Re-synchronization and Controllability of Bursty Service Requests*

Hani Jamjoom
University of Michigan

Padmanabhan Pillaif
Intel Research Pittsburgh

Kang G. Shin
University of Michigan

{jamjoom,pillai,kgshin} @eecs.umich.edu

Abstract

There is an increasing prevalence of interactive Web sessions in the
Internet. These are mostly short-lived TCP connections that are del ay-
sensitive and have transfer times dominated by TCP backoffs, if any,
during connection establishment. Unfortunately, arrivals of such con-
nections at a server tend to be bursty, and can trigger multiple re-
transmissions, resulting in long average client-perceived delays. Tra-
ditional traffic control mechanisms, such as token bucket filters, are
designed to complement admission control mechanisms, by regulat-
ing throughput, bounding service times, and protecting systems from
overload. However, they cannot control connection-establishment de-
lays, and thus, do not provide effective control of client-perceived de-
lays. We first present the surprising discovery of are-synchronization
property of retransmitted requests that exacerbates client-perceived
delays when traditional control mechanisms are used. Then, we in-
troduce a novel, multi-stage filtering scheme called Abacus Filters
(AFs) that limits the client-perceived delay while maximizing server
throughput even in the case of bursty connection arrivals. Analysis of
delay-control properties of various filtering mechanisms is presented,
along with a detailed performance evaluation. AFs are shown to ex-
hibit tight delay control and better complement traditional admission
control policies.

Keywords—TCP Performance, TCP Measurements, SYN Packets, Ad-
mission Control, Re-synchronization

1 Introduction

The cornerstone that protects the Internet from total collapse is con-
gestion control in the Transmission Control Protocol (TCP). De-
signed as a distributed mechanism to protect the network from over-
load, it forces end-hosts to back off when packet losses are detected.
Unfortunately, there is no concept of service quality in its design,
and therefore, under certain conditions, it unnecessarily exacerbates
client-perceived delay. This effect is particularly apparent for short-
lived connections, which includes most Hyper Text Transfer Protocol
(HTTP) traffic, when request packets are lost. Because TCP exponen-
tially backs off before each retransmit, the connection establishment
can quickly dominate the data transfer time in each connection. A re-
quest that is dropped twice, for instance, will typically exceed the 8-
second delay that is commonly regarded as the response-time thresh-
old after which an Internet server loses over 50% of its clients[42].

Especially during periods of heavy load, an Internet server or
router must ensure bounded client-perceived latencies by deploying

*The work reported in this paper was supported in part by the NSF under Grant
E1A9806280 and by HP under a generous grant.
fThiswork was done while at the University of Michigan

control mechanisms at various levels of the communication hierar-
chy. Admission control, whether it is based on resource reservation
or measurements, has traditionally been used to provide the necessary
coarse-grain delay controls by limiting the number of clients at the
application or session level [2,39]. However, since admitted streams
themselves are often bursty [14, 37], these control mechanisms must
still deal with occasional bursts of incoming requests. If a burst in
the arrival rate is too high, or lasts too long, clients may experience
excessive delays. In contrast, traffic control operates at the lower net-
work layers and, when used in conjunction with admission control,
defines the mechanism that enforces contracts between clientsand the
network. In this respect, traffic control is the first-line of defense and
must be tailored to match the intrinsic behavior of the underlying traf-
fic; for new connection requests, it must be sensitiveto delaysincurred
due to request dropping.

Commonly-used traffic control or shaping techniques such as To-
ken Bucket Filters (TBFs) [36] can reduce the burstiness of thefiltered
traffic and limit server load, but cannot provide the necessary control
over the connection-establishment latencies, and thus, cannot bound
overall client-perceived delay. Particularly, the dropping of “out-of-
profile’ packets alone cannot deal with delays due to TCP backoffs
and retransmissions, and, in some cases, can introduce instabilities
in the system. In contrast to this policing technique, smoothing in-
volves buffering all incoming requests, and involves no explicit drop-
ping. Thisis sufficient for small bursts, but with a large discrepancy
between service rate and the burst arrival, a potential hazard of self-
similar request arrivals[14], requests may be buffered for an extended
period of time. With TCP timeouts and retransmissions, buffering
an incoming request beyond some time has a similar effect on the
client as dropping the request. In this paper, we investigate the ef-
fects of dropping SYN packets' on client-perceived delay and on sys-
tem throughput. We aso identify the shortcomings of deterministic
control-limit (DCL) mechanisms,? which include traditional system
queues and TBFs.

In order to develop control mechanisms that can provide the de-
sired limits on client-perceived delays, we need to provide greater
power to the server during periods of heavy load. In particular, we
need to provide a mechanism by which the server can “reject” aclient
reguest. With traditional traffic control mechanisms, requests are sim-
ply dropped, giving clients a chance to reconnect again after atimeout
period, at the expense of increased delay. However, dropping arequest
does not guarantee its admission at alater time, since the server could
still be heavily-loaded. In fact, we will show that in some cases, DCL

!Since sending a SYN packet is the first step of TCP connection request, controlling
SYN packets is analogous to controlling connection requests.

2The term “Deterministic Control-Limit” in queueing theory applies to the class of
control policies that drop incoming requests (with probability 1) after a certain threshold
isreached. Otherwise, it acceptsthe incoming request (with probability 1). One can easily
see why system queues and TBFsfall in this class.

DROP BEHAVIOR REJECT BEHAVIOR
Drop After Receive ICMP .
o,
Client OS Cliéonts II/):,r;g 22}‘ Connection Sgnrgi% Afgzrta destination Rg'?ci\éiet
Establishment 9 unreachable p
FReeBSD 0.01 3,9,21,45
HP-UX 11 N/A 2,3,9,21,45 All clients connect Glient aborts the Client aborts
LiNnux 2.2/2.4 0.3 3,9,21,45 hanudsslagkz-V;gd a All clign!s connect request the request
SOLARIS 2.7 0.1 34,101, 236, request packet, hanzsslr?gk?e-‘zz)rlw a
" s 50.6, 104.6, 164.6 receive RST (since request p’acket
server drlopped the receive ack, and Retransmits
WIN 9x, NT 81.5 3,9 21 connection), and wait Ignores ICMP SYN packet
abort the packet and immediately
connection retransmits after L
Win2000 | 12.4 3,9 timeout agg{iﬁ‘gg

Table 1: Controlling TCP connections for different client platforms. Client statistics in Column 2 were based on 600+ websites that Proteus (www.proteus.com)
hosts which average about 3.4 million hits per week. Retransmission numbers in Column 3 are estimates based on a limited set of machines. We observed that
initial RTO values are constant across multiple connections regardless of any estimate from previous connections to the same host.

implementations do not improve the number of served requests, and
instead, only increase the average delay of all incoming requests. A
client whose requests will never be served should, thus, be explicitly
informed of this as soon as possible. The reject mechanism performs
thisaction of informing aclient that his/her request will not be served,
and that s’he should not try to reconnect again. In a sense, the reject
mechanism provides an extension to admission control that operates
at fine granularity and is performed at the lowest networking levels.
We elaborate on the actual technique in Section 2. A server will only
resort to such extreme measures when it is certain that its overload
will be sustained throughout the period of retransmission.

The goal of this paper is to limit the average tota delay experi-
enced/perceived by all clients. We use a simple economic formula-
tion to describe our basic godl. First, assume that each request incurs
acost, h x Ty, where h is some constant and T}, is the delay for
request k. A request will aso incur a fixed cost r if rejected. Our
objective function is to minimize the total cost, which can minimize
the average client-perceived delay, given an appropriate setting of h
and r. We use this economic formulation to create an analytic model
of the expected throughput and client-perceived delay of the system.
We also describe in Section 4.2 how choice of h and r relates to the
minimization of rejected packets and client-perceived delay.

Based on our model, we propose the Abacus Filter (AF), a hy-
brid token bucket implementation, tailored to the intrinsic behavior
of SYN packets. AFs estimate the amount of available future ser-
vice capacity and only admit a portion of any request burst that, with
high probability, will eventually be serviced. Thisway, bursty traffic
or a sudden jump in network load does not affect the overall delay
of successful connections. AFs are particularly useful for control-
ling traffic aggregates that are destined to web servers — e.g., Flash
Crowds, where alarge number of legitimate users target the same net-
work or server. Aswe show, without proper control, packet drops can
cause future retransmissions, which can further cause another round
of drops and retransmissions. This behavior can quickly increase the
client-perceived delay. Our approach, however, maximizes the num-
ber of successfully-served requests, while keeping client-perceived
delay in check. AFs complement Persistent Dropping [23] by speci-
fying how much of the incoming SY N packets to drop and how much
to reject. Furthermore, AFs give the flexibility to balance between
minimizing the client-perceived delay versus maximizing the filter's
throughpui.

This paper is organized as follows. We first motivate connection-
level controls and identify enforcement mechanismsin Section 2. We
then characterize the behavior of new connection reguests and discuss
itsimpacts on DCL controls in Section 3. We formulate our analytic
model and derive a predictive heuristic in Section 4. We present our
new control mechanism in Section 5, and empirically evaluate some
performance issues in Section 6. The paper ends with related work

and concluding remarks in Sections 7 and 8, respectively.

2 Enforcing Traffic Control

Traffic control operates at the lowest network levels to enforce the
proper behavior on the underlying traffic, and is used primarily
to bound service times. Under moderate network-load conditions,
servers can simply buffer the incoming requests to manage small
bursts. In the presence of high and bursty traffic loads, a traffic shap-
ing technique such as TBF may be used to regulate incoming load,
but this is not sufficient to limit connection-establishment delays. To
limit client-perceived delays, a more radical approach isrequired. As
we shall show shortly, this will involve a combination of dropping
and rejecting new connection requests. Two fundamental questions
arise, however. First, why should we be only concerned with new
connection requests? Second, how can we implement the rejection
mechanism?

To answer the first question, we investigate dropping a single re-
quest at various pointsin its progress through atypical server. Briefly,
for each request, a client must (1) establish a connection, (2) send
meta-data describing the request, (3) receive the response from the
server, and optionaly (4) close the connection. This is a relatively
accurate description for HTTP 1.0. For HTTP 1.1 using persistent
connections, steps 2 and 3 may be repeated before closing the con-
nection. Regardless of the underlying protocol, there are three points
where a server can enforce its controls: (a) immediately after receiv-
ing the SYN request, (b) while establishing the connection, (c) while
(or immediately after) receiving the request. Performing any control
while sending the response is counterproductive for these short-lived
TCP connections, as the request will have already received most of its
service and consumed necessary Server resources.

We instrumented the Linux kernel (version 2.2.17) to allow the
dropping of reguests at any time in the system. The introduced sys-
tem call, whack (), simply wipes out the TCP connection state as
if it were properly terminated by the OS. However, in the process
of removing the connection, the OS does not inform the connected
client of this action (if it did, this would basically revert to a proper
shutdown of the connection). The whack () function only drops es-
tablished connections. To drop connections during the establishment
stage (steps a and b above), we modified the Linux firewall utility
ipchains to drop arequest at any point of the 3-way handshake.
With dlight modifications to the Apache 2.1.3 web server, we are able
to observe the reaction of different clients to drop at steps a, b, and
¢. The clients cover a spectrum of popular web browsers running on
various OS platforms.

The results of our experiments are detailed in Table 1. The drop
behavior portion of the table highlights an important result: drop-

3 sec

oTTy

~— X

server

client 2 <
oTT, jitter

3 sec

Figure 1. Synchronization of two SYN reguests with different one-way trans-
mission time (OTT) values and network jitter, but with the same retransmission
timeout (RTO) values.

ping connections during steps b and ¢ requires an equivalent amount
of bandwidth and server resources since the connecting client is un-
aware of the drop and sends the request data regardiess of the state
of the connection. On the other hand, dropping SYN requests min-
imizes both bandwidth and server resources. However, as the table
shows, clients often retransmit their requests over a very long period
(by doubling the retransmission timeout (RTO) after each successive
attempt). To avoid repeated attempts when aclient’s request will most
likely time out, itisbeneficial to equip serverswith the ability to reject
arequest altogether and inform the client not to retransmit.

Rejection of requests, at first glance, seems relatively easy to ac-
complish. RFC 1122 [9] defines that a host recelving an “ICMP
destination port unreachable” message must abort the
corresponding connection. This can therefore be used by servers to
reject clients. Unfortunately, not al operating systems adhere to this
specification. In particular, Microsoft OSs completely ignore these
messages, as shown in Table 1, which details the reaction of various
OSsto different control mechanisms. Furthermore, many servers are
designed to limit the rate at which ICMP packets are sent out, follow-
ing the specification in RFC 1812 [3]. So, the simple ICMP-based
technique is not currently a promising reject mechanism.

Alternatively, the server can send a reset packet (which has the
RST flag set in the TCP header) whenever it wants to reject a connec-
tion. Thisis similar to a mechanism used in some routers and fire-
wallsto indicate queue overflow and avoid overload. A host receiving
areset packet must abort the corresponding connection as described
in RFC 793 [34]. The use of reset in this context does violate its
original intent, but does not conflict with TCP standards for correct
client-application behavior, i.e., will not break existing client appli-
cations. Again, with the exception of Microsoft OSs, sending a reset
achieves the desired effect. In this case, the Microsoft OSs did not
wait for a timeout. Instead, they attempt to reconnect immediately
when areset is received. When the reconnect attempt also results in
areset, the client repeats the attempt, for atotal of 4 tries (3 for Win-
dows 2000) before giving up.2 In this respect, aclient is informed of
the rejected request, but at the expense of several round-trip times as
well as increased network load. Finaly, we are unaware of any OS
implementation that would limit the rate at which reset packets are
sent.

The above two approaches show that there is no universal method
for rejecting aclient. One can argue, however, that higher-level mech-
anisms, such as sending back an HTTP 500 status code, can achieve
the desired goal. Unfortunately, implementing such mechanisms at
the application level incurs almost as much server overhead as accept-
ing the request, while implementing this anywhere below the applica-
tion level (e.g., inthekernel) suffersfrom two major drawbacks. First,
it requires a separate TCP stack implementation to mimic the process
of completing the three-way handshake, accepting the requests, and
then sending the reply that rejects the requests. This not only violates
protocol layering, but also consumes more resources as indicated in

31t has been argued that Microsoft's implementation is in response to faulty firewall
implementations that send reset packets in response to connection-establishment requests.

burst gets
retransmitted
after 3sec, gets

dropped gain this process

repeats until
packets timeout
after 75 sec

burst arrives o - .
attime tand X N
gets dropped X

6sec

average
arrival
rate A

Figure 2: Typical dropping behavior of aburst of SYN requests

Table 1. Second, a different reject mechanism and the corresponding
stack implementation would be required for each high-level protocol,
which limitsitsapplicability to future protocols. So, alow-level reject
mechanism that can regulate requests prior to connection establish-
ment is the best approach to providing a universal reject mechanism
that will be handled by all client applications gracefully. Aswe will
show that such afeature is crucial for bounding client-perceived de-
lays, particularly with highly-loaded servers, this will hopefully mo-
tivate the means of providing a universal low-level reject mechanisms
for TCP connection requests. For the remainder of this paper, we as-
sume that such areject mechanism isavailable. It isworth noting that
we do not account for “human” factors in our model. Prematurely
aborted connections and manual reconnect attempts by human clients
require a separate study that can incorporate their unpredictable be-
havior.

3 Limitations of Deterministic Control-Limit Mechanisms

Every Internet server implicitly implements connection dropping
through the nearly universal use of fixed-size protocol queues. This
is, in a sense, a control mechanism that limits the load on Internet
servers to some degree by dropping reguests when queues are full.
Rate-based mechanisms, such as TBFs, perform explicit dropping to
achieve more configurable objectives: they regulate the arrival of re-
quests such that it conforms to some average arrival rate and limit
the maximum burst size admitted [24]. Unfortunately, uncontrolled
drops directly impact both client- and server-perceived performance.
An overloaded server that temporarily drops incoming requests will
increase network load by causing an additional surge of retransmitted
reguests to appear at a later time. Furthermore, clients will experi-
ence exponentially longer delays when their connection requests are
dropped.

The most critical and surprising consequence of controlling SYN
requests is the re-synchronizing nature of the retransmissions of
dropped requests. As we shall show, when a burst of requests is
dropped, with high probability, this action will cause a similar burst
of retransmitted requests at a later time. This re-synchronization is
also independent of clients' link delays, and unless the burst is very
small, link-delay jitter cannot significantly spread the retransmitted
burst over time. In this section, we examine thisissue and investigate
itsimpact on atypical rate-control mechanism.

3.1 Bursty Traffic Behavior

To correctly model the effects of traffic control, we must identify
the reactions of individual connections as well as flow aggregates to
packet loss. Measuring the former is straightforward. One can in-
dependently identify the retransmission behavior of clients when re-
quests are dropped (Table 1) and can further measure link-specific
characteristics such as round-trip delay, jitter, throughput, and loss
rate [40]. However, characterizing aggregate behavior remains a dif-
ficult problem. Although there are numerous Web traffic traces, they
cannot be used to extract the precise aggregate reaction to packet loss
under varying conditions for three reasons. First, HTTP access logs

only provide information on accepted packets that are processed by
the underlying server. Thus, the retransmission behavior of dropped
bursts is not available in such logs. Second, in existing low-level
packet traces, it is difficult to detect the dynamics of dropped bursts
since packets can be dropped at any point from the client to the server.
Third, traces are static and cannot be used to see the effects of control
policies that will change the request arrival dynamics under various
configuration scenarios. Measurements of such effects can only be
performed under a controlled environment using live clients. Despite
this lack of meaningful traffic traces, we are able to extrapolate from
multipleindividual client results an important characteristic of aggre-
gate traffic, namely re-synchronization of SYN bursts.

Consider a scenario in which a burst of new connection requests
arrive at a server and are then dropped. As shown in Table 1, most
clients will time out after 3 seconds. This timeout is measured from
the transmission of a packet, not the timeit is dropped. Thus, assum-
ing that network conditions remain similar, the retransmitted requests
will arrive at the server roughly 3 seconds after the originals, indepen-
dent of network latency from the client to the server. As aresult, the
burst of drops will cause a burst of retransmissions to arrive roughly
simultaneously at the server. This is exemplified in Figure 1, where
the arrival of the two retransmitted packets depends only on the time-
out value, T}, and network latency jitter for each request. Therefore,
any dropped burst may be repeatedly dropped and retransmitted as
a burst until the corresponding requests time out, as exemplified in
Figure 2. This, however, only shows how synchronized retransmis-
sions may arise and the general effect on the arrival rate at the server.
Specifically, we identify three factors that have direct effect on the
synchronization of retransmitted requests: (1) the distribution of RTO
values, (2) the distribution of network jitter, and (3) the length of in-
coming bursts. If the network jitter or the RTOs are distributed over
narrow intervals, we can expect retransmissions of a dropped burst
to occur in highly coherent, synchronous bursts. Otherwise, the re-
transmissions will be less coherent, and spread out over alonger time
interval than the original incoming burst.

First, we determine the distributions of RTOs. Let fy, (z) be the
probability density function of d;, the RTO value after theit" retrans-
mission attempt, wherei = 0,...,N — 1, and N is the maximum
number of retransmissions. Recall that a connection request can be
retransmitted several times before it is aborted, and that each attempt
1 has adifferent timeout d; before another attempt is made. Here, dy
corresponds to the initial RTO after the original request is sent. The
overwhelming popularity of the Microsoft-based OSs (=~ 94% of al
clients) implies that the vast majority of clients will enforce similar
RTO values. Therefore, fq; (x) is primarily governed by the accu-
racy of the timeout values on individual Windows machines. We can
use empirical data to estimate f4, (z). We collected RTO measure-
ments from 22 different x86-based machines running the Windows
2000 operating system. These machines are carefully selected from a
varying set of hardware vendors. Ten independent measurements are
taken from each test machine by initiating a connection request to a
laptop, which acts as a server and is connected via a crossover cable
to minimize measurement error. The laptop (a Pentium 111 733 MHz
with 384 MB RAM running Linux kernel version 2.2.17) is config-
ured to drop all connection requests and uses t cpdump to collect al
measurements. We also perform asimilar experiment, collecting data
from 17 other machines running a mixture of Windows 98 and NT
4.0. The latter measurements show similar results which are omitted
here for space considerations.

Figure 3(a) shows the resulting measurements for both the first
and second RTOs. We present the histograms at two granularities:
first, at a coarse 100 msec resolution to show the general trend, and
the second at afiner 10 msec granularity to estimate the actual distri-
bution. Generally, most clients have timeout values of approximately
3 and 6 seconds for the first two retransmissions. We observed only

200

Granularity = 100 msec|
W Granularity = 10 msec

160

- 120

Count (pkts)

®
3

Time (sec)

@

Time (sec)

(b)

Figure 3: RTO distribution for Windows 2000 clients. Measurement were
taken from 22 different machines with highly varying hardware. (a) The actual
RTO for dl clients. (b) Probability density function (pdf) around the mean for
both initial and second RTO.

apair of outlier machines, which had mean RTO values of 3.5 and
6.5 seconds. Both of these happened to have the same model of net-
work interface adapters. Looking at afiner granularity, we find that
the first RTO is amost uniformly distributed over a 100 msec range
while the second RTO is very narrowly concentrated, mostly in a 10
MSEC range.

To estimate f4, (z), we shift each data point by the mean RTO
value of the corresponding samples (excluding the outlier machines),
and plot the resulting distributions. Figure 3(b) shows fy; (z) for
¢ =0, 1. Onvisua inspection, fz, seem to follow auniform distribu-
tion, whereas f;, seem to follow the normal distribution. We use the
Kolmogorov-Smirnov (K-S) test [11] to verify this. The distribution
of the initial RTO passes the K-S test, which indicates that f, (z)
can indeed be represented by a uniform distribution. However, the
second RTO does not pass the K-S test, due mainly to the higher con-
centration of the data around the mean. In fact, 75% of RTO values
are within a 2 msec interval and 90% of the second RTOs are within
a 5 msec interval, which is close to the expected error in our mea-
surements. The measurements for the third RTO from our Windows
98 and NT experiments (not shown) also have similar characteristics.
Based on this, we can describe f4, (z) asfollows:

0.01 for¢=0and|z—3] < 50msec
) 0.5/e fori=1and|z—6| <e¢ ase—» 0msec 1
fa;(x) = 0.5/¢ fori=2and|z — 12| < ¢,a5€¢ — 0 msec @
0 otherwise.

The RTO distribution alone is not sufficient to determine retrans-
mission burst coherency. We must also ook at the distribution of jitter
in network delay. Characterizing network delay, in general, has been
the focus of many studies [1, 30, 40]. There are, however, two rele-
vant points that one can conclude from these studies. First, network
delay varies across different links and over long time scales. Specif-
ically, Mukherjee [30] described packet delay using a shifted gamma

100 msec burst

o
=)

Requests
@
o
.
—

Il

A S U

200 msec burst

T A

1 sec burst

Time (sec)

Figure 4: Re-synchronization of SYN bursts. A 100 requests burst arrives at a
100 msec, 200 msec, 1 sec intervals, respectively and are dropped.

distribution with varying parameters across different network paths.
Second, over short time (less than 30 minutes) scales, link delay isrel-
atively stable, except for the occasional spikesin delay. Paxson [40]
found that standard predictors (such as weighted moving average) can
give a good indication of future delays. Furthermore, Acharya [1]
empirically verified that delay jitter is confined to a 10 msec inter-
val for short time (less than 103 secs) scales, which iswell below the
RTO range. Since we are only interested in determining the degree
to which a burst will remain concentrated as it is retransmitted, we
can use this result to model jitter. Specifically, we can use a uniform
10 msec density function to describe network jitter, f7(x), over short
time scales as follows:

0.1 for |z| < 5 msec
fi(z) = { 0 othérvl/ise. @

Combining f4; (z) with f;(z), we can obtain the following im-
portant results:

R1 A dropped burst B(t), once retransmitted, will spread out at
most over a 220 msec interval compared to the original burst.
Subsequent retransmission attempts will spread the bursts by
at most an additional 20 msec per retransmission. Therefore,
short bursts, once dropped, will have retransmissions that spread
out significantly, and will therefore be mitigated. Longer bursts,
however, will not be significantly affected by these low spread-
out times, so the retransmissions will be re-synchronized and
arrive at the server as bursts of equal intensity.

R2 If acontrol mechanism looks at the aggregate traffic over afairly
long time interval (e.g., seconds), it will see retransmissions of
dropped bursts arrive at predictable intervals as coherent bursts.

We use eS'm, a simulation tool, to confirm this effect. Our sim-
ulator is based on the Linux implementation of the TCP stack and
allows us greater flexibility in specifying server resources than would
ns. A set of 100 clients are configured to send connection requests to
a single server with enough network bandwidth to handle the maxi-
mum burst. Each client has an RTO distribution that follows the above
fa; (z) and a network latency jitter that is uniformly-distributed over
a +5 msec range. We vary the time aignment of the initial client
transmissions such that a burst of requests arrives at the server spread
over 100 msec, 200 msec, and 1 sec time intervals. The server, in
turn, drops all incoming connections. Figure 4 shows the arrival pat-
tern at the server and the effects on the shape of retransmission bursts.
Clearly, the narrow initia burst arrival is spread out significantly upon

bucket refill rate = 75 tokens/sec
200

100 |

bucket refill rate = 60 tokens/sec
200

|
5 100

bucket refill rate = 51 tokens/sec
200

1
g MAMAAAM\MA““M““MMﬁMMMMMMAAMMMMM

0 50 100 150 200 250
Time (sec)

Figure 5: Burst convergence for TBFs with different acceptance ratesn. A
one second burst of 150 requests arrives on top of regular traffic arriving at a
constant rate A = 50 regs/s.

retransmission, and the burst intensity is reduced. As the burst du-
ration increases, the effects of the variations in link delay and RTO
become inconsequential, and the bursts occur at an equal intensity.

So far we have not discussed the burstiness of request arrivals,
which remains an important issue. It iswidely accepted to model new
user (not request) arrivals using a Poisson process. However, since
each new user generates request patterns that can be modeled by an
ON/OFF process [12], the overall arrival of new reguest tend to be
bursty [37]. When the persistent connection feature is used in HTTP
1.1, multiple requests can be sent over asingle TCP connection, which
— intheory — should eliminate bursty arrivalsof SY N packets. How-
ever, as the authors of [41] have found, current browsers continue to
issue multiple “persistent” connections in parallel to maximize their
throughput. This implies that, once the main page is fetched by the
browser, each client will still cause a burst of SYN packets, though
this may not be as severe as with a browser using HTTP 1.0. Fur-
thermore, Feldmann [14] concluded that connection arrivals are best
modeled using a Weibull distribution, though the actual parameters
vary across different traces. What is important, however, is the time
scales over which the measured traffic is bursty. Feldmann found that
burstiness is apparent across time scales of seconds to hours. How-
ever, sub-second bursts were difficult to observe, afact also confirmed
by Leland [26]. From these, we can see that the expected duration
of bursts should be in the range of seconds or longer. Since this is
much larger than the range of f;(z) and f4; (z), we can expect the
re-synchronization of the retransmissions of dropped bursts to occur,
and that they will not be significantly reduced due to the distribution
in delay jitter and RTO of the clients.

3.2 Limitations of Token Bucket Filters

A Token Bucket Filter (TBF) is asimple and well-known mechanism
used for rate control [24]. Inits general form, the TBF can be seen as
a bucket of tokens, and is described by two parameters: arefill rate,
r¢, and abucket size, W. When a packet arrives at a particular TBF,
a token is removed from the bucket and the packet is accepted into
the system.* If the bucket is empty, then the packet is not accepted.
The bucket is replenished with tokens at rate r;, but is limited to a
maximum of T tokens available at any time. This ensures an aver-
age acceptance rate of r; while maintaining the ability to handle some

4In this paper, the “system” corresponds to the end-server OS; in general, it is not
limited to this, since TBFs can be used in network switches and routers.

burstiness in the arrival stream. The behavior and simplicity of TBFs
make them useful for regulating general traffic flows. As they can
provide good approximations of application- or system-level queues
(such asthe TCP listen queue),® TBFs can be used to match the num-
ber of requests entering the system to the server capacity by setting W
to the maximum queue length and r: to the average processing rate of
the system.

When controlling new connection requests, we can select the ac-
tion the TBF will take when the bucket is empty. The TBF can either
drop or reject the request. This plays an important role in determin-
ing the overall effectiveness of a TBF. Dropping SYN requests will
delay the request to a later time. However, because the arrival of
requests are inherently bursty (as discussed earlier), and because of
the re-synchronization of retransmitted SY N requests described ear-
lier, dropping requests may destabilize the system. This will also
have direct impact on client-perceived delays since this additional in-
stability causes increased retransmissions, timeouts, and connection-
establishment delays.

Figure 5 shows an example of this, where retransmitted burststrig-
ger additional dropping of new incoming requests. In this experiment,
we simulate the effects of TBFson bursty request arrivals using eSm.
The clients are assumed to foll ow the retransmission behavior and dis-
tributions discussed in the previous section. We use a TBF to regulate
the admission of new requests, which arrive at a constant average rate,
except for asingleinitial burst. Thisunredlistic load arrival is used to
determine the burst response of the system as the system becomes
critically-loaded. We will look at more realistic arrival distributions
later. For now, we vary the token refill rate, setting it closer to the
traffic arrival rate, and set the bucket size, W, such that it can be com-
pletely refilled in 3 seconds. The intuition behind this setting is that
the TBF matches the processing capacity of the server and the admit-
ted requests should not be queued for more than 3 seconds; otherwise,
the client will assume packet |loss and retransmit them anyway, wast-
ing network bandwidth and server resources. We also vary the initial
burst length and the average arrival rate.

Based on this simulation, we observe that the difference (r: — \)
between the token refill rate and the average arrival rate greatly influ-
ences the stability of the system. Asthe system operates closer to full
capacity (i.e., A approaches r;), it becomes critically-loaded, and any
increasein the apparent arrival ratewill trigger drops. The retransmis-
sions of the original burst of requests that were dropped, due to their
re-synchronization, will arrive at the server at roughly the same time,
triggering further bursts. This will result in more synchronized drops
of theretransmitted requests aswell as many new requests. Asaresult
of the cycle of retransmissions triggering new drops, which trigger
further retransmissions, the instability may last for avery long time,
continuing until &l retransmissions time out or are slowly absorbed
by the system. These behaviors are formally analyzed in Section 4.

Alternatively, we can try to avoid these stability issues altogether
by rejecting requests when the token bucket is empty, instead of em-
ploying the drop-policy analyzed above. Thiswill eliminate such in-
stabilities, since the rejected clients do not retransmit their requests.
Unfortunately, the added stability can be achieved at the cost of poor
acceptance rates and low server utilization. This is most apparent
with bursty arrivals, where the rejection policy is very sensitive to
the choice of bucket size (Section 6). A small or moderate size bucket
will provide the necessary traffic control and limit admitted bursts, but
would reject a significant number of requests, resulting in poor server
utilization. A very large bucket would permit more client connections,
but tranglates into long queues in the system, effectively increasing
service times and defeating the purpose of the traffic control.

51n general, OSs queue SYN requests into a special queue of half-open connections.
Once the three-way handshake is complete, they are moved into the listen queue. There-
fore, controlling SYN packets also controls the listen queue, although indirectly.

The shortcomings of a TBF are due, in large, to its inability to
balance between dropping and rejecting requests. Ideally, one would
like to have a control mechanism that drops only those request packets
that can eventually enter the system (when more tokens are available),
and rejectsthe rest. We address this limitation by designing the multi-
stage Abacusfilter that accepts, drops, or rejects requests based on the
expected future service capacity.

4 Optimal Control Policy

In order to create a control mechanism that can effectively limit the
client-perceived delays caused by TCP backoffs and retransmissions,
we need to have a good understanding of the client-server interac-
tion behavior as control policies and arrival distributions vary. To
this end, we first develop an analytic model to study the effects of
request drops and rejects on aggregate clients' behavior. Based on
this analytic model, we will later develop our improved traffic control
mechanisms.

4.1 Network Model

In developing our analytic model, we need to specify carefully the
parameters of the whole system. We can assume, without loss of gen-
erality, that senders adhere to a TCP-Reno style congestion control
mechanism [20]. However, this alone does not suffice, asit identifies
neither the arrival distribution of request aggregates nor the correla-
tion between different requests in the presence of packet drops. The
distribution of network traffic has been studied extensively [25, 26, 33]
and is shown to exhibit a self-similar behavior. These results also ex-
tend to connection-level analysis due to the aggregation of indepen-
dent ON/OFF traffic streams representing different user sessions [37].
Other studies [6, 12, 29] have measured the correlation between mul-
tiple users and across different requests or sessions originating from
asingle user. Unfortunately, self-similarity and user sessions do not
follow traditional queuing models, complicating our analysis. In par-
ticular, accurately modeling a real system with many simultaneous
clients, connecting to a server with a complex request arrival distribu-
tion and individual retransmission patterns will lead to mathematical
intractability. As a result, we need to make several simplifying as-
sumptions.

Al. Theinter-arrival timesof new connection requests (or SY N pack-
ets) are independent and identically distributed (i.i.d.). Al-
though connections may contain multiple requests, as with
HTTP 1.1 persistent connections, for simplicity and to better
match current browsers that issue parallel HTTP 1.1 requests
[41], we assume each new connection will carry one request.
Dropping one connection will not affect the arrival of new ones
in the future in this model. Assuming i.i.d. connections fitswell
with traditional Poisson models. Although this does not allow
for self-similar arrivals, it does make tractable the analysis of
traffic control effects.

A2. All incoming connection requests follow the same retransmis-
sion behavior. Thisisjustified by the fact that most current TCP
implementations are based on TCP-Reno, which exponentially
backs off after successive SYN timeouts. The behavior follows
Jacobson’s agorithm [20, 34], where a SYN packet that is not
acknowledged within a RTO period is retransmitted, but with
a doubling of the previous RTO period. This is repeated until
the connection is established or until a connection timeout pe-
riod, Tconn, isreached, at which point the connection is aborted.
As mentioned earlier, we define d; as the length of the timeout
period after the i-th retransmission of the connection request,
wherethe initial timeout period is represented by dp.

A3. Each incoming request can be identified as a new request or the
k" retransmission (i.e., depending on the number of timesit has
been retransmitted, it is classified into one of IV transmission
classes, {Zo, Z1,...,Zn}, where N is the maximum number
of times a request can be retransmitted). A delay is associ-
ated with each class, as described in A2. In practice, a state-
based flow classification mechanism, similar to the one devel-
oped in [23], can be implemented. However, this assumption is
necessary only for the development of our analytic model and is
relaxed in our filter design.

A4. Only new requests, not retransmissions, may be rejected. If a
reguest is dropped, but not rejected, it continues to be retrans-
mitted until it is admitted by the system or times out as defined
in A2. Given a mechanism to classify requests as in A3, im-
plementing this is straightforward. However, as with A3, this
assumption will also be relaxed later to simplify the implemen-
tation.

A5. A rejected packet will not be retransmitted again. As discussed
in Section 2, this is not the case for certain implementations.
We can account for the non-conforming implementations in our
model by using ahigher cost for rejection.

A6. Weignore link-delay effects in our analysis. We further assume
that delay jitter and RTO variations are negligible. This essen-
tially assumes perfect re-synchronization, but does not impact
the correctness of our analysis, since jitter and initial RTOs are
typically distributed over avery narrow range, as reasoned about
in Section 3.1.

AT7. The system can be observed at discrete time intervals of Tp.
Thus, when referring to time ¢, we are implying the interval
[t,t + To). The assumption of perfect re-synchronization in A6
allows this, since all requests dropped within the current time
interval will be retransmitted in a single future time interval, as
long as we select Ty such that dy isan integer multiple of Tp.

A8. We assume equal treatment in dropping requests. During each
observation interval, [t,t + Tp), al arriving requests have the
same drop probability, regardless of the number of times they
have been retransmitted (i.e., regardless of thetransmission class
defined in A3). Notethat thisisonly for drops, not rejection (see
A4).

The system presented here is used to develop an analytic model
to describe the effects of traffic control on incoming connection re-
quests. Aswe shall show in Section 6, despite the seemingly restric-
tive assumptions, analysis based on these assumptions can be used
to develop control mechanisms that perform well under redlistic load
conditions, and provide effective control for real-world traffic.

4.2 Analytic Control Model

In this section, we analyze the effects of a general TBF control mech-
anism on the retransmission of clients' requests and the associated
cost metric. Like al TBFs, we can describe this with two parame-
ters, the maximum bucket size, W, and replenishment rate, r.. The
latter is also the average acceptance rate into the system. Unlike tra-
ditional TBFs, rather than simply dropping requests once all tokens
are depleted, we will use a control policy, g, that decides whether to
drop or reject an incoming request. To determine g, we first estimate
the expected number of retransmitted requests for any arbitrary arrival
rate A(t), assuming a control policy that only drops requests. Using
this estimate, we can determine a threshold beyond which it is not
beneficial to drop packets. Therefore, the control policy g can simply
drop requests up to this maximum value, after which it rejects further
requests.

Thedifficulty in the analysis of thissystem arisesfrom the varying
retransmission timeout periods for successive request drops. We can,
however, form recursive equations that capture thisbehavior. Let A(t)
represent the number of packets arriving during interval [t,¢ + Tp).
This value includes both newly-arriving requests, A(t), aswell as any
retransmitted requests. More precisely,

N-1
A(t) = A1)+ > Xi(t —dy), ©)
=0

where X;(t) represents the number of request packets that are
dropped over thetimeinterval, [t, t+Tp), and belong to the i-th trans-
mission class. We can define X;(t) as.

+
Xi(t) = As(t) (1 - %) , @

where operation (y)* isdefined asmax(0, y) to enforce afloor value
of 0, A;(t) represents the number of requests belonging to the i-th
transmission class that arrive during theinterval [¢, ¢ + Tp), and W (¢)
isthe number of tokens available at time ¢ (the beginning of the obser-
vation period). The term (1 — W (¢)/A(t))" defines the drop prob-
ability for any request during the time interval [¢,t + Tp), assuming
an equal treatment of all incoming requests (Assumption A8). Sincea
dropped request belonging to the i-th class will be retransmitted after
d;, we can write A; (t) interms of X;(t) as:

A
Ai(t) = { X(le(t— di—1)

This forms a recursive equation in X;(t). Letting Py(t) = (1 —
W (t)/A(t), we now have:

fori =0
for0 < i< N. ©)

Xl(t) Pd(t)Xifl(tf difl)

Py(t)Py(t —di—1)X; o(t —d;i—1 — d;—2)

7 k 7
(H Py(t — Zdiz)> At =Y dig). 6)
k=0 =1 =1

Using the values for A(t), we can determine the number of avail-
able tokens, W (t), at any timet¢:

W (t) = min (W(t — Tp) + Tore — At — To))t, W), @)

where T, is the observation period defined earlier. The min is used
to enforce a ceiling on the number of tokens in the bucket. Itisim-
portant to note that the dependency of W (¢) on A(t) does not form
acyclic definition, since A(t) does not depend on W (t), but only on
W(t —d;), 0 <14 < N. Furthermore, X;(¢) and W (¢), though te-
dious to compute, only depend on W, r; and A(¢1), for t1 < t. This
implies that we only need to distinguish between new and retransmit-
ted requests to compute these variables.

Based on the above analysis, we can now determine the expected
cost of rejecting or admitting a given request. A simple economic for-
mulation is used to balance between dropping versus rejecting client
requests. We associate a cost i for each time unit the request is de-
layed. Thereis also acost r for rejecting a client. A high rejection
cost, for example, reflects that it is desirable to reject fewer clients,
even at the expense of higher average client-perceived delay. We as-
sume that a timed-out request will incur the same rejection cost
(since the end result is the same as if it were rejected) in addition to
the cost of dropping the request until it times out.

Itisimportant to note that our economic formulation assumes that
all TCP connections are given an equal weight or priority. In re-
ality, this may not be the case. Connections that belong to paying
customers, for instance, may have a higher rejection cost than those

that belong to non-paying ones. From that perspective, both delay
and rejection costs may vary across different types of connections.
The difficulty here is that a particular connection’s real cost, a high-
level application notion, is not directly available at the lower TCP-
stack level, where traffic regulation (e.g., using TBF) isactually being
performed. Therefore, we assume that if connections incur different
costs, they should be classified first by an independent mechanism
(possibly something similar to Layer-7 switching®) and that indepen-
dent traffic regulators with different costs should be used for each
class.

Let c(t) be the cumulative cost that isincurred up to timet:

N
c(t) =c(t — To) + (Z hdiXi(t)> +rXn(t). 8
i=o

If we define dy = Teonn — Y.y di + r/h, and solve this smple
recursion, assuming that ¢ is an integer multiple of T,

t/To N
ety =D > hdi X;(4T0).)
j=0 i=0
Thiscost function is monotonically non-decreasing. Thus, if we know
the cost up totimet; , we can compute the cost at time¢ > ¢; by using:
t—tq
Ty N
ety =c(ti)+ > > hdiXi(t1 +jTo), (10)
j=1 i=0
where the second term defines the holding cost from time ¢; to ¢.

So far, our analysis only deals with the cost of dropping requests
due to the depletion of tokens. To account for the explicit rejection
of new requests, let us define the control policy g as one that rejects a
certain portion of incoming requests, and drops the rest. Here, A, ()
represents the true request arrivals. Let \.(t) be the number of re-
jected requests. Then, A(t) = A.(t) — A, (¢) reflects the portion that
is not rejected. In addition, we also need to account for the cost of
rejecting a portion of the requests. The additional cost of rejection

is thus)\, (t). Formally, the cost ¢f(t) of control policy g can be
captured by:
t—tq t—tq
To To N
Iy =cI(t)+ | D rAe(ts +4To) [+ 30 D hdiXi(ty + 5T0),
j=1 j=1 i=0

()
fort > t1, where X;(t) isthe same as defined in Eq. (6).
Eq. (11) can beillustrated by the following example. Consider
a system that is under-loaded until time ¢1, so ¢(¢1) = 0. Now, let
aburst of 100 SYN packets arrive immediately after ¢;; if al of the
packets in the burst are rejected, then the cost at ¢ > ¢, isjust 1007.
Here the third term in Eq. (11) is O since no packets will be retrans-
mitted. However, if only aportion isrejected, then the total cost isthe
cost of regjecting this portion (second term of Eq. (11)) plus the cost
of the delay incurred by those packets that were dropped and then
retransmitted at alater time (third term in Eq. (11)). Note that the sec-
ond term also includes the effects of a retransmitted request inducing
further drops by the system.

This analytic model is relatively general (within the limits of our
assumptions), and can capture many different optimization scenarios.
The parameters h and r may be changed to set the relative costs of
rejecting arequest.

5_ayer-7 switching, e.g., Foundry’s Serverlron, looks at a packet's payload to deter-
mine the corresponding request and can be used to enforce different priorities.

4.3 Predictive Control Policy

The above analytic model provides a mechanism for estimating the
total cost incurred due to retransmissions, timeouts, and rejections of
arriving requests. 1t works, however, only when we have full know!-
edge of new arrivals \, (¢). Inimplementing a control mechanism, we
do not know thisfor future arrivals. Our objective isto find the control
policy g that minimizes ¢? (t) ast — oo and limits computation cost,
without knowledge of the future A, (¢) values.

We look at a predictive heuristic that decides the control action
by approximating the analytic cost function. Basically, when no to-
kens are available, the first requests, up to a threshold, Aipresn, are
dropped, and subsequent requests rejected. The predictive heuristic
approximates the cost computation for future time ¢ by looking only
at the new requests that may arrive in the next time interval, and using
thisto select A¢nresh. FUture retransmitted requests are still included
in the heuristic. We can then smplify Eq. (11) as:

t—tp
To N

cI(t) = 9(t1) + rAar(t1 + Tp) + Z ZhdiXi(tl +JjTo), (12
j=1 i=0

where t; isthe current completed timeinterval, and ¢t > ¢,. Abbrevi-
ating the third term with H (¢1,t), we have:

Cg(t) = Cg(tl) + T/\T(tl + To) + H(tl,t), fort > t1. (13)

Let us now consider the effect of changing Aixresn ON the cost
computation. Take two control policies, g and ¢', such that A, (¢t +
To) = Ay (t1 + To) — 1 (i-e, the policy g rejects one less request, so
has a\¢xresn that isequal to that for g’ plus 1). The cost function for
switching to the policy ¢’ after timet; is:

9 (t) = I (t1) + AL (t1 +To) + H'(t1,1),

fort > t1. (149

We can compute the cost difference, which reflects the change in cost
when increasing Atpresh
I(t) — e (t) = H(ty,t) — (H'(t1,t) +71), fort>t. (15)
Using the above formula, we can now find A¢presn. Note that
rejection of al requests will make the cost very high. As we reduce
the number of rejected requests, the cost decreases. However, at some
point, once we let too many requests in, and some begin to time out,
the expected cost reaches its minimum and begins to increase. At this
point, the cost difference in Eq. (15) will, for the first time, become
positive. To find A¢presy, that minimizes cost, we can simply search
for this occurrence:

Athresh = trgiglo{A(tl + TO) : H(tlvt) > Hl(tht) + 7'}7 (16)

where A(t) = Ao (t) — Ar(¢). In practice, we only need to compute
this over awindow length S = T'v, where T’y isthe time of the last
retransmission before a request times out at T¢on,. Hence, we only
compute Aresn, OVEr timeinterval [¢1, ¢1+1'w]. If, ontheother hand,
S < Tn, then A¢presn Will be poorly computed, underestimating
the cost of dropping packets and favoring this policy even if sufficient
future capacity to handle retransmissions does not exist.

The predictive heuristic presented here uses an approximation of
the analysis from Section 4.2, to determine the control policy that will
minimize expected costs. Thisisreally agreedy mechanism, that can,
at best, provide alocally optimal cost under the assumption of no new
arrivals in the future. Furthermore, as the cost incurred for a timed-
out request is aways greater than the cost for a new request that is

FIRST STAGE:
Token Bucket

SECOND STAGE:
Abacus Bucket

replenish at w—— window S ——» TO
L, 01234586789
v shift sh/ff
e 0”’
|
borrow bormw
ncomin
G

- iﬂ

ACCEPT DROP REJECT

Figure 6: Abacus Filter architecture

rejected, this heuristic will switch to a reject policy at the threshold
where an additional drop of anew request seems to cause some previ-
ous connection attempt to time out. In addition, this method islimited
by the accuracy of its estimates of A(¢) and X;(¢). We will in Sec-
tion 6 see how well this control mechanism performs using realistic
traffic models that do not follow the assumptions we have outlined
earlier.

5 Abacus Filters

A direct implementation of the predictive control mechanism devel-
oped above faces two critical challenges. First, the computation of
Anresn @ the beginning of each observation period, with its recur-
sive variable dependencies, can inflict avery high computational over-
head. Thisis especially counter-productive in servers that are already
heavily-loaded. Second, we need an accurate measure of the rate of
new requests in order to compute X;(t) values. As the computations
are recursive, errors may accrue, degrading the accuracy of the esti-
mates. |In this section, we develop an approximate design that cap-
tures the benefits of our analytic model, but without its computational
costs or the need for precise measurements. This new filter design,
called Abacus Filter (AF), is a two-stage hybrid token bucket imple-
mentation. The first stage limits the service load, asin aregular token
bucket filter. The new second stage determines the appropriate con-
trol policy by estimating the number of packets that can be deferred
for processing at afuture time.

In order to develop a computationally-efficient approximation of
our analytic model, we must break the recursive dependency between
the state variables and past values. To this end, we disregard al his-
torical information, but thisintroduces two limitations: (1) we cannot
estimate the number of tokens, W (¢), that will be available at afuture
time, and (2) we cannot estimate the number of requests dropped in
each transmission class, X; ().

We can overcome the former by assuming the worst-case scenario
that no tokens will be carried forward into future time periods. There-
fore, the expected number of tokens, W, available during a future
time interval to handle retransmission bursts is determined solely by
the token refill rate, ., and the arrival rate of new requests, A, over
the time interval, To. Hence, W, = (r: — \)T, represents the es-
timate of future excess capacity available to handle retransmission
bursts for any future observation period, which is defined according
to the guidelines in Section 4.1.

The second issue, classifying requests into their corresponding
transmission classes, is not possible at runtime without significant
overheads of tracking every request that arrives, even those dropped
or rejected. Without the past drop information (X; (t) values) and the
actual new request arrivals, we cannot compute the expected fraction
of retransmissions that are accepted and the relative sizes of future
retransmission bursts as in our analytical model. Instead, we sim-
plify greatly by assuming that up to (r, — A)T% retransmitted packets

are accepted during any observation period, corresponding to the es-
timated excess capacity based on the average new request arrival rate
A. Retransmissions arriving in excess of this will be dropped again.
Assuming oldest packets are accepted first, we can predict the oc-
currence of retransmission bursts without X;(¢) values or recursive
computations.

Combining these ideas, we introduce the AF, a control mechanism
that incorporates two stages: the first stage is a regular token bucket,
while the second stage decides the traffic control policy. The novelty
lies in this second stage, which consists of a series of buckets, each
of which has size W,, (Figure 6). Each of these buckets represents
the number of retransmissions that can be accepted over an interval
of Ty, the time granularity of the filter, which corresponds to the ob-
servation period in A7. Together, these buckets represent the future
retransmission burst handling capacity over atimewindow, S. Rather
than replenishing the second-stage filter one token at atime, once ev-
ery Ty seconds the token buckets are shifted, dropping the first bucket
and shifting-in a new bucket at the end. This models a discrete time
progression over the time window S. The new bucket is filled with
Wa = (re — X)To tokens, the estimate of excess resources available
in the future based on an average new request arrival rate of .

When a burst of requests arrives, the first stage determines the
packets that can be accepted immediately. The remainder are passed
to the multi-bucket second stage for making a control policy decision.
If tokens in these buckets are available, the packets are dropped and
allowed to retransmit; otherwise, they are rejected. The AF looks for
tokens in future buckets that represent the time the dropped packets
will be retransmitted. An example is shown in Figure 6, where a
burst arrives at an initialized AF. Consequently, the filter first looks
dp or 3 seconds into the future, then d; or 6 seconds after that, and
so on. Only if the entire series of buckets is exhausted, the particular
request is rejected. This “borrowing” of tokens, somewhat akin to
operating an abacus, performs the same function as the A4;(t) values
in our analytic model, which account for the future arrivals of request
retransmissions. This way, future request arrivals contending for the
same resources will be appropriately controlled.

The borrowing pattern depicted in Figure 6 assumes that al
dropped requests belong to a single transmission class, i.e., new re-
quests that are dropped. Processing capacity that will be consumed
by the first retransmissions of these dropped requests, as well as all
subsequent retransmissions for the portion of the retransmissions that
is expected to be dropped again, is accounted for by the removal of
tokens in the future buckets. At a future time, e.g., 3 seconds later,
when the retransmissions arrive, a portion of these will be dropped
and retransmitted again. However, the future capacity needed to han-
dle the subsequent retransmissions has already been accounted for by
the token borrowing during theinitial drop of the requests. Hence, the
portion of retransmissions not immediately accepted can be simply
dropped without borrowing. The borrowing process is used only for
new arrivals that are not accepted by the first stage token bucket.

Although we cannot classify a request as new or retransmitted to
select either simple drop or borrow and drop, given our assumption
that (r — A)Tp retransmissions, oldest first, are accepted during an
observation period, we can make do with just a count of the number
of retransmissions that ought to be dropped in this period. A counter
associated with each future bucket is incremented when chain bor-
rowing occurs from the bucket. In other words, if we try to borrow
a token from bucket ¢, indicating a retransimission will arrive i ob-
servation periods into the future, and the bucket is empty, requiring
the borrowing of atoken from afurther bucket, this indicates that the
retransmission is dropped again at the i-th observation period, so we
increment counter B; to keep count of the total number of retrans-
missions expected to be dropped. When deciding on the control pol-
icy, the second stage AF ssimply drops the first B, packets, the count
for the current observation period, and then performs the borrowing

BORROW_TOKEN
/I Let A[i] and B[i] be the number of tokens and the number of
/I chain-borrowed tokens at i seconds in the future, respectively.
/I Let Zbealist of values of i; initially Z is empty.

if B[O] > 0
B[0] + B[0] - 1
Drop request and exit

/I Drop first B[0] packets without borrowing

i< 3

k1

Z+0

Loop:

if Ali] > 0
Afi] < Afi] -1
foreachje Z // Increment borrow counters for buckets

B[j] <+ B[j] + 1 // that incur chain borrowing

Drop request and exit

/I Sarting index for borrowing

/I Remove a token from the corresponding bucket

else I Try to borrow from future bucket
Z+ ZU{i} /I Track the bucket incurring chain borrowing
i i+ 3%2k /I Determine next bucket
k « k+1
ifk>Nori>$S //Toomany retransmissions, or beyond window
Reject request and exit
goto Loop

Figure 7: Borrowing algorithm of the Abacus Filter

scheme to decide on drop or reject for subsequent packets.

In addition to the token bucket parameters, W and r;, two basic
parameters determine the operation of the AF: time granularity, 7o,
and window size, S. The value of Ty has to be chosen such that it
is much larger than the average jitter of the link delays experienced
by arriving packets and also large enough to accommodate variations
in do, as outlined in Section 3. The window size, S, limits the fu-
ture borrowing scope of the AF. This value must be selected to min-
imize total cost in the system. Since for each second of delay for a
reguest, cost isincreased by h, while an immediate reject incurs cost
r, intuitively, one should reject arequest if its expected delay exceeds
r/h, and drop it otherwise. Thisis enforced by setting window size
S = r/h. Sincer/h can be arbitrarily large, we show in Section 6
that setting S = max{T; : T; < r/h}, where T; is the time of the
i-thretransmission (T; = _;_, d;), doesindeed minimize total cost.

The actual implementation of an AF isfairly straightforward. We
extend the regular token bucket filter by adding the AF second stageto
select thedrop or reject policy. The AF s second stage isimplemented
as acircular array, where the elements represent the number of avail-
able tokens in each bucket. Each time a bucket is removed and a new
one appended, an index indicating the element corresponding to the
current bucket isincreased. The array element associated with the re-
moved bucket is reused for the newly-appended one, and is set to the
value W, = (r: — A)To. Asthe average arrival rate of new requests
cannot be known a proiri, and can change over time, A is actualy an
estimate based on the weighted-time average of the observed request
arrivals over the most recent observation periods. To determine the
number of requests that can be dropped, the filter looks at the appro-
priate array entriesin the future according to the borrowing algorithm
in Figure 7, using a simple modular arithmetic to handle wraparound
of the index.

The AF that we have developed is computationally-efficient, and
can be easily implemented as an aternative to token-bucket filters.
We show in the following section that AFs can provide robust traffic
control while bounding the client-perceived delay.

10

6 Evaluation

To evaluate and demonstrate the efficacy of the AF and optimization
framework, we equipped our simulator, eSm, with working imple-
mentations of the following four filter designs.

TBF implements the traditional token bucket filter with a bucket size
W and refill rate r;. Once the bucket is depleted, all subsequent
reguests are dropped until tokens are replenished.

TBF w/ Reject (Reject, for short) is similar to TBF, except for the
control action employed: when the bucket is empty, requests
are rgjected. This implements an aggressive control policy that
enforces a strict ceiling on the number of accepted requests.

AF is a direct implementation of the Abacus Filter as proposed in
Section 5. The AF is characterized by four parameters: bucket
size, W, refill rate, r¢, window size, S, and time granularity, Tp.
In all experiments, we set Ty = 1 sec, sufficiently large to over-
shadow the effects of RTO and delay jitter, yet small enough to
maintain a high level of accuracy in estimating server capacity.

Predictive Greedy (Greedy, for short) is based on the predictive
control policy that was developed in Section 4.3. Our imple-
mentation here relaxes assumptions A3 and A4, so that packets
are dropped/rejected indiscriminately across all service classes.
Thisintroducesinaccuraciesin its predictions since our develop-
ment in Section 4.3 relies on the fact that only new reguests can
be rejected, and retransmitted ones are always dropped if they
cannot be accepted. As we shall show, this negatively affects
thefilter's overall performance.

In creating the simulated environment, our main goal is to subject
these filters to realistic load conditions so that any results would be
applicable to real-world deployment scenarios. We a so want to avoid
any unnecessary complexity without sacrificing accuracy. We, there-
fore, employ asimple setup where a server receivesincoming requests
through a high-speed link. Clients on the other side of the link aso
have enough resources to generate the desired request arrival distri-
bution. Each incoming request to the server must first pass through
one of the filters described above, which is located at the entry point
of the server (the lowest level of its communication protocol stack).
To eliminate external effects from our measurements, we make two
assumptions about the system under test. First, we assume that the
client-to-server network path is bottleneck-free, with negligible prop-
agation delay (however, with ajitter distribution that follows the one
in Section 3.1). Second, we assume that a request, once accepted,
completes the connection handshake immediately, with no delay. The
latter models atypical server, where SYN requests are handled in the
operating system, and hence unaffected by processing delays and ap-
plication queues. Therefore, the results presented in this section only
reflect the effects of the underlying control mechanisms (i.e., one of
the four filters) on the first half of the connection-establishment hand-
shake. Thisway, one can apply the results in awider range of opera-
tional scenarios.

A self-similar traffic model isused to generate the arrival distribu-
tion of new requests. Self-similarity is crucial in describing the bursty
behavior of current network traffic. Specifically, we use the Multi-
fractal Wavelet Model (MWM), proposed by Riedi [35], as our un-
derlying request generation model. While other approaches [14, 32]
also produce self-similar traffic, the MWM-based approach is shown
to have better flexibility and accuracy in modeling a wide range of
real network traffic conditions. Traffic generation relies on four basic
parameters. the mean, variance, and Hurst parameter of the arrival
distribution, and the number of wavelet scales [35]. In our simula-
tion, we use a mean of 100 regs/sec and a Hurst parameter of 0.8, a

Throughput (reqg/s)

Throughput (req/s)

Throughput Connection Establishment Delay Average Cost
T T T T 10 T T T T 18 T T T T
100 9f —+— TBF 16 L — TBF g
——*-— Greedy --*-— Greedy 2
8 ---x--- AF 14 b ---%--- AF G
95 | -3 TBF w/ reject - TBF w/ reject
~ 12t X
O = - -
6 o -
9) . St 5 X 1
) [e g
8 o 8 K 4
. o
85 8 ¢ S ol 7 i
3r D,/'
80 2+ e 4r X B
A : 1+ LR » 2+ B
-+ TBF w/ reject RIS SR VERRRVEE
75 L L L L 0 PR TEE S s S 0 # L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Standard Deviation of Arrival Distribution Standard Deviation of Arrival Distribution Standard Deviation of Arrival Distribution
Figure 8: Effects of burstiness
Throughput Connection Establishment Delay Average Cost
95 T T 12 T T
90 *Mﬁa 10 | .
/gé;ﬁé
xgg?é' a
85 | v * a4 s 8r B -
80 BUREEE « . i > 6 TBE i S
* o 3 Greedy -—--- 2
- : a AF % ¢
75k X0 .| T8F 4r TBF w/ reject &
X T Greedy ---- o TR
70 Fx--" .\ AF ---%--- 7 2+ *****%yg -
El TBF w/ reject B e R
65 st il N A 0 Ligadeococ et atstutot SR A - g Lt N P |
10 100 10 100 10 100

Token Bucket Size (tokens)

Token Bucket Size (tokens)

Token Bucket Size (tokens)

Figure 9: Effects of bucket size

commonly-measured value in real network traffic [26, 35]. The num-
ber of wavelet scales is set to 10 to generate 2'° data points, each of
which represents the number of new client arrivalsin a 1-sec interval.
Finally, the variance s, in asense, an indicator of the burstiness of the
trace, so we use this parameter to vary the burstiness of the generated
traffic.

Because we need to conduct a large number of experiments to
cover the wide range of variable parameters, we evaluate the filters
using an event-driven simulation, ensuring that long-duration simu-
lations may be performed in reasonable time (simulating 54 days of
non-stop testing in less than 6 hours).

As mentioned earlier, our simulator, eSm, is based on the
Linux TCP stack implementation of SYN-regquest processing and
connection-initiation processes. We have compared the simulation
results against real-world measurements and validated the results ob-
tained from the simulator to be within 5% of the real implementation.”

We want to characterize the behavior of the four filters when the
underlying system is critically-loaded. By this we mean that the aver-
age arrival rate of new requests is close to the server processing rate,
which is reflected in the token refill rate. Thus, we set r, = 120 to-
keng/sec, reflecting a server that has 20% greater capacity than the
mean request-arrival rate of 100 reqs/sec. Configuring the system
to be under-utilized or over-utilized would yield predictable results:
TBF would work well in under-utilized scenarios, while TBF w/ Re-
ject would be best in over-utilized cases. In what follows, each ex-
periment is set to simulate 600 seconds of incoming requests, and is
repeated 30 times, amounting to roughly 1.8 million new arrivals for
each plotted point.

7Our tests were performed with a Linux 2.2.17 kernel in an isolated testbed against
simulated HTTP 1.0 clients. We used working prototypes of the four filters and compared
measurements from 10 randomly selected configuration parameters (excluding network
jitter) with ones obtained from our simulation.

11

We compare the performance of the four filters using three ba-
sic metrics. The first is throughput, expressed as a percentage of the
connection requests that ultimately succeed, i.e., a token is available
when the request or its retransmission arrives at the filter. The second
is connection-establishment delay, which is computed by averaging
the elapsed time before a client successfully connects, times out, or is
rejected for all incoming requests. This does not include any propage-
tion delay or internal system queueing time, as described earlier. The
third isthe average cost, which is computed much like the connection-
establishment delay, but also includes arejection cost for requests that
are rejected and those who time out. We also measure the average
number of retransmissions before arequest is accepted, is rejected, or
times out, as well as the percentage of requests that time out. These
tie closely to our other metrics, asthey directly affect client-perceived
delay and the average cost.

6.1 Effects of Load Characteristics

We conduct two experiments to characterize the effects of changing
network load. In the first experiment, we vary the standard devia-
tion (effectively the variance) of the distribution of incoming requests
while maintaining the mean arrival rate fixed at 100 regs/s. Basically,
as the standard deviation is increased, so is the burstiness of incom-
ing requests. In this experiment, we set the size of the token bucket to
match therefill rate (i.e., W = 120 tokens). We use a 1-second bucket
sizeto better show the effects of burstiness on the tested filters. We set
the AF and Greedy window sizesto 50 seconds (i.e., S = Sg = 50
seconds). Finally, we set the delay cost to h = 1/(sec - req), and the
rejection cost to r = 75/req, equal to the timeout delay cost for all
clients.

Figure 8 shows the throughput, connection-establishment delay,
and average cost for al four filter designs. It shows that as the
burstiness of incoming requests is increased, it negatively impacts

the performance of all four filters. Furthermore, the TBF provides
a higher throughput for bursty arrivals, but performs poorly in con-
trolling client-perceived delay. The above figure also highlights the
importance of using the AF or Greedy filter, namely, asthe burstiness
of traffic is varied, the expected delay remains in check. Of course,
throughput islimited by the fixed system capacity, so when traffic be-
comes increasingly bursty, fewer requests will succeed (as more will
be rejected), which will, in turn, decrease the overall percentage of
accepted requests. The figure also shows that areject policy (TBF w/
Reject) provides throughput only 5% and 8% less than the AF and
Greedly filters, respectively, but with a cost about 15% greater.

There are two points to be made here. First, the throughput dif-
ference varies with the load condition and system utilization. In other
experiments, where we allowed the mean to also increase, we find that
asthe traffic load approaches system capacity, the difference between
these filter designs is maximized. Second, we use only a moderate
reject cost parameter, but, as we will show shortly, the performance
of the Reject filter quickly deteriorates as the cost of rejecting clients
increases.

We also perform similar experiments to determine the effects of
both RTO and delay jitters, where we vary the mean of the jitter dis-
tribution from 10 msec to 1 sec. The RTO and delay jitters have no
noticeable impact on any of our performance metrics. The resulting
graphs show essentially constant values across the entire range, and
are, therefore, not presented here. This result is not surprising —
even though jitter tends to spread out synchronized retransmissions,
since the incoming traffic is so bursty across a wide range of time
scales, the aggregate arrival remains very bursty. We expect that the
jitter plays an important role when incoming requests include only
occasional short bursts.

6.2 Effects of Configuration Parameters

The second step in our evaluation is to study the effects of the main
configuration parameters on the performance of thefilters: bucket size
(W), rejection cost (r), and window size (S). We use asimilar setup
to that in Section 6.1, configure the token bucket sizeto W = 120
tokens, use AF and Greedy window sizes of 50 seconds, and set the
costs of rejection and delay to r = 75/req and h = 1/(sec - req),
respectively. We ran a separate test for each parameter, varying it
whilefixing the others.

Figure 9 shows our three performance metrics as the bucket size
isincreased from 8 to 512 tokens. Note that 1 is doubled at each
successive point, and the graph is plotted using alog scale. The fig-
ure shows that as the bucket size increases, so does the performance
of the filter. Larger buckets alow the filters to accept larger bursts
into the system, which causes increased performance by reducing the
number of retransmissions, rejects, and timeouts. Thiswould also re-
sult in longer system queues that may adversely affect overall service
times, but, since we are only looking at the connection-establishment
performance, such application queuing effects are not apparent in our
metrics. It isinteresting to see that the performance of the filtersim-
proves linearly with an exponential increase in bucket size, which im-
pliesthat alinear increase in bucket size produces only alogarithmic
improvement in overall performance of the filters. Thisis due to the
self-similar nature of traffic across multiple time scales. The heavy-
tailed distribution of burst sizes ensures that even as the bucket size
isincreased, there would still be a small percentage of bursts that are
too large to be fully absorbed.

An increased bucket size also reduces the performance difference
between AF and Greedy filter. This can be seen when the bucket size
islarger than 100 tokens in Figure 9. This behavior is due to the fact
that larger buckets decrease the prediction error that were introduced
by relaxing assumptions A3 and A4. In particular, when the W is

12

Cost (/req)

40 50 60
Window Size (sec)

Figure 10: Relationship between Abacus window size and rejection cost

small, there are fewer tokens in the second stage buckets from which
the borrowing a gorithm can obtain a token, so any request passed to
the second stage islikely rejected rather than dropped. These rejected
reguests may include those that are retransmitted and should only be
dropped or accepted. As TV increases, the rejections decrease, which
also increases the accuracy of both mechanisms.

In Section 4.2, we showed theimportant role that the rejection cost
playsin the derivation of the optimal control policy. A small rejection
cost impliesthat it is more desirable to reject incoming requests than
increasing the average connection delay. A large r indicates that it
is worth sacrificing delay to avoid losing clients through rejects and
timeouts. Recall that the cost of atimed-out connection request is the
total delay cost plus the rejection cost, since it suffers the same effec-
tive result as a reject, but with a longer client notification time. To
evaluate the performance impact of r, we first establish the relation-
ship between the AF window sizes, S, and the costs h and r. Since
it is the relative values of r and h that matter, i.e., ratio r/h, we fix
h =1/(sec-req) and vary both S and r. Figure 10 shows the perfor-
mance, in terms of total cost, of the AF as S isincreased. Each linein
the figure represents different » values. Two observations are directly
made from the figure:

O1: Thetotal cost has noticeable step-like jumps around the bound-
aries of retransmission timeouts because the AF at each jump
point has the ability of borrowing from an additional bucket.

The cost is minimized when setting S = max{T; : T; < r/h},
where T; is the time of the i-th retransmission, i.e, T; =
> 1=y di. Therefore, even when r /h isvery large, the maximum
value of S isbounded to Teonn.

02:

Using the above relationship to set the AF window size to mini-
mize cost, we eval uate the impact of rejection cost on the performance
of the underlying filters. Herewe set S as described earlier and main-
tain S¢ = 50 sec. Unlike the AF window size, the Greedy window
size need not vary with r/h. As mentioned in Section 4.3, the value
of S should be set to at least Ty . Figure 11 shows the performance
impact of the rejection cost on the four filters. Overall, as the rejec-
tion cost is increased, the throughput of the TBF and Reject filters
remain unchanged, but the differences between the average costs in-
crease dramatically. Both the AF and Greedy filters, which explicitly
account for costs, are significantly affected, and are biased towardsre-
jecting requests when r islow. This changes as the cost of rejecting a
clients becomes greater than the delay costs of retransmission. How-
ever, no matter how high the rejection cost is, they never switch to a
drop-only policy. Thisis because the cost of atimed-out request isal-
ways greater than that of arejected packet, so it is aways preferrable

Throughput (reqg/s)

Throughput Connection Establishment Delay Average Cost
92 I T T T I T I 10 T T T T T T T 35 T T T T T T T
9 F TBF 4 9 F—+—+—+— "t +
,,,,,, TBF —+— 30
Greedy - 8l i
88 |- AF --%--- Greedy ----
i L AF ---%--- | 25
86 - TBF wireject = ~ ! TBF w/ reject - ~
R vl 3 6f {1 3
84 - oo KoK KK p & . g 20
[P VIV Mmoo > r T put
82 "j,,,x"x Ho==X: - X--3 % Al i g 15
80 k//*;;gﬁ . 1 a [
o 3 M % 10
78 -GGG BB B8 = 2k **%* i
K 5
7% r b 1r . ,xi;’i‘,x—-fx»—*——x—-—x—»se ————————————— x--7 -
74 1 1 1 1 1 1 1 0 ¥= ﬁ"%”b PO R S 1 i 0 %= 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Cost Per Rejected Request

Cost Per Rejected Request

Cost Per Rejected Request

Figure 11: Effects of rejection cost

to limit the expected number of timed-out requests by rejecting some
arrivals. Thisis directly reflected in the computation of A;presn for
the Greedy filter and in the borrowing behavior of the AF. Over a
wide range of rejection cost values (0 to 500), the average percentage
of clients that time out is 5.5% for TBF, 0.01% for Greedy, 0.04% for
AF, and 0% for Reject (as it does not allow retransmissions). Finally,
when the rejection cost is very high, TBFs, the only filters that do
not use reject, incur the lowest costs. This may indicate that both the
Greedy and AF tend to predict more timeouts than really do occur, and
reject more requests than they should. Of course, with varying traf-
fic conditions, the actual crossover points in these graphs will change
greatly, but for alarge range of reasonable rejection-cost values, AFs
seem to work very well.

Overal, our experiments demonstrate the effectiveness of the AF
in controlling client-perceived delays. More remarkably, the smple
design is able to find a balance between a lenient control policy (as
with a TBF) and a strict one (as with a TBF w/ Reject) in response
to changing request load conditions. It, therefore, shows the greatest
advantage over the TBF under realistic, highly-bursty loads, while the
latter performs well only under predictable loads. The Greedy filter,
based on our analytic derivations, also achieves good results, but at a
much higher computational cost. We note that thisisjust one of many
possible implementations of our analytic results from Section 4, so
with different assumptions and simplifications, it should be possible
to derive filter designs that yield improved performance. In particu-
lar, improved estimation of arriving request distributions (e.g., using
SYN caches [27]) and the request transmission classes is key to im-
proving these control mechanisms. Specificaly, this may reduce the
apparent over-estimation in both the AF and the Greedy filter of fu-
ture requests that would time out, which resultsin alarger number of
reguests rejected than is absolutely necessary to minimize costs.

7 Related Work

Bounding client-perceived delay can be addressed by various server
layers (application, middleware, OS) and network components
(routers, front-end switches). On the server side, much work has fo-
cused on providing resource reservation and protection [2, 4, 38]. Un-
fortunately, existing OS techniques, such as Resource Containers [5]
and IBM’sWorkload Manger [2], operate at a higher level of the com-
munication stack, and do not consider the fine-grain interaction be-
tween their control and incoming traffic. Some network-level control
mechanisms, such as Lazy Receiver Processing [4] and QGuard [22],
do regulate server load, but do not relate control to client-perceived
delay. Our work in this paper complements general OS controls,
defining a novel method for maximizing the number of accepted re-
quests while bounding the average client-perceived delay. Because
the AF is devised as a network filter and is computationally efficient,
it can easily be implemented as a plug-in OS module or deployed on

13

network devices (e.g., load-balancers).

In [10, 16, 31, 36], analytical characterizations of the throughput
of TCP's congestion control as a function of round-trip time (RTT)
and drop probability are presented. Whilewe also follow an analytical
approach, our model focuses on the interaction between network-level
controls and the aggregate behavior of incoming service requests,
not just a single TCP connection. Looking at the aggregate is nec-
essary to characterize the change in drop probability as a function
of control policy and incoming traffic. Our work can be viewed as
an extension to earlier models [17, 19] that assume predetermined or
measured drop probability. It also relates to measurement-based ad-
mission control schemes [21] that maximize the number of admitted
connections without violating specific performance constraints (e.g.,
response time). Finally, our work follows the same theme in [7, 13],
where prediction is used to profile future demands of real-time tasks.
This prediction is used to schedule or reject tasks such that the overall
probability of tasks meeting their deadlines is maximized.

One cause of increased client-perceived delay is the queuing of
new connection requests. Queue management sol utions such as Class-
Based Queues (CBQ) [18], Active Queue Management (AQM) [8,
17], and Explicit Congestion Notification (ECN) [15] can provide
fine-grain controls. Some studies [28] have aso focused on finding
buffer bounds for self-similar incoming traffic. In all of the studies,
the assumed arrival distribution includes neither the retransmissions
nor the re-synchronization behavior of dropped connection requests.
Our work can be considered as a specialized queue management so-
lution for new connections. In some respect, the AF uses TCP re-
transmission timeouts as implicit queuing to effectively reduce inter-
nal queuing requirements by only admitting those requests that can be
handled within atimeout period. Thus, it reduces buffer requirements
and permits rapid adaptation to changing load conditions.

8 Conclusions

Traffic control isused in serversto limit load and bound service laten-
ciesin the presence of bursty request arrivals. However, these controls
may adversely affect client-perceived delays by increasing the average
connection-establishment latencies. We have presented an analysis
of traffic shaping and the impact this has on the delays perceived by
clients. Based on this analysis, we have proposed a predictive control
mechanism that estimates future delay costs due to current control ac-
tions. As a practical approximation of this model, we introduce Aba-
cus Filters (AFs), which isanovel mechanism of regulating incoming
reguests to limit client-perceived delays. Experimentaly, we have
shown that as compared to the de facto traffic shaping standard, token
bucket filters, AFs provide much stricter control over delays, while
avoiding any significant decreases in throughput. As the request traf-
fic burstiness increases, the AF limits degradation of client-perceived
delay, matching the drop rate to estimated future capacity, while TBF

performance degrades since many requests eventually time out. For
delay-sensitive, short-lived TCP connections, including the vast ma-
jority of HTTP traffic, where transfer times are often dominated by
connection-establishment delays, AFscan provide traffic regulation to
heavily-loaded servers, while providing good performance to clients.
Furthermore, AFs can beimplemented very efficiently, and, asthey do
not need to be on the end host, may be migrated to front-end switches
or firewall devices.

References

(1

(2

(3]
(4

(9]

(6l

(8l
(9
(1]
(11

[12]

[13]

[14]

[19]

(16]

[17]

(18]

[19]

ACHARYA, A., AND SALTZ, J. A Study of Internet Round-trip De-
lays. Tech. Rep. CS-TR-3736, University of Meryland Technical Report,
1996.

AMAN, J., EILERT, C. K., EMMES, D., Yocom, P., AND DILLEN-
BERGER, D. Adaptive Algorithms for Managing Distributed Data Pro-
cessing Workload. 1BM Systems Journal 36, 2 (1997), 242-283.

BAKER, F. RFC1812: Requirements for IP Version 4 Routers. |IETF
(June 1995).

BANGA, G., AND DRUSCHEL, P. Lazy Receiver Processing LRP: A
Network Subsystem Architecture for Server Systems. In Second Sympo-
sium on Operating Systems Design and Implementation (October 1996).

BANGA, G., DRUSCHEL, P., AND MOGUL, J. Resource Containers:
A New Facility for Resource Management in Server Systems. In Third
Symposium on Operating Systems Design and Implemenation (February
1999), pp. 45-58.

BARFORD, P., AND CROVELLA, M. Generating Representative Web
Workloads for Network and Server Performance Evaluation. In In Pro-
ceedings of Performance’ 98/ACM Sigmetrics 98 (May 1998), pp. 151—
160.

BESTAVROS, A. Load Profiling in Distributed Real-Time Systems. In
The 17th International Conference on Distributed Computer Systems
(May 1997).

BRADEN, B., ET AL. Recommendations on Queue Management and
Congestion Avoidance in the Internet. RFC 2309 (1998).

BRADEN, R. RFC1122: Requirements for Internet Hosts - Communica-
tion Layers. |ETF (October 1989).

CARDWELL, N., SAVAGE, S., AND ANDERSON, T. Modeling TCP
Latency. In Proc. of the [EEE INFOCOM 2000 (2000), pp. 1742-1751.

CHAKRAVARTI, |. M., LAHA, R. G., AND ROY, J. Handbook of Meth-
ods of Applied Satistics, vol. 1. John Wiley and Sons, Inc., 1967.

CHERKASOVA, L., AND PHAAL, P. Session Based Admission Control:
a Mechanism for Improving Performance of Commercial Web Sites. In
Proceedings of Seventh IwQoS (May 1999), |EEE/IFIP event.

DINDA, P. A., KALLIVOKAS, L. F., LOWEKAMP, B., AND
O'HALLARON, D. R. The Case for Prediction-Based Best-Effort Real-
Time Systems. In IPPS'SPDP Workshops (1999), pp. 309-318.

FELDMANN, A. Characteristics of TCP Connection Arrivals. Self-
Similar Network Traffic and Performance Evaluation. John Wiley and
Sons, Inc., 2000, ch. 15, pp. 367—399.

FLoyD, S. TCP and Explicit Congestion Notification. ACM Computer
Communication Review 24, 5 (1994), 10-23.

FLoyD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J. Equation-
Based Congestion Control for Unicast Applications. In Proceedings of
the ACM SGCOMM ’00 (August 2000), ACM.

FLOYD, S., AND JACOBSON, V. Random Early Detection Gateways for
Congestion Avoidance. ACM/IEEE Trans. on Networking 1, 4 (1993),
397-417.

FLoYD, S., AND JACOBSON, V. Link-sharing and Resource Manage-
ment Models for Packet Networks. |EEE/ACM Transactions on Net-
working 3, 4 (August 1995), 365-386.

HoLLoT, C., MISRA, V., TOWSLEY, D., AND GONG, W. A Control
Theoretic Analysis of RED. In Proceedings of the IEEE INFOCOM
2001 (2001).

14

[20]

(21

[22]

[23]

[24]

[29]

[26]

[27]

(28]

[29]

[30]

(31

(32

[33]

[34]

[39]

[36]

(37

[38]

[39]

[40]

(41

[42]

JacoBsoN, V. Congestion Avoidance and Control. In Proceedings of
the ACM SIGCOMM 88 (August 1988).

JAMIN, S., DANZzIG, P., SHENKER, S., AND ZHANG, L. A
Measurement-based Admission Control Algorithm for Integrated Ser-
vices Packet Networks. |EEE/ACM Transactions on Networking 5, 1
(Feb 1997), 56-70.

JAmMJoOM, H., REUMANN, J., AND SHIN, K. G. QGuard: Protecting
Internet Servers from Overload. Tech. Rep. CSE-TR-427-00, University
of Michigan Technical Report, 2000.

JAMJoOM, H., AND SHIN, K. G. Persistent dropping: An efficient
control of traffic aggregates. In Proceedings of the ACM SGCOMM 03
(Karlsruhe, Germany, August 2003), pp. 287-298.

KESHAV, S. An Engineering Approach to Computer Networking.
Addison-Wesley Publishing Company, 1997.

KHAUNTE, S. U., AND LimB, J. O. Statistical Characterization of a
World Wide Web Browsing Session. Tech. rep., Georgia Institute of
Technology, 1997.

LELAND, W. E., TAQQU, M. S., WILLINGER, W., AND WILSON,
D. V. Onthe Self-Similar Nature of Ethernet Traffic (extended version).
In IEEE/ACM Transactions on Networking (1994), pp. 2:1-15.

LEMON, J. Resisting SYN Flood DoS Attacks with a SYN cache. In
BSDCon 2002 (Feb 2002).

LikHANOV, N. Bounds on the Buffer Occupancy Probability with Self-
similar Input Traffic. Self-similar Network Traffic and Performance
Evaluation. John Wiley and Sons, Inc., 2000, ch. 8, pp. 193-215.

MORRIS, R., AND LIN, D. Variance of Aggregated Web Traffic. In
Proceedings of the |IEEE INFOCOM 2000 (2000), vol. 1, pp. 360-366.

MUKHERJEE, A. On the Dynamics of Significance of Low Frequency
Components of Internet Load. In Internetworking: Research and Expe-
rience (December 1994), vol. 5, pp. 163-205.

PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. Modeling
TCP Throughput: A Simple Model and its Empirical Validation. In Pro-
ceedings of the ACM SSGCOMM ’ 98 (1998), pp. 303-314.

PAXSON, V. Fast, Approximate Synthesis of Fractional Gaussian Noise
for Generating Self-Similar Network Traffic. Computer Communication
Review 27, 5 (October 1997), 5-18.

PAXSON, V., AND FLOYD, S. Wide Area Traffic: the Failure of Poisson
Modeling. |EEE/ACM Transactions on Networking 3, 3 (1995), 226—
244,

POSTEL, J. RFC793: Transmission Control Protocol. Infomation Sci-
ence Institute (September 1981).

RiEDI, R. H., CROUSE, M. S., RIBEIRO, V. J., AND BARANIUK,
R. G. A Multifractal Wavelet Model with Application to Network Traf-
fic. IEEE Transactions on Information Theory 45, 4 (1999), 992-1018.

SAHU, S, NAIN, P, DioT, C., FIROIU, V., AND TOWSLEY, D. F. On
Achievable Service Differentiation with Token Bucket Marking for TCP.
In Measurement and Modeling of Computer Systems (2000), pp. 23-33.

SARVOTHAM, S., RIEDI, R., AND BARANIUK, R. Connection-level
Analysis and Modeling of Network Traffic. In Proceedings of the ACM
SIGCOMM Internet Measurment Workshop (November 2001).

SPATSCHECK, O., AND PETERSON, L. L. Defending Against Denial
of Service Attacks in Scout. In Third Symposium on Operating Systems
Design and Implementation (February 1999), pp. 59-72.

ZHANG, L., DEERING, S., AND ESTRIN, D. RSVP: A New Resource
ReSerVation Protocol. |EEE network 7, 5 (September 1993).

ZHANG, Y., DUFFIELD, N., PAXSON, V., AND SHENKER, S. On the
Constancy of Internet Path Properties. In Proceedings of the ACM S G-
COMM Internet Measurment Workshop (November 2001).

Cao. Persistent Connection Behavior
ttp://www.cs.wisc.edu/ cao/papers/persistent-

ZHE WANG AND PEI
of Popular Browsers.
connection.html.

ZONA RESEARCH INC. The Need for Speed. July 1999.

