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Abstract— With the proliferation of [nternet services, many
solutions have emerged to provide Quality-of-Service (QoS)
guarantees when the demands for the hosted services exceed the
server’s capacity. In this paper, we take an analytical approach
to answering key questions in the design and performance of
application-level QoS techniques, especially those that are based
on the multi-threading or multi-processing abstraction. Key to
our analysis is the integration of the effects of concurrency
into the interactions between multi-threaded services. To this
end, we extend traditional time-sharing models to develop the
multi-threaded round-robin (MTRR) servers, a more accurate
madel of operation of typieal multi-threaded Internet services.
For this model, we first develop powerful, yet computationally-
efficient, mathematical relationships that describe the perfor-
mance (in terms of throughput and response time) of multi-
threaded services. We then apply optimization techniques to
derive the optimal allocation of threads given specific QoS
objective functions. Using realistic workloads on a typical web
server, we show the efficacy and accuracy of the proposed new
methodology.

I. INTRODUCTION

Wide use and expansion of the Internet has led to the
proliferation of diverse and oftentimes complex Internet
services. These services, on the other hand, have created
unprecedented demands on end-servers. each of which usu-
ally hosts multiple services like Web, e-mail. and database
services, The increased demands by end-users often out-
pace the recent progress in enhancing server’s processing,
storage and networking capacities, hence easily overloading
end-servers. The notion of Quality-of-Service (QoS) has been
introduced to manage resources when user demands exceed
resource supplies. Supporting QoS in servers has been ad-
dressed extensively in the literature, for example, in [2.4,
6, 11,32]. In particular, application-level QoS mechanisms
are designed to provide the necessary QoS guarantees with
little or no support from the end-server’'s OS [2, 10, 13, 15,
22.25]. However, since the underlying OS entorces resource
transparency (i.e.. hides resource management), application-
level mechanisms have limited capabifities in enforcing strict
service guarantees and are often restricted to only providing
proportional QoS differentiation. In this paper, we closely
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examine and evaluate the extent to which application-level
mechanisms can provide QoS support. .

One of the more popular application-level solutions is
thread-based QoS mechanisms [23,24.32] in which the al-
location of threads or processes to each application or ser-
vice is adjusted (either statically or dynamically) based on
some target QoS objectives (Figure 1). Two design principles
motivate the use of thread/process allocation to provide QoS
differentiation to multiple services: (1) increasing concurrency
improves the performance of a single service, and (2) server
capacity can be divided in proportion to the thread allocation.
Unfortunately, the extent to which thread-based mechanisms
are effective depends heavily on the degree of interaction
between the running threads. which further depends on the
nature of the workload of incoming requests. This paper
carefully examines each of the two design principles with the
goal of providing deeper understanding of internal dynamics
behind this QoS mechanism.

When a service is allocated more threads, the advantages of
increased concurrency are apparent in the resulting increase in
throughput. This improvement is due to concurrent processing
of requests. which allows the overlapping of long blocking
170 operations of one request with non-blocking operations of
another. There is. however, a saturation point beyond which
increased concurrency no longer yields any performance
benefits. When multiple services use concurrency to improve
their own performance, the interaction between their threads
become more complex. In fact, we have found that as the
system’s load increases. the performance inieraction between
different service classes, due to resource sharing, becomes less
predictable. Furthermore, when ditferent types of workloads
(e.g., I/O-heavy and CPU-heavy) are sharing the system, a
marginal improvement in the QoS of one service can cause
4 dramatic decrease in the QoS of the other services. Based
on our measurements and observations, we show that multi-
threading is ill-suited for providing application-level QoS
support. On the other hand. it can bhe etfectively used w
provide QoS guarantces to different client groups.

In this paper, we take an analvtical approach to precisely
characierize the interactions between threads and services in
an Internet server. Crucial to the correctness of our analysis
is the development of an accurate model that reflects the
operation of the server. We introduce the muiti-threaded
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Fig. 1. Thread-based system model. Application A uses two service classes
to give preferential treatment for requests in service class 1 than requests
in service class 2. Application B uses one service class to enforce a certain
"QoS 1o all incoming requests. A controller (not shown) can then adjust the
allocation of systam threads to different service classes.

round-robin  (MTRR) server model to capture the muli-
threading and process-sharing abstractions of real systems,
The MTRR model is an extension of traditicnal round-robin
servers. which are used in the analysis of polling and time-
shared systems [19,20,29]. Unlike traditional approaches,
our model incorporates the performance benefits of increased
concurrency into the interaction between the running threads.
Using this MTRR model. we are able to derive powertul, yet

"efficient, relationships that describe the internal dynamics of a
typical multi-threaded server. Furthermore, these relationships
allow us to address three important issues in the design
and- performance of application-level QoS differentiation: (1)

" better-predict the impact of thread concurrency on client-
perceived delay than traditional models, (2) estimate the
expected performance of services for any thread allocation,
{3) find the thread allocation, if any, that guarantees certain
response times to different client ‘groups (e.g.. payving cus-
tomers are given preferential treatment over the non-paying
ones). :

This paper is organized as follows. We analyze, in-Sec-

tion 11, the benefits of concurrency in multi-threaded appli-

cations. We then establish the server and application models
for our analysis in Section III. Section IV presents a detailed
analysis of the MTRR server to provide the basic relationships
- . _governing the performance of multi-threaded services. In
‘Section. V., we look at the effects of workload dependencies
on the analysis of multiple services being hosted on a single
server. We then provide, in Section VI, a compwtationally-
etficient algorithm for determining the optimal allocation thit
meets various QoS objectives. We use real measurements on a
typical Web server in Section VII to evaluate the correctness
our derivations and etfectiveness of our allocation algorithm.

‘We review related work in Section VIIL, Finally. in Section IX

we conclude the paper with our final remarks.

0-7803-8355-5/04/320.00 ©2004 IEEE.

II. QUANTIFYING CONCURRENCY GAINS

Using concurrency to improve server performance is one
of the guiding principles for providing thread-based QoS
support. This notion was explored in [23,24, 32] as an integral
part of their teedback control mechanism that increases the
allocation of threads to running applications when better
performance is needed. Implicit to the effective operation of
these mechanisms is the notion that increasing the number
of threads improves the performance of the application. Par-
ticularly, the performance gain due to increased concurrency
is normally split into three regions as shown in Figure 2:
(I} a linear increase region due to overlapping blocking
operations of some threads with non-blocking operations of
the other threads, (1I} flat or no-gain region due to threads
contending for the bottleneck resource, and (IIT) sudden {or
exponential} drop region due to memory thrashing. In this
section, we establish this behavior for different workloads
on a real system. This will set the stage for exploring the
impact of concurrency on the controlfability of multi-threaded
applications. ’

We define Gy(m) as the speedup (or gain) function that
expresses the potential performance gain (or loss) when m
threads run concurrently. Because the expected speedup is
workload-dependent, the function needs 1o be profiled for
each specific workload, denoted by the subscript k. The
speedup function expresses the change in throughput rather
than the chan'ge in response time. This is because increasing
concurrency does not reduce the actual amount of work that
each request needs. Instead, it increases the etficiency of the
server, which can be capwred by the improved throughput.
To profile G{m), we first measured the maximum service
throughput. (), when m threads run concurrently. This
is done by limiting the appiication to have a maximum of
m concurrent threads (for m = 1,2,...) and configuring
the arrival rate to be high enough to keep all threads busy
processing incoming requests. The speedup function is. then,
the throughput gain when m threads are allocated compared
to when a single thread is allocated. Specifically,

. fai ()

Gulm) =
To illustrate the general cCharacteristics of concurrency
improvements, we configured a server machine (a 2.24 GHz
Pentium 4 with | GByles of RDRAM) to run Apache 1.3
and receive HTTP requests through a high-speed FastElhernet
link. Three Linux-based machines are used to generate the
desired requests. Our load generator. Eve [17], follows the
same design principles provided by SPECWeh99 [12]. a
widely-used tool to evaluate the performance of Web servers,
10 test static and dynamic workloads.! The primary difference

'The static workload consists of only static ohjects. resembling web pages
and embedded images. The dynamic workload is similar to the static one.
except the requested objects are created on-the-fly for each incoming request
using CGl scripts.
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Fig. 2.
linear rate in region I up to the saturation point. The function, then. flattens
out in tegion II and suddenly drops after the collapse point in region IH.

Shape of the speedup function. Gi{rn). The function increases at a

between the two load generators lies in our ability to sustain
an arrival rate regardless of the progress of on-going requests.
In contrast. SPECWeb99 sends a fixed maximum number of
requests; once the maximum is reached, a4 new request is
sent only after the completion of a previcus one. We profiled
G.(m) tor three workloads: purely static, purely dynamic,
and mixwre of the two — mixed for short. Each workload
adheres 1o the specification provided by SPECWebS9; in
general. the requested files follow a Zipf distribution [8]
regardless of whether they are statically or dynamically gen-
erated.

Figure 3 shows G (m) for the three workloads, with the
abscissa drawn in log-scale. The first two regions outlined
earlier are clearly depicted by the figure. where the linear re-
gion is retlected by the sub-linear growth in the log scale. The
combination of having a fast machine with large memory and
running processes with small memory footprints prevented
reaching the collapse point. This was the case even when a
very large number of processes run simultaneously.

The width of the linear increase region (ie., region I} in
Figure 3 and its slope depend heavily on the type of workload.
We approximate the speedup function in region I by a simple
linear function:

Ge(m} =ap(m—~1)+1 form=1.....mk.

where mj, reflects the saturation point (defined later), and
the slope. oy, reflects the speedup rate. or alternatively,
the efficiency of concurrency for workload k&, In the ideal
case, where each additional thread behaves as an independent
SEeIvVer. oy, 1, This is seldem the case. and therefore,
ar < 1. The mixed workload. for instance, had a speedup
rate oo, A 014 and a linear increase region of m! =~ 23
threads. If the workload is purely CPU-based or purely I/O-
based, then one expects little performance gain since blocking
and non-blocking operations are not overlapped. In that case,
= 0.

The transition point between regions I and II, which we
call the saturation point (m*). is primarily due to threads
contending tor the bottleneck resource — usually the disk.
When a single class is being controlled, increasing the number
of threads to be allocated beyond the saturation point provides

0-7803-8355-9/04/$20.00 ©2004 IEEE.

829

T Ty T
DynStatic ;
a=0.61 amic --—x—-
a4l \ Mixed ---%--- |
------ K
g3r
=
o
@
o
[ g
‘—'x"_“_x____,;( ----- K= %*f*f%***-*-—‘f%‘>__a
1 .
a=0.02
0 ! e ] faaaaa
1 10 100 1000
Threac Allocation
Fig. 3. Speedup function, G (), for static, dynamic. and mixed workloads.

no performance advantage to the hosted service. But when
multiple services are being controlled, recognizing the satu-
ration point becomes more crucial since adding more threads
to one service class reduces the second class’ share of the
system. This may cause the second class to increase its thread
allocation and create a vicious cycle between the two classes
rendering the underlying control mechanism inettective. Tt
is thus necessary tor any dynamic contrel mechanism to
adjust the maximum thread allocation based on the observed
throughput; when no throughput gain is observed. then no
further threads should be allocated. This issue is explored
closcly in the remainder of the paper, o

III. MODELING MULTI-THREADED SERVICES

The complexity of toeday’s servers presents a real challenge
in building analytical models that tully describe the dynamics
of the underlying server. Our goal is, thus, to create a model
that is simple enough to allow for mathematical tractability.
yet accurate enough to reflect realism. Specifically, the created
model must capture the effects of concurrency as well as the
basic interaction between the various running threads. In this
section, we give a detailed specification of our system by
describing the computing model. which details the assumed
operation of a typical multi-threaded server, and the workload
model, which specifies the arrival and service-time distribu-
tion of incoming requests.

A. Computing Model

Our computing model is based on a general understanding
of the typical operation of current time-sharing OSs and
Interpet services. We use an MTRR server to model a general
computing environment where a single processor is shared
by multiple threads.” Threads are assumed to be the smallest
allocatable unit of work and are distributed among n service

2We use the terms “threads” and “processes” interchangeably throughout
this paper.



classes, {1,549, ....5,}. Specifically. each service class Sy,
is allocated mj, threads and has an independent butfer of size
By to hold the requests that cannot be processed immedi-
ately. We use the term “service classes” as opposed to just
“services” to capture the situation where a’single service is
configured to differentiate.between multiple client populations
(Figure 1). An example of this is Apache’s Virtual Host (VH),
where. for instance, clients from network 192.168.10.x
arc serviced using one VH and clients tfrom the remaining
IP address-space are serviced using another VH. Thus. our
Apache service is said to have two service classes. In contrast,
if an application does not differentiate between clients, the
enlire application is represented by a single service class.
Using the -notion of a service class, theretore, allows us to
capture QoS ditferentiation between different applications and
also between client groups within a single application. .
Beside having threads as a shared resource, dependencies
‘berween service classes arise due to two possible-interactions:
(1) they share a bottleneck resource such as a disk and (2)
they are organized as a series of stages where an incoming
request must be processed by multiple services in a particular
order [10.32). The complexities that are introduced by the
latter is akin to those in network of queues [9], but with
‘dependent service distributions. In this paper. we restrict our
analysis to single-stage services and focus on the dependen-
cies due to resource sharing. We. thus. make the following
assumptions for the internal operation of an MTRR server.

Al. A request is assigned 10 a working thread. Muliiple

~ - requests can be processed simultaneously by running
multiple threads and time-sharing the system, We assume
that all threads are homogencous.’ even though they
can be assigned to different service classes. This is in
ling with actual OS operation as system threads can be
created and removed easily with little overhead.

. A thread is either running, ready, or blocked waiting
for a new incoming request. Basically, a ready thread is
waiting for its share of the server to continue processing
a request, and a blocked thread is waiting for a new
request. We do not consider azlternate states in which a
thread is waiting for other operations to complete such
as blocking for I/0. These are captured by the speedup
function. ' -

A3,

been studied in both queueing and real-time systems [21,

33]. Including service priorities in our model will, un-

fortunately, complicate our analysis and is, thus, omitted

from our model.

Threads {in the ready state) are scheduled (by the under-

lying OS) in a round-robin fashion, ¢ach for @ seconds

or until the thread finishes processing the current request.
whichever happens first. The task of servicing all ready
threads once is called a service round. We do not

Ad,

3That is. we do not mix different types of threads such as application-level
and kernel-level threads.
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consider the effects of hierarchical priority queueing,
which is commonly used to age long-running threads.
Since all requests are relatively short-lived and all threads
have the same priority, a strict round-robin algorithm can
be assumed.
. Switching between different running threads is done
instantaneously with no overhead. Similar to A2, we
capture this overhead in the speedup function, and hence,
this is not a limitation. Our decision is motivated by the
fact that switching overhead is load-dependent. That is,
as more threads are running, switching between threads
will depend on whether the threads need to be swapped
out of memory or not. The speedup function allows us
to include load-dependent overheads in cur analysis.
The system has a fixed (finite) number of threads, m™%%,
This corresponds to the maximum number of threads
that a typical OS can support. Not all threads need 1o
be allocated. but, the total number of threads that are
allocated 10 all service classes cannot exceed this limir.

AB.

One final point to make is that our analysis does not
consider any particular server resource as the bottleneck
resource. Instead, the server is limited by the rate at which it
can process requests and this rate is defined by the service-
time distribution and speedup function of incoming requests.

B. Workload Model

In an Internet server, the workload model captures the
arrival of requests and service that each request requires.
Both have been studied extensively in the literature [3, 3.
7.14,27). In general, thev have been observed to follow
heavy-tail distributions. In fact, we have observed similar
behavior during our workload analysis (omitted for space
considerations). Heavy-tail distributions are, unfortunately.
difficult to analyze even with very simple computing models,
In order to provide better understanding of the dynamics
of multi-threaded services, we assume that requests arrive
following a Poisson process and require exponential service
times. Section VII evaluates our model using realistic load
distributions. ,

We distinguish between service time and processing fime of
an incoming request. The former reflects how much work that
each request brings to the sysiem. whereas the latter reflects
how much time it spends in service as it shares the system’s
resources with other requests. Thus. there are three parameters
associated with each service class Sy:

/\,l-:

3

the mean request arrival rate of a Poisson arrival process.
the mean service time of each request. It is equal 1o
the processing time only when the system is allocated a
single thread. » .

the speedup function as defined in Section [I. Even
though we use the subscript & to denote the service
class. not the workload, the characterization of Gr(1n)
remains unchanged. For example, if G1 = Go = Gaiaties
it implies that both service classes have static workloads,
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Fig. 4. Markov Chain representation of MTRR server.

We assume that G (m) only operates in regions I and
If (Figure 2). The point where G.(m) collapses is hard
to predict a priori, but not very ditficult to detect [26,
31.32]. For the purpose of our analysis, we assume that
detection/prevention from server thrashing is handled by
4 separale mechanism. Therefore, we define the speedup
function as follows:
. ap(lim—1 1

Gk(m) = { a’tEmﬁ. - i)-i_-l- 1
where ay, is the constant reflecting the efficiency of
concurrency and mf is the saturation point of service
class k.

for 1 < m < mj,

for m > mi, L

IV. ANALYSIS OF MTRR SERVER

We focus in this section on the single service class MTRR
server. The analysis, however, requires extension of some of
the existing results from queueing theory and time-sharing
systems [19.20,33] to include the effects of concurrency
cains. This is done by introducing state-dependent service
rates through the speedup function. We first consider an
idealized model where the scheduling quantum is infinites-
imal, i.e.., @ — 0. Under this assumplion, we are able
to model the MTRR server using Continuous-Time Markov
Chain (CTMC) [33]. Later we will estimate the resulting error
from this assumption.

Figure 4 shows the basic representation of the CTMC
of the single-class MTRR server. The state here represents
the number of requests in the system, and gl represents
the state-dependent service rate, not the per-service class
parameter, py,, described earlier. Therefore,

= %G(z’), (2)
where @ and (i) are the parameters describing the single
service class under study. We drop the subscript & as there is
only one service class.

We start by writing the steady-state probabilities tor the
CTMC, which are based on the local balance equations:

A - L _..n
pi = —w(l)’\p,,l fori=1,...,m 3)
’ @ (mt )p‘i*l for i = ”10 +1.... :I\:'
m*u

where sn" is the number of allocated threads, and A is the
maximwm number of requests that can be admitted into the
system, which includes requests both in quene and in service.
Specifically, K = B+ m°. Using Eqgs. (1) and (2). we rewrite
the expressions for probabilities as:
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pi = m}%—l fori= l.,. e ' @
Th—Tiotilabi-1 fori=m+1,... K. :

where « represents the speedup rate as described in Section II
and 1 = min(m!, m®). Notice the change of indicies in
Eq. (4) from m® to 7 since 1{¥) remains unchanged for i >
m. Let us define p = % and also ¥, (i) as foliows:

U, (i) :{

1 fore =0

: 5
[Tie, (ke + 1) otherwise. (3)

Now using simple substitution. we can rewrite the expres-
sion of each p; as a function of po.
fori=1,...,m

p= 4 Falsl Po
L= 1 i .
E:%‘m(‘c%)l‘pn fori=sm+1,.... K.

(6)

where C = (#ir— 1)+ 1. Since Efiopi =1, we can express
po as follows:
H i i K -1
1+ s ghe
i=1 \pa(z — 1) ‘Ifu(nl. — 1)(_{)_ _ 1)

Po= {7

Using these steady-stale probabilities, one can numerically
compuie the expected number of requests in the system,
N = o8 i Litde's formula {33). N = M1 — pg )WV,
can then be used to compute the total response time, ',
which includes both the queueing and processing delays. The
term {1 — pg ) is used to account for the probability that an
arriving request finds a full queue and thus is dropped.

Given specific values for the system parameters, computing
the varicus resulis is straightforward and can be achieved
in O(K) operations. Our formulation of the MTRR server
along with the introduction of the speedup function constitutes
a supersel of several well-studied systems. For instance,
when o« = 0, we observe no speedup. This reduces to a
Generalized Processor Sharing (GPS) withou! priorities [18].
If we further add the restriction of m” = 1, then only a single
thread is allowed to run. The system is further reduced to
M /M /1/ B server. Finally, if o = 1. it implies ideal speedup
or, effectively, +® servers running in parailel. The system
then becomes A /Af/m /B,

subsectionComparison with Discrete Quantum Values

The development so far assumed an idealized case of
¢} — 0. Here we want to give a general idea of the expected
error that is introduced by this assumption. For simplicity. we
consider the worst-case scenario where the service is heavily-
loaded. i.e. m is always equal to m”. We also assume no
speedup. i.e., G{m) = 1. When @ — 0, the mean processing
time, ¥, is just

®)
p

Now, let ¢ be a positive real value — typical values are



0.01 sec. We want to derive an approximate expression for
Y. We consider the processing of a request by one of the m”
threads that always run during any service round (assumption
A4). Let X be an exponential random variable retlecting
the service time of an arriving request, Upon admission of
the request into service at the beginning of a service round,
its corresponding thread must first wait for its service turn
hefore it starts execution, When the thread is scheduled, if it
completes servicing the request in less than a time quantum
(ie.. X < @), its processing time is just the sum of X and the
queueing delay before it stans service. On the other hand, if
X > Q. then we expect that after € seconds, the remaining
threads must run before the beginning of the next service
round. where the given thread must wail for its turn to run
again. This process repeats until the request is completed.

The time that a thread must wait for m other threads to
be serviced. either before or after it is scheduled, can be
computed as follows:

m

E{z min( X, Q)] = m.E[mir{ X, Q)|

i=1

Q (=)
= m (j(; afx (a)de +4/Q Q}j‘_\'(l‘)dl‘)

1— k@

E[V|m|

= e

N
Jz

where fx (i) is the probability -density function (pdf) of X.
During each service round. we assume that the order of
scheduling threads i3 completety random. That is. for any
given thread, its probability of being scheduled at the k-th
position is 1/m”, We can now compute Y using the so-calted
regenerative formulation: '

m?—1

1 . Q )
gﬁ m—a{Elv K] + jo wfx (@l
+]°° (EV]m® —k— 1} +Y +@) f_\-(x)d:r}
Q
o1 [m0+1
T 2

Y

8 _
+ E—le—HQ] : (10)
2
When @ — 0 in Eg. (10), we see thal the results are
consistent with Eq. (8). Furthermore, the error between the
Lwo equations is ’
m® _ 1 mc'-;_-'l +€L“Q m” -1
%Error # p[ 2 2 ] )

1710

.. H
m®— 1 [l—eﬂ"Q} _

2m0

(1

In the case of the mixed workload. where g« = 30 regs/s, the
expected error is approximately 195. We stress, however, that
this is a worse-case scenario. In our experiments, we tound
that our derivations are within 10% ol real measurements for
~ a wide range of configuration parameters.

We note that while using finite ¢ values to determine ¥
better approximates the real system behavior, it is mathe-
matically tractable when G(m) = 1, When G{m) > 1,
this method incorrectly reduces the processing times as it
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underestimales the number of service rounds required for
completing a single request.

V. WORKLOAD DEPENDENCIES

When multiple service classes run on the same host, their
basi¢ operation is similar to an MTRR server with a single
service class. But instead of allocating all ¢ threads Lo one
service class, there are » service classes, {51,52,....58,}.
and ecach service class 5; is allocated a tixed number of
threads m? such that their sum does not exceed the system-
wide thread limit m™™*% (Assumption A6). Each service class
also has separate workload parameters: (A, wy, G;{m)). With
the introduction of multiple services into our model. the
analysis must consider two interdependencies between service
classes. The first, which we call direct interdependencies. is
due to threads time sharing the system. The second, which is
indirect interdependencies, is caused by the possible sharing
of a bottleneck resource such as the disk, We examine how
these interdependencies aftfect the analysis, and hence the
performance, of servers running muitiple services.

The distinction between direct and indirect interdependen-
cies is important in the analysis and control of multi-class
servers. Direct interdependencies have predictable behavior
that can be accurately captured by an analytical model. An
ideal time-sharing system, e.g.. [19,20]. is a good example
where a thread will run for its entire scheduling quantum, ¢,



without blocking. Unfortunately. this is seldom the case for
web servers, especially with the growing popularity of per-
user customization. Therefore, when requests require many
1/0 operations. the bottleneck is shitted from the CPU 1o the
memory or to the disk; it becomes much harder to predict the
impact of one service class on the other ones,

In some cases, precise understanding of indirect interdepen-
dencies may not be necessary. This occurs when requests from
different service classes have similar resource requirements.
The load on all of the resources (inctuding the bottleneck one)
will, thus, be proportional 1o the number of requests that are
being concurrently processed in each service class, We refer (o
these workloads as homogeneous. For example, a server that
wants to provide client-side differentiation can be configured
with several service classes, one for each group of clients. We,
therefore, expect that these service classes will have similar
service rates, p;, and speedup functions, G;(im), but with
possibly difterent arrival rates. A;. Aliernatively, when very
ditferent workloads need to be managed on the same system,
e.g., a web server and an FTP server. each incoming request
may have very different resource requirements. In this case,
we refer o the workloads as heterogencous.

We study the muiti-class server in the context of our work-
load categorization. Our goal here is to quantify the impact
of increasing the concurrency of one service class on the
performance of the other running services. We use a similar
setup in Section II, but now, we run two independent Apache
services. Each service can be configured to receive requests
for one of the three workloads: static, dynamic, and mixed. In
particular, we lest two configurations, The first configuration
reflects the homogeneous workload, where incoming requests
to both Apache services are for the mixed workload; the
second configuration reflects the heterogeneous workload.
where one service is designated as the static workload and the
other service is designated as the dynamic workload. Finally,
we measure the maximum throughput as a function of the
nurmber of threads that are allocated to each service class.

Figure 5 reflects the throughput gain as the thread allocation
of the first service class is increased while the allocation of the
second class is held constant. Each line represents a different
allocation for the second service class, the *No sharing™ line
indicaies that there is only a single ¢lass running on the server.

The homogeneous workload behaved as expected. where
-the throughput of a service class is proportional to its thread
allocation. Specifically, we can express the service rate of any
service class as a tunction of the number of the threads that
are running:

I

= Gy my) e
Z::rmi ; '

where n; is the class-i threads that are running, or equiv-
alently, the number of requests that are being concurrently
processed by service class Si.

The heterogencous workload, on the other hand, did not
exhibit the same behavior. Here we fixed the number of

,u(‘m,) S (12)
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threads that are allocated to the server with the dynamic
workload (S RViynamie for short) and increased the thread
allocation of the server with the static workload (SBRV 15
for short). Based on our measurements, we observed three
unexpected phenomena:

Pl. Even when SRVyiynamic i assigned a single thread. its
impact on the performance on SBRVisqsie is significant,
In fact, we observed an artificial ceiling that limited the
maximum performance of the SRV, ;. ic.

When the thread allocation of SRVy, ., omi. is increased,
but still below its saturation point (< 16 threads),
SRV a5 incurs a small decrease in performance.
After the thread allocation of SRV, 0ma. is increased
beyond its saturation point, the SRVqe. has a much
greater performance drop. In both cases (P2 and P3),
the performance drop is not proportional to the thread
allocation of the two servers.

P3.

The above example shows an important result. namely,
without precise understanding of the resource requirements
of different and heterogeneous workloads, using thread al-
location to provide QoS differentiation is not an effective
approach. Fine-grain resource management must be used to
provide eftective QoS guarantees [6.28.32]. Unforfunately,
these techatques require substantial changes to the application
or the OS. We, however, show that if services are configured
with homogeneous workload to provide client-side dilferen-
tiation, then multi-threading can be used as an effective tool.

VI. PROVIDING QoS GUARANTEES

Providing QoS auarantees is motivated by the need to
protect certain — possibly high-priority — service classes
from others overloading the server. As shown in Section V,
this is very difficult withowt explicit OS support. where strict
resource limits are allocated to each service. In this section,
we describe the extent to which thread allocation can be used
to guarantee specific service delays. We will continue to focus
on homogeneous workloads; our proposed technique is aimed
at providing QoS guarantees to different client groups, each
represcnted by a separate service class.

We focus in this section only on providing worst-case
(oS guarantees. Here, the protected service is allocated the
minimum number of threads such that no matter how high
the load increases for the other service classes. it can siill
(statistically} meet its QoS objective. We studied a more
general case in the extended version of this paper [16]. where
we also characterized the behavior of the system for multiple
classes for any thread allocation. The derivation was based on
extending the Markov chain that was presented in Section IV
to be multi-dimensional, where an additional dimension was
necessary for each service class. We have found that when the
system is lightly-loaded, thread allocation of a given service
class is minimally affected by the allocation of the other
service classes. ’
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Fig. 6. Dynamic programming algorithm for finding the allocation that
.minimizes the worst-case cost of the system. The illustration is limited to
- three service classes.

We start by considering the system that is heavily-loaded
‘such that all classes are overloaded except for a single one,
‘where the term “overloaded” implies that all threads are
* continuously busy. Let k'be the non- overloaded service class
and the other » — 1 classes have m; m , for j # k. Here
“we also consider @ — 0. Since only dass k is not overloaded,
the single class case in Section IV can be used, but with a
different state-dependent transiion rates ;.

Going back to Figure 4, we can define p; as follows:

0 =

G(Z-I— Vi) (13)

% +
where i = S20_, ., my. Here p is the same for all service
" classes as the workload i 1s assumed to be homogeneous, The
_-ratio Tf—k reflects the fact that each thread has to share

the system with ¢ + v — 1 other threads. The steddy -state
probabilities can be similarly defined:

: A (7'+r )
“‘:E,(,_z_akka?fl
_ﬁiﬂgiﬂn_pﬂ_l

my pG{ve+my)

Pi =

The remaining derivation is similar to the one in Section IV
and is omitted. The computed V), = EE_O 1 p;)/Ar, thus,
reflect the worst-case response time when all but class & are
-overloaded, ‘ _
~ The expression for the worst-case response fime can now
be used to determine the thread alocation that can meet the
desired QoS ohjective. We express the QoS here using the

notion of holding cost. Formally, let 7,(¢) be the cost of

& request in service class k as a function of its response
time ¢, Using h(4) gives us flexibility in defining different
QoS objectives. For example, it allows us to assign separate
weights to different service classes, which can be used to
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provide different QoS levels to a multi-¢lass QoS application.”
The holding cost function can be arbitrary, however, with the
restriction of being a monotonically non-decreusing function
of £}

We now extend the notion of cost to any thread allocation
M. We first define ¢, (M) as the worst-case cost for service
class & in M. It is computed by assuming that all service
classes except for class & are overloaded as:

(M) = hye(Yy),

where Y, is just the worsi-case response time as computed
above. The sum of these costs ¢(M) = Zj ¢; (M) is defined
to be the cost for allocation M. The allocation that minimizes
the worst-case cost is thus

Mipin = nﬁi{n{c:(l\/l)}. (15

To efficiently compute M ,;,, we first observe that our
definition of ~ in Eq. (13) does not distinguish between
different thread allocations to the overloaded service classes.
This allow us to use dynamic programming to solve for
M,,in. Where in each step we group all overloaded classes
together and then find the allocation that minimizes the cost
of non-overloaded classes.

The basic algorithm is outlined (graphically} in- Figure 6,
where the algorithm is divided into » steps. In the first siep,
n tables are created, one for each service class. Each table
contains the expected cost for any thread allocation to its
corresponding service class, given that all other service classes
are overloaded. We only need m™®* entries to capture this
expected cost. The next step combines the tables for classes 1
and 2 into a new table by finding the minimum ¢ost for each
allocation given ali possible combinations from the tables
for classes 1 and 2. Each additional step then combines the
resulting table from the previous step with the table of an
additional service class. At the end, the final table will contain
the minimum cost and by tracing back the allocation that
produced it, we can determine M.y, .

VII. EVALUATION

A realistic server environment is used to verify the cor-

rectness of our derivations with respect to our original as-

sumptions and also demonstrate that the proposed scheme
makes near-optimal allocation of threads using our proposed
techniques. We used a similar experimental setup to that in
Section 1. However. we configured a second Apache server
as shown in Figure 7 to act as a separate service class. Three
parameters describe each service: the arrival rate. A;. the
listen queue length. B;. and the thread allocation. -m,?. In the
presented experiments. we set B; to 128 requests tor i = 1,2

*In this case. each QoS level is defined in terms of worst-case response
time-

5This restriction avoids the sitnation where requests with long Tesponse
times have lower cost than those with short response times.
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Fig. 7. Expernimental Setup.

We have evaluated the system for different bufter lengths; in
all cases, our results were consistent with those presented
here.

QOur cvaluation is based primarily on response-time mea-
surements at the client machines. This response time is the
tolal wait time before a request is completed. It is the sum-
mation of three mostly independent components: connection-
establishment latency, propagation delay, and processing de-
lay. However, we are only interested in the effects of thread
altocation on the processing-delay component, Thus, by keep-
ing the first two componenls constant. we are able o obtain
an unbiased view of the pertormance of the different thread
allocations. We take two measures to minimize the variation
in these two components, First, we made sure that the client-
to-server network path is bottleneck-free. We also reduced the
connection-establishment timeout such that any packet drop
during that phase will not skew our results. We estimated
that the error inltroduced by the first two components to
be less than 2 mscc. Finally, because we need to conduct
a large number of experiments to cover the wide range of
variable parameters, we limit each run to 5 minutes and each
experiment was repeated 20 times.

Our evaluation is split into two experiments: the first
validates the correctness of our derivation and the second
measures the effectiveness of our optimal allocation policy.
In all cases, we assume that workload is homogeneous, and
hence, we only focus on the extent that the thread abstraction
can be used to provide client-side QoS guarantees. The
effects of heterogencous workloads were studied in Section V,
Finally, due to space limit, we only present the results for the
mixed workload as it is considered a realistic representation
of real server workloads.

A. Experiment I Model Validation

We compared our predicted values of the response time
with the real measurements tor the single-class server con-
figuration, We used a single Apache service and varied the
configuration parameters across two dimensions: atrival rate,
A, and thread allocation, m?, This is shown in Figure 8, where
each line represents the response time for a fixed allocation
as the arrival rate is increased.
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The figure shows that our derivations can accurately predict
the expected performance of the underlying server for a wide
range of configuration parameters. There is over-prediction
for certain values of A. This, we believe, is due to the system
being critically-loaded. In particular. we can split the graph
into two distinct regions: underloaded and overloaded. These
are presented by the upper and lower parts of the S-shape
of ¢ach line, respectively. The transiiion region between the
underloaded and overloaded regions is very narrow and occurs
when A =2 uG{mY), where the system is critically-loaded.

Our analysis clearly exhibits the bimodal behavior of
systern queue occupancy. Namely, when the arrival rate is
slightly below the saturation point. incoming requests are
admitted almost immediately into service with little queueing
delay. However. a slight increase in arrival rate can cause
the delays to increase many folds simply because the system
cannot keep up with incoming requests which causes queues
to fill up. But since queues have limited capacity, the service
delay is limited by the maximum length of such queues. The
bimodal behavior raises an interesting design decision issue
when configuring a web server, namely, when the gystem is
underloaded. only a small queue is necessary o avoid request
dropping. The length of the queue depends on the burstiness
of ariving requests. However, once the system is overloaded,
longer queues do not provide any performance advantage, but
they increase the response time of accepted connections,

B. Experiment 2: QoS Guarantees

In Section VI we described a dynamic programing al-
gorithm to determine the thread allocation that can pro-
vide worst-case QoS guarantees. To verify our model, we
must. unfortunately, test all possible thread allocations, which
is computationally-prohibitive even with only two service
classes. In this subsection. we look only at a single step of the
algorithm, namely, given a thread allocation for a low-priority
service class. we wani to predict the thread allocation tor a
high-priority service class that can (statisticallyy guarantee a
maximum response time. We will show that for each QoS



requirement. our predictions are close to the measured values.
With this, we can conclude the robustness of our algorithm
in the general case.

Figure 9 shows the required number ol threads for the high-
priority service when it arrival rate is A; = 100 regs/s and
the low-priority service is allocated a fixed number of threads.
For instance, in the top plot where the low-priority service is
allocated 8 threads. if a 1-second delay guarantee is required,
then the high-priority service should be allocated at least 10
threads. The figure (for the measured and predicted lines)
is computed by first assuming that the low-priority service is
overloaded. A table that-holds the thread allocation vs. worst-
case response time for the high-priority service is then created.
Finally. an inverse table lookup is used to determine the
-minimum allocation that meets the response time reguirement.

The figure shows that our equation-based optimization is
able to predict, with high accuracy, the thread allocation that
achieves the minimum cost. One can see that if a similar
process is used o create the initial tables in Section VI, then
the resulting prediction will be close to the optimal value. We
note that in this experiment we implicitly assimed a linear
cost funciion where A,(t) = ¢. Other cost functions can still
be used.

Overall. the above results show that our models are very
robust. They capture the expected performance of a mulfi-
threaded server as well as identify those instances where
the model fails. Qur approach can be used to improve the
performance of existing QoS techniques.

- VII., RELATED WORK

The design and analysis of server QoS management tech-
nigues have been addressed extensively in the literature, for
example, in [2,4.6.10, 11,13, 15,22,25,32]. In general, our
work complements existing QoS techniques by providing a
rigorous analysis of one particular approach. namely, using
‘the thread abstraction. Our focus is on determining the effec-
tiveness and limitations of using thread-allocation to provide
QoS guarantees or differentiation,

Several studies [1.13,22,24,25] have used thread alloca-
tion to provide application-level QoS. Vasiliou [30] focused
his thread-based approach on providing a simple method for
creating new scheduling disciplines. Similarly, Pandey [25]
defined an object-oriented language to specify resource re-
quirements for different client requests. Both [30] and [25]
lack the translation between resource requirement and service
quality. In this paper. we introduced the speedup function
for this specific reason. We believe that it is a key element
for determining ‘the wue performance for any thread-based
allocation. .

To handle changing load conditions, the authors of [1,
22-24.32] proposed a feedback control mechanism to- ad-
jusi the allocation of threads to ditferent service classes
based on on-line measurement of QoS metrics. Particularly
in [24], a control-theoretic approach is used to implement a
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high-priority: (top) low-priority service is allocated 8 threads. and (bottom}
low-priority service is allocated 16 threads.

Proportional-Integrator (PD) controller that adapts to the load
conditions on the server. Unfortunately, this type of analysis
(linear control theory) is only suitable for steady request
arrivals with predictable service demands. In this paper, we
have shown the need for better monitoring techniques in the
adaptation process. We have also shown when the dynamic
adaptation will fail to provide the QoS ditferentiation.

[X. CONCLUSIONS

In this paper. we have provided a rigorous analysis ot the
pertormance of thread-based QoS support, We also presented
an efficient optimization aigorithm for determining the thread
allocation, if any, that minimizes the system’s cost, based on
our economic formulation. Through empirical validation in
real server environments, we showed that the derived results
are applicable to real-world systems. '

The results presented in this paper are essential to the

. design of any efficient thread-based QoS differentiation mech-

anism. Three important conclusions can be drawn from our
study. First. based on the shape of the speedup function, we '
argue that dynamic adaptation of thread allocation based on



the response-time measurements only is not sufficient to guar-
antee the stability of the control mechanism. The controller
must continuously monitor the saturation point. which may
shift with changing workloads. Second, indirect interdepen-
dencies between threads that arise from non-trivial sharing
of system’s resources can yield unpredictable performance
interactions. We have shown that even with a small number of
threads dedicated to I/O-heavy workloads. the performance of
other running service can be affected significantly. Theretore,
without accurate understanding of resource requirements. the
thread abstraction alone cannot provide the necessary QoS
guarantees, or even QoS differentiation. to running services.
Finally. when similar or homogeneous services are being
hosted on a single server to provide client-side differentiation,
the thread abstraction can be used to provide etfective and
predictable statistical QoS guarantees.

REFERENCES

{11 T. Abdelzaher and N. Bhatti, “Web Content Adaptation to Tmprove
Server Overload Behavior.” in Infernational World Wide Web Confer-
ence. May 1999.

[2] I. Aman, C. K. Eilert. D. Emmes. P. Yocom. and D. Dillenberger.
“Adaptive Algorithms for Managing Distributed Data Processing Work-
load.”™ IBM Systems Jowrnal. vol. 36, no. 2. pp. 242-283. 1997,

[3] M. E Arlitt and C. L. Williamson, “Web server workload charac-
terization: The search for invariants” in Proceedings of the ACM
SIGMETRICS '96 Conference. Philadelphia, PA. April 1996.

[4] C. Aumrecoechea. A. Campbell. and L. Hauw. "A Survey of QoS
Architectures” Multinedia Systems. vol. 6, no. 3, pp. 138-151. 1998,

{51 H. Balakrishnan. V. N. Padmanabhan. S. Seshan. M. Stemm, and
R. Katz. “TCP Behavior of a Busy Internet Server: Analysis and
Improvements” in Proc. of IEEE INFOCOM '98. March 1998, pp.
252-262.

[6] G. Banga. P. Druschel. and J. Mogul. "Resource Containers: A New
Facility for Resource Management in Server Systems,” in Third Sympo-
sium on Operating Svstems Design and Implemenation, February 1999,
pp. +5-58.

[71 P. Barford. A. Bestavros. A. Bradley, and M. E. Crovella, “Changes in

Web Client Access Patters: Characteristics and Caching Implications.”

in World Wide Web, Special Issue on Characterization and Perfromanice

Evaluation. 1999. pp. 15-28.

P. Barford and M. Crovella. “Generating Representative Web Worktoads

for Network and Server Performance Evaluation.” in Proceedings of

Performance '98/ACM Sigmetrics'98. May 1998. pp. 151-160.

[9} D. Bertsekas and R. Gallager. Data Networks.  Prentice Hall. 1992,

[10} N. Bhatti and R. Friedrich. “Web Server Support for Tiered Services.”
IEEE Network. vol. 13, no. 3. pp. 676471, Sep.~Oct. 1999.

[11} |. Bruneo. I. Brustolom, E. Gabber, B. Ozden. and A. Silberschaiz.
“Retrofitting Quality of Service into a Time-Sharing Operating System.”
in USENIX Annual Technical Conference. June 1999, pp. 15-26.

[12 8. D. Committce. “SPECweb.” Tech. Rep., Apnl
hitp/fwww.specbench.orglosg/web/.

[13F L. Eggert and 3. S. Heidemann. “Application-Level Differentiated
Services for Web Servers.” World Wide Web, vol. 2. no. 3. pp. 133142,
1999.

[14) A. Feldmann. Characteristics of TCP Connection Arrivals, ser. Self-
Simitar Network Traffic and Performance Evaluation. John Wiley and
Sons. Inc.. 2000. ch. 15, pp. 367-399.

[15] Hewlett Packard Corp.. “WebQo8 Techmicai White Paper.”
2000, hitp/fwww.internetsolutions.enterprise.hp.com/ we-
bgosiproducts/overview/wp.html.

[16] H. Jamjoom, C.-T. Chou. and K. G. Shin. “The Impact of Concurrency
Gains on the Analvsis and Control of Multi-threaded Internet Services.”
University of Michigan Technical Report. Tech. Rep. CSE-TR-480-03.
2003,

[17] H. Jamjoom and K. G. Shin. "Eve: A Scalable Network Client Emu-
lator,”” University of Michigan Technical Report, Tech. Rep. CSE-TR-
+78-03, 2003,

(8

1599,

0-7803-8355-9/04/520.00 ©2004 IEEE.

[13]
[19]
[20]
33

22]

[23}

[24]

[25]

(26]

[27]

(28]

[29]
[20]

S. Keshav. An Engineering Approach to Computer Networking.
Addison-Wesley Publishing Company. 1997.

L. Kleinrock. “Time-Shared Systems: A Theoretical Treatment.” Jorr-
nal of the ACM. vol. 14, April 1967.

L. Klienrock, Queueing Svstems. Volume II: Computer Applications.
Wiley Interscience. 1976.

C. M. Krishna and K. G. Shin. Reqi-Time Sustems.
1997.

K. Lakshman. R. Yavatkar. and R. Finkel. “Integrated CPU and Network
/O QoS Management in an Endsystem.” in Proc. 5th International
Warkshop on Quality of Service (IWQOS'97). 1997, pp. 167-178.

X. Liu. L. Sha. Y. Duao. J. L. Hellerstein. and S. Parekh. “Online
Response Time Optimization of Apache Web Server” in Proc. 1lth
International Workshop on Quality of Service (IWQOS 2003} 2003,
pp. 461478,

C. Lu. T. F. Abdelzaher. I. A. Stankovic. and S. H. Son. “A Feedback
Control Approach for Guarantesing Relative Delays in Web Servers.” in
[EEE Real-Time Svstems Svmposium. Taipei. Taiwan, December 2001.
R. Pandey. I. F. Barnes. and R. Oilsson. “Supporting Quality of
Service in HTTP Servers.” in Sviposium on Principles of Distributed
Computing. 1998, pp. 247-256.

J. Reumann. H. Jamjoom. and K. G. Shin. “Adaptive Packet Filters.”
in Proceeding of IEEE GLOBECOM'0I.  San Antonio, Texas: IEEE,
November 2001.

S. Sarvotham. R. Riedi. and R. Baraniuk. “"Connection-level Analysis
and Modeling of Network Traffic” in Proceedings of the ACM SIG-
COMM Internet Measurment Workshop. November 2001,

O. Spatscheck and L. L. Peterson. “Defending Against Denial of
Service Attacks in Scout” in Third Svmposium on Operating Svstems
Desien and Inplementation. February 1999, pp. 39-72.

H. Takagi, Analvsis of Polling Svstems. MIT Press. 1986.

N, Vasiliou and Hanan, “Providing a Dierentiated Quality of Service
m a World Wide Web Server.” to Appear in Performance Evaluation
Review.

T. Voigt. R. Tewan. D. Freimuth. and A. Mehra. “Kernel Mechanisms
for Service Differentiation in Overloaded Web Servers.” in Proceedings
of the 2001 Ammual Technical Conference. June 2001, pp. 189-202.
M. Welsh. D. Culler. and E. Brewer. *SEDA: An Architecture for Well-
Conditioned Scalable Enternet Service,” in Procesdings of the 18th ACM
Svrposium on Operating Svstems Principles. October 2001,

R. W. Wolff, Stechastic Modeling and the Theory of Queues. Prentice-
Hall. Inc.. 1989,

McGraw-Hill,



