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Abstract— Providing real-time communication services to mul-
timedia applications and subscription-based Internet access often
requires sufficient network resources to be reserved for real-time
traffic. However, the reserved network resource is susceptible to
resource theft and abuse. Without a resource access control mech-
anism that can efficiently differentiate legitimate real-time traffic
from attacking packets, the traffic conditioning and policing
enforced at ISP (Internet Service Provider) edge routers cannot
protect the reserved network resource from embezzlement. On
the contrary, the traffic policing at edge routers aggravates their
vulnerability to flooding attacks by blindly dropping packets. In
this paper, we propose a fast and light-weighted IP network-
edge resource access control mechanism, called IP Easy-pass,
to prevent unauthorized access to reserved network resources at
edge devices. We attach a unique pass to each legitimate real-time
packet so that an ISP edge router can validate the legitimacy of
an incoming IP packet very quickly and simply by checking its
pass. We present the generation of Easy-pass, its embedding,
and verification procedures. We implement the IP Easy-pass
mechanism in the Linux Kernel, analyze its effectiveness against
packet forgery and resource embezzlement attempts. Finally, we
measure its overhead and performance.

I. INTRODUCTION

The Internet is an open system, and hence, there is no strict
access control upon network resources. An end-host with a
valid IP address and connection to the Internet, can inject any
number of IP packets in the Internet. As a best-effort model,
the current Internet is vulnerable to DoS (Denial of Service)
attacks [1], [2], in which an attacker exploits IP spoofing
and floods bogus packets to the victim server. The flooding
traffic cripples the Internet service either by swamping the
victim server or by clogging the network link. To protect
Internet servers and network resources, various packet filtering
techniques have been proposed and used as defensive mech-
anisms [3—10]. The packet filters installed at Internet servers
or their nearby firewalls [3], [7], [10] only prevent such IP
packets from reaching the victim, but cannot protect network
resources from theft and abuse. The intermediate-router-based
packet filters [5], [6], [8], [9] can block further propagation of
flooding traffic in the network, but cannot protect the upstream
network resources. The ingress/egress filtering techniques [4]
at ISP edge routers can prevent IP packets from being spoofed
as an outsider, but cannot discriminate bogus IP packets with
valid IP addresses within the same local ISP.

To provide real-time communication services to multime-
dia applications or “subscribed” Internet users, the proposed
network QoS (Quality of Service) infrastructure like Diff-
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Serv (Differentiated Service) [11] reserves network resources
for real-time traffic. Within the network QoS architecture,
however, the reserved network resources will become a con-
spicuous target to potential adversaries, and will be more
vulnerable to packet forgery and resource embezzlement. We
call such attacks, targeting at reserved network resources and
violating network QoS guarantees, as DQoS (Denial of Quality
of Service) attacks. Basically, there are two distinct DQoS
attacks: (1) control flow attacks, e.g., killer reservation in
RSVP (Resource ReSerVation Protocol) [12], which directly
attack the signaling/control protocol in the control plane for
network resource reservation and connection setup; and, (2)
data flow attacks (e.g., resource theft in the data plane),
in which bogus data packets grab the reserved bandwidth
from the “owners,” or genuine real-time data flows. Previous
research efforts have focused on providing secure communi-
cation in the control plane for control flows, such as in AR-
QoS [13] and Authenticated QoS [14] projects. They proposed
a secure RSVP, in which resources are reserved online using
strong authentication, and subsequently, compliance with the
reservation request parameters is verified.

However, little attention has been paid to defend against
DQoS attacks in the data plane, and block the attacking traffic
from consuming the reserved network resources. Currently, the
usage of reserved network resource hinges on IP addresses
and the setting of the ToS (Type of Service) field in the
IP header, which can be easily spoofed. Even if we secure
the QoS signaling procedure, an adversary within the same
stub network or at a neighboring network that is connected
with the same ISP, can passively monitor the ongoing traffic
towards ISP edge routers. The adversary can then impersonate
as legitimate sources by flooding the spoofed data packets that
have the same IP header as valid data packets. The packet
filters based on packet header information only, cannot screen
out these spoofed packets. Moreover, to meet the SLA (Service
Level Agreement) [15] between an ISP and its end-users,
edge routers perform traffic shaping and policing according
to the specified traffic profiles. Without a resource access
control mechanism that can efficiently differentiate legitimate
real-time traffic from spoofed packets, the traffic conditioning
and policing conducted at ISP edge routers cannot protect
the reserved network resource from embezzlement. On the
contrary, the traffic policing at edge routers aggravates their
vulnerability to flooding attacks by blindly dropping packets,
since flooding bogus packets can easily cause traffic violation



at the edge routers. Even a small amount of attacking traffic
can disrupt the loss rate, delay and jitter guarantees, and
seriously degrade the promised quality of service.

In this paper, we propose a fast and light-weighted mech-
anism for resource access control at an ISP edge router. It
primarily protects real-time IP data flows, for which network
resources are reserved, from DQoS attacks. Our resource
access control mechanism is a checkpoint at edge routers,
and is used for packet-level admission control. We call it
an IP Easy-pass, because it is similar to the checkpoint at
a toll road where only the cars with pre-paid stickers can go
through the Easy-pass lane. Note that we apply the IP Easy-
pass mechanism in the data plane, and assume the existence
of a secure channel for QoS signaling in the control plane
between a given end-host and the ISP edge router that connects
the end-host to the Internet. Prior to data transfer, through the
secure QoS signaling channel, the end-host and the ISP edge
router must communicate shared secrets for generating Easy-
passes.

Since IP is stateless, we attach a unique Easy-pass to every
real-time data packet. Each IP Easy-pass is an encrypted order-
sensitive information to warrant the legitimacy of the packet
carrying it, and plays a role as an admission ticket which can
be used only once and then becomes void. Stale passes are
invalid. Even if an attacker can sniff the already-used passes,
he cannot deceive the ISP edge router by simply copying these
void passes into spoofed packets. Thus, the freshness of a
pass is crucial to the admission of the data packet carrying
the pass. A correct sequence of Easy-passes is pre-determined
by both sides, and should be robust against cryptanalysis. It
is extremely difficult, if not impossible, for the third party to
decrypt the garbled passes and predict the correct sequence in
a short time. This property ensures that an adversary cannot
easily forge a valid unused IP Easy-pass. The rule for access
control is simple: the ISP edge router knows the correct
sequence of passes; it accepts the packet with a new pass that
is in the right track; otherwise, any packet with a duplicated or
out of track pass, is classified as forgery and simply dropped.’

Because the generation and verification of passes are done
on a per-packet basis, it has to be very fast and light-weighted,
incurring as little overhead as possible. To generate encrypted
passes, several parameters, including a symmetric private key
and the fundamental elements of producing plain passes, are
shared between a given end-host and the ISP edge router
that connects the end-host to the Internet. We attach an IP
Easy-pass at the end of each IP packet as its trailer. The
RCS5 algorithm [16], a fast symmetric block cipher, is used
for Easy-pass encryption and decryption. The plaintext and
ciphertext of Easy-pass are both 64 bits long. We implement
the IP Easy-pass mechanism in the Linux kernel as a kernel
module, and analyze its effectiveness against packet forgery
and resource embezzlement. Finally, we evaluate its overhead
and performance.

!Considering possible packet losses, we admit normal out-of-sequence
packets, which are still in the right track, as legal traffic.

The remainder of the paper is organized as follows. Section
2 discusses the related work. Section 3 reveals the vulner-
ability of the reserved network resource to DQoS attacks.
Section 4 describes the generation of a plain Easy-pass, the
encryption/decryption algorithm, the verification procedure
and its embedding as an IP trailer. Section 5 describes the
implementation of Easy-pass in the Linux kernel, and evaluates
the effectiveness of the Easy-pass scheme in a network testbed.
Finally, Section 6 concludes the paper with a summary of our
work.

II. RELATED WORK

The IPSec [17], [18] protocol is often used to provide
end-to-end secure communications at the network layer. It
protects each IP packet, supporting address authentication,
data integrity and confidentiality. Besides serving secure com-
munications between two end-hosts, IPSec can also be used
between two gateways to achieve VPN (Virtual Private Net-
work) services over the public Internet. In the VPN model, the
end-hosts in a local area network are trusted entities. However,
IPSec is heavy-weight, incurring non-negligible overhead in
data transmission [19-21]. A 10% increase of end-to-end
latency overhead introduced by IPSec may not be a serious
problem to file transfers or Web sessions. However, such an
overhead may violate the delay requirements for delivering
real-time data streams. Furthermore, in a study of Voice over
IPSec, the effective bandwidth was observed to be reduced
up to 50% with respect to VoIP [19]. Overall, IPSec is
inappropriate for protecting the reserved network resources
at edges, especially in wireless LAN and DSL environments.
In contrast, our scheme is intended mainly to protect the
end-hosts that subscribe to the premium service, against the
flooding attacks from malicious neighbors. For such DQoS
problems, we need a light-weight network resource access
control mechanism whose overhead does not cause violation
of the stringent timing requirements of real-time traffic.

The hop integrity schemes proposed by Gouda et al
[22] support router authentication and hop-by-hop message
integrity. The hop integrity protocols are executed at all
routers in a network, and provide a minimum level of se-
cure communications between two adjacent routers to defend
against message modification and message replay. However,
hop integrity does not keep track of individual data flows or
sessions. It cannot prevent resource theft and message replay
attacks between an end-host and its ISP edge router. Moreover,
the accumulation of per-hop overhead may violate the end-to-
end QoS requirements.

Session-level admission control in the network QoS in-
frastructure has been studied for a decade or so. A num-
ber of schemes have been proposed [12], [23-25], such as
measured-based admission control [25], distributed admission
control [24], and endpoint admission control [23], just to name
a few. The fundamental goal of session-level admission control
for real-time applications is to accommodate new session
requests without compromising the ongoing sessions’ QoS
guarantees. However, IP Easy-pass is a packet-level resource



authorization mechanism, which protects the reserved network
resource from attacking traffic.

To protect a server’s resources on the victim side, many
schemes [26-28] have been proposed and implemented to
counter DoS flooding attacks using sophisticated resource
management schemes. These schemes provide more accurate
resource accounting and fine-grained service isolation, for
example, to shield interactive video traffic from bulk data
transfers. However, these defensive mechanisms at victim
servers cannot prevent the abuse of the reserved network-edge
resources. In contrast, our scheme aims to protect the reserved
network resources, instead of the server’s resources.

III. VULNERABILITY OF RESERVED NETWORK RESOURCE

We will now show that the reserved network resource in
the QoS infrastructure like DiffServ [11] is vulnerable to
spoofed traffic, and the premium service [29] provided by an
ISP is susceptible to flooding attacks. Two entities associated
with the reserved network resource are a given end-host who
has subscribed to the premium service (i.e., the customer),
and the ISP edge router that connects the end-host to the
outside world (i.e., the service provider). Before detailing
the vulnerability of reserved network-edge resources, we first
describe the DiffServ architecture briefly, in which DQoS
attacks may happen. Note that the IP Easy-pass mechanism,
which is independent of any network QoS architecture, is
not tied with the DiffServ architecture; and can be applied
to any other QoS infrastructures. We discuss Easy-pass in
the context of DiffServ, just for the sake of presentation and
experimentation.

A. DiffServ Architecture

To support network QoS, the DiffServ infrastructure has
been proposed as a promising solution due mainly to its
scalability and robustness. Within a DiffServ domain, packets
entering a DiffServ-enabled network are marked with different
DSCPs (DiffServ Code Points), and based on this marking,
they are subject to classification and traffic conditioning (such
as metering, shaping, and policing), leading to a small set
of packet forwarding techniques called PHBs (Per-Hop Be-
haviors). The DiffServ architecture achieves scalability by
applying traffic conditioning and per-flow management at edge
routers only, and by applying PHBs to traffic aggregates at core
routers. DiffServ provides three different services: premium,
assured, and best-effort. Corresponding to these three different
services, three types of PHBs are specified by DiffServ: EF
(Expedited Forwarding), AF (Assured Forwarding), and BE
(Best-Effort). EF is intended to support premium service
for real-time applications that require strict guarantees on
bandwidth, delay, jitter and packet loss. In this paper, the
network resource reserved for EF traffic at ISP edge routers,
including link bandwidth and router buffers, is the target of
malicious attacks.

B. Attacking Model and Assumptions

DQoS attacks in the data plane are made by malicious
insiders or unfriendly neighbors, who have not subscribed to

the premium service. We assume that the adversary is located
in the same stub network as the victim, or at a different stub
network but is connected to the same ISP. The adversary can
be a cracked machine, an unhappy employee, or a naughty
freshman. As the joint that connects the stub networks to
the rest of Internet, each ISP edge router performs traffic
conditioning and policing for EF traffic: any violation of SLA
will be punished by dropping packets. However, such traffic
conditioning works only if no packets are spoofed; on the
contrary, a blindly dropping policy makes the premium service
much more susceptible to the flood of spoofed EF packets.
The reason for this is that the network resource reserved for
premium service is only a small portion of the link bandwidth
and buffer space at ISP edge routers, due mainly to the
following usage and financial factors:

« most of traffic will continue to be best-effort (BE), since
BE service is free; and

« those users who have subscribed to the premium service
will not waste their money by overbooking the resource.

Therefore, flooding even a small amount of spoofed premium
service traffic can easily compromise its quality.

There may be several internal routers and switches between
an end-host and its ISP edge router. For example, from the
EECS Department at the University of Michigan, we use
traceroute to track the route to www.cnn.com, and
find that it takes 4 hops to reach mich.net, the regional
ISP for the University of Michigan. The result is shown as
follows. The topology of the campus network at the University
of Michigan is shown in Figure 1. Within each segmental
LAN environment, there is enough bandwidth — e.g., the
link speed of CAEN (Computer-Aided Engineering Network)
varies between OC-12 (622 Mb/s) and OC-48 (2.4 Gb/s) —
to support real-time applications, such as VoIP (Voice over
IP). It is also a common practice that no traffic conditioning
is performed at internal routers. We further assume that these
internal routers and switches are not sabotaged, so that in-
flight packets cannot be intercepted and modified. However,
the adversary can eavesdrop all the traffic between the end-
host and the ISP edge router, and inject any packet at his will.
eecs2s—-gw (141.213.10.1)

CAEN-EECS-GW (141.213.3.4)
141.213.101.4 (141.213.101.4)
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Suppose mich.net provides VoIP service, then between
mich.net and users at the University of Michigan, there
must be SLAs on the provision of network resource for
supporting the voice traffic. Typically, the outgoing voice
traffic will be policed at the edge router of mich.net before
traversing its ISP network. Carrying voice traffic does not cost
much bandwidth, its provision at the ISP edge router should
be a small portion of its link capacity. Under such a scenario, a
malicious user, who has not subscribed to the premium service,
inside the campus network may monitor the ongoing voice
traffic, and then flood duplicate or spoofed packets, simply
launching a reply attack. The perceived quality of VoIP service
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Fig. 1. The topology of UM campus networks

will be degraded significantly. Moreover, during certain peak
times of the day (e.g., 10 am — 12 noon and 2 pm — 4 pm
when most telephone calls are made), the individual callers
may compete with each other for the reserved bandwidth.
A rejected caller may disrupt the already-established calls
by flooding spoofed packets, thereby degrading the ongoing
phone conversations. Once several such conversations have
been forced to abort, the resource left will allow the ISP edge
router to admit such aggressive caller’s request even at these
peak times.

We prevent such DQoS attacks by deploying the IP Easy-
pass mechanism at both the sending end-host and the ISP edge
router that connects the end-host to the Internet. The sending
end-host generates and encrypts an Easy-pass, then attaches it
to each outgoing EF packet. The ISP edge router decrypts
and verifies the received Easy-pass, then detaches it from
the EF packet before forwarding the packet to the next-hop.
Before EF data transmission, the end-host must have already
set up a secure channel with the ISP edge router for resource
reservation signaling. By utilizing this secure channel, the end-
host and the ISP edge router share the secret information
for constructing Easy-passes. Such an assumption is quite
realistic. Besides the ARQoS [13] and Authenticated QoS [14]
projects, the IETF NSIS Working Group [30] was recently
formed to develop a set of standards for end-to-end resource
reservation and QoS signaling between different administrative
domains. Our Easy-pass scheme can be incorporated into the
end-to-edge (host-to-network) signaling framework of NSIS
so that the shared secrets can be exchanged between the end-
host and the edge router once a trust relationship has been
established between them.

Furthermore, the Easy-pass mechanism can be extended
to validate the legitimacy of high-tiered traffic across two
adjacent ISP edge routers that belong to two different ISPs.
In the context of Mobile IP, we can also apply the Easy-pass
mechanism to validate the IP packets originated from a legal
mobile node for accessing the ISP resources subscribed by the
foreign network. Since the mobile node needs to register with
the foreign agent when it is connected to the foreign network,
the mobile node and the foreign agent may set up a secure
channel to negotiate on how to share secrets for Easy-pass

construction during this registration period.

C. Flooding Attacks Disrupting Premium Service

To demonstrate the susceptibility of premium service to
flooding attacks, we performed a series of experiments on our
testbed. The topology of our testbed is shown in Figure 2. Our
testbed consists of one Linux-based software router rtcl11
and three end-hosts. One end-host rtcl13 is used as the
receiving host, and the other two as sending hosts — one
rtcl9 is a normal service subscriber and the other rtc110
is the adversary. Based on a set of traffic control (tc) APIs
in the Linux kernel, we built a router configuration agent and
placed it on the router of our testbed in order to configure the
traffic control blocks inside the router. At the end-hosts, we
built traffic generation agents, which are a modified version
of Iperf [31], to generate both TCP and UDP traffic. To
facilitate the experimental setup, a fast Ethernet switch is used
to connect the end-hosts. Each machine in the testbed runs on
a 600 MHz Prentium III processor with 256M RAM.

eth110.0.70.11
DiffServ Router €th3/10.0.80.11 13
Module: IP_Easy_pass pis
eth2H0.0.71.11 i ==

&th3/10.0.80.13

ethz/10.0.70.8 eth2/10.0.71.10

9990000008 7|7

Fig. 2. The network topology of the DiffServ testbed

In order to support real-time traffic, we deployed the Diff-
Serv EF (Expedite Forwarding) PHB (Per-Hop Behavior) [29]
at the router. In our experiments, 5S00Kbps of the link band-
width between the router rtcl1ll and the receiving host
rtcll3 is reserved for the EF traffic originating from the
legitimate end-host rt c19. Inside the router, the TBF (Token
Bucket Filter) is used for EF traffic conditioning, and the
packet scheduling policy is PQ (Priority Queueing). Due to
the simple testbed setup, the measured end-to-end delays are
not realistic, so we do not include them in our paper.

A well-behaved EF traffic carried by UDP is transmitted
from rtcl9 to rtcl13. The packet size is 1000 bytes. If no
flooding attacks occur, the reserved network resource serves
the EF traffic well, and achieves the goal of low loss rate,
low delay and low jitter. However, under flooding attacks,
even a small amount of flooding traffic can seriously degrade
the quality of service received by EF traffic. As shown in
Figure 3, for the flooding rate of 100 Kbps that is only one
fifth of the reserved link bandwidth, the loss rate is increased
from 0 to 19%. The measured end-to-end delay-jitter is plotted
in Figure 4. Under the flooding rate of 100 Kbps, the jitter
surges from 3us to 5.95 ms, clearly showing that the flooding
traffic increases the jitter by several orders of magnitude. Such
serious degradation in packet loss and jitter will make any real-
time application like VoIP or video-conferencing infeasible.
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IV. DESCRIPTION OF IP EASY-PASS

At an end-host subscribed to EF service, we create a unique
pass and attach it to each outgoing EF packet. A valid pass
authorizes its carrier packet to access the reserved network
resource at downstream routers. In plain-text, a pass is just
a random number. However, a sequence of passes for an EF
data flow are generated according to certain rules. Both the
sending host and the ISP edge router agree a priori on the
generation rules. In this section, we will show how to generate
a sequence of passes for an EF data flow, then discuss the
choice of encryption/decryption algorithm, and finally, present
the verification and embedding of Easy-passes.

A. Generation of Easy-Pass

The main parameters in generating a sequence of plain-text
passes include a nonce A, a gradient A, and a direction +.
Of the tuple {A, A, v}, the first two elements are random
numbers, and the last one is a boolean. The nonce is the
starting point in generating a sequence of Easy-passes. The
gradient is the span between two consecutive Easy-passes. The
direction determines if the trend of the Easy-pass sequence is
in an increasing or decreasing order, and its value is decided

at run-time. The purpose of randomizing both the starting
point and the span is to avoid Easy-pass collision’> among the
premium sessions that run on the same end-host, and share
the same secret key with the ISP edge router.

Assuming that the number of bits in an Easy-pass is N,
then the range space (2 of Easy-pass is 2. The chosen space
for the initial nonce A is [0,€]; and that for the gradient is
{A|0<A<2) N (Qmod A #0), k<< N}. The
growth direction of Easy-passes is dynamically determined by
the chosen A. If A > /2, then the value of Easy-passes
decreases; on the other hand, if A < €2/2, then the value of
Easy-passes increases. Let d(.) be the direction of Easy-passes
for EF traffic transmitted between end-host m and the ISP edge
router: ‘0’ for increasing order and ‘1’ for decreasing order.

(o0
7711

The plain Easy-pass is the sum of an initial random number
A and the corresponding gradient A. Let V(.) be the value of
Easy-pass for the n-th data transmission. The construction of
a plain Easy-pass is described as follows:

if A <Q/2;

dm(A) = ifAS> Q2. M

Vin)=A+(-1)"x(n—1) x A. (2)

where n is the transmission order of a data packet starting from
1. The algorithm for constructing an IP Easy-pass is illustrated
in Table I. Step O in Table I shows the selection of two
fundamental elements {A,A} during secure QoS signaling
phase (e.g. via secure RSVP). The rest of steps in Table I
present the construction algorithm of an Easy-pass. When
the value of an Easy-pass reaches the lower_limit, O, or the
upper_limit, 2, we need to wrap around the value to continue
within the range space. The number of packets per round is
Q/A.

Vin)—Q
Vn)+ 9

if V(n) >

it V(n) < 0. 3)

v ={
To prevent the wrap-around sequencer from coinciding with
the previous values, in accordance to number theory, we
require that the gradient A be a prime number.

To exemplify the working mechanism of IP Easy-pass, a
sequence of Easy-passes in plaintext are shown in Figure 5.
In this simple example, we assume that the sample space
for nonce A is [0,120], and there are Easy-pass sequences
with respect to different initial nonces. The randomly-selected
nonce of the first and second sequences are 57 and 67,
respectively. Both have the gradient A = 17. Since the nonce
of the first sequence, 57, is smaller than 60, the median of
Q, the first sequence is increasing. In contrast, the second
sequence is decreasing, due to its nonce being larger than 60.
Once the plaintext value of Easy-pass is computed, we encrypt
it and attach the encrypted Easy-pass to the outgoing EF packet
as an IP trailer. We discuss the choice of encryption/decryption
algorithm in the next subsection.

2Two different data packets have the same value of Easy-pass.



TABLE I
PSEUDOCODE OF CONSTRUCTING AN EASY-PASS

0. Before data transmission:

nonce < A; //select a random number for nonce

gradient <~ A; // select a prime number from [0, 2*]
1. At the very beginning of data transmission:

n+1;
Wo (—A;
If (A < [Q/2))
v+ 0;
Else
v+ 1;

2. On data transmission, build the n-th Easy-pass W, as:

Switch () {

Case 0 :
Wi Who1 + A,
If (Wn>Q)
Wy <~ W, —Q;  // wrap around
Case 1:
Wi+ Who1 — A,
If (W, <0)
Wy <~ W, +Q;  // wrap around
}
n<n+1;

B. Choice of Encryption/Decryption Algorithm

Since encryption/decryption is performed on each EF data
packet, the overhead incurred by the encryption/decryption
algorithm should be as low as possible without degrading its
security. In the Easy-pass mechanism, we employ RC-5 [16]
to encrypt Easy-passes at the end-host, and then decrypt it
at the ISP edge router. This is mainly because (1) RC-5 is
one of the fastest encryption/decryption algorithms available,
and (2) RC-5 is fully parameterized, allowing flexible choices
for its parameters. Briefly, RC-5 is a symmetric block cipher,
in which the plaintext and ciphertext are fixed-length bit
sequences. RC-5 is word-oriented, with a variable number of
rounds and a variable-length cryptographic key. It is fast and
has low memory requirement. Finally, RC-5 provides high-
level security when parameter values are chosen properly.

The parameters in RC-5 that are adjustable include the
word size in bits w, the number of rounds r, and the number
of bytes in secret key b. Note that RC-5 uses an expanded
key table, S, that is derived from the secret key. The size
of table S also depends on the number of rounds, which is

57<60< 67 Wrap Around
57 74 91 108 12 29 |
66 9 2o 5] s 101 ]
Time
Fig. 5. The sequence of Easy-passes

equal to 2 (r + 1) words. RC-5 allows a range of parameter
values so that one may choose a certain set of parameters that
balance the requirement between security and performance.
Moreover, applications can adjust these parameters when their
own requirements change.

To test the efficiency of RC-5, we choose a secure option
of RC5-32/10/16, where w = 32, r = 10, and b = 16, so
that the secret key length is 128 bits. We conduct simple
experiments on an off-the-shelf 550 MHz Pentium III PC with
256M RAM, running Linux kernel 2.4.7. The CPU time for
encryption and decryption on the option of 32/10/16 is only
1us. Next, we vary the number of rounds and length of the
secret key, to find out which one dominates the consumption of
CPU cycles. As shown in Figure 6, the increase in the number
of rounds from 10 to 80 linearly increases the CPU overhead,
but increasing the secret key length does not affect the CPU
overhead. Therefore, we choose 16 bytes (128 bits) for the
secret key length, instead of 32 or 64 bits that are easier to
break. Note that it took 1,757 days and 58,747,597,657 work
units to crack a 64-bit RC5 key [32], thus it would take much
longer to crack a 128-bit RC5 key. On the other hand, we
choose the number of rounds to be 10 in order to reduce the
resulting CPU overhead.

DO4m8016
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Fig. 6. CPU overhead for RC-5 encryption/decryption

The input (plaintext) and output (ciphertext) of RC-5 are
two-word long. Since we choose the length of word as 32-bit,
the length of Easy-pass is 64 bits. Then, the range space (2
is 264, Such a large space guarantees avoidance of Easy-pass



collision, i.e., no two valid data packets within a reasonable
time interval will have the same Easy-pass. For example, even
if the real-time session reserves a 100 Mbps bandwidth, its
average packet size is only 50 bytes, and its duration lasts for
four weeks, the required space to avoid any Easy-pass collision
is still less than 240,

C. Verification of Easy-passes

At the ISP edge router, after decrypting the encrypted Easy-
pass in each received EF packet, we verify its legitimacy
according to the generation rule of Easy-passes. The first step
of the verification procedure is simply checking if V"’T’A is an
integer, where Vj is the value of the decrypted Easy-pass of
the received EF packet. The next step is to make sure that the
integer is fresh, i.e., it did not appear before.

If there is no out-of-order transmission between the end-host
and its ISP edge router, after decrypting the Easy-pass from
each valid EF packet, the ISP edge router will see a sequence
of random numbers starting from A with an interval of A.
Assume that the last checking number, VdA_ A, is an integer I,
then the correct checking number for the one being validated
should be I+1if I > 0 or I—-1if I < 0. The correct sequence
of checking numbers should be a series of {0,1,2,3,---} or
{0,-1,-2,-3,---}.

However, in case of congestion, packet losses or out-of-
order packet arrivals may occur at the edge router. To account
for possible holes in the sequence of checking numbers, we
introduce a range-window. Given the maximum possible out-
of-order value within the first-mile environment is m, we set
the range-window size to 2m. We also introduce two variables:
one is base to record the checking number of the latest received
in-order packet; the other is a 2m-bit long variable, called
flag as an bit-index-array to record the received out-of-order
packets, whose default value is zero. In this paper, we set m
as 16, so the range-window covers 32 packets. Then, flag is
a 32-bit word. Note that with the change of the real condition,
the value of m is adjustable.

An out-of-order delivery or packet loss is detected, when
the difference between the incoming packet’s checking number
and the base is larger than 1. As shown in Figure 7, at time ¢4,
the base is 32 but the received packet’s checking number is
35. Since 35 —32 = 3 > 1, the out-of-order delivery or packet
loss is detected. The value of base is not updated until the
holes in the sequence are filled or the range-window reaches
its limit later.

D Received Packet 37: Out-of-order Packets

(Base t The First Quarter of Range-Window ta
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Fig. 7. Tracking the out-of-order delivery

In Figure 7, we only show one quarter of the range-window,
and the first byte of flag is initially set to 00000000 as

First Byte Second Byte Third Byte Fouth Byte

ISERREEE! ‘ 01010111 ‘ ‘ 00000000

‘ 10000000 ‘

00000000

Left shift the flag for 8 bits to update the out-of-order state

00000000

Fig. 8.

default. When the packet with the checking number 35 arrives,
the third bit in the flag is set to ’1”, indicating that the packet
has been received. Any later arrival of a packet with the same
checking number will be treated as a duplicate and discarded.
Following this rule, at time ¢4, the first byte of flag becomes
”00100111”. The index of the received packet in the flag is
its checking number deducted by base. In this manner, the
verification module keeps track of the holes in the sequence
of checking numbers, and updates the list of holes by changing
the corresponding bit in flag from *0’ to 1’ when one of them
is filled.

Once the first byte of flag becomes *OxFF’ or the range-
window reaches its right-most end, we shift the flag to left for
8 bits and reset the last byte as ’0x00’, as shown in Figure 8.
Then, we increase the base by 8 correspondingly. This shift
is very important to seamlessly keep track of the status of the
out-of-order delivery using as little memory as possible. Note
that in real-time communications, a data packet that arrived
after its deadline would be useless. Thus, even if there exist
holes in the first byte of the range-window, once its right limit
is reached, the legitimacy of these holes in the first byte is
deprived and the belated packets or retransmissions for these
holes will be discarded. The pseudocode of verifying an Easy-
pass is shown in Table II.

In summary, the filtering rule for weeding out attacking
traffic at the ISP edge router is simple: if the checking number
meets any one of the following conditions: (1) it is not an
integer; (2) it is smaller than the value of base; and (3) its
value is larger than the value of base but the corresponding
bit in flag is already set to 1. Then, the packet carrying such a
pass will be identified as spoofed and hence discarded without
further processing.

D. Embedding of Easy-Pass

We embed an Easy-pass, which is 64 bits long, as the
trailer to an IP packet. The attachment of an Easy-pass
is shown in Figure 9. Although the occurrence of packet
fragmentation between an end-host and its ISP edge routers is
rare, the possible fragmentation will detach the pass from the
fragments, except for the last one. A malicious attacker can
exploit the fragmented packets to steal the reserved resource.
To overcome the fragmentation problem, between an end-host
and the ISP edge router, we require that an MTU discovery
should be performed before data transmission, guaranteeing
no fragmentation in the corresponding data flow.

The recent Internet measurement [33] has shown that less
than 1% IP packets in the Internet are fragmented. More
importantly, it confirmed that IP packet fragmentation is still



TABLE II
PSEUDOCODE OF VERIFYING AN EASY-PASS

Decrypt the Easy-pass to get Vg

Cn = |VdA_A|7

If (C,, is not integer)

/I derive the absolute checking number

discard the packet /I attacking packet

Else
i=C), - B; // get the index
fi<0)
discard the packet // duplicate packet
Else

If (i >1) // out-of-order
Switch (flag[i]) { // check the bit in flag
Case ’1’ :
discard the packet
Case 0’ :
accept the packet;
flag[i] ="1";
If (flag[1:8] == "OxFF’ || flag[32] == "1")
flag << 8; // left shift 8 bits
B =B +8; // update the base
/I no holes in the first byte or

/I duplicate packet

/Il reaches the highest-end

If (i=="1") //in the right track
accept the packet
B = Cr; // update the base

“considered harmful.” Therefore, enforcing no fragmentation
not only fills the security holes, but also improves end-to-end
performance.

One advantage of attaching the Easy-pass value as a trailer
to each IP packet is that it is attached by the end-host and
subsequently removed upon verification by the edge router
before passing the packet on to the ISP network. Therefore,
none of the downstream routers and the receiving end-hosts
need to be modified to accommodate the proposed scheme.
Another advantage is that like MPLS, it allows attachment
of the Easy-pass value completely transparent to the transport
protocol (TCP, UDP) used by the application-layer.

V. IMPLEMENTATION AND EVALUATION

The IP Easy-pass mechanism is implemented in the Linux
kernel, and its effectiveness against flooding attacks is evalu-
ated on the DiffServ testbed. In this section, we first describe
the implementation of Easy-pass, and then perform a series
of experiments to demonstrate the Easy-pass’s protection on
real-time traffic. Finally, we measure the overhead incurred by

Original IP Packet Tailer

1P EZ
Header IP Payload Pass

Fig. 9. Embedding the Easy-pass into an IP packet

Easy-pass and discuss its impact on end-to-end performance.

A. Implementation of Easy-pass

We implemented the IP Easy-pass scheme as two loadable
Linux kernel modules. One module, HostModule, is located at
the end-host which calculates and attaches 64-bit Easy-passes
to the packets; and the other module, RouterModule installed at
the edge router, extracts the Easy-pass and verifies the packet
before forwarding it to the next-hop.

The HostModule uses a hook that has been added to
IP layer transmission function (ip_build_xmit ()) of the
Linux kernel version 2.4.7. After preparing the IP packet
for transmission on the network, HostModule calculates the
Easy-pass value, based on the current packet count from the
designated data flow. The module then encrypts the field at
run-time using RCS and attaches it after the payload as the
trailer of the packet. The whole packet is then placed on the
outgoing interface.

On the edge-router side, RouterModule uses a hook added
to the IP layer receiving function (ip_rcv () ) to retrieve the
encrypted Easy-pass value from the IP packet. The module
then decrypts and verifies the pass. If the packet is found
to have the correct Easy-pass value, it is allowed to proceed
through the protocol stack. Otherwise, the packet is dropped.

Compared with inserting Easy-pass into IP header option
fields, attaching the Easy-pass as a trailer has the advantage
of being transparent to the protocol checking and processing.
Neither header modification nor payload data shifting is re-
quired in this case. The only fields that have to be updated
are the IP packet total length and the IP checksum, which are
done inside our modules. This eases the implementation of
our Easy-pass mechanism.

B. Effectiveness Against Resource Theft

To validate the effectiveness of Easy-pass against malicious
attacks, we performed a series of experiments on our DiffServ
testbed as described in Section III-C. Basically, our experi-
ments can be divided into two groups: one is for protecting
low-rate EF traffic, such as audio streams; and the other is
for protecting high-rate EF traffic, such as video streams.
Since multimedia traffic (real-time audio and Video) is usually
transported by UDP [34], [35], all the EF traffic in our
experiments are carried by UDP.

1) Protection of Low-rate (Audio) Traffic: As the maximum
bandwidth required for supporting VoIP is 80 Kbps [36], we
set the source sending rate and the reserved bandwidth at the
router to 80 Kbps, respectively. Since the typical packet sizes



TABLE III
PACKET-LOSS RATE FOR LOW-RATE EF TRAFFIC

w/o EZ-Pass || w/ EZ-Pass

Flood Rate || 254 502 254 | 502
20K 22% | 21% 0 0
40K 38% | 35% 0 0
60K 45% | 40% 0 0
80K 54% | 54% 0 0
120K 68% | T1% 0 0
160K 80% | 85% 0 0

TABLE IV

END-TO-END DELAY-JITTER FOR LOW-RATE EF TRAFFIC

w/o EZ-Pass w/ EZ-Pass
Flood Rate 254 502 254 502
20K 6.8ms | 9.3ms 5.2pus | 5.8us
40K 7.2ms | 10.2ms || 5.8us | 6.3us
60K 7.4ms | 10.5ms || 6.1us | 6.7us
80K 7.5ms | 10.8ms || 6.2us | 7.0us
120K 79ms | 11.2ms || 6.5us | 7.3us
160K 8.6ms | 11.9ms || 6.7us | 7.8us

for real-time audio are 254 and 502 bytes [35] (depending on
the encoding rate), we vary the packet size from 254 to 502
bytes in this set of experiments.

Table III illustrates the EF packet-loss rate for different
flooding rates ranging from 20 Kbps — one fourth of reserved
bandwidth — to 160 Kbps, twice the reserved bandwidth.
Without the Easy-pass, the packet-loss rate ranges from 21%
to 80%. Under the same flooding rate, the larger packet size
incurs a slightly higher packet-loss rate, due to a slightly larger
burst size. In contrast, with the Easy-pass, all the attacking
packets are identified and discarded. That is, the reserved
bandwidth is saved, and hence, no legitimate packets are
dropped.

Table IV presents the corresponding results for end-to-end
delay-jitter obtained from the same set of experiments. Without
Easy-pass the jitter ranges from 6.8 to 11.9 ms. Also, for the
same flooding rate, the larger packet size incurs a slightly
higher jitter. In contrast, with Easy-pass, the jitter remains in
the same order of magnitude as the one without any flooding
attacks.

2) Protection of High-rate (Video) Traffic: Since MPEG-
1, a popular video compression technique, has an encoding
rate of 1.5 Mbps, in our second group of experiments, we
set the source sending rate to 1.5 Mpbs, and reserve 1.5 Mbps
bandwidth at the router. Since the typical packets for real-time
video are 800 and 1000 bytes long [34], the EF packet size is
varied from 800 to 1000 bytes in these experiments.

Table V presents the EF packet-loss rate for different
flooding rates ranging from 300 Kbps, one fifth of reserved
bandwidth, to 3 Mbps, twice the reserved bandwidth. Without

TABLE V
PACKET-LOSS RATE FOR HIGH-RATE EF TRAFFIC

w/o EZ-Pass || w/ EZ-Pass

Flooding rate || 1000 | 800 1000 | 800
300K 22% | 21% 0 0
500K 30% | 27% 0 0
800K 37% | 33% 0 0
M 42% | 38% 0 0
1.2M 48% | 44% 0 0
1.5M 57% | 53% 0 0
M 67% | 62% 0 0

TABLE VI

END-TO-END DELAY-JITTER FOR HIGH-RATE EF TRAFFIC

w/o EZ-Pass w/ EZ-Pass

Flooding rate 1000 800 1000 800
300K 2.8ms | 2.1ms || 2.0us | 2.0us
500K 3.6ms | 2.4ms || 2.3us | 2.2us
800K 3.8ms | 29ms || 2.5us | 2.3us
IM 42ms | 3.3ms || 2.8us | 2.6us
1.2M 4.5ms | 3.6ms || 3.4us | 3.1us
1.5M 4.8ms | 39ms || 3.9us | 3.5us

3M 52ms | 43ms || 43us | 3.9us

Easy-pass, the packet loss rate ranges from 21% to 67%. As
in the low-rate case, for the same flooding rate, the larger
packet size incurs a slightly higher packet-loss rate. With Easy-
pass, all the flooding traffic is identified and discarded, hence
protecting the reserved bandwidth. None of the legitimate
packets were dropped.

Table VI presents the results of end-to-end delay-jitter for
the EF traffic. Unsurprisingly, without the Easy-pass, the jitter
ranges from 2.1 to 4.3 ms, while the Easy-pass preserves
the jitter at the same level of the one without any flooding
attacks. In general, the experimental results of the high-rate
case are similar to those of the low-rate case, demonstrating
the effectiveness of Easy-pass against flooding attacks.

C. Overhead of Easy-pass

It is more important to characterize the overhead of Easy-
pass introduced at the ISP edge router than that at an end-
host, because the end-host can allocate more resources for each
outgoing real-time packet than the edge router can. Moreover,
the verification of Easy-pass incurs more CPU cycles than the
Easy-pass embedding procedure at the end-host.

The per-packet overhead of Easy-pass, which is independent
of packet size and the sending rate, is included in the process-
ing overhead of an EF packet at the router. We measure the
processing overhead for each EF packet at the router with and
without the Easy-pass. In this set of experiments, we vary the
reserved bandwidth from 100 Kbps to 2 Mbps, and the packet
size from 100 to 1000 bytes. The network resources are well-
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provisioned and the EF traffic is well-behaved, so there is
no queueing delay for the EF traffic. The measured per-packet
processing time in the case of an embedded Easy-pass is 8 us,
whereas the same without the Easy-pass is 6 us. The results are
shown in Figure 10. The overhead incurred by the verification
of Easy-pass is 2 us. For the purpose of comparison, the
authentication overhead of the hop-integrity mechanism [22],
which is 37 us, is also shown in the Figure 10. This value
was derived in a separate study [22] using a slightly faster
machine — a Pentium III 730 MHz running Linux OS. More
importantly, the verification of Easy-pass is performed only
once at the ISP edge router, not at every downstream router.
Since the average end-to-end delay between two Internet-hosts
ranges from tens to hundreds of milliseconds, the processing
overhead of Easy-pass is negligible.

Each Easy-pass incurs the space overhead of 8§ bytes. In the
context of video traffic, in which the typical packet size is 800
or 1000 bytes, the space overhead of Easy-pass is 1% or 0.8%.
In the context of audio traffic, the space overhead is increased
to 3.1% or 1.5%, with respect to the 254 or 500 bytes long
packets. Such an increase of space overhead is acceptable to
most users. To further reduce the space overhead, we can trade
security for performance by decreasing the length of Easy-pass
from 64 to 32 bits.

VI. CONCLUSION

In this paper, we proposed a fast and light-weighted IP
network-edge resource access control mechanism, called IP
Easy-pass, to protect reserved network resources at edge
devices from theft and abuse. By conducting experiments on
a DiffServ testbed, we demonstrated the vulnerability of the
reserved network resource to flooding attacks, and the need
for IP-layer resource access control. In our scheme, a unique,
encrypted, pass is attached to each legitimate real-time packet
at the end-host. The ISP edge router validates the legitimacy
of each incoming real-time packet simply by checking its pass.
We described the creation of Easy-pass at the end-host, and
its verification procedure at the ISP edge router using the RC5

encryption/decryption algorithm. The Easy-pass mechanism
has been implemented as loadable Linux kernel modules.

We conducted a series of experiments on the DiffServ
testbed to evaluate the effectiveness of Easy-pass against
flooding attacks. The experimental results have shown that the
Easy-pass mechanism effectively shields the reserved network
resources from spoofed packets — it is shown to protect the
legitimate packets from either loss or increased end-to-end
delay-jitters for all the flooding rates we considered. Moreover,
we measured the computational overhead of Easy-pass, and
found it to be a negligible fraction (a few microseconds) of
the processing time of each packet at both the end-host as
well as at the edge router. Since the verification of Easy-pass
is done at the ISP edge router only, not every downstream
router, the Easy-pass overhead added to the end-to-end delay
of an application traffic stream is negligible when compared
to typical delay values of tens of milliseconds. Overall, IP
Easy-pass is a very light-weight and effective mechanism for
providing network-edge resource access control.
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