication module authenticates users by searching within a PostgreSQL based data
base server where student information (IDs, passwords, names etc.) is stored. In the
authentication process, the communication link between users’ terminals and the gate
server is protected by SSL.

After authenticating the user successfully, the RFID tag sensor driver program de-
tects books to which RFID tags are attached. At the same time, the binding module binds
the user and books, and provides the authentication module with the binding informa-
tion. Finally, the output module indicates authentication results on the LCD screen of
Smart Furniture for users so as to confirm details. Figure 6-(b) illustrates the screen
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Table 2. Computing Devices Used in Prototype Implementation

] item H iPAQ \ ThinkPAD \
Type User Terminal (PDA) |Gate Server (notebook PC)
CPU StrongARM Intel PentiumlIII

206MHz 850MHz
Memory 64MB 256MB
(0N Familiar Linux v0.5.1|FreeBSD 5.0 CURRENT
Network Interface|[802.11b 802.11b (IBSS-Mode)
Others TFT Display

Table 3. Sensor Devices Used in Prototype Implementation

item I Wireless LAN \ RFID Sensor \
Type User Terminal (Wireless LAN)|Gate Server (RFID Reader)
Detection Range 160m(outside),50m(indoor) 15m(indoor)
Read Rate 75 tags / second
Operating Frequency||2412-2484 MHz 303.8 MHz
Others

dump of graphical user interface which appears during the authentication process for

the confirmation.

If the authentication fails, the object detection operation above is not processed. In
stead of this operation, the feedback module produces error messages, and shows them
on the LCD screen of Smart Furniture cooperating with the output module as Figure
6-(c) shows. Furthermore, it also blocks the path of a user by closing the library gate, or

setting off an alarm.

Waiting for Authentication

@

Fig. 6. Screen dump of authentication results: (a) waiting for authentication; (b) authentication is

(b)

successfully done; (c) authentication failure occurs

Please Confirm

Error

e [Mameeng 707
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7.2 System Measurement

We have tested our system for 100 times under the condition of adjusting wireless
LAN -40db to detect and -50db to lose the connection. This signal strength makes
the authentication area as large as 2m in radius. The detection and authentication time
necessary for our system was 599.33msec on average which is fast enough for the system
to authenticate users before users passing through the authentication area. The standard
deviation in our measurement result was 30.93.

7.3 Serialization Scheme

Since we have utilized RFIDs which are not data writable and read only, we have adopted
the guidance method described in section 5 for the object binding.

Our library application and authentication system should deal with a concurrency
access problem. When several users concurrently access the gate server at the same
place, the gate server can not realize zero-stop property. Some tasks may fail and miss
their deadline, because the gate server can not provide enough resources. To address this
issue, the serialization scheme is introduced in our system as Figure 7 illustrates.

GATE 1 with AUTH. SERVER

Us Uz Ui
c O c Ut's footprints 1

Q Os1 Q O21 Q Oun E
Q O3 Q 022 Q On i gATEthhAUTH. SERVER

. . . U2's footprints
Qo o Qo

GATE 3 with AUTH. SERVER

Q

Us's footprints

O

Fig. 7. Serialization Scheme

8 Conclusion

This paper presents Zero-stop Authentication, a sensor-based real-time authentication
system in which no intentional interaction between users and authentication system is
required. In our system, we have attached several sensors on the gate to detect users
and objects and authenticate them. To realize Zero-stop authentication, the system needs
to finish the authentication process within real time. Therefore we have formulated the
mobility of users and objects. The prototype of Zero-stop Authentication is implemented
in Java, and uses Wireless LAN and RFID reader to detect users and objects. We have
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applied our system to the library’s authentication with Smart Furniture a test bed infras-
tructure. We are extending the current system to cope with several problems which are
not overcome. Two examples of future work are object binding problem and terminal
theft problem.

In our prototype implementation, we adopted the guidance method for object binding.
Since it can transform complicated models into 1/1 x 1/1 model, we were able to keep
the system simple. However, in order to provide higher usability by not making users
queue up, the system needs to support 1/N x 1/1 model or 1/N x 1/M model. To realize
these models, we need to implement a more complex system, and at the same time apply
other binding methods such as insulation and marking.

We have tried to simplify the current complicated authentication process without
diminishing security level by using several security and encryption technologies. How-
ever, there is still a threat that a client device or a tag which a user should have would be
stolen. For these problems, authentication technology for the device such as biometrics
is usable.

Acknowledgement. We thank Uchida Yoko Corporation for their collaborating work
on "Smart Furniture".
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Abstract. In the future, huge amounts of embedded and invisible devices, as well
as software components, will be connected to the Internet, and these “functional
objects” are expected to play an important role in providing convenience services
to users. In such a “ubiquitous Internet,” users will be able to utilize various appli-
cations through functional objects anytime and anywhere. Since the ubiquitous
Internet will be a highly dynamic, heterogeneous, and context-dependent envi-
ronment, applications should be able to change their functionality depending on
dynamically changing user context. For example, when a user wishes to brows a
PDF file on his small PDA display, a document-browsing application running on
the PDA will need an additional transcoder function to reformat the PDF file. If
the user wishes to use a voice-only device, such as a PDC (Personal Digital Cel-
lular), to obtain information in the PDF document, the application will need to lo-
cate and use a PDF-to-text function as well as a text-to-voice function. Thus, to
enable ubiquitous Internet applications to change their functionality on the fly, a
mechanism capable of locating the appropriate functions transparently on the
Internet is necessary. Generally, such locating mechanisms can be supported by a
location-independent naming system. However, the name space of such a naming
system tends to be flat; therefore, designing a scalable naming system is quite
challenging. This paper describes the design of a new scalable location-
independent naming system, called Interface-based Naming System (IFNS),
which is capable of locating functional objects transparently in a ubiquitous Inter-
net. In the design of IFNS, we utilize interface information to name functional
objects. Interface information enables us to design scalable name management and
name resolution algorithms in a fully distributed manner. In addition, interface in-
formation not only enables the transparent location of functional objects, but also
enables the naming system to support automatic function synthesis. Simulation re-
sults show that the proposed IFNS has acceptable scalability and performance for
utilizing functional objects in a ubiquitous Internet environment.

1 Introduction

The rapid deployment of broadband and wireless Internet technologies has not only
brought a diffusion of network-enabled devices into our daily lives, but has also in

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 312-327, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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creased the opportunities for end-users to use various applications. This trend will
launch a future Internet environment where many users will employ many different
kinds of “functional objects” seamlessly through network connections anytime and
anywhere. This environment, which we call the “ubiquitous Internet,” requires a new
platform enabling users to utilize various applications seamlessly.

Consider the scenario where a user in an office environment uses various func-
tional objects through a video-conferencing application. To start the application to
contact a colleague, the user can either click an icon on his desktop computer or issue
a command via voice recognition. Then, for seamless use of the video-conferencing
application, the application needs to immediately locate the necessary functional
objects (e.g., the nearest CCD (charge-coupled device) camera, nearest display, and
so on). If the user moves around his office, the application must change devices to
seamlessly continue the video conferencing according to the user's context. And, if
there is a change of network or device (e.g., the user switches his device from a
desktop PC with 100 Mbps LAN to a PDA with 802.11 wireless LAN), the applica-
tion may need to find an additional transcoder function to adapt to the current net-
work or device condition. Internet-scale services will require the same features de-
scribed in this personal-area scenario,. For example, when a user wishes to obtain a
document in a particular format or a video file at a specific resolution, some kind of
conversion function is necessary. However, since the current Internet does not sup-
port such a mechanism, the user must manually download conversion software to
convert the document or video file. For seamless use of applications, this manual
configuration should not be necessary. In this case, it is desirable that an appropriate
data conversion function is automatically assigned to the document, and the user
obtains the document directly in the desired format with minimal effort.

Many readers may think that it is easy to construct the applications in the above
scenario using existing technologies (e.g., Jini or other kinds of middleware). Of
course, it is possible to implement the above scenario as a “scenario-specific applica-
tion” based on existing technologies. However, once we try to build universal appli-
cations for the current Internet architecture, we may find that it is quite difficult and
challenging. We believe that this is mainly due to the lack of a useful locating and
adaptation mechanism for global scale networks:

Locating mechanism complementary to DNS: When we try to access a networked
object, such as a functional object, we must first utilize a locating service (i.e., a
naming system) to provide applications with the information needed to access these
networked objects. Even if huge quantities of functional objects and multimedia con-
tents are available to the Internet, the objects are worthless if we do not have a useful
locating mechanism to access them. Of course, we can use the Domain Name System
(DNS) to locate objects on the current Internet. Since DNS is a well-designed and
extremely scalable locating system, we can handle all objects via DNS, even in a
future ubiquitous Internet. However, because DNS inherently locates objects that are
tightly coupled with an IP address (i.e., administrative domain), it would be inade-
quate for locating objects when building various ubiquitous computing applications.
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For example, in the above video-conferencing scenario, applications need to im-
mediately locate and utilize a transcoding function for adaptation. In such cases, the
application is interested in the function of the transcoder, not the IP address or net-
work location. Although it is possible to locate such a transcoder by resolving FQDN
(Fully Qualified Domain Name), if the transcoder is unavailable—for example, due to
system trouble or security policy—the application needs to locate another transcoder
with another FQDN. This is because FQDN is location-dependent. It is better to avoid
the continuous use of various applications in a ubiquitous computing environment.

Moreover, in the above scenario, the user would like to utilize the “nearest” de-
vices for convenience. We believe that this kind of scenario will be popular in a ubig-
uitous Internet, because networking and computing will continue to be integrated into
our daily lives. This means that networks and computers in the ubiquitous Internet
must handle not only virtual objects such as web pages or multimedia files, but also
physical objects existing in the real world. However, the current DNS cannot locate
objects tightly coupled with a physical situation.

Adaptation mechanism for heterogeneity: Another important aspect of the above
scenario is adaptation. Generally, when we wish to run an application seamlessly in a
ubiquitous computing environment, the application must dynamically combine vari-
ous devices and networks, depending on various contexts. However, we cannot as-
sume that these devices and networks always utilize the same data format and proto-
col; in other words, the application must handle various types of data formats and
protocols. Naturally, we also cannot assume that an application always supports all
data formats and protocols. Thus, applications should dynamically locate the neces-
sary data formats or protocol conversion functions to handle heterogeneity. This
means that there needs to be some mechanism to detect and absorb differences of data
format and/or protocol among objects.

The above discussions indicate that another naming system, which is complemen-
tary to the current DNS, could be one of the most essential components for realizing
ubiquitous computing applications on the future Internet. Optimally, this naming
system will need to handle multiple name spaces to support various kinds of situa-
tions, and to enable data formats and protocol adaptations in a heterogeneous envi-
ronment. From this point of view, we have developed an application platform called
Service Synthesizer on the Net (STONE), which is based on a naming system called
Interface-based Naming System (IFNS). IFNS is designed to support the two stated
requirements: locating and adaptation. In our platform, all objects are called func-
tional objects. These objects can be named by multiple names, such as physical loca-
tion, but should have at least one interface name. The interface name consists of both
input and output interface information of the functional object, and the relationship
between them. For example, a functional object for mpeg2-to-mpeg4 transcoding is
named mpeg2/mpeg4. This naming scheme enables applications to directly specify
necessary functions. In addition, since the interface name is independent of network
location (e.g., IP address or administrative domain), we can transparently locate the
functional objects.
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One important and challenging problem in designing such a location-independent
naming system is scalability. To overcome this problem, IFNS manages functional
objects by aggregating multiple functional objects into one interface name.

In addition, the interface name must not only enable transparent and scalable access
to functional objects, but also support an automatic function synthesis mechanism
(AFS), which will be described later. This mechanism greatly improves the perform-
ance of IFNS, even if it cannot locate a desired functional object directly. For exam-
ple, if IFNS cannot locate a mpeg2-to-mpeg4 transcoder, the automatic function syn-
thesis mechanism decomposes mpeg2-to-mpeg4 into mpeg2-to-mpegl and mpegl-to-
mpeg4, then tries to locate these two functions.

This paper is organized as follows. In the next section, we introduce existing work
related to naming and middleware for ubiquitous computing applications. In Section
3, we briefly summarize our STONE application platform for a ubiquitous Internet.
Section 4 focuses on name-space definition, name management and the resolution
algorithms used in IFNS. In Section 5, simulations are performed to show the scal-
ability of the proposed naming system as well as the performance of the automatic
function synthesis mechanism. Finally, we conclude this paper in Section 6.

2 Related Work

There has been a lot of research on naming systems and service adaptation mecha-
nisms. The most primitive approach to locating objects is the use of a network ad-
dress, such as an IP address and port number. However, since the IP address inher-
ently represents a location in the network, it is difficult to identify the actual function
of a functional object. And even more unfortunately, it is also difficult to enable ap-
plications to transparently access these functional objects. An alternate approach to
locating functional objects with transparent access in the Internet is the use of the
Domain Name System (DNS). DNS is a well-designed system for locating various
services provided on the Internet [1][2][3]. By using DNS and FQDN, we can locate a
host (or service) transparent to the IP address and port number. If we can describe the
function of a functional object with FQDN, it is possible to transparently locate func-
tional objects using DNS. However, since DNS has evolved as a mechanism to access
services managed through specific organization, it is not suitable for locating func-
tional objects. Moreover, using the DNS in a highly dynamic and distributed envi-
ronment, such as the ubiquitous Internet, contradicts the design philosophy of the
DNS [1]. This may cause other significant problems, such as cache consistency and
load-balancing problems.

This implies that a new location-independent naming system for functional objects,
which is complementary to conventional DNS, is required for future ubiquitous Inter-
net applications. Designing such a naming system, however, is quite challenging,
because the name space of a location-independent name usually tends to be flat and
not scalable. In order to design a scalable location-independent naming system, scal-
able name space and efficient name management/resolution algorithms are desired.
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The Grapevine [4] proposed by XEROX PARC is one of the earliest location-
independent naming systems; it utilizes hierarchical name space, and enables users to
locate persons or equipment in an office environment. The X.500 directory service
[5], which works on the current Internet, enables users to locate various objects by
utilizing a DNS-like hierarchical administrative domain. However, since these sys-
tems (or architectures) are designed as general-purpose naming systems, it is unclear
whether they would work well in a highly dynamic and globally distributed environ-
ment.

The Intentional Naming System (INS) [6], which was recently proposed, is one
attempt to use a naming system to achieve various transparencies. However, al-
though INS has a great capability of transparently locating various objects, the name
space of INS tends to be flat. Consequently, it would not be scalable in the ubiquitous
Internet. The authors believe that, to make systems practical and scalable, the naming
system should be designed as a special-purpose system, such as DNS. IETF
URI/URN (Uniform Resource Identifiers, Uniform Resource Name) [7] is another
approach for locating various objects in the Internet. It defines multiple name spaces,
and also designs name resolution mechanisms for various objects. However, since the
design of URI/URN is highly dependent on DNS architecture, it is unclear whether it
would work well in the ubiquitous Internet.

Middleware platforms, such as Jini [8§], UPnP (Universal Plug and Play) [9], or
HAVi (Home Audio Video interoperability) [10], usually contain a directory service.
However, these directory services are not designed for a global area network. Moreo-
ver, none of them clearly defines naming schemes.

3 Service Synthesizer on the Net

As described in Section 1, the authors believe that an application platform capable of
dynamically combining functional objects will be very important in the future ubiq-
uitous Internet. To this end, we have researched application platform technologies
and developed a platform named Service Synthesizer on the Net (STONE). This sec-
tion provides a brief overview of this platform.

Figure 1 shows the architecture of the STONE platform. The STONE platform is a
distributed system overlaid on the Internet, and it creates a service by combining
various functions. The STONE platform consists of two major components: a func-
tional object (FO) and a service resolver (SR).

The FO is the most basic element of the platform. It may be a hardware device or
software component, and it is capable of network connectivity. In the STONE plat-
form, each functional object must have its own name (FO name) and an access
pointer (AP). The FO name consists of multiple attribute-value pairs that indicate
various properties of the FO. For example, a display FO capable of JPEG image
viewing in Room 407 in building No. 3 can be described as [Location = room407 /
building no.3], [Interface = JPEG / DISPLAY]. Although a functional object is al-
lowed to have multiple names, it must have at least one interface name. As described
later, the interface name plays a significant role in our platform.
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The access pointer list is an identifier which globally and uniquely specifies the

functional object on the Internet. Currently, we are using the IP address and port
number as an access pointer.
The SR (service resolver) manages FOs, and composes various services. The SR
consists of a Service Synthesizer (SS) and a Multi-Name Service System (MNSS). The
service synthesizer is an API (Application Programming Interface) to client applica-
tions. It collects functional objects and combines them according to a Service Graph
(SG). The SG is a functional diagram of a service in which functions are described by
the FO name. Every client of the STONE platform will send the SG to the SS to re-
quest services. When the SS receives the SG, it extracts the FO names from the SG
and tries to locate functions by querying the names to the MNSS.

The MNSS manages multiple Name Service Components (NSC) and resolves the

FO name by querying the appropriate NSC. The NSC is in charge of specific name
space. For example, the name [Location = room407 / building no.3] is stored and
managed by a physical location NSC. The NSC is implemented as a plug-in module
so that we can easily add a new NSC to the MNSS. The reason we design the MNSS
as the manager of multiple name service components is that we believe the future
ubiquitous Internet will require many kinds of naming systems. For example, if a user
wishes to contact someone, a naming system capable of resolving the username will
be necessary. If a user wishes to use a printer in a specific location, a naming system
for resolving the name of a physical space will be required. And, more importantly,
since the name space managed in each naming system will have a different informa-
tion structure, it will require different name management/resolution algorithms. For
example, because the name space of the physical address [7-3-1/Hongo / Bunkyo-ku /
Tokyo / Japan] has a hierarchical information structure, it could be managed and
resolved by a DNS-like name resolution/management scheme. On the other hand, a
name space for multimedia contents will have a different information structure and
require another algorithm. It is not known how many naming systems will be required
in the ubiquitous Internet; however, it is important that any new naming system can
be easily added to the STONE platform. For this reason, we designed MNSS as a
composite system.
Although there will be many NSCs in the MNSS, the most important NSC in the
STONE architecture is the Interface-based Naming System (IFNS) component. IFNS
manages the name space of functions that are provided by functional objects. Using
IFNS, the service synthesizer or any other MNSS client can transparently locate vari-
ous functions. IFNS not only provides the capability of transparently locating a de-
sired function, but it also provides an automatic function synthesis mechanism that
automatically equalizes the function with multiple FOs. This mechanism greatly im-
proves the performance of service synthesis when IFNS cannot directly locate the
desired FO. IFNS is a key component in the synthesis of various services in the ubig-
uitous Internet, and its design is the scope of this paper. The following section de-
scribes IFNS.
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4 Interface-Based Naming System

4.1 Overview

Figure 2 shows an overview of IFNS. IFNS is a distributed naming system which
consists of many IFNS nodes, similar to the Gnutella system [11]. An IFNS node
contains a local database and a wide-area database to store the interface name. Each
IFNS node establishes logical connections to neighboring IFNS nodes, and manages
the interface name by advertising information through logical links. A functional
object registers its name to the IFNS node (usually, the node nearest the functional
object). The IFNS client, such as the service synthesizer, locates the functional object
by querying the interface name to the IFNS node. Since the interface name specifies
the function of the functional object, it will be a location-independent name. There-
fore, scalability is a significant issue in designing IFNS. To enable IFNS to scale well,
we designed a defined name space as well as name management and name resolution
algorithms, as described in the following section.

4.2 Name Space

Generally, in distributed systems like the Internet, the object- locating mechanism is
provided by the naming system [12][13]. The essential feature in designing the nam-
ing system is how to assign a name to an object. This is because the semantics and
syntax of the assigned name are directly related to the structure of the name space,
and affect the scalability of the name management and resolution algorithms. Once
the name space can be defined, we can design name management and name resolution
algorithms suitable for the structure of the name space.

Name space is usually characterized by both naming semantics and naming syntax;
generally, naming semantics is more important than naming syntax. For practical use
of the naming system, defining naming syntax with sufficient expressiveness is nec-
essary. However, due to the information structure in the name space, naming seman-
tics is the dominant factor. For this reason, this paper focuses on naming semantics
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and attempts to design name management and resolution algorithms reflecting the
information structure of the name space.

In designing IFNS, we use the interface information of the functional object. Gen-
erally, the function of a functional object can be defined with its input/output inter-
faces and the relationship between these interfaces. For example, the function of a
simple functional object mpeg2-to-mpeg4 transcoder can be defined as a function
whose input interface, output interface and relationship between these interfaces are
mpeg2, mpeg4, and conversion, respectively. The interface name we create in this
paper utilizes these semantics. By naming a functional object with an interface and a
relationship, we can transparently and definitely specify the desired function

Hereinafter, we denote the interface name as A/Z, where A and B indicate input
and output, respectively, and / denotes the relationship between A and Z. This func-
tion-centric naming is independent of a location-dependent identifier, such as network
address, so we can transparently locate the desired functional object. Of course, there
will be the problem of how to describe multiple I/O functional objects (e.g., audio
data mixer). However, even if a functional object has multiple I/O, we believe that it
is possible to describe the functional object by its I/O interface and relationship (e.g.,
(A+B)/Z). In other words, it is a problem of naming syntax, and is beyond the scope
of this paper.

4.3 Name Management Algorithm

Name management and name resolution in the naming system should be designed by
considering the data structure of the name space. For the case of interface name, the
data structure of the name space can be aggregated: we can think of functional objects
that have the same interface name as the same function. Since there will be many
functional objects in the ubiquitous Internet, the possibility of the existence of func-
tional objects that have the same function will be high. Therefore, we can effectively
aggregate many functional objects scattered in the network into the interface name
space. Even if multiple functional objects are aggregated into one interface name, this
should not affect applications. This is because applications are interested in whether
they can locate the desired function, not where the desired function is. By using the
aggregate characteristic of the interface name space, efficient name management and
resolution algorithms are described.

Figure 3 shows the name management algorithm of IFNS. When a functional ob-
ject with the interface name A/Z is registered with IFNS node NI, the registered name
and access pointer are stored in a local database (LDB) in node N/ (as shown in (1) of
Figure 3). An example of the LDB table in node N1 is shown at the bottom left of
Figure 3. The LDB table consists of an interface name section and an access pointer
section. The registered access pointer corresponding to interface name A/Z is added to
the appropriate cell in the access pointer section.

Meanwhile, a numerical value is assigned to the registered name and stored in a
wide-area database (WDB) in node NI. This value, which we call the evaluation
value, can be assigned based on the load of the functional object, or the network con-



320 M. Minami, H. Morikawa, and T. Aoyama

(1)NameReg. N4 N5

WDE in N1

(2) Divide and Diffuse 5 %% N2 na nNe
AZES3 | N3 N2 FO(A/Z)
- {3) Name Reqg. AT
Wz e | e ) g
(4 a ggregati ) ) ) WDB in N6
) WDB in N1 “ | [ w3 [ na | This]
LDB in N1 N2 | N7 This ; WDB in N3 AZ 005 | 0 | 1
I";““""“"" hecoss Polnbor List Alz PR Ni| N4 | N5 | N6 | This
Y- prevrpee——" I L nmmn
123.45. WDE in N2
arE, et Ni | N3 W4 | N5 [Ths
Az (403 [
A ote | v | o
Fig. 3. Name Management Algorithm Fig. 4. Name Resolution Algorithm

dition, or other similar parameters. This value is used to manage interface names on
the IFNS logical network, as described later. An example of a WDB table is shown at
the bottom right of Figure 3. Each row in the WDB table corresponds to an interface
name, and each column corresponds to the logical connection established to a neigh-
boring node. The column name 7This represents the IFNS node itself.

Here, we assume that the value E, is assigned to the interface name A/Z at node N1
(we denote this as <A/Z, E,>). Initially, node N/ adds the value E, to the table ele-
ment corresponding to the name A/Z in the column This (we denote this as WDB[A/Z,
this]). Next, node N/ advertises the name A/Z to all neighboring nodes that establish
logical connections to node NI. The advertisement is triggered by a timer with a ran-
dom initial value. When NI advertises the name A/Z, node N/ divides the value E,
based on the number of neighboring nodes, and sends it to the neighboring node with
the name A/Z. In this paper, we assume all nodes in IFNS divide the value E by n+1
(i.e., the value E/(n+1) is advertised to each of the neighboring nodes), where n de-
notes the number of neighboring nodes. In this way, node N/ advertises <A/Z, E /3>
to node N2 and N3, respectively. Note that, in our name management algorithm, the
total of advertised values must not exceed the original value. This constraint prevents
divergence of the WDB table.

Now we focus on node N2. When node N2 receives the advertisement from node
NI, N2 adds the advertised value E/3 to the element WDB[A/Z, NI1] in N2’s WDB
table. After that, node N2 computes the new value E/3/4 for the name A/Z, based on
the number of neighboring nodes (excluding node N/). Now we assume that a new
functional object <A/Z, E,> is registered with N2 before advertising <A/Z E /3/4> (as
shown in (3) of Figure 3). In this case, node N2 initially updates the LDB with <A/Z,
E,>, then computes the value E/5 for advertisement. After that, node N2 aggregates
two advertisement messages, <A/Z, E/3/4> and <A/Z, E/5>, into <A/Z
E/3/4+E/5> (as shown in (4) of Figure 3). In this way, message advertisement and
aggregation are repeated at each IFNS node, and the name A/Z propagates among the
IFNS nodes. Each IFNS node has an advertisement threshold to limit propagation of
the message. When the value E in the advertisement message <A/Z, E> is less than
the threshold E, at a certain node, the node drops the message.



An Interface-Based Naming System for Ubiquitous Internet Applications 321

4.4 Name Resolution Algorithm

Name resolution is performed based on the WDB table constructed by the name man-
agement algorithm. Figure 4 shows the name resolution algorithm. Suppose that a
client issues a query for interface name A/Z at IFNS node N/. Node NI initially
checks its WDB. Since the element WDB[A/Z, this] in node NI is zero, node NI
knows that it does not have a functional object named A/Z. Node NI then forwards
the query to the neighboring node which has the largest value in the WDB table. In
this example, the query is forwarded to node N3. However, node N3 also does not
have the functional object, and it simply forwards the query to N6. Because the ele-
ment WDB[A/Z, this] in N6 is not zero, N6 has functional objects corresponding to
the query. N6 looks up the access pointer in the LDB and sends it back to the client.
Note that, if all values corresponding to the name A/Z are zero or are the same, the
IFNS node randomly forwards the query to neighboring nodes. Also, note that all
queries in IFNS have a TTL (Time to Live), which decreases whenever the query is
forwarded to neighbors. If TTL decrements to zero, IFNS terminates the query for-
warding and sends an error message to the client application.

4.5 Automatic Function Synthesis

Using the above name resolution algorithm, we can locate a functional object by its
interface name. However, even if there are many functional objects in the future
ubiquitous Internet, we cannot assume a required functional object is always regis-
tered in IFNS. Moreover, since query propagation in IFNS is limited by TTL, we
cannot guarantee that a query always arrives at the appropriate node. Consequently,
these properties make it difficult for applications to change functionality seamlessly
depending on the user's context. To avoid this problem, we designed the automatic
function synthesis mechanism (AFS). The AFS composes one functional object with
multiple functional objects by using composite characteristics of the interface name.
For example, if IFNS cannot resolve the name mpeg2/mpeg4, the AFS decomposes
the name into mpeg2/mpegl and mpegl/mpeg4, and attempts to resolve the two
names. Once the names are resolved to APLs, we can compose a mpeg2/mpeg4 func-
tion by combining the mpeg2/mpegl and mpegl/mpeg4 functions.

Figure 5 shows the algorithm used for AFS. Now we assume a query for the name
A/Z is forwarded to a specific node. The AFS works when there is no functional ob-
ject for name A/Z in either the WDB or the LDB in this node. The name A/Z is ini-
tially decomposed into A/x and y/Z, where x and y are wildcards. If we can resolve the
two names that satisfy x=y=B, we can compose the functional object A/Z of A/B and
B/Z. Otherwise, if we can locate three functional objects, A/, y/Z and x/y (x=B, y=C,
for example), it is also possible to compose the functional object A/Z.

As the first step of AFS, the names A/x and y/Z are looked up in the LDB. If nei-
ther A/x nor y/Z are found in the LDB, the AFS cancels the function synthesis process,
and the query for A/Z is randomly forwarded to a neighboring node. If both A/x and
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WZ (x=y) are found in the LDB, the AFS process succeeds, and APLs for the two
names are returned to the IFNS client.

Unfortunately, when neither A/x nor y/Z (x=y) are found in the LDB, the AFS at-

tempts to look up A/x, x/y, and y/Z. If these three functional objects exist in the LDB,
the AFS process succeeds and returns APLs. In the case where x/y does not exist in
the LDB but exists in the WDB, the AFS translates the original query A/Z to x/y,
which has the maximum total value in the WDB, where the maximum total value is
defined as the sum of the values in a row of the WDB table. The translated query is
then forwarded by a conventional name resolution algorithm.
When only A/x exists in the LDB, the AFS checks whether x/Z exists in the WDB. If
WZ does not exist in the WDB, the AFS process is canceled, and the original query is
forwarded by a conventional name resolution algorithm. Otherwise, the original
query is translated to y/Z, and the translated query is forwarded by a conventional
name resolution algorithm.

In addition, we designed IFNS to iteratively use the AFS algorithm to maximize
the chances of locating the functional object. To iteratively apply the AFS algorithm
to name resolution, we defined an AFS field in a query. The AFS field indicates how
many times the AFS process can be applied for the query. The AFS field is decre-
mented each time the query is translated by the AFS algorithm.

‘ Name = A/Z J % =
{ End )) AZ =22 A B yfZ
= Name Hesalved

‘'f0 7 [ FO | A By eish, and woy R y7
{ASX), | (y/Z) ] E{Lrﬁ?_/:}
Afx and y/Z exist & x=y — AfT Ayl e, Erdiaey

Mok exisl
I]_(N' %) I] iy |: o/zy ] 2

Afx, ¥/Z, and x/y exist — A/Z _%x(vh{ —

Inplll:h”\(:ﬁ_!). Output=2

n WDB?.
WDB in IFNS Node ‘j‘\‘ﬁa/ T e LT
WL [nz (w3 [we [ ihis No I WDBZ. [‘“ WOB.
Name j [meee [Fem [ e - FG IFiame | FG TFame | PG TFame |
[ I ]

]
Fry= T Fy, (i=1, Number of Link)

Ewaxfj) : Name j that maximizes Eny End Decrement AFS field
P, Query

Fig. 5. Automatic Function Synthesis Algorithm

5 Simulations

In order to evaluate the scalability of IFNS and the performance of AFS, simulations
were performed using the random spanning tree network, where various types of
interface names were randomly registered with each IFNS node. In the simulations,
name management and name resolution cost were computed and compared to a
broadcast-based algorithm. In addition, by using the success ratio of name resolution,
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we evaluated how successfully the AFS could synthesize functional objects. Note
that, since it is difficult to predict how many functional objects and how many kinds
of functional objects are registered in IFNS, we did not evaluate our system quantita-
tively. Instead, we can only describe the behavior of the system in various situations.
For this reason we limited the purpose of our simulation to evaluate only the qualita-
tive performance of IFNS.
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5.1 Name Management Cost

In the simulation of the name management cost, 1000 interface names were registered
with IFNS, and the evaluation value of each interface name was set to 1. Naturally,
there would be more than 1000 objects in an actual ubiquitous Internet. However,
these names are enough to evaluate the qualitative performance of IFNS.

Under this initial condition of 1000 objects, we computed the name management
cost for one functional object. The name management cost is defined as the total
number of messages among IFNS nodes that is required for managing one registered
name. To investigate how the name management cost changes under various condi-
tions, we set various values for the network size (i.e., the number of IFNS nodes),
advertisement threshold and aggregation ratio. The aggregation ratio represents how
many functional objects one interface name can aggregate. For example, when 1000
functional objects are aggregated by 100 interface names, the aggregation ratio is 0.1

Figure 6 shows the evaluation of the name management cost. In the left graph in
Figure 6, name management cost increases as network size increases, because the
name management message is replicated at each IFNS node. However, when com-
pared to the broadcast-based algorithm, the IFNS name management algorithm con-
siderably reduces name management cost. This is because, while the broadcast-based
algorithm propagates a message to all nodes and does not aggregate any message, the
IFNS name management algorithm limits message propagation by the evaluation
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value and aggregates messages that have the same interface name at certain nodes.
Note that it is possible to use a very small evaluation value to reduce management
cost. However, this degrades the performance of name resolution, as described later.

We also studied the relationship between name management cost and aggregation
ratio. The right graph in Figure 6 shows the name management cost. In the simula-
tion, the number of nodes and the advertisement threshold are set to 100 and 0.01,
respectively. The name space of the interface name will be flat when the aggregation
ratio is large, so the name management cost increases as the aggregation ratio in-
creases. However, because message propagation is limited by the evaluation value,
the name management cost approaches a constant value.

Thus, we can say that the name management scheme of IFNS scales to the network
size and aggregation ratio when compared to the broadcast-based approach.
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5.2 Name Resolution Cost

Name resolution cost in IFNS is defined as the mean value of the total number of
messages generated in the name resolution process for one query. In the simulation,
we registered 1000 interface names to IFNS, and measured the name resolution
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cost and success ratio by sending a query to a randomly selected IFNS node. Here,
the success ratio is defined as the probability of IFNS successfully resolving a
certain query.

Figures 7 and 8 represent the name resolution cost and success ratio. In the
simulation, the number of IFNS nodes, advertisement threshold, and TTL are set to
various values, as shown in the legends of Figures 7 and 8. Note that, since the
name resolution cost of the Gnutella-like broadcast-based approach is quite high
(around 100), it is not shown in Figure 7. As shown in Figures 7 and 8, although
the name resolution cost of IFNS is quite low, the success ratio degrades as the
aggregation ratio increases. The reason for this is that a query does not arrive when
an IFNS node, which has a functional object for the query, is quite far from the
node where the query was generated. To improve the success ratio, we set a large
value for TTL (e.g., TTL=20). However, while this increases the name manage-
ment cost, the success ratio was not significantly improved.

Next, we added some loops in the IFNS network by randomly adding links,
where the total number of links was twice the number of nodes (see the plots for
“Link=200" in Figures 6, 7 and 8). We found that adding loops greatly improves
the success ratio in the name resolution process. This is because the link added to
the original spanning tree functions as a shortcut, so that it can bring information
from far nodes. However, as shown in Figure 6, adding loops in the IFNS when the
node number is small results in an unnecessary increase of the name management
cost. Therefore, we can say that the additional link works effectively when the
network size is quite large. In other words, IFNS works well in the ubiquitous
Internet.

Of course, there are complicated tradeoffs between name management cost and
success ratio, depending on the aggregation ratio, advertisement threshold, number
of loops, TTL, and other parameters. By controlling these parameters, we can adapt
IFNS to various conditions with optimal performance. However, as described in the
early part of this section, such adaptation is possible and meaningful only if we can
predict the practical situation in which IFNS is used.
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5.3 Performance of AFS

Last of all, we investigated how the automatic function synthesis can improve the
success ratio in name resolution. In this simulation, we set 100 as the number of
IFNS nodes, 0.01 as the advertisement threshold, 7 as TTL, and 0.5 as the aggrega-
tion ratio. The network topology of IFNS was constructed as a random spanning tree.
We computed the success ratio and resolution cost when the AFS field was set in the
range 1-3. In Figure 9, we observe that the success ratio is improved by 1.2 to 1.3
times that of the normal name resolution process. Since AFS increases the number of
successful name resolutions, this decreases the number of times a query is forwarded
in IFNS. Consequently, the name resolution cost is also improved in our simulation.
However, iterative use of the AFS process sometimes degrades the success ratio (e.g.,
AFS=3 in Figure 9). This is because a query permitting many ASF iterations with
small TTL may not be resolved within a certain number of hops. Therefore, we
should carefully determine the number of iterations for AFS by considering the TTL
of the query.

6 Conclusion

This paper presented the IFNS as a location-independent naming system capable of
locating functional objects in a ubiquitous Internet. The design philosophy of the
IFNS has been described, and scalable name management and resolution algorithms
have been designed. Simulations were performed, and it was shown that the name
management and resolution algorithms have acceptable scalability, even when a large
number of functional objects are registered in IFNS. In the future, it will be necessary
to do more detailed analyses to clarify the characteristics of IFNS, and to proceed
with our implementation of a STONE platform, as well as its applications.
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Abstract. Cache memories can improve computer performance, but its
unpredictable behaviour makes difficult to use them in hard real-time
systems. Classical analysis techniques are not sufficient to accomplish
schedulability analysis, and new hardware resources or complex analysis
algorithms are needed. This work presents a comprehensive method to
obtain predictability on the use of caches in real-time systems using an
EDF scheduler. Reaching a predictable cache, schedulability analysis can
be accomplished in a simple way through conventional algorithms.

At the moment, this is the first approach to consider cache in this kind of
scheduler. The method is based in the use of locking caches and genetic
algorithms. Locking caches allows to load and lock cache contents, ensur-
ing its remains unchanged. Genetic algorithms help to select the cache
content that offers the best performance. Experimental results indicate
that this scheme is fully predictable, and this predictability is reached
with no performance loss for around 60% of cases.

1 Introduction

Modern microprocessors include cache memories in its memory hierarchy to
increase system performance. General-purpose systems can benefit from this ar-
chitectural improvement, because it tries to make efficient the average case. But
hard real-time systems require the worst case to be bounded, and therefore, to
take advantage of cache memories, they need special hardware resources and/or
speficic system analysis that guarantee the timeliness execution of the code.

Basically, two problems arise when cache memories are used in multitask,
preemptive real-time systems: intra-task interference, in the domain of a single
task; and inter-task interference, in the domain of multitask systems. The former
one makes harder to calculate the Worst Case Execution Time (WCET), because
a task can replace its own instructions in cache due to conflict and capacity
problems. When previously replaced instructions are executed again, a cache
miss increases the execution time of the task. This kind of interference has to be
taken into account in the WCET of each task.
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J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 328-341, 2004.
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The second problem is to calculate the cache-related preemption delay. This
delay, also called inter-task or extrinsic interference, arises in preemptive multi-
tasking systems when a task displaces from cache the working set of any other
task of the system. When the preempted task resumes execution, a burst of cache
misses increase its execution time over the precalculated WCET. This additional
delay must be considered in the schedulability analysis.

The cache problems considered in this work deal with the resolution of cache
interference in multitask, preemptive real-time systems. The paper only ad-
dresses the instruction cache problem and how it influences in the calculation
of WCET of each task and in the schedulability analysis of the whole system,
without regard to other architecture improvements.

Several solutions have been proposed to use cache memories in real-time sys-
tems. Some works analyse the cache behaviour to estimate the task execution
time considering only the intra-task interference [1-4]. In [5,6] the cache be-
haviour is analysed to estimate the task response time, but considering only the
inter-task interference and using a precalculated cached WCET. These works
deals only with fixed priority schedulers. Other works try to eliminate or reduce
the inter-task interference by using hardware and software techniques [7-10],
but they do not face the intrinsic interference problem. Additionally, in some
cases, the extrinsic interference is only reduced, and therefore, the predictability
problem of the cache-related preemption delay remains unresolved.

This work presents an integrated approach, based on a previous work [11],
that offers full predictability for WCET estimation, and a bounded value of
extrinsic interference under the Earliest Deadline First (EDF) scheduler.

First goal is achieved using instructions to manage cache, like selective
preload (cache fill) and cache locking. These instructions are present on currently
available processors. The way these characteristics are used offers the possibility
to use a simple schedulability analysis joined with accurate estimations of cache
performance.

The method here presented is based in the ability of several processors to
disable or lock the cache, precluding the replacement of its contents but allowing
references to the data or instruction already stored in cache. In this scenario,
execution time of instructions is constant for each instance, and preemptions
do not modify the cache contents. This way, intra-task and inter-task interfer-
ence are eliminated since cache content remains unchanged during all system
operation, and only a temporal cache buffer have to be taken into account in the
schedulability analysis. Such a temporal buffer is introduced to improve temporal
behaviour of the instructions not preloaded into the cache.

The rest of the paper is organised as follows: next section shows the hardware
necessary to reach both predictability and the best possible performance. Section
3 is devoted to schedulability analysis, and the algorithms used to calculate the
WCET and the schedulability analysis are presented when a locking cache is
used. In section 4, the genetic algorithm to select the best set of instructions to
load in cache is presented. Then, the experimental results are explained. And
finally, conclusions and future work are described.
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2 System Overview

Several processor offers the ability to lock cache memory contents, like Intel-960,
some x86 family processors, Motorola MPC7400, Integrated Device Technology
79R4650 and T9RC64574, and others. Each of these processors implements cache
locking in a different ways, allowing to lock the entire cache, only a part, or in
a per-line basis. But in all cases, a portion of cache locked will be not selected
later for refill by other data or instruction, remaining its contents unchanged.

The IDT-79R4650 cache schema offers an 8KB, two-set associative instruc-
tion cache. Also, the processor offers the instruction ’cache fill’ instruction to
selective load cache contents. However, this processor allows locking only one
set of cache, leaving unlocked the other cache set. Since the main objective of
this work is to reach a deterministic cache, locking the entire cache is needed.
In the MPC7400 is possible to lock the entire cache, using a one-cache-line size
buffer to temporally store instructions not loaded in cache, improving sequential
access to these addresses. The problem with this processor is that not selec-
tive load of cache contents is available. This way, in this work, a merge of the
two above processor is proposed, resulting in a cache system with the following
characteristics:

— Cache can be totally locked or unlocked. When cache is locked, there are no
new tag allocations.

— If the processor addresses an instruction that is in the locked cache, this
instruction is served from cache.

— If the processor addresses an instruction that is in the temporal buffer, this
instruction is served from this buffer in like-cache time.

— If the processor addresses an instruction that is not in the locked cache or
temporal buffer, this instruction is served from main memory. Simultane-
ously, the temporal buffer is filled with that block regarding the address
demanded by the processor.

— Cache can be loaded using a cache-fill instruction, selecting the memory
block to load it.

— Cache can be locked using cache management instructions.

— Cache may be direct mapped or set associative. Increasing the associative-
level may increase the performance of locking caches, but direct-mapped is
enough to reach predictability.

Totally locking the cache allows obtaining the maximum possible perfor-
mance, simultaneously making deterministic the cache. The temporal buffer re-
duce access time to memory blocks not loaded in cache, since only references to
the first instruction in the block produce cache miss.

During system design step, a set of main memory blocks is selected to be
loaded and locked in cache. When system start-up, a small routine will load
selected blocks in cache, executing cache fill instructions. After last load, the
cache is locked. In this way, when tasks begin full operation, the state of cache
is known and remains unchanged during all system operation.
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3 Schedulability Analysis

The main goal addressed in this paper is predictability. The designer of a real-
time system have to be able to predict the timeliness execution of the critical
workload before starting the system. This work can be accomplished using an
schedulability test at design time.

In dynamic systems, the schedulability test can be performed by checking
the system schedulability throughout a short interval named the Initial Critical
Interval (ICI) [12]. In this section, this ICI schedulability test is presented and
adapted to take into account the extrinsic interference in a dynamic scheduler,
like Earliest Deadline First. As the entire instruccion cache is locked, the extrinsic
interference is reduced to the refilling of the temporal buffer.

In a real-time system, the critical workload is typically composed by a set of
periodic tasks 7. This task set is defined by T = {T;(C;,D;, ;) : i = 1...n}
with 1 < C; < D; < P;, where C;, D; and P; are the worst-case execution time
(WCET), relative deadline and period of task T}, respectively.

The ICT schedulability test is based on two analytical functions G+ (t) and

Hr(t):

— Function G7(t): Given a task set T, function G7(t) accumulates the
amount of computing time requested by all activations of tasks in 7 from
time zero until time ¢. Formally:

Cr(t) = ;c [H . (1)

— Function Hr(t): Given a task set T, function Hy(t) is the amount of com-
puting time requested by all activations of tasks in 7 whose deadline is less
than or equal to t. Formally:

Hyt) = Zj; c, {’WJ . 2)

In other words, H7(t) represents the amount of computing time that the
scheduler should have served until time ¢ in order to meet all deadlines.

Using these functions, the initial critical interval, R, can be calculated by
using the recursive expression R;; = G7(R;) until R; = R;41, where Ry = 0.
The last value of R; indicates the ICI R, that represents the first instant when all
requests have already been served and no additional requests have been arrived
yet.

Once R has been established, the system schedulability can be ensured if and
only if the next expression is true:

Hr(t)<t:Vt,1<t<R.
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3.1 Extrinsic Interference

The schedulability test presented above does not consider any cache-related pre-
emption delays. Though critical tasks have a portion of their code locked at
instruction cache, every time a preemption is performed by the scheduler, the
temporal buffer can be filled by the new task code. When the preempted task
resumes its execution, it could undergo a penalty due to the possible refilling
of the temporal buffer. Since the preemption point is not known a priori, the
worst case scenario must be considered. In this case, a task can be preempted
while executing a block of instructions from the temporal buffer. So, using the
proposed structure of locking cache, the penalty suffered by the preempted task
is Tiniss, where Ty,;ss is the time to transfer a block from main memory to the
temporal buffer.

To determine the maximum number of preemptions a task can suffer in a
dynamic system, and therefore, to calculate the WCET and the response time
of a task taking into account these preemptions, is a very difficult problem. How-
ever, it is quite easier to determine the number of preemptions a task originates
under a given scheduler. This information can be used in the schedulability test
to incorporate the cache-related preemption delay into the task responsible for
the preemption, instead of incorporating this delay in the task is preempted.

Earliest Deadline First scheduler is privileged scheduler among schedulers
based on dynamic priorities: it generates a very low number of preemptions, and
these preeemtions can only occur on task arrivals. Therefore, under EDF, a task
generates a preemption when it arrives or does not generate any preemption at
all. Taking this feature into account, the schedulability functions (1) and (2)
remains as follows:

Gr(t) = Zn:(c*i + Toniss) [ﬂ : (3)

i=1 b
Hy(t) =Y (Ci + Trmiss) {WJ : (4)

i=1

where C; is the WCET of the task T; considering the existence of cache and
taking into account the blocks this task has locked in cache. Next subsection
presents how this can be calculated.

Though the rest of the schedulability test remains unchanged, a very slight
optimitation can be performed. It can be taken into account that the task with
the largest relative deadline never can preempt any task when it activates, be-
cause it always has the slowest priority on arrival.

3.2 Worst Case Execution Time

The schedulability test needs the Worst Case Execution Time of each task T;
to accomplish the analysis. This WCET must be calculated considering the ex-
istence of cache. In conventional caches this is a hard problem, because two
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execution of the same instruction must take different temporal cost. But in here
presented cache scheme, an instruction will be in cache always, or never will
be into, thus its execution time is always constant. To calculate the WCET of
a task, the timing analysis presented in [13] is modified to taking account the
presence of the locking cache. This analysis is based on the concept of Control
Flow Graph of a task.

This work presents an extended Control Flow Graph, called Cached-Control
Flow Graph (c-cfg), that takes into account cache line boundaries. In this c-cfg,
a vertex is a sequence of instructions without flow break, and all instructions on
a vertex map in the same cache line. This model differs from conventional CFG
in the meaning of vertex, since the c-cfg models not only the flow control of the
task but also how the task is affected from the point of view of cache structure.
Figure 1 illustrates an example.

This c-cfg can be represented with a simple expression that can be evaluated
to obtain the task WCET. Figure 2 shows the expression for three basic c-cfg,
and Figure 3 shows an example. In these expressions, F; represents the execution
time of vertex V;.

Task’s WCET can be calculated evaluating the expression, considering the
execution time of each vertex. The execution time of a vertex depends on the
number of instructions into the vertex and the cache state when the vertex is
executed. In a locked cache, the cache state remain unchanged, so the execution
time of a vertex is constant for all executions: the vertex is always loaded into
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Fig. 2. Expressions for three basic structures

Wcet=E1+10*(E2+15*(E3+E4+
+max(E5,E6)+E7)+E8)+E9

Fig. 3. Example of expression

the cache or it will never be. So, the execution time of a vertex can be calculate
as follows:

— For a vertex V; loaded and locked in cache, its execution time FE; is: E; =
Thit - 1;-

— For a vertex V; not loaded nor locked in cache, its execution time FE; is:
Ei = Thiss + (Thie - I;)
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where I; is the number of instructions of vertex V;, Ty;; is the execution time of
an instruction that is in cache, and T;,;ss is the time to transfer a block from
main memory to the temporal buffer.

The execution time of vertexes can be directly used in the c-cfg expression to
obtain the WCET of the task, giving an upper bound value, since execution time
is now non cache-dependent. The existence of a temporal buffer may introduce,
in some cases, a light error in the WCET estimation.

4 Selecting Blocks to Load and Lock in Cache

Performance improvements due to use of cache memories are very significant,
and real-time systems should take advantage of it. Randomly loading and locking
instructions in cache offers predictability but not guarantee good response time
of the tasks. In order to reach both goals, a predictable cache and a cache
performance close to the usual one, instructions to be loaded must be carefully
selected, trying to find the best possible scenario. This scenario is a set of main
memory blocks locked in cache that provides the minimum possible execution
time, thus providing the minimum possible response time for a set of tasks.

Although there are several possibilities to select instructions to be locked, it
is not easy to isolate an instruction and evaluate the impact of locking it in cache
over the system behaviour, due to interacts between tasks. Response time of task
is mainly related to the task’s structure, but also how tasks are scheduled in the
system concerns to the response time. Exhaustive search, including branch and
bound, presents an intractable computational cost, since the number of possible
solutions is very large. Genetic algorithms [14], performing a randomly-directed
search, can be used in this problem, finding a sub-optimal solution within an
acceptable computational time. The genetic algorithm used in this work is the
evolution of a previous version presented in [11]. The main characteristics of the
new algorithm are described next.

Each block of a task can be locked or not in cache. An individual represents
the state of all blocks of all tasks in the system in one chromosome, where a
chromosome is a set of genes. Each gene has a size of only one bit and represents
the block state. The population is a set of individuals.

Fitness function must guide the genetic algorithm evolution, helping to find
the best solution. The fitness function must have three main characteristic: low
computational cost, find the best solution, and find this solution in fewer it-
erations. It is hard to find a fitness function that agree these characteristics,
and usually it is a complex function. In this work, the used fitness function is
the result of applying the schedulability test described in previous section to
each individual, considering the state — locked or not — of the blocks. WCET
for schedulability test is estimated using the WCET expressions described in
previous section. From the fitness function four types of results are obtained:

— Schedulable system, with number of locked blocks minor or equal to the
cache size. This is a valid individual.
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— Schedulable system, with number of locked blocks greater than cache size.
This is a non-valid individual.

— No schedulable system, with number of locked blocks minor or equal to the
cache size. This is a very bad solution, but a valid individual.

— No schedulable system, with number of locked blocks greater than cache size.
This is a non-valid individual.

Also, fitness function returns for schedulable individuals the system utili-
sation, and for not schedulable individuals it returns a factor indicating how
bad is the individual (distance between failure time and the ICI). The existence
of invalid and non-schedulable individuals precludes the use of direct probabil-
ity setting as function of fitness value. This way, individuals are arranged in
three segments: higher positions for schedulable-and-valid individuals, following
valid-non-schedulable individuals, and lower positions for invalid individuals.
Into first segment, schedulable-and-valid individuals are arranged as function of
its utilisation (lower utilisation, higher position). Into second segment, valid-non-
schedulable individuals are arranged as a function of its factor of failure (higher
factor, higher position). Finally, invalid individuals are arranged as function of its
number of locked blocks (lower number of blocks, higher position). Once all indi-
viduals are well arranged, selection probability for crossover is set as function of
position. This allows including, with low probability, both non-schedulable and
non-valid individuals that help to increase the variability of the algorithm.

Crossover is performed choosing randomly a gene that divides the individual
into two parts, and exchanging the parts of two individuals, making two new
individuals. This process is repeated until the number of new individuals make
equal the population size.

Mutation is applied in a gene-basis to these new individuals in three ways:

— For individuals with number of locked blocks greater than cache size, muta-
tion randomly eliminates blocks from the set of locked-blocks.

— For individuals with number of locked blocks smaller than cache size, muta-
tion randomly adds blocks to the set of locked-blocks.

— For individuals with number of locked blocks equal than cache size, mutation
randomly exchange blocks, leaving unchanged the number of locked blocks.

In order to guarantee the use of a direct-mapped locking cache, after the
previous mutation, the algorithm looks if the set of locked blocks do not fit in a
direct-mapped cache, randomly exchanging locked blocks, when needed, making
them fit in a direct-mapped cache.

A new population is building with the individuals obtained from mutation,
and process is repeated a prior-defined number of times. For the accomplished
experiments presented further in this paper, the number of iterations is estab-
lished in 2.000, with a population of 200 individuals.

The genetic algorithm solves, at the same time, the problem of selecting main
memory blocks to load and lock in cache, and also, the schedulability analysis,
since the result from the fitness function for a valid individual is the response of
schedulability test.
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5 Experimental Results

Above presented analysis allows to bound execution time interferences due to
cache related issues. However, although the effects of using the proposed cache
scheme can be bounded and incorparated to the schedulability analysis, the
performance advantages obtained from using cache memories in a predictable
way should be analysed.

Experimental results presented in this section show that preload and locking
instructions in cache not only makes the system predictable: it also offers a
performance close to the traditional caches (direct-mapped or set-associative)
with LRU or Pseudo LRU replacement algorithm.

To make experiments, the SPIM tool [15], a MIPS R2000 simulator is used.
The SPIM does not include neither cache nor multitask, so modifications to
include an instruction cache, multitasking (simulated and controlled by the sim-
ulator and not by the O.S.) and to obtain execution times has been made to the
original version of SPIM. Since this simulator does not include any architectural
improvement, cache effects can be analysed without interference. The routine to
load and lock in cache the selected instructions is incorporated in the simulator.
Tasks used in experiments are artificially created to stress the proposed cache
scheme. Main parameters of task are defined, like number of loops and nesting
level, size of tasks, size of loops, number of if-then-else structures and its re-
spective sizes. These parameters are fixed or randomly selected. A simple tool is
used to create tasks. The workload of any task may be a single loop, if-then-else
structures, nested loops, streamline code, or any mix of these. The size of task
code range from near 64 Kb to around 1Kb.

Each experiment is composed of a set of tasks and a cache size, ranging from
three to eight tasks and cache sizes from 1 Kbyte to 64 Kbytes. This way, the
two extreme scenarios are presented: code size much greater than cache size
(64:1) and code size lower than cache size. Each experiment is simulated using
direct-mapped, two-set associative, four-set associative and full associative cache,
calculating the system utilisation Uggene. For all cases, line size is 16 bytes (four
instructions). Time to transfer a block from main memory to the temporal buffer
is 10 cycles (Thniss = 10). Execution of any instruction from the cache is 1 cycle,
and execution of any instruction from the temporal buffer is also 1 cycle. For
each experiment, the system utilisation is estimated using the genetic algorithm
Uecstimated, and simulated in a locking cache using the blocks selected by the
genetic algorithm Ujocking-

Figure 4 presents the overestimation in the estimated utilisation by the ge-
netic algorithm, respect the actual utilisation (simulated) of the system when
locking cache is used. ((Uestimated/Ulocking) -1). Each bar represents the num-
ber of experiments with percentage of overestimation that lies in the interval
of the x-axis (i.e., 36 experiments have an overestimation between 0,01% and
0,05%). This figure shows that the estimated utilisation is quite accurate: The
overestimation is always below the 0,5%. So, pessimism introduced in WCET
calculation and schedulability analysis is not significant.
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Fig. 4. Overestimation estimated by the genetic algorithm

Figure 5 shows the accumulated frequency. Accumulated number of exper-
iments for the given overestimation between simulated and estimated system
utilisation using locking cache. Axis-y value is the percentage of experiments
with an overestimation lower than axis-x value. It can be observed that more
than 90% of the experiments present an overestimation below 0,05%.

Regarding the performance of the locking cache, Figure 6 compares the sys-
tem utilisation with or without locking cache. Conventional cache uses the map-
ping function that obtains the best performance for each case.

The figure depicts the performance ratio: simulation of actual system util-
isation with the best conventional-cache arrangement, versus the estimated
system utilisation obtained by the genetic algorithm with a locking cache
(Ucache /Uestimated)- Tasks are grouped regarding this ratio. Each bar represents
the number of experiments with performance ratio (Ucqche/Uestimated) that lies
in the interval of the x-axis.

Figure 7 draws accumulative values of previous figure. Axis-y value is the
percentage of experiments with performance ratio greater than axis-x value.
For around 50% of the experiments, the system utilisation is equal or lower
using locking cache, and in more than 60% of cases the performance loss is
negligible. In these cases, the worst case response time (WCRT) is not only
bounded, furthermore it makes the WCRT lower than execution time in a system
with a normal cache.
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From the obtained results, we can conclude that the proposed cache scheme
is predictable, and it allows the application of EDF schedulability analysis in
systems with cache. The estimated utilisation is an upperbound of the actual
utilisation using locking cache: (Ujocking < Uestimated for all experiments). With
this technique, the predictability is obtained in many cases without performance
loss (Uestimated <= Ucache) for around 60% of experiments).

6 Conclusions

This work presents a novel technique that uses locking caches in the context
of real-time systems with EDF schedulers. In addition, algorithms to analyse
the proposed system are described. Compared to known techniques to achieve
cache predictability in Real-Time systems, this solution completely eliminates
the intrinsic cache interference, and gives a bounded value of the extrinsic one.

This technique allows real-time systems with dynamic scheduling profit from
the great performance increase produced by cache memories. And this is ac-
complished in a practical way, since the designer can easily analyse the system
to accomplish the schedulability test. In addition, the architecture is compati-
ble with other techniques to improve performance, like segmentation, precluding
the consideration of the complex interrelations amongst these techniques and
the cache.

This approach is very effective from the performance point of view. Simula-
tions results show that for around 60% of experiments the performance achieved
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by using locking caches is almost similar to the one obtained with conventional
caches (without taking care of determinism).

The hardware resources required to implement this scheme are available in

some contemporary processors. To obtain the best results, some minor changes
have been proposed. These changes do not present difficulties in terms of tech-
nical complexity and production.

This work has also presented an algorithm to select the contents of the cache.

This selection delivers the best performance. The algorithm also calculates the
WCET and performs the schedulalibility analysis.
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Abstract. As long as there have been databases there has been a large
interest to measure their performance. However, operating system im-
pact on database performance has not been widely studied. Therefore,
this paper presents experimental results on operating system impact
on database performance. Two different operating systems are studied:
Linux and Chorus. Linux operating system is tested with different ker-
nel versions and different network speeds. Chorus is used as reference
point because it is a real-time operating system. Our results clearly in-
dicate that Linux can be used as a platform for real-time main-memory
databases, but the newest kernel version 2.4 should be used. Our simple
experiment also confirms that the UDP gives better response time than
TCP. The work done in the Linux community to reduce the long la-
tency in the kernel has been successful and with sufficiently long request
deadlines it can be used as a platform for real-time databases.

1 Introduction

Database performance is an important aspect of the database’s usability. The
performance of a database system depends not only on the database architecture
and algorithms, but also on the platform the database is running on.

Real-time databases are needed when the database requests must be served
within respecified time limits. The database is then designed to support the
timely execution on all levels of the database architecture. It provides transaction
scheduling, which supports priorities, deadlines, or criticality of the transactions.
Alternatively they can be run on a general purpose operating system which
supports real-time processes. Such functionality can be found, for example, in
Solaris.

Telecommunication is an example of an application area, which has database
requirements that require a real-time database or at least time-cognizant
database. A telecommunication database, especially one designed for IN ser-
vices [1], must support access times less than 50 milliseconds. Most database
requests are simple reads, which access few items and return some value based
on the content in the database.

Real-time databases have been designed for running mainly on real-time op-
erating systems, which can provide real-time scheduling and guaranteed max-
imum latencies in the kernel. Previous work on real-time databases in general

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 342-350, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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has been based on simulation. However, several prototypes of general-purpose
real-time databases has been introduced. StarBase [7] is constructed on top
of RT-Mach. RTSORAC is implemented over a thread-based POSIX-compliant
operating system and is based on an open OODB with real-time extensions [9].
Another object-oriented architecture is M?2RTSS-architecture, which is main-
memory database system with real-time transaction scheduling [2].

Linux has gained popularity as a platform for web-servers and other network
services. We wanted to find out if it would be suitable as a platform for a real-time
database. The newest (February 2002) kernel version 2.4 supports priority-based
scheduling and the latencies in kernel code have also been partially reduced.

This paper is organized as follows. Section 2 presents am overview of the
main-memory databases and their requirements. Additionally, the prototype
real-time database system used in experiments is shortly presented. Section 3
presents evaluation environment. Section 4 presents experimentation results. Fi-
nally, Section 5 concludes this paper.

2 Database System

In main memory database systems data resides permanently in the main physical
memory. In some real-time applications, the data must be memory resident to
meet the real-time constraints [3].

A network database system must offer real-time access to data [5,6]. This is
due to the fact that most read requests are for logic programs that have exact
time limits. If the database cannot give a response within a specific time limit, it
is better not to waste resources and hence abort the request. As a result of this,
the request management policy should favor predictable response times with the
cost of less throughput. The best alternative is that the database can guarantee
that all requests are replied to within a specific time interval. The average time
limit for a read request is around 50ms. About 90% of all read requests must be
served in that time. For updates, the time limits are not as strict. It is better to
finish an update even at a later time than to abort the request.

Network database system services consist of two very different kinds of se-
mantics: service provision services and service management services. Service pro-
vision services define possible extra services for customers [4]. Service provision
transactions have quite strict deadlines and their arrival rate can be high (about
7000 transactions/second), but most service provision transactions have read-
only semantics. In transaction scheduling, service provision transactions can be
expressed as firm deadline transactions. Service management services defines
possible management services for customer and network administration [4]. Ser-
vice management transactions have opposite characteristics. They are long up-
dates which write many objects. A strict consistency and atomicity is required
for service management transactions. However, they do not have explicit dead-
line requirements. Thus, service management transactions can be expressed as
soft real-time transactions.
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The prototype system used is based on the Real-Time Object-Oriented
Database Architecture for Intelligent Networks (RODAIN) [8] specification. RO-
DAIN Database Nodes that form one RODAIN Database Cluster are real-time,
highly-available, main-memory database servers. They support concurrently run-
ning real-time transactions using an optimistic concurrency control protocol with
deferred write policy. They can also execute non-real-time transactions at the
same time on the database. Real-time transactions are scheduled based on their
type, priority, mission criticality, or time criticality. All data in the database is
stored in the main-memory database. Data modification operations are logged
to the disk for persistence.

In order to increase the availability of the database each Rodain Database
Node consists of two identical co-operative units. One of the units acts as the
Database Primary Unit and the other one, Database Mirror Unit , is mirroring
the Primary Unit. Whenever necessary, that is when a failure occurs, the Primary
and the Mirror Units can switch their roles.

The client requests arrive via TCP /IP over a network directly to the database
process, which contains threads to serve the clients. Each client may use the
same connection for multiple transaction requests. The precoded real-time trans-
actions get all their parameters in the requests and give their answers in the
replies. No communication during the transaction execution is allowed between
the transaction and the calling client.

The client and RODAIN server are originally designed to communicate over
TCP. It provides a handy way for the client to recognize the failure of the server
assuming that the network does not fail in between. The client can trust in the
reliable communication, that the server has received each request and that it
can expect to receive a reply also.

3 Evaluation Environment

The database server was running on an Intel Pentium 450 MHz processor with
256 MB of main memory. A similar computer was used for the client. The com-
puters were connected using a dedicated network, the speed of which was con-
trolled by changing the hub connecting the computers. To avoid unnecessary
collisions, there was no other network traffic while the measurements were per-
formed.

Used database is based on a GSM model and transactions are simple one
item reads to Home Location Register (HLR). Database size is 30000 items.

All time measurements were performed on the client computer using the
gettimeofday function, which provides the time in microseconds. The client sends
the requests following a given plan, which describes the request type and the time
when the request is to be sent. When the request is about to be sent the current
time is collected and when the reply arrives the time difference is calculated.

Linux provides static priorities for time-critical applications. These are al-
ways scheduled before the normal time-sharing applications. The scheduling
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policy chosen was Round-robin (SCHED_RR) using the scheduler function
sched _setscheduler.

The database was also avoiding swapping by locking all the processes pages in
the memory using mlockall function. The swap causes long unpredictable delays,
because occasionally some pages are sent and retrieved from the disk. Because
in our experiment environment our database system was the only application
running no swapping occurred during the tests.

4 Experimentation Results

The measurements in the dedicated networks clearly show, that Linux can be
used as platform for a real-time main-memory database, at least when the disk
1/0 is omitted and the request deadlines are suitably long (see Figure 1 for Linux
and Figure 2 for Chorus).
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Fig. 1. The request responce times for each request using Linux kernel 2.2.19 with 10
Mb Ethernet. All the figures have as x the request sequence number over the test and
as y the measured responce time in seconds.

Our initial tests with Linux-kernel 2.2.19 were not very encouraging (see
Figure 1). The occasional delays were over 50 milliseconds. Also the long delays
were grouped so, that when one went over the others were also more likely to
go over the assumed deadline of 50 milliseconds. The database server itself (see
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Fig. 2. The request responce times for each request using Linux kernel 2.2.19 as a
client and Chorus as a server with 10 Mb Ethernet.

figure 3) used only a fraction of the observed time as seen on the client. This
difference made us look more closely to the network behavior and the kernel
itself. Our experience from other projects involving Linux and time requirements
indicated that the change of the kernel to 2.4.x should be the first step.

Linux kernel 2.4 includes features that are designed to reduce the long time
periods within kernel with the interrupts disabled. This change did the trick.
The longest observed response time was slightly lower than 35 milliseconds, but
most of the response times were still gathered around the 10 milliseconds line
as in the 2.2 kernel experiment (see figure 4). Since 10 milliseconds is less than
the required 50 milliseconds, it can be used as long as no swap to the disk is
required.

However, there still is the same gathering around the 10 milliseconds. Adding
the low latency patch (see http://www.zip.com.au/ akpm/linux/schedlat.html)
did not remove that either, but it made the response times more deterministic.
All the values are on some particular level meaning some particular time value
(see figure 5). This is exactly what the patch is trying to do, it tries to reduce
the kernel latencies within some time limits. The distribution of the response
times clearly is no longer even over all time values.

The most surprising result came, when the speed of the network connection
was increased (see Figure 6). We were hoping to see some reduction in the
overall response times, since the network capacity was increased to almost 10
times. Some response times really dropped, but they reduced only to the nearest
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Fig. 3. The request responce times inside the database.

low 10 milliseconds. Because we used TCP as the communication mechanism
between the client and the server the 20 milliseconds line is most probably due to
retransmissions of messages. This gathering is mainly due to the 10 milliseconds
scheduling delay usually visible on Linux.

We knew that the network communication was the dominating force, but
the switch from using connectionless UDP communication instead of the con-
nected TCP communication reduces all reply durations below 10 milliseconds
(see Figure 7).

Of course, the number of messages drops to a third, since the TCP acks are
not sent. This gives the most reduction, but it does not explain the concentration
visible in the TCP measurement.

Finally, Table 1 shows minimun, maximum, median, and average responce
times with different tests. Table shows also stardard deviation and variance of
the responce times.

5 Conclusion

Linux can be used as a platform a for real-time main-memory database if the
deadlines for the requests are feasible. The request must allow at least 10 mil-
liseconds simply for the network and operating system overhead. Although the
10 milliseconds in this experimentation also covered the costs of our database,
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Fig. 4. The request performance time for each request using Linux kernel 2.4.17 with
10 Mb Ethernet
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Fig. 5. The request performance time for each request using Linux kernel 2.4.17 low
latency patch with 10 Mb Ethernet
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Fig. 6. The request performance time for each request using Linux kernel 2.4.17 low

latency patch with 100 Mb Ethernet
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Fig. 7. The request performance time for each request using Linux kernel 2.4.17 with

100 Mb Ethernet, when the communication is connectionless
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Table 1. Experimental statistics.

Test Min Max |Median |Average|Deviation|Variance

Linux 2.2.19 Figure 1 0.0027 |0.0757|0.0116 |0.0123 |0.0065 4.2319-e-05
Chorus Figure 2 0.0023 |0.0617|0.0109 |0.0105 |0.0063 3.9338e-05
Linux 2.4.17 Figure 4 0.0028 |0.0336|0.0087 |0.0081 |0.0040 1.6035e-05
Linux 2.4.17 Figure 5 0.0022 |0.0260(0.0092 |0.0080 |0.0034 1.1822¢-05
Linux 2.4.17 Figure 6 0.000921|0.0212|0.0101 |{0.0086 |0.0037 1.3739¢-05
Linux 2.4.17 UDP Figure 7