
The Impact of Concurrency Gains on the Analysis
and Control of Multi-threaded Internet Services

Hani Jainjoom Chun-Ting Chou Kang G. Shin
University of Michigan

{jamjo"m.choult.ksshin) @iercs.umich.edu

Abstract- With the proliferation of Internet services, many
solutions hare emerged to provide Quality-of-Service (QUS)
guarantees when the demands for the hosted services exceed the
server's capacity. In this paper, we take an analytical approach
to answering key questions in the design and performance of
application-level QoS techniques, especially those that are hased
on the multi-threading or multi-processing abstraction. Key to
our analysis is the integration of the effects of concurrency
into the inleractions hetwren multi-threaded .services. TI, this
end, we extend traditional time-sharing niodrls to develop the
multi-threaded round-mhin (MTRK) serveps, a more accurate
model of operation of typical multi-threaded Internet services.
For this model, we first develop powerful, yet coniputationally-
efficient, nrathematical relationships that derrihe the perfor-
nianee (in ternis of throughput and response time) of niulti-
threaded services. We then apply optiniization technique9 to
derive the optimal allocation of threads given specific QoS
ohjedive functions. Using realistic wnrkliruds on a typical weh
server, we show the efficacy and accuracy of the propmed new
niethodology.

I . INTRODUCTION

Wide use and expansion of the Internet has led to the
proliferation of diverse and oftentimes complex Internet
services. These services, on the other hand. have created
unprecedented demands on end-servers. each of which usu-
ally hosts multiple services like Web. e-mail. and database
services, The increased demands by end-users often out-
pace the recent progress in enhancing server's processing.
storage and networking capacities. hence easily overloading
end-servers. The notion of Quality-of-Service (QoS) has been
introduced to manage resources when user demands exceed
resource supplies. Supporting QoS in servers has been ad-
dressed extensively in the literature. for example. in 12.4.
6. 11.321. In particular. application-level QoS mechanisms
are designed to provide the necessary QoS guarantees with
little or n o support irom the end-server's OS [2. 10. 13. 15.
22.251. However. since the underlying OS enforces resource
transparency (i.e.. hides resource management). application-
level mechanisms have limited capabilities in enforcing strict
service guarantees and are often restricted to only providing
proportional QoS differentiation. In this paper. we closely

T h z work reponed in Lis paper was suppwrsd in pun by the Sationat
Sciencs Foundation under Grunt CCR-0216977.

examine and evaluate the extent to which application-level
mechanisms can provide QoS support.

One of the more popular application-level solutions is
thread-based QoS inrdiunism [23.24.321 in which the al-
location of threads or processes to each application or ser-
vice is adjusted (either statically or dynamically) based on
some target QoS ob.iectives (Figure 1). Two design principles
motivate the use of thread/process allocation to provide QoS
diiierentiation to multiple services: (1) increasing concurrency
improves the performance of a single service. and (2) server
capacity can he divided in proportion to the thread allocation.
Unfortunately. the extent to which thread-based mechanisms
are effective depends heavily on the degree of interaction
between the running threads. which further depends on the
nature of the workload of incoming requests. This paper
carefully examines each of the two design principles with the
goal of providing deeper understanding of internal dynamics
behind this QoS mechanism.

When a service is allocated more threads. the advantages of
increased concurrency are apparent in the resulting increase in
throughput. This improvement is due to concurrent processing
of requests. which allows the overlapping of long blocking
I/O operations of one request with non-blocking operations of
another. There is. however. a satirmtion point beyond which
increased concurrency no longer yields any performance
benefits. When multiple services use concurrency to improve
their own performance. the interaction between their threads
become more complex. In fact. we have found that as the
system's load increases. the performance interaction between
difiereni service classes. due to resource sharing. becomes less
predictable. Furthermore. when different types of workloads
(e.g.. 110-heavy and CPU-heavy) are sharing the system. a
marginal improvement in the QoS of one service can cause
a dramatic decrease in the QoS of the other services. Based
on our measurements and observations, we show that multi-
threading is ill-suited for providing application-level QoS
support. On the other hand. it can be effectively used to
provide QoS guarantees to different client groups.

In this paper. we take an analytical approach to precisely
characterize the interactions between threads and services in
an Internet server. Crucial Lo the correctness of our analysis
is the development of an accurate model that reflects the
operation of the server. We introduce the multi-threaded

0-7803-8355-9/04/$20.00 02004 IEEE. 827

mailto:iercs.umich.edu

W U L U I - *ppllcslrn B
ti +

I(.mdecac, uaarpsrs S a n t s d a U n

Fis. 1: Threud-hsed systsm nmdcl. Application A uses two sewice classes
to g i w preferantla1 ucntnicn; for requests in service class I than requzco
in servim class 2. Application B uses one service class to enforce B certain
QoS tu all incoming rqucsts. A controller (not shown) can ihcn adjust the
allocation of system lhrsnds to different service dasszs.

round-robin (MTRR) server model to capture the multi-
threading and process-sharing abstractions of real systems.
The MTRR model is an extension'of traditional round-robin
servers. which are used in the analysis of polling and time-
shared systems [19.20: 291. Unlike traditional approaches.
our model incorporates the performance benefits of increased
concurrency into the interaction between the running threads.
Using this MTRR model. we are able to derive powerful. yet
efficient. relationships that describe the internal dynamics of a
typical multi-threaded server. Furthermore. these relationships
allow us to address three important issues in the design
and performance of application-level QoS differentiation: (I)
better-predict the impact of thread concurrency on client-
perceived delay than traditional models. (2) estimate the
expected performance of services for any thread allocation.
(3) find the thread allocation, i f my. that guarantees certain
response times to different client 'groups (e.g:. paying cus-
tomers are given preferential treatment over the non-paying
ones).

This paper is organized as follows. We analyze. in-Sec-
tion 11. the benefits of concurrency in multi-threaded appli-
cations. We then establish the server and application models
for our analysis in Section 111. Section IV presents a detailed
.analysis of the MTRR server to provide the hasic relationships
eoverning the performance of multi-threaded services. In
Section V. we look at the effects of workload dependencies
on the analysis of multiple services being hosted on a single
server. We then provide. in Section VI. a computationally-
efficient algorithm for determining the optimal allocation that
meets various QoS nbjectives. We use real measurements on a
typical Web server in Section VI1 to evaluate the correctness
our derivations and effectiveness of our allmation algorithm.
We review related work in Section VIII. Finally. in Section IX
we conclude the paper with our final remarks.

. L

11. QUANTIFYING CONCURRENCY GAINS

Using concurrency to improve server performance is one
of the guiding principles for providing thread-based QoS
support. This notion was explored in [?3.?4.3?] as an integral
part of their feedback control mechanism that increases the
allocation of threads to running applications when better
performance is needed. Implicit to the effective operation of
these mechanisms is the notion that increasing the number
of threads improves the performance of the application. Par-
ticularly. the performance gain due to increased concurrency
is normally split into three regions as shown in Figure 2:
(I) a linear increase region due to overlapping blocking
operations of some threads with non-blocking operations of
the other threads. (11) flat or no-gain region due to threads
contending for the bottleneck resource, and (111) sudden (or
exponential) drop region due to memory thrashing. In this
section, we establish this behavior for different workloads
on a real system. T h i s will set the stage for exploring the
impact of concurrency on the controllability of multi-threaded
applications.

We define G,(rn) as the speedup (or gain) fitncfiori Lhat
expresses the potential performance pain (or loss) when r n
threads run concurrently. Because the expected speedup is
workload-dependent. the function needs to be profiled for
each specific workload. denoted by &e subscript k . ' T h e
speedup function expresses the change in throughput rather
than the change in response time. This is because increasing
concurrency does not reduce the actual amount of work that
each request needs. Instead. it increases the efficiency of the
server. which can be captured by the improved throughput.
To profile G'k(m). we first measured the maximum service
throughput. f i s (m) , when m threads run concurrently. This
is done by limiting the application-to have a maximum of
in concurrent threads (for m = 1 1 2) 3nd configuring
the arrival rate to he high enough to keep all threads busy
processing incoming requests. The speedup function is. ihen.
the throughput gain when nb threads are allocated compared
to when a single thread is allocated. Specifically.

To illustrate the general characteristics of concurrency
improvements. we configured il server machine (a 2.24 GHz
Pentium 4 with I GBytes of RDRAM) to run Apache 1.3
and receive " I T P requests through ;1 high-speed FastEthernet
link. Three Linux-based machines are used to generate the
desired requests. Our load generator. Eve [17]. fnllows the
same design principles provided by SPECWeb99 [I?]. a
widely-used tool to evaluate the performance of Web servers.
to test static and dynamic workloads.' The primary difference

'?be static workload consists of only static ohjects. rascmhlin. wch pots
and cmbcdded images. The dynamic wmklovd is similar to the sfatic one
snccpt the requested ohjects are created on-the-Hy for each incoming request
usins CGI scrips.

-
1 U&= of thr0.d. (rn)

Fi:. 2. Shape of the ~pszdup function. Gkjm). 7hc function incrzases at a
linear rate in region 1 up to the saturation p i n t . ' lh~hl function. then. flattens
out in rceion I1 and suddenly drops after the cdlilpse point in region 111.

between the two load generators lies in our ability to sustain
an arrival rate regardless of the progress of on-going requests.
In contrast. SPECWeb99 sends a fixed maximum number of
requests; once the maximum is reached. a new request is
sent only after the completion of a previous one. We profiled
Gk(i71) Tor three workloads: purely static. purely dynamic.
and mixture of the two - mixed for short. Each workload
adheres to the specification provided by SPECWeb99; in
general. the requested files follow a Zipf distribution [8]
regardless o i whether they are statically or dynamically gen-
erated.

Figure 3 shows G'gjm) for the three workloads. with the
abscissa drawn in log-scale. The first two regions outlined
earlier are clearly depicted by the figure. where the linear re-
gion is reHected by the sub-linear growth in the log scale. The
combination of having a fast machine with large memory and
running processes with small memory footprints prevented
reaching the collapse point. This was the case even when a
very large number of processes mn simultaneously.

The width of the linear increase region (i.e.. region I) in
Figure 3 and its slope depend heavily on the type of workload.
We approximate the speedup function in region I by a simple
linear function:

O * (m) = c r k (, n - 1) + 1 f o r m = l in:

where mi reHects the saturation point (defined later); and
the slope. ah: retlect5 the speetlrrp rate- or alternatively.
the efficiency of concurrency for workload I;. In the ideal
case. where each additional thread behaves as an independent
server. ' tg = 1 . This is seldom the case. and therefore.
ai, 5 1. The mixed workload. for instance, had a speedup
rate iioLir z 0.14 and a linear increase region of :nt = 23
threads. If the workload is piirely CPU-based or purely I/O-
based. then one expects little performance gain since blocking
and non-blocking operations are not overlapped. In that case.
og = o .

The transition point between regions I and 11. which we
csll the sutrrmtion point (in'). is primarily due to threads
conteiiding for the bottleneck resource - usually the disk.
When a single class is being controlled. increasing the number
of threads to be allocated beyond the saturation point provides

0 ' J
1 10 100 1 OM)

Thread Allocation

Fig. 3. Spezdup function. G k (m) . fw static. dynamic. and mixed workloads.

no performance advantage to the hosted service. But when
multiple services are being controlled. recognizing the satu-
ration point becomes more crucial since adding more threads
to one service class reduces the second class' share o i the
system. This may cause the second class to increase its thread
allocation and create a vicious cycle between the two cl
rendering the underlying control mechanism inefiective. It
is thus necessary for any dynamic control mechanism to
ad.just the maximum thread allocation based on the observed
throughput: when no throughput gain is observed. [hen no
further threads should be allocated. This issue is explored
closely in the remainder of the paper.

I l l . MODELING MULTI-THREADED SERVICES

The complexity of today's servers presents a real challenge
in building analytical models that fully describe the dynamics
of the underlying server. Our goal is. thus. to create a model
that is simple enough to allow f i x mathematical tractability.
yet accurate enough to reflect realism. Specifically, the created
model must capture the effects of concurrency as well as the
basic interaction between the various running threads. In this
section. we give a detailed specilication of our system by
describing the computing model. which details the assumed
operation of a typical multi-threaded server. and the workload
model. which specifies the arrival and service-time distribu-
tion of incoming requests.

A. Coiiiprrting Model

Our computing model is based on a general understanding
of the typical operation o i current time-sharing OSs and
Internet services. We use an MTRR server to model a general
computing environment where a single processor is shared
by multiple threads.' Threads are assumed to be the smallest
allocatable unit of work and are distributed among t i service

'We use lhs I s m s "threads" and "proccsse~" interchungcahly throughout
this paper.

0-7803-8355-9/04/$20.~ 02004 IEEE. 829

ally. each service class S k

is allocated in: thrca independent buffer of size
Bj; to hold the requests that cannot be prrxessed immedi-
ately. We use the term "service classes" as opposed to just
"services" to capture the situation where a.single service is
configured to differentiate between multiple client populations
(Figure I) . An example of this is Apache's Viinral Hosf (VH).
where. for instance. clients from network 1 9 2 ,168. 1 0 .x
are serviced using one VH and clients from the remaining
IP address-space are serviced using another VH. Thus. our
Apache service is said to have two service classes. In contrast_
i f an application does not differentiate between clients, the
entire application is represented by a single service class.
Using the-notion of a service class. therefore. allows us to
capture QoS differentiation between different applications and
also between client groups within a single application.

Beside having threads as a shared resource. dependencies
'between service classes arise due to two possible-interactions:
(I j they share a bottleneck resource such as a disk and (2)
.they are organized as a series of stages where an incoming
request must be processed by multiple services in a particular
order IlO.321. The complexities that are introduced hy the
latter is akin to those in network of queues [9]. but with
'dependent service distributions. In this paper. we restrict our
analysis to single-stage services and focus on the dependen-
cies due to resnurce sharing. Wc. thus. make the fillowing
assumntions tiir the internal nncration of an MTRR server.

consider the effects of hierarchical priority queueing.
which is commonly used to age long-running threads.
Since all requests are relatively short-lived and all threads
have the same priority. a strict round-robin algorithm can
be assumed.

AS. Switching between different running threads is done
instantaneously with no overhead. Similar to A2, we
capture this overhead in the speedup function. and hence.
this is not a limitation. Our decision is motivated by the
fact that switching overhead is load-dependent. That is.
as more threads are running. switching between threads
will depend on whether the threads need to be swapped
out of memory or not. The speedup function allows us
to include load-dependent overheads in our analysis.

A6. The system has a fixed (finite) number of threads. I17m"s,

This corresponds to the maximum number of threads
that a typical OS can support. Not all threads need to
be allocated. but. the total number of threads that are
allocated to all service classes cannot exceed this limit.

One final point to make is that our analysis does not
consider any particular server resource as the bottleneck
resource. Instead, the server is limited by the rate at which i t
can process requests and this rate is defined by the service-
time distribution and speedup function of incoming requests.

B. Workload Model

In an Internet server. the workload model captures the AI. A requcst is assigncd to :I working thread. Multiple
.. requests can be processed simultaneously by arrival of requests and service that each request requires.

Both have been studied extensively in the literature [3.5. multiple threads and time-sli:uinp the system. We assume
that all threads are h o m o ~ c n c t ~ i ~ s . ~ cven though they 7.14.271. In general, they have been observed 'to follow

heavy-tail distributions. In fact. we have observed similar can be assigned to different servicc classes. This is in
line with actual os opera,ion as system threads can be behavior during our workload analysis (omitted for space

considerations). Heavy-tail distributions are. unfortunately. created and removed easily with little overhead.
A thread is either running, ready, or difficult to analyze even with very simple computing models.
for a new incoming request, Basically, a ready thread is In order to provide better understanding of the dynamics

processing o i multi-threaded services. we assume that requests arrive
a request, and a blocked thread is wailing for a new following a Poisson process and require exponential service
request. we do not consider alternate states in which a limes. Section VI1 evaluates our model using realistic load
thread is waiting for other operations to complete such distributions.
as blocking for I/O. These are captured by the speedup We distinguish between service time and processing riirie of
function. an incoming request. The former renecis how much work that

~ 3 . AI^ threads are of equal pfiority. service priorities have each request brings to the system. whereas the latter reflects
been studied in both queueing and real-time systems [21_ how much time i t spends in service as it shares the system's
331. Including service priorities in model will. un- resources with other requesrs. Thus. there are three parameters
fortunately. complicate our analysis and is. thus. omitted associated with each service class Sk:
from our midel. As: the mean request arrival rate of a Poisson arrival process.

A4. Threads (in the ready state) are scheduled (by the under- iiLLk: the m e a service time of each request. It is equal to
lying OS) in a round-robin fashion. each for Q seconds the processing time only when the system is allocated a
or until the thread finishes processing the current request. single thread.
whichever happens first. The task of SerVlC!ng all ready G k (r n) : the speedup function as defined in Section 11. Even
threads once is called a service roimd. We do not though we use the subscript L to denote the service

class. not the workload. the characterizatibn of Gk(in)

i7hilt is. we do nof mix different t)Fes of threads such as application-level remains unchanged. For example. if GI = G1 = GStatic.
it implies that both service classes have static workloads.

for its share of the Server to

and karncl-level threads.

0-7803-8355-9/04/S20.00 02.2004 Em. 830

A (i~l)a+l,ilpi-l f " r i = l : . . . > T i L
(4)

where a represents the speedup rate as described in Section I1
and ,?a = min(m', me)). Notice the change of indicies in
Eq. (4) from m0 to rii since ~ ' (~ 1 remains unchanged for i 2
fin. Let us define p =

, ~ ~ , ~ l ~ a + l l , , p i - i f o r i = i h + l h-. { r lh =

x and also Q , (i) as follows:

Fis. 4. Markov Chain rcprcscntation of M R R server,

We assume that Gl (in) only operates in regions I and
I1 (Figure 2). The point where Gk(ni) collapses is hard
to predict a priori. but not very difficult to detect 126.
31.321. For the purpose of our analysis, we assume that
detectionlprevention from server thrashing is handled by
il separate mechanism. Therefore. we define the speedup
function as follows:

where ai. is the constant reflecting the etfciency of
concurrency and mi is the saturation point of service
class k .

IV. ANALYSIS OF MTRR SERVER

We focus in this section on the single service class MTRR
server. The analysis. however. rcyuires extension of some of
the existing results from queueing theory and time-sharing
systems [19.20.331 to include the effects of concurrency
gains. This is done by introducing state-dependent service
rates through the speedup function. We first consider an
idealized model where the scheduling quantum is infinites-
imal. i.e.. Q - 0. Under this assumption. we, are able
to model the MTRR server using Continuous-Time Markov
Chain (CTMC) [33]. Later we will estimate the resulting error
from this assumption.

Figure 4 shows the basic representation of the CTMC
of the single-class MTRR server. The state here represents
the number of requests in the system. and represents
the state-dependent service rate: not the per-service class
parameter. pk. described earlier. Therefore.

p(i ' = %(i): (2)
2

where p and C (;) are the parameters describing the single
service class under study. We drop the subscript I; as there is
only one service class.

We start by writing the steady-state probabilities for the
CTMC. which are based on the local balance equations:

"&&, for i = 1.. . . , i n 0

for i = l r zo + 1. . . . ~ ri. p i = {i. (3)

where d' is the number of allocated threads. and I< is the
maximum number of requests thai can be admitted into the
system. which includes requests both in queue and in service.
Specifically. Ii = B + d . Using Eqs. (1) and (2). we rewrite
the expressions for probabilities as:

for i = 0

n i = l (k a + 1) otherwise.
(5) I , (i) =

Now using simple substirution. we can rewrite the expres-
sion of each as a function of PO.

for I = 1.. . . . 7 n

Pi = i (6) -(g) ~ ~ ~ i = ~ n + i ~ r < .
K where C: = (i j i - l)a+ 1. Since Ci=Opi = 1. we can express

as follows:

Using these steady-state probabilities. one can numerically
compute the expected number of requeso in the system.
N = i . p i . Little's formula [331. :V 5 X (1 - pri)v.
can then he used to compute the total response time. v.
which includes both the queueing and processing delays. The
term (1 - p K) is used to account for the probability that an
arriving request finds a full queue and thus is dropped.

Given specific values for the system parameters. computing
the various results is straightforward and can he achieved
in O (l i) operations. Our formulation of the MTRR server
along with the introduction of the speedup function constitutes
a superset of several well-studied systems. For instance.
when c1 = 0. we observe no speedup. This reduces Io a
Generalized Processor Sharing (GPS) without priorities 1181.
If we further add the reslriction of id) = 1. then only a single
thread is allowed to run. The system is further reduced to
M/i\,I/l/B server. Finally. if a = 1. it implies ideal speedup
or. effectively. i n @ servers running in parailel. The system
then becomes Al/M/wi0/R.

- -

subsectioncomparison with Discrete Quantum Values
The development so far umed an idealized case of

Q - 0. Here we want to give a general idea of the expected
crror that is introduced by this assumption. For simplicity. we
consider the worst-case scenario where the service is heavily-
loaded. i.e.. in is always equal to vi'. We also assume no
speedup. i.e.. G(ni) = 1. When Q - 0. the mean processing
time. f;. is just

- ,,LO
(8)

Now. let Q he a positive real value - typical values are

y = -.
I'

&7803-8355-9/04/s20.00 02M)4 EEE. 83 1

0.01 sec. We want to derive an approximate expression lor
Y. We consider the processing of a request by one of the ino
threads that always run during any service round (assumption
A4). Let S be an exponential random variable reflecting
the service time of an arriving request. Upon admission of
the request into service at the heginning of a service round.
its corresponding thread must first wait for its service turn
before it starts execution. When the thread is scheduled. if it
completes servicing the request in less than a time quantum
(i.e.. S 5 Q). its processing time is just the sum of S and the
queueing delay before it starts service. On the other hand. i f
S > Q. then we expect that after Q seconds, the remaining
threads must run before the beginning of the next service
round. where the given thread must wait lor its turn to run
again. This process repeats until the request is completed.

The time that a thread must wait for n1 other threads to
be serviced. either beiore or aitcr it is scheduled, can be
computed as follows:

-

where f.\-(:z) is the probability density function (pdfl of S.
During each service round. we assume that the order of

scheduling threads is completely random. That is. lor any
given thread. its probability of being scheduled at the .&h
position is l / d . We can now compute Y using the so-called
rqenerative formtlation:

When Q - 0 in Eq. (10). we see that the results are
consistent with FA. is). Furthermore. the error between the
two equations is

177 1 & +e'-"Q- $-,[2 -1 1
I/%"

L'

%Error = -

In the case of the mixed workload. where ! L = 50 reqsls, the
expected error is approximately 19%. We stress. however. that
this is a worse-case scenario. In our experiments. we found
that our derivations are within 10% ol real measurements for
a wide range of configuration parameters.

We note that while using finite Q values to determine 7
better approximates the real system behavior. it is mathe-
matically tractable when G(n1) = 1. Wheri G(m) > 1,
this method incorrectly reduces the processing times as i t

1 10 100

2oW -
0 m

1 10 100
Thread Allocaficm (rn2 of Static Workload (threads)

Workload mtzrdzwndcncics. ltop) homoqsneuus workloads. (hot- Fig. 5.
lorn) hclcroqcncous workloads.

underestimates the number of service rounds required for
completing a single request.

V. WORKLOAD DEPENDENCIES

When multiple service classes run on the same host, their
basic operation is similar to an MTRR server wih a single
service class. But instead of allocating all 1710 threads to one
service class. there are n service classes. {SI, S2* . . . ~ S,,}.
and each service class S, is allocated a fixed number of
threads nif such that their sum does not exceed the system-
wide thread limit (Assumption A6).. Each service class
also has separate workload parameters: (Xi: pL>GG(ni)) . With
the introduction of multiple services into our model. the
analysis must consider two interdependencies between service
classes. The first. which we call direct interdependencies. is
due to threads time sharing the system. The second. which is
indirect inlerdPpendencies. is caused by the possible sharing
of a bottleneck resource such as the disk. We examine how
these inierdependencies affect the analysis. and hence the
performance. of servers running multiple services.

The distinction between direct and indirect inlerdependen-
cies is important in the analysis and control of multi-class
servers. Direct interdependencies have predictable behavior
that can be accurately captured by an analytical model. An
ideal time-sharing system. e.g.. [19.?0]. is a good example
where a thread will run for its entire scheduling quantum. Q-

0-7803-8355-9/04/S20.00 02004 EEE. 832

without blocking. Unfortunately. this is seldom the case for
web scrvers. especially with the growing popularity of per-
user customization. Therefore, when requests require many
110 operations. the bottleneck is shifted from the CPU to the
memory or to the disk; it becomes much harder to predict the
impact of one service class on the other ones.

In some cases. precise understanding of indirect interdepen-
dencies may not be necessary. This occurs when requests from
different service classes have similar resource requirements.
The load on all of the resources (including the bottleneck one)
will. thus. be proportional to the number of requests that are
being concurrently processed in each service class. We refer to
these workloads as honiugeneuits. For example. a server that
wants to provide client-side differentiation can he configured
with several service classes. me for each group of clients. Wc.
therefore. expect that these service classes will have similar
service rates? wir and speedup functions. Gi.(m). but with
possibly different arrival rates. Xi . Alternatively. when very
different workloads need ti) be managed on the same system.
c.g., a web server and an FTP server. each incoming request
may have very different resource requirements. In this case.
we refer to the workloads as heterugeneurrs.

We study the multi-class server in the context of our work-
load categorization. Our goal here is to quantify the impact
of increasing the concurrency of one service class on the
performance of the other running services. We use a similar
setup in Section 11. but now, we run two independent Apache
services. Each service can be configured to receive requests
for one of the three workloads: static. dynamic. and mixed. In
particular. we test two configurations. The first configuration
reflects the homogeneous workload. where incoming requests
to both Apache services are for the mixed workload: the
second configuration reflects the heterogeneous workload.
where one service is designated as the static workload and the
other service is designated as the dynamic workload. Finally.
we measure the maximum throughput as a function of the
number of threads that are allocated to each service class.

Figure 5 reflects the throughput gain as the thread allocation
of the first service class is increased while the allocation ofthe
second class is held constant. Each line represents a different
allocation for the second service class: the “No sharing” line
indicates that there is only a single class running on the server.

The homogeneous workload behaved as expected. where
.the throughput of a service class is proportional to its thread
allocation. Specifically. we can exprcss the service rate of any
service class as a function of the number of the threads that
are runniog:

where mi is the class4 threads that are running. or equiv-
alently. the number of requests that arc being concurrently
processed by service class Si,

The heterogeneous workload. on the other hand. did not
exhibit the same hehavior. Here we fixed the number of

threads that are allocated to the server with the dynamic
workload (SRl~~y, tnmie for short) and increased the thread
allocation of the server with the static workload (SHI’st,li,
for short). Based on our measurements. we observed three
unexpected phenomena:

PI. Even when SRVd,,,,,i, is assigned a single thread. its
impact on the performance on SRVSfotic is significant.
In fact. we observed an artificial ceiling that limited the
maximum performance of the SRVs1,,,,.

p?. When the thread allocation of SRl’&,,,,,,,i, is increased.
but still helow its saturation point (5 16 threads),

P3. After the thread allocation of SRV,,,,,,,, is increased
beyond its saturation point. the SRValatic has a much
greater performance drop. In hoth
the perfnrmance drop is not proportional to the thread
allocation of the two servers.

The above example shows an important result. namely.
without precise understanding of the resource requirements
of different and heterogeneous workloads. using thread al-
location to provide QoS differentiation is not an effective
approach. F i n e - p i n resource management must he used to
provide effective QoS guarantees [6.25.3?]. Unfortunately.
these techniques require suhstantial changes to the application
or the OS. We. however. show that i f services are configured
with homogeneous workload to provide client-side differen-
tiation. then multi-threading can be used as an effective tool.

incurs a small decrcase in performance.

VI. PROVIDING QOS GUARANTEES

Providing QoS parantees is motivated by the need to
protect certain - possibly high-priority - service classes
from others overloading the server. As shown in Section V,
this is very difficult without explicit OS support. where strict
resource limits are allocated to each service. In this section,
we describe the extent to which thread allocation can he used
to guarantee specific service delays. We will continue to focus
on homogeneous workloads: our proposed technique is aimed
at providing QoS guarantees to different client groups. each
represented hy a separate service class.

We focus in this section only on providing worst-case
QoS guarantees. Here. the protected service is allocated the
minimum number of threads such that no matter how high
the load increases for the other servicc classes. it can still
(statistically) meet its QoS objective. We studied a more
general case in the extended version of this paper [16]. where
we also characterized the behavior of the system for multiple

es for any thread allocation. The derivation was based on
extending the Markov chain that was presented in Section IV
to be multi-dimensiona1. where an additional dimension was
necessary for each service class. We have found that when the
systcm is lightly-loaded. thread allocation of a given service

is minimally affected by the allocation of the other
service classes.

07803-8355-9/04/S20.00 02004 IEEE. 833

Fig. 6. Dynamic programing algonlhm for finding the allocation that
.minimires the worst-cas* COR of the system. The illustration is lirmlcd to
three service dasszs.

We start by considering the system that is heavily-loaded
such that all classes are overloaded except for a single one.
where the term "overloaded" implies that all threads are

' continuously busy. Let k'he the non-overloaded service class
and the other 1 1 - 1 classes have m j xz my: for j # I;. Here
we also consider Q - 0. Since only class k IS not overloaded,
the single class case in Section IV can be used. but with a
different state-dependent transition rates pi.

Going back to Figure 4. we can define p1 as follows:

where ~r = C&ji; m::Here f i is the same for all service
.classes as the workload is assumed to be homogeneous. The
,ratio & reHects the fact that each thread has to share
the system with i + - 1 other threads. The steady-state
probabilities can be similarly defined:

The remaining derivation is similar to the one in Section IV
and is omitted. The computed %; = I . p i) / A , ; , thus.
reflect the worst-case response time when all but class k are
overloaded.

The expression 'for the wnrst-case response time can now
be used to determine the thread allocation that can meet the
desired QoS objective. We express the QoS here usine the
notion of holding cost. Formally. let h k (t) be the cost of
a request in service class k as a function of its response
time t . Using / i k (f) gives us flexibility in defining different
QoS objectives. For example. it allows us to assign separate
weights to different service classes. which can be used to

K k

provide different QoS levels to a multi-class QoS application.'
The holding cost function can be arbitrary. however. with the
restriction of being a monotonically non-decreasing function

We now extend the notion of cost to any thread allocation
M. We first define ck(M) as the worst-case cost for service
class k in M. It is computed by assuming that all service

oft ."

ses except for class k are overloaded as:

ck(M) = k k (Y k) !

where 6; is just the worst-case response time as computed
above. The sum of these costs c(M) = C j q (M) is defined
to be the cost for allocation M. The allocation that minimizes
the worst-case cost is thus

M,i,, = min[c(Ivl)}. (15)

To efficiently compute M,,,in. we first observe that our
definition of 71; in Eq. (13) does not distinguish between
different thread allocations to the overloaded service classes.
This allow us to use dynamic programming to solve for
M,,,in. where in each step we group all overloaded classes
together and then find the allocation that minimizes the cost
of non-overloaded classes.

The basic algorithm is outlined (graphically) i n Figure 6.
where the algorithm is divided into n steps. In the first step,
I I tables are created. one for each service class. Each table
contains the expected cost for any thread allocation to its
corresponding service class. given that all other service classes
are overloaded. We only need i i tmas entries to capture this
expected cost. The next step combines the tahles for classes 1
and 2 into a new table by finding the minimum cost for each
allocation given all possible combinations from the tahles
for classes 1 and 2. Each additional step then combines the
resulting table from the previous'step with the table of an
additional service class. At the end. the final table will contain
the minimum cost and by tracing hack the allocation that
produced it. we cia determine M,,i,,.

1\11

VII. EVALUATION

A realistic server environment is used to verify the cor-
rectness of our derivations with respect to our original as-
sumptions and also demonstrate that the proposed scheme
makes near-optimal allocation of threads using our proposed
techniques. We used a similar experimental setup to that in
Section I. However. we configured a second Apache server
as shown in Figure 7 to act as a separate service class. Three
parameters describe each service: the arrival rate. Xi. the
listen queue length. Bi. and the thread allocation. id:. In the
presented experiments. we set Bi. to 125 requests for i = 1: 2.

'In this case. sach Qa9 level is defined in terms of worst-case response

'?his restfiction uvoioids the situation where rcquesu with long response
tirm.

times have lower cost than thosz with shon response t i m s .

- _
07803-8355-9/04iS20.00 QZOM BEE. 834

Load generating
client machines

I I 1 7

Fig. 7. Exp"mental Setup

We have evaluated the system for different buffer lengths; in
all cases. our results were consistent with those presented
here.

Our cvaluation is based primarily on response-time mea-
surements at the client machines. This response time is the
total wait time before a request is completed. It is the sum-
mation of three mostly independent components: connection-
establishment latency. propagation delay. and processing de-
lay. However. we are only interested in the eifects o i thread
allocation on the processing-delay component. Thus. by keep-
ing the first two components constant. we are able to obtain
an unbiased view of the performance of the different thread
allocations. We take two measures to minimize the variation
in these two components. First. we made sure that the client-
to-server network path is bottleneck-free. We also reduced the
connection-establishment timeout such that any packet drop
during that phase will not skew our results. We estimated
that the error introduced by the first two components to
be less than 2 msec. Finally. because we need to conduct
a large numbcr of experiments to cover the wide range of
variable parameters, we limit each run to 5 minutes and each
experiment was repeated 20 times.

Our evaluation is split into two experiments: the first
validates the correctness of our derivation and the second
measures the effectiveness of our optimal allocation policy.
In all cases. we assume that workload is homogeneous. and
hence. we only focus on the extent that the thread abstraction
can be used to provide client-side QoS guarantees. The
effects of heterogeneous workloads were studied i n Section V.
Finally. due to space limit, we only present the results for the
mixed workload as it is considered a realistic representation
of real server workloads.

A. E.rperiirient I : Moilrl Valirlarioii

We compared our predicted values of the response time
with the real measurements for the single-class server con-
figuration. We used a single Apache service and varied the
configuration parameters across two dimensions: arrival rate.
A. and thread allocation, r n o , This is shown in Figure 8. where
each line represents the response time for a fixed allocation
as the arrival rate is increased.

1400

1200 -
0
2 1000
E
I

800

0 20 40 60 80 100 120 140 160 180 200
Arrival Rate (reqis)

Rg. 8. Single class m ~ n ~ r e m e n l l

The figure shows that our derivations can accurately predict
the expected performance of the underlying server for a wide
range of configuration parameters. There is over-prediction
for certain values of A. This. we believe, is due to the system
being critically-loaded. In particular. we can split the graph
into two distinct regions: underloaded and overloaded. These
are presented by the upper and lower parts of the S-shape
of each line. .respectively. The transition region between the
underloaded and overloaded regions is very narrow and occurs
when X N pG(ni ') . where the system is critically-loaded.

Our analysis clearly exhibits the bimodal behavior of
system queue occupancy. Namely, when the arrival rate is
slightly below the saturation point. incoming requests ,are
admitted almost immediately into service with little queueing
delay. However. a slight increase in arrival rate can cause
the delays to increase many folds simply because the system
cannot keep up with incoming requests which causes queues
to fill up. But since queues have limited capacity. the service
delay is limited by the maximum length of such queues. The
bimodal behavior raises an interesting design decision issue
when configuring a web server. namely. when the system is
underloaded. only a small queue is necessary to avoid request
dropping. The length of the queue depends on the burstiness
of arriving requests. However. once Ihe system is overloaded.
longer queues do not provide any performance advantage. hut
they increase the response time of accepted connections.

E. Experirwent 2 : QoS Girarantees

In Section VI. we described a dynamic programing al-
gorithm to determine the thread allocation that can pro-
vide worst-case QoS guarantees. To verify our model. we
must. unfortunately. test all possible thread allocations. which
is computationally-prohihitive even with only two service
classes. In this subsection. we look only at a single step of the
algorithm. namely. given a thread allocation for a low-priority
service class. we want to predict the thread allocation ior a
high-priority service class that can (statistically) guarantee a
maximum response time. We will show that for each QoS

0-7803-8355-9/04~20.00 QZOM EEE. 835

requirement. our predictions are close to the measured values.
With this: we can conclude the robustness of ow algorithm
in the general case.

Figure 9 shows the required number of threads for the high-
priority service when its arrival rate is X I = 100 reqsis and
the low-priority service is allocated a fixed number of threads.
For instance. in the top plot where the low-priority service is
allocated S threads. i f a 1-second delay guarantee is required.
then the high-priority service should be allocated at least 10
threads. The tigure (for the measured and predicted lines)
is computed by first assuming that the low-priority service is
overloaded. A table that-holds the thread allocation vs. worst-
case response time for the high-priority service is then created.
Finally. an inverse table. lookup is used to determine the
minimum allocation that meets the response time requirement.

The figure shows that our equation-based. optimization is
able to predict, with high accuracy. the thread allocation that
achieves the minimum cost. One can see that if a similar
process is used to create the initial tables in Section VI. then
the resulting prediction will he close to the optimal value. We
note that in this experiment we implicitly assumed a linear
cost function where h h (t) = t. Other cost functions can still
be used.

Overall. the above results show that our moiiels are very
robust. They capture the expected performance of a multi-
threaded server as well as identify those instanccs where
the modcl fails. Our approach can be used to improve the
performance of existing QnS techniques.

VIII. RELATED WORK

The design and analysis of server QoS management tech-
niques have been addressed extensively in the literature. for
example. in [2.4.6. IO. 11, 13. 15.22.?5.3?]. In general, our
work complements existing QoS techniques ,by providing a
rigorous analysis of one particular approach. namely. using
the thread absuaction. Our focus is on determining the effec-
tiveness and limitations of using thread-allocation to provide
QoS guarantees or differentiation. .

Several studies [I: 13.22.24.251 have used thread alloca-
tion to provide application-level QoS. Vasilipu [30] focused
his thread-based approach on providing n simple method for
creating new scheduling disciplines. Similarly. Pandey [?5]
defined an object-oriented language to specify resource re-
quirements for different client requests. Both [301 and [?51
lack rhe translation between resource requirement and service
quality. In this paper. we introduced the speedup function
for this specific reason. We believe that it is a key element
for determining .the true performance for any thread-based
allocation.

To handle changing load conditions. the authors of [I ,
22-24.321 proposed a feedback control mechanism to ad-
just the allocation of threads to different service classes
based on on-line measurement of QoS metrics. Particularly
in [N I . a conuol-theoretic approach is used to implement a

25
Measured 7

Predicted ---x---

0 500 1000 1500 2000 2500 3000
Maximum Response l ime (msec)

0 500 1000 1500 2000 2500 3000
Maximum Response Time (msec)

Fig. 9. Optimal allocation that suuarantees response time y a m t e e s for
high-pliority: (top) low-pnurily service is allowled 8 threads. and (bottom1
low-pnority service is allocated 16 thr<ads.

Proportional-Integrator (PI) controller that adapts to the load
conditions on the server. Unfortunately, this type of analysis
(linear control theory) is only suitable for steady request
arrivals with predictable service demands. In this paper. we
have shown the need for better monitoring techniques in the
adaptation process. We have also shown when the dynamic
adaptation will fail to provide the QoS differentiation.

IX. C O N C L U S I O N S

In this paper. we have provided a rigorous analysis of the
performance of thread-based QoS support. We also presented
an efficient optimization algorithm for determining the thread
allocation. if any. that minimizes the system's cost. based on
our economic formulation. Through empirical validation in
real server environmentsl we showed that the derived results
are applicable to real-world systems.

The results presented in this paper are essential to the
design of any efficient thread-based QoS differentiation mech-
anism. Three important conclusions can be drawn from our
study. First. based on the shape of the speedup function. we
argue that dynamic adaptation of thread allocation based on

0-7803-8355-9/04iSZO.W O Z W IEEE. 836

the response-time measurements only is not sufficient to guw-
antee the stability of the control mechanism. The controller
must continuously monitor the saturation point. which may
shift with changing workloads. Second. indirect interdepen-
dencies between threads that arise from non-trivial sharing
of system's resources can yield unpredictable performance
interactions. We have shown that even with a small number of
threads dedicated to IiO-heavy workloads. the performance of
other running service can be affected significantly. Therefore.
without accurate understanding of resource requirements. the
thread abstraction alone cannot provide the necessary QoS
guarantees. or even QoS differentiation. to running services.
Finally. when similar or homogeneous services are being
hosted on a single server to provide client-side differentiation,
the thread abstraction can be used to provide effective and
predictable statistical QoS guarantees.

REFERENCES

[I] T. Ahdclzahcr and N. Bhatti. "Web Content Adaptation to Improvz
Server Ovzrload Bchauioi' in Inremntionnl World Wide Web Confer-
ence. May 1999.

[>I 1. Aman. C. K. Eilen. I>. Emrnss. P. Yocorn. and D. Uillznherger.
"Adaptive Algorithm for Managing Distributed Data Processing Work-
load." IBM Swenu J m m d vol. 36. no. 2. pp. 242-283. 1997.

131 M. E Arlitt and C. L. Williamon. "Web server workload chumc-
tccization: n e search for iwxianis." in Prwrrdings of rhe .ACM
SlGMETR1C.S 'E Cunfer?rrce. Philadelphia. PA. April 1996.

141 C. Aurrccocchra. A. Camphcll. and L. Hmw. "A Survey of QoS
Architbnures." Mdlimedin S w u m . w1. 6. no. 3 . pp. 138-151. 1998.

I51 H. Balnknshnan. V. N. Padmanabhan. S. Sashan. M. Stzmm. and
R. Katz. "TCP Behavior of a Bury lntcrncl Server: Analysis and
Improvemenu." in Pmc. of IEEE INFOCOY '98. March 1998. pp.
251-262.

161 Ci. Banea. P. Lrmschel. and J. Mogul. "Resource Containers: A New
Facility for Resource Mana.emrnt in Server Syscms:' in 77iird Simp+
simi UN Opemlirrb Snlenu Drsign md htplmmmrion. February 1999.
pp. d5-58.

171 P. Burford. A. Bcsluvros. A. Bradley. and M. E. Crovclla. "Changes in
Web Client Access Patars: Charactsrisucs 2nd Caching Implicauons:'
in World Wide Web. Special lrsrre o m Clzrrmcrcrizarion and Perjimmnmce
Evniimrion. 1991. pp. 15-28.

[XI P. Barford and M. Crovclla. "Gcnsmting Reprcssntativs Web Worldwads
for Network and Server Pcrfornwncs Evaluation." in Pmcrudivgs of
Pefoformmcr'9SL4CM S i g m I r i d 9 S . May 1998. pp. 151-160.

191 U. Bcrctckas and R. Galla$er. Data Nrlworks.
[I O] N. Bhntti and R. Wsdnch. "Web Server Suppon for Twed Services."

IEEE ~ V e l w r k . vol. 13. no. 5 . pp. 6761-71. Scp.-Oct. 1999.
[I l l 1. Bmno. 1. Bm~tolorU. E. Gahber. B. Ozdcn. and A. Silhcrschatz.

"Retrofittin. Quality of Service into a Time-Shxino Operatin. Syrtim."
io CISENIXdmiml Trchriicrrl Confrmrcr. June 1499. pp. 15-26.

1121 S. U. Committzc. "SPECwch." Tech. Rzp.. April 1999.
http :iiwww.apcchcnch.~.i"sgiw~h/.

1131 L. Eqzcn and J. S. Heidamam. "Applicnlmn-Level Uiffcrcntivtcd
Services for WchScwsrs." World Wid<, Web. vol. 2 . no. 3 . pp. 133-142.
1999.

1141 A. Fcldmann. Cl~nmrlmtislirr o/ TCP Cmzw~rion :Lm'mIs. scr. Sclf-
Similar Xalwork Traffic and Pailormancc Evaluation. John Wilzy and
Sons. Inc.. 2000. ch. 15. pp. 367-3YY.

1151 H c a l c t t Packxd Cop.. "U'etQoS Technical White Papr."
2000. htlp:iiwa~.in~arn~rsolutiunr.enarpnsc.hp.~~~ wc-
bqosipraluctsio\.~rviawl*p.ht~.

I161 H. Jnmjmm. C . ~ T Chou. and K. G. Shin. "Tha Impact of Concurrency
Gains on the Analysis and Control of .Multi-threaded Internet Srrvicrr."
University of 4lirhi.m Tschlucal Repon. Tsch. Rap. CSE-TR-480-03.
2003.

1171 R. lurnjmm and K. G. Shin. "Eve: A Scalshlc Nelwork Clisnl emu^
lafor." University of .Miclugnn Technical Rzpon. Tech. Rep. CSE-TR~
478-03. 2003.

Prrnticz Hall. 1992.

1 181 S. Ksshav. d r z Engineurin,q .4pprmcI, IO Compslrr Nrrworkirig.
Addison- Wsslzy Puhlishing Company. 1997.

[I91 L. Klmnra-k. "Time-Sharcd Systems: A lleocetical Treatment." Junr.
rral ofrlir dCM. vol. 14, April 1967.

I201 L. Klienrock Qaeaeing ,Sysrems. liohimv 11: Compuler ..Lpplic,licrniuns.
Wilcy Interscience. 1976.

[?I] C. M. Krishna 2nd K. G. Shin. Rrol-Zme Swlerm. McGraw-Hill.
1997.

I??] K. Lahhman. R. Yavackar. and R. Fink& "lntzptsd CPU and Network
110 QoS Munqemmt in an Endsystem." in Proc 5118 lnfemliorznl
workraop on ar,oiilp ofspn.irr rrwQo.7'97). 1997. pp. 167-178.

1231 X. Liu. L. Sha. Y. D i m 1. L. Hellerstein. and S. Parakh. "Odine
Response Tim< Optimization of Apache Web Server.'' in Proc. 11th
hfmmrortnl Workslwp on Qrinliry of Srrricr flWQOS LoU3). 2003.
pp. 461478.

12.11 C. Lu. T. F. AMelwhcr. J. A. Stankovic. md S. H. Son. "A Fsadhack
Control Approach for Guamntscin. Rclalwe Lkluys in Wsb Servers:' in
IEEE Real-Zme .Sy~lems Swnpmirm. Taipei. Taiwan. December 2001.

1251 R. Pandw. J. F. Barnes. and R. Ollrson. "Suoooninz Oualitv of ~. .
Service in HTTP Servers," in Simposiam on Principh of Dlsfribirfed
Cornp~ring. 1998. pp. 247-256.

1261 J. Rcurnann. H. Jamjoom. and K. G. Shin. .'Adaptive Packet Filters."
in Pmcr<dirzd of IEEE GLOBECOM'OI. San Antonio. Tsna: IEEE.
Novemkr 1001.

[27] S. Survotham. R. Riddi. and R. BararUuk. "Connzction-lwcl Analysis
and Modelinr of Satwork Traffic." in Proceedings of ilrr ACM SIG-

