TCP Performance under Aggregate Fair Queueing

Wei Sun and Kang G. Shin

Department of Electrical Engineering and Computer Science
The University of Michigan
Email: {wsunz, kgshin}@eecs.umich.edu

Abstract— Per-flow fair queueing (FQ), when combined with
appropriate buffer-management schemes, has been shown in [1]
to outperform FIFO scheduling in terms of TCP throughput
and fairness. We extend per-flow FQ to aggregate-flow FQ and
evaluate its TCP performance under the assumption that core
routers recognize only traffic aggregates, not individual TCP
flows. First, we show that the combination of FQ scheduling
and DropFront buffer-management schemes can cause a livelock
problem for greedy traffic sources (where all the packets of
the greedy sources are dropped), and propose a simple scheme
to solve this problem. Next, using simulation, we show that
when combined with proper buffer-management schemes such
as ALQD (Approximated Longest Queue Drop), aggregate-flow
FQ offers even better throughput than, but is not as fair as, per-
flow FQ. By introducing a new buffer-management scheme called
ALQD+, we improve significantly the fairness of aggregate-flow
FQ over FIFO queueing. Finally, we analyze the performance of
aggregate-flow FQ, and explain why its throughput and fairness
are better than per-flow FQ and FIFO queueing, respectively.
Overall, aggregate-flow FQ not only incurs lower scheduling and
state-maintenance overheads at routers than per-flow FQ, but
also provides performance comparable to per-flow FQ in terms
of TCP throughput and fairness. These features make aggregate-
flow FQ very attractive for use in the Internet backbones.

I. INTRODUCTION

Per-flow fair queueing (FQ) has been shown to possess
many attractive features such as bounded delay and excellent
fairness [2], [3]. Traditionally, combined with reservation-
based schemes at routers and rate-based control schemes
at end-hosts, FQ has been used to guarantee such Quality-
of-Service (QoS) as end-to-end (e2e) delay and bandwidth
allocation. Maintaining a large number of states for individual
flows, however, causes high overhead for the routers. This
problem makes per-flow FQ unscalable to a large number of
flows and prevents its use in large core networks (e.g., Internet
backbones).

To improve the scalability of per-flow scheduling, aggregate
scheduling has been proposed. The main idea behind aggregate
scheduling is illustrated in Fig. 1. Some parts of the network,
called aggregation regions, only “see” aggregated (instead of
individual) flows. Resource reservation, packet scheduling, and
buffer management in an aggregation region are done on a per-
aggregate basis. As shown in Fig. 1, the flows sharing the same
path for a number of hops inside an aggregation region can
be bundled together and treated as a single aggregate inside
that region. In general, a traffic aggregate can be created and
terminated at any point in the network, and it can also be
created recursively. The router (e.g., S7) that aggregates flows

IEEE Communications Society
Globecom 2004

1308

flows

Deaggregator

. 4 i

s\\&\regator
/%f
\

A Aggregation Region
|

-
aggregates
\

& =
E S
flows /A(Aggregator ~ .L@— N ad

N o N\

A N

— Deaggregator * flows

\ flows

Fig. 1.

Aggregate scheduling

is called an aggregator, and the router (e.g., Si) that splits the
aggregate back into individual flows is called a deaggregator.
Only aggregators and deaggregators “see” individual flows.

Aggregate scheduling offers better scalability and induces
less overhead than per-flow scheduling, as core routers only
need to maintain states for traffic aggregates. It simplifies
packet classification and scheduling significantly. However,
under aggregate scheduling, flows in the same aggregate
cannot isolate from, and protect against, each other, i.e., the
performance of a flow would be affected by other flows in the
same aggregate. Fortunately, this interference can be controlled
if flows are aggregated fairly. We show this feature of fair
aggregation by using FQ to aggregate traffic flows.

As a special case of aggregate scheduling, aggregate FQ
uses FQ algorithms to bundle flows into aggregates as well as
schedule aggregates at core routers. It has been shown to offer
many advantages. For instance, for non-adaptive traffic (e.g.,
UDP flows), it is proven in [4] and [5] that aggregate FQ can
provide e2e delay performance better than that of per-flow FQ.

Incorporating FQ into the congestion control of best-
effort traffic was discussed first in [2]. Later, the authors of
[1], [6] showed that, when combined with per-flow buffer-
management schemes, per-flow FQ offers TCP flows better
isolation and fairness, as well as better throughput than FIFO
queueing. However, to the best of our knowledge, little has
been done on the performance of aggregate FQ in congestion
control. In this paper, we extend the work in [1], [6] signifi-
cantly and study the problem of using aggregate FQ in core
networks to support TCP traffic.

0-7803-8794-5/04/$20.00 © 2004 IEEE

II. RELATED WORK

The authors of [1] discussed the design issues associated
with the use of per-flow FQ to support TCP. They showed
that per-flow FQ alone provides few advantages over FIFO
queueing, and that buffer management is also important.
Instead of using global schemes such as DropTail and RED,
they proposed per-flow buffer-management schemes Longest
Queue Drop (LQD) and Approximated Longest Queue Drop
(ALQD). Per-flow FQ plus per-flow buffer management was
shown to provide better performance in terms of throughput
and fairness under various conditions.

The authors of [6] generalized the work in [2] into a Fair
Queueing (FQ) paradigm, and proposed it as a means of
designing e2e congestion-control protocols. The FQ paradigm
consists of two components: per-flow FQ and LQD buffer
management. They showed, via simulation, that the FQ
paradigm improved not only the average throughput of TCP
flows, but also the speed of convergence to the equilibrium
state, thus increasing the network stability.

All of the per-flow buffer-management schemes discussed
so far (e.g., LQD and ALQD) drop packets only when the
buffer is full. In contrast, the authors of [7] proposed a version
of per-flow random early dropping/detection, called Balanced-
RED (BRED). Their scheduling scheme was FIFO, and their
main performance focus was on fairness without considering
throughput. BRED was shown to offer better fairness than
RED. Later in Section IV, we will adopt a similar idea to
drop packets early from each aggregate.

For traffic aggregation, the authors of [8] defined a traffic
trunk as an aggregate of traffic flows that belong to the
same class. In the context of Multiprotocol Label Switching
(MPLS), the flows in the same traffic trunk share the same path
and are mapped onto the same Label-Switched Path (LSP).
Our definition of an aggregate is very similar to the traffic
trunk, except that the aggregates are bundled and scheduled by
using FQ. Also, we assume that an e2e path in an aggregation
region can be set up by using traffic engineering mechanisms
similar to the way an LSP is set up in MPLS.

III. DROPFRONT’S LIVELOCK PROBLEM

The DropFront buffer management scheme—when it is
necessary to drop a packet, the packet at the front of the
queue is dropped—is shown to be able to trigger the TCP’s
fast retransmit/recovery mechanism more quickly than others,
and thus, increase TCP throughput [9], [1]. However, when
it is combined with FQ, a [livelock can occur to UDP flows
(more generally, greedy flows that are not responsive to packet
dropping). When the actual arriving rate of a flow/aggregate, r,
is greater than its service rate I at a router, the flow/aggregate

could totally be shut down at the router.

Let’s consider how this can occur. Suppose the packet size
is fixed at S, and the reserved buffer space for the flow is
N. Suppose there already exist N packets of the flow in the
buffer, and their virtual finish times are

S S
to,to + =, to + (N —1)=.
0 0+R o+ ()R

IEEE Communications Society
Globecom 2004

1309

New packets arrive at
S S S
i+ = 25 NS
T T T

If the server is busy all the time, and at ¢; all the N packets of
the flow are still in the buffer, then according to the DropFront
algorithm, the first packet in the queue (with finish time ¢g)
will be dropped; according to the FQ algorithm, the newly-
arriving packet will be placed at the end of the queue with

finish time o+ IV S As a result, the finish time of the packets
in the queue will become:

t+St+25 t+NS
0t poto R0 B

Similarly to the above discussion, the current first packet in
the queue (with finish time ¢ + %) will also be dropped when
the next new packet arrives (at t; + %), because % < % from
r > R. Subsequently, all the packets will be dropped after
spending some time in the buffer. The key reason for this
is that packets in the buffer are transmitted based on their
virtual finish times under the FQ algorithm. Newly-arriving
packets have larger finish times than all the packets already in
the queue. If the arriving rate is greater than the service rate,
packets with larger finish times will keep entering the end of
the queue, while the packets at the head of the queue are being
dropped. The finish time of the packet at the head of the queue
just keeps increasing. Therefore, the router will always serve
packets with smaller finish times from other queues.

Note that in the above discussion, we assumed that all the
packets in the queue have start and finish times. In practice,
however, an efficient implementation of most FQ algorithms
assigns start and finish times only to the first packet in each
per-flow queue. Therefore, to solve the livelock problem, the
FQ algorithm calculates the start and finish times only for the
packet at the head of queue, and distinguishes whether the
packet is transmitted or dropped. If the packet is transmitted,
the start and finish times are also updated; if the packet is
dropped because of other packets’ arrival, only the packet itself
will be dropped, the start time of the queue is not updated (the
new finish time is calculated from the start time).

IV. ALQD+

Both LQD and ALQD were proposed in [1]. LQD keeps
the queue-length information for each active flow in the buffer.
When a new packet arrives and the buffer is full, a packet from
the longest queue is dropped. ALQD is a simplified version
of LQD. Instead of searching for the longest queue whenever
a packet needs to be dropped, ALQD uses a register to record
the longest queue during the previous queue operation. Then,
whenever a packet needs to be dropped, a packet from that
registered queue is dropped. On every queueing operation,
the current queue length is compared to that of the registered
queue and the register’s content is updated as necessary.

Our simulation results show that the fairness of aggregate
FQ using ALQD is not very promising. To improve the fairness
of aggregate FQ, we extend ALQD and propose a new buffer-
management scheme called ALQD+. The key components of
ALQD+ include: i) random early dropping (we incorporate
the idea of BLUE [10] into ALQD); ii) packet match in early

0-7803-8794-5/04/$20.00 © 2004 IEEE

TABLE 1
MODIFIED BLUE ALGORITHM

dm: packet dropping probability;
4: amount by which d,, is incremented/decremented;

freeze_time: minimum interval between two updates of dpy,.

1. //Packet loss update (parameter: count):

If (now - last_update > freeze_time)
now—last_update }

dm~+ = 6 - max{count, Frecsetime

last_update = now
2. //Queue empty update:
If (now - last_update > freeze_time)
dm— =20
last_update = now

dropping (a packet at the head of a queue is dropped only upon
the arrival of a packet from the same flow); and iii) updating
the drop rate in rounds.

The flowchart of the algorithm is given in Fig. 2. When a
packet belonging to queue & arrives at a server, the algorithm
checks if the buffer is full: (i) when the buffer is already full,
then if the length of queue k, gleny, already exceeds its fair
share sharey, the first packet of queue k£ will be dropped;
otherwise, as in ALQD, the first packet from the longest queue,
max4, will be dropped; (ii) (the early-dropping step) when the
buffer is not full, if the total queue size exceeds a% of the total
buffer size (B) and glen,, already exceeds b% of sharey,, then
go to step (iii); or if gleny, already exceeds c% of sharey,, with
probability dj, go to step (iii); (iii) (the packet-match step) if
the new packet and the first packet in queue are both from
the same flow, then the first packet is dropped; otherwise, the
new packet is accepted without dropping any packets. The
role of this packet-match step is to improve the fairness of the
algorithm: a packet from a given flow will not be dropped due
to the arrival of another flow’s packet.

Whenever a packet is dropped from a queue, the drop rate
of the queue also needs to be updated. This leads to the third
component of the algorithm—updating the drop rate in rounds.
Since the flows are aggregated with fair queueing in aggregate
FQ, packets from each flow are more evenly distributed within
an aggregate. To take advantage of this feature and make the
dropping fairer, we modify BLUE to drop packets in rounds.
A round is a packet sequence starting at a packet from a given
flow, and ending before the next packet from the same flow.
For example, suppose an aggregate consists of 10 flows: 1, 2,
3, ---, and 10. Then, a round may start at a packet from flow
1 and end before the next packet from flow 1. Within a round,
the drop rate is fixed, so packets from different flows have
the same drop rate. At the same time, we count the number
of packet drops in an aggregate within a round. Then, at the
end of the round, the drop rate of the aggregate is updated
according to the number of drops during the round.

The modified BLUE algorithm is given in Table I. When
an update is triggered by a packet dropping, it supports a
parameter count, which is the number of drops in the last
round. Therefore, the drop-rate update is based on count.

IEEE Communications Society
Globecom 2004

1310

Packet p arrives, which
belongs to queue k

Total buffer
is full

queue size > a% B
&glen, > b% share

Drop front packet of
max g;

Update drop rate of
max .;

p'and the head
of queue packet
belong to the same
flow?

Drop front packet of k;
Update drop rate d ;

Put p in queue k;
Update max I

Fig. 2. The ALQD+ algorithm

When the update is triggered by an empty queue, however,
the algorithm remains the same.

V. SIMULATION DESIGN

Using the ns2 simulator [11], we evaluated and com-
pared the TCP performance under the following schemes
(each of which consists of a pair of packet scheduling
and buffer management algorithms): (i) <aggregate FQ,
ALQD/ALQD+>; (ii) <per-flow FQ, ALQD>; (iii) <FIFO
queueing, DropTail>; (iv) <FIFO queueing, RED>. The goal
of the simulation is to see whether aggregate-flow FQ still
retains the same advantage as per-flow FQ in terms of TCP
performance. The main performance metrics of interest are
throughput and fairness.

In the simulation, we used Weighted Fair Queueing (WFQ)
as the scheduler for both per-flow and aggregate-flow FQ. In
addition, for per-aggregate buffer management, we extended
the ALQD scheme in [1] by using a weighted version of
fair share. The fair share share; of flow (or aggregate) k is

computed as sharey = —=B— where wy, is the weight of

Wy
flow (or aggregate) k. In ge]}lzelral, the weight of each flow and
aggregate can be set arbitrarily. For simplicity, as in [1], [6],
we set the default weight for a single flow to 1. The weight of
an aggregate is simply set to the number of individual flows in
it. For RED, we set miny, = 25%, max;, = 75%, and queue
weight w, = 0.002; for ALQD+, we set BLUE parameters
freeze_time = 0.05s, and ¢ = 0.01. Based on our testing results,
we set a = b =c = 25.

The network topology in Fig. 3 was used for our simulation.
There are a total of N TCP sources, whose packets enter
the network through edge routers IR; (1 < ¢ < n), then
traverse core routers C'R; and C'Ry before departing from
edge routers FR; (1 < ¢ < n). Each flow enters IR; and
departs from the corresponding E'R;. In the case of aggregate-

0-7803-8794-5/04/$20.00 © 2004 IEEE

UDP Sources

/
e

Y
.
Ny

ERM

CRy

TCP Sources
TCP Destinations

Ny Ny Ny

~ o~ ~
3 %)

UDP
Destinations

Fig. 3. Network topology in the simulation

flow FQ, all the flows sharing the same edge router IR;
were aggregated together, with each aggregate containing N/n
flows. Therefore, CR; and C' Ry recognized the n aggregates
only and scheduled them using FQ. The aggregates were later
split back into flows at E'R;. In the simulation, we used
N =100 and n = 10.

The link bandwidth and delay were varied during the
simulation. All of incoming links (between TCP sources and
I R;) and outgoing links (between E'R; and TCP destinations)
had a bandwidth of 64 Kbps and a default delay of 10 ms.
All the other links had a delay of 2 ms. The links between
IR; and CR; had a bandwidth of 640 Kbps (64K - 10);
so did the links between C R, and FR;. The link between
the two core routers (CR; and C'Rs) was the bottleneck
(with the default bandwidth of 3.2 Mbps—only a half of the
total source link bandwidth, 64K - 100). To test the isolation
feature of aggregate scheduling, non-responsive UDP flows
were also introduced in the network. CBR was used as the
UDP sources, the total rate of which was 25% of the total
bottleneck bandwidth. The weight of the UDP traffic was
fixed at 10. Therefore, it was sending more than its fair share
(10/(100+10) = 1/11). All packets were 1000 bytes long. For
each configuration, we executed six independent simulation
runs. Each run lasted 100 seconds. To avoid the dynamics of
TCP’s initial slow-start phase, the data in the first 20 seconds
were discarded. Only the data collected in the remaining 80
seconds were used in the evaluation.

We counted the number of packets that are correctly ac-
knowledged by the receivers in a given time period as the
throughput (or more accurately, goodput). The fairness was
calculated as follows: for each TCP flow &, we first calculated
its throughput Ay, the average value of six runs. Then, using
Ay, 1 <k < N, we computed the overall average throughput
A. From A and Ay, we computed the coefficient of variation
(ratio of the standard deviation to the mean) o, which was
used as the index of fairness.

VI. THE SIMULATION RESULTS

We ran simulations for three different cases: (i) all of the
TCP flows are identical; (ii) flows have different round trip
times (RTTs); and (iii) the aggregates have inaccurate weight
values. All the results presented here are based on TCP Reno.
We also ran simulations using TCP NewReno and SACK, the
results of which were consistent with TCP Reno’s and thus
omitted.

IEEE Communications Society
Globecom 2004

1311

300 0.4

(packets)

250 B g & PR e
200

150

coefficient of variation

100

50

mean goodput per TCP source

0 200 400
buffer size (packets)

0 200

(a) Goodput comparison (b) Fairness comparison

Fig. 4. Performance of identical flows

A. Identical flows

First, we compared the performance of ALQD and ALQD+.
Fig. 4 plots the result for the case of homogeneous TCP
flows. The throughput of aggregate FQ (under both ALQD
and ALQD+) and per-flow FQ are much larger than the two
FIFO queueing schemes. An interesting observation is that the
throughput under aggregate FQ is even better than that of per-
flow FQ, especially when the buffer size is small. Section VII
will elaborate on this. The fairness of aggregate FQ under
ALQD, however, is much worse than per-flow FQ, and is
comparable to that of FIFO queueing. In contrast, the fairness
under ALQD+ is improved significantly.

The main cause of this unfairness is the core routers’ in-
ability to differentiate individual flows in an aggregate. When
a scheduler has to provide congestion feedback by dropping
a packet in an aggregate, since it cannot distinguish among
the flows in the aggregate, it may drop a packet from a well-
behaving flow. Then, this well-behaving flow, instead of other
misbehaving flows, will respond to the “feedback.” To further
confirm this, Fig. 5 plots the fairness among flows in the same
aggregate as well as among different aggregates. Fig. 5 (a)
shows the fairness among 10 flows in the first aggregate, while
Fig. 5 (b) shows the fairness among 10 aggregates. Clearly,
the unfairness problem exists among the flows within the same
aggregate. In contrast, the fairness among aggregates is very
close to that of per-flow FQ.

To further study the fairness problem, we examined the
relationship between the bottleneck bandwidth and fairness.
Fig. 6 shows that the fairness is related to the degree of
congestion. Figs. 6 (a) and 6 (b) show the case when the
bottleneck link bandwidth is 4.8 Mbps. Since the congestion
is less severe, aggregate FQ is much farer than in the previous
case. We also tested the case when the bottleneck link band-
width is greater than 8 Mbps, which is greater than the total
bandwidth of incoming links. In this case, the incoming links
become the bottleneck. Since almost all the packets received
by the aggregators I R; can be transmitted by C'R;, both per-
flow and aggregate FQ have virtually identical performances
(both throughput and fairness). This shows that the fairness of
aggregate FQ depends on the location of, and the severity of
congestion at, the bottleneck. If the bottleneck is not at core
routers, aggregate and per-flow FQ have virtually identical
throughput and fairness.

In the following discussion, we will present the results for

0-7803-8794-5/04/$20.00 © 2004 IEEE

04 04 04 04
aggregate FQ with ALQD —— aggregate FQ with ALQD —— aggregate FQ with ALQD —— aggregate FQ with ALQD+ ——
agoregete FQ with ALQD. aogregate FQ with ALQD. agoregete FQ with ALQD. agregele FQ with ALQD.
0.35 er-flow FQ with ALQD - 035 er-flow FQ with ALQD - 035 er-flow FQ with ALQD - 035 er-flow FQ with ALQD -
FIFQ Queuiing with DropTall - FIFQ Gueueing with DropTal - FIFQ Gueuieing with DropTell - FIFQ Queuieing with DropTall -
FIFO queeing with RED = 03 FIFO queueing with RED = 03 FIFO queueing with RED = 03 FIFO queueing Withd3ED =
E 5 5
g o025 g o025 g o025
s s s -
5 02 5 02 a . 5 o2
g o1s S o5 ° @ . S o5 L
5 3 3 .
8 8 T 8 - - 5
01 =. . 01 ‘\l—:“'—'\/ 01 /
005 005 * 005 " oosp T .
o e R v o . - e o o R
0 200 400 600 800 1000 0 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 800 1000

bufer size (packets) butfer size (packets)

(a) Inside an aggregate (b) Among aggregates

butfer size (packets) buffer size (packets)

(a) Intra-aggregate heterogeneous (b) Inter-aggregate heterogeneous

Fig. 5. Fairness comparison Fig. 7. Fairness comparison: flows with heterogeneous RTTs
04 04
450 04 aggregate FQ with ALQD aggregate WFQwih ALGD —— aggregate WFQ wih ALGD —+—
,,,,,,,,,, " aggregate WFQ wi aggregate WFQ wi
05 aggegate PN LD x 035 o WEG i ALGD e 035 oo WEG it ACGD -
. FIFO ueueing with DropTai F\FO aveueing win DropTa -2 F\FO aueueing win Drop'rau o
03 FIFO queueing with . 03 ueueing with R - . o3 ueueing with R -
8 § 2 2
5 %0 5 o025 £ oz g o0z
8] s s
250 s 2 Z
§ 5 02 3 02 5 02
g 20 5] §
8 S o5 2 o1s 2 o5
3 150 5 H . g . a -
K ° o1 o1 . = 2 - 01 s .
& 100 aggrogate FQwin ALQD —— - ¢ . — : .
g aggregate FQ with ALQD+ . " .
§ s per-flow FQ wi m ALQD e 0.05 . . 0.05 * = * * 0.05 M .
£ FIFQ queueing with DropTail o - —— x x S
o FIFO queueing with RED = o T S S G 0 B i 0 e S
0 200 400 600 800 1000 0 200 400 600 800 1000 o 200 400 600 800 1000 o 200 400 600 800 1000

buffer size (packets) buffer size (packets)

(a) Goodput comparison (b) Fairness comparison

Fig. 6. Performance under lower-level congestion

ALQD+ only and focus on the fairness of aggregate FQ. The
average throughput results are similar to that in Fig. 4 and
thus omitted.

B. Heterogeneous RTTs

We first explored the flow heterogeneity inside an aggregate:
in each of the 10 aggregates, one flow had a longer RTT
(100 ms incoming/outgoing link delay), and all the others
had a shorter RTT (10 ms incoming/outgoing link delay).
Then, we explored the heterogeneity among aggregates: all
the flows in the first aggregate had a longer RTT (100 ms
incoming/outgoing link delay) than those in other aggregates
(10 ms incoming/outgoing link delay).

Fig. 7 plots the simulation results of the first case. In both
cases, the fairness of aggregate FQ is better than that of the
two FIFO queueing schemes. The fairness of the second case,
however, is significantly better than that of the first. By further
examining the throughput of all the flows with longer RTTs in
both cases, we found that in the first case, flows with longer
RTTs had much lower throughput than other flows, while
those in the second case had, on average, almost the same
throughput as others. This implies that when bundling flows
into aggregates, flows with very different RTTs should be put
in different aggregates.

C. Robustness

Since we used WFQ and weighted ALQD+, we need to set
the weights of the aggregates in core routers. The previous
work on per-flow FQ [1], [6] assumed all the flows to have
an identical weight. In the case of aggregate FQ, we used the
number of flows in an aggregate as its weight. However, in
the real Internet, the accurate estimate of the number of flows
in each aggregate may be difficult to obtain. Therefore, the

IEEE Communications Society
Globecom 2004

(a) Inaccurate Weights (90% accuracy)

1312

buffer size (packets) buffer size (packets)

(b) Random ON/OFF Flows

Fig. 8. Fairness comparison: robustness of ALQD+

weight of an aggregate may not be the same as the actual
number of flows in it.

We ran simulations to test the robustness of aggregate FQ
to inaccurate weight estimates. In the test, the weight of
each aggregate remained the same (10). We used more flows
than the number of flows in the first aggregate, while using
fewer flows in the second aggregate and keeping all the other
aggregates intact. Fig. 8 (a) shows the result when there are
10% more flows (i.e., 11) in the first aggregate and 10%
fewer flows (i.e., 9) in the second aggregate. The fairness of
aggregate FQ is still better than that of FIFO queueing.

To study further the robustness of aggregate FQ, we used
10 bulk FTP sources and four ON/OFF telnet sources in
each aggregate. The weight of each aggregate was set to
12. Therefore, the actual number of flows in each aggregate
changed dynamically, and thus, the weight for every aggregate
could be inaccurate, which is the case in a real network. (In
the previous case, only the weights for the first two aggregates
were inaccurate, and remained inaccurate during the entire
simulation.) Also, the accuracy of the weights was within
83.3% (1 — %) of the actual value. We only recorded the
throughput of the 10 FTP flows and used them to study both
fairness and throughput. As shown in Fig. 8 (b), the unfairness
is less severe, implying that in the real Internet, aggregate FQ
may not be as sensitive as shown in Fig. 8 (a).

In addition, algorithms for counting the number of active
flows have been proposed in the literature. For example, the
authors of [12] proposed a family of counting algorithms based
on updating a bitmap at run-time. The algorithms were shown
to have not only low memory requirements, but also very
high accuracy. For example, the adaptive bitmap algorithm
can count the number of distinct flows on a link that contains
up to 100 million flows. It has better than 99% accuracy and
requires only 2K bytes of memory; while the triggered bitmap

0-7803-8794-5/04/$20.00 © 2004 IEEE

uses even less memory, and is optimized for running multiple
concurrent counting processes.

VII. PERFORMANCE ANALYSIS

A. The Advantages of Aggregate FQ

It is interesting to find, from our simulation results, that
the average throughput under aggregate scheduling is even
(slightly) %\igher than that under per-flow fair queueing. This
can be explained as follows: suppose at a noge there are n
flows, each with reserved rate r; (1 < ¢ < n), and some other
flows with total reserved rate R. In the case of aggregate FQ,
these n flows are bundled into an aggregate with reserved rate
R =>""r;. If all the flows are backlogged at the same time,
then in the per-flow case, the weight of each of the n flows
is Rj: 7 in the aggregate FQ case, the weight of each flow is
also

R i T
R+R R R+R
However, if not all of the n flows are backlo;gged at the same

time, and the total rate of the absent flows is 7/, then the weight
of flow i in the per-flow case is ——:—; while the weight in

1

R—r'+R’
the aggregate FQ case becomes
R . T _ T . R N T4 _. (2)
R+R R—1 R+R R—7 (R-7)+R

In other words, flow ¢ implicitly has a larger weight due to
the absence of some other flows in the same aggregate. We

call this aggregation advantage.

If all the flows in the aggregate are backlogged, but some
other flows are absent (the total weight of which is also 77),
in the aggregate FQ case the weight of flow ¢ becomes

R n___n 3
R+(Rk—-r) R R+ (R—v)
which is the same as in the per-flow FQ case.

In summary, flows using aggregate FQ have an advantage
when other flows in the same aggregate are absent, and do
not have any disadvantage in all other cases. This advantage
makes the new aggregate FQ scheme more attractive. Also,
since TCP traffic is usually bursty, it is very likely that all of
the flows in the same aggregate are not backlogged at the same
time, especially when the buffer size is small. Thus, aggregate
FQ is good for TCP traffic.

B. Fairness Analysis

As was pointed out in [13], there are two classes of al-
%orithms related to congestion control: packet schedulini and
uffer management. Packet scheduling decides which packet to
send next, and thus, determines the allocation of bandwidth;
buffer management determines buffer allocation and packet
queue length. From [14] we know that the maximum window
size of flow ¢ in steady state can be described as:

Wi=71-Ci+Bi+1, “)

where 7 is the propagation delay, C; and B; are the bandwidth
and buffer size available to flow ¢, respectively.

From this equation, given a set of flows, with per-flow
FQ plus per-flow buffer management, both C; and B; are
guaranteed. In contrast, in the case of FIFO and global buffer
management, although the total bandwidth and buffer size
are constant, a given flow could have no buffer space and
hence no bandwidth at all, especially when UDP traffic is

IEEE Communications Society
Globecom 2004

1313

competing with TCP for resources. This is the reason per-
flow FQ plus per-flow buffer management provides superior
performance. Aggregate FQ lies between per-flow FQ and
FIFO queueing. Although each aggregate receives guaranteed
bandwidth and buffer space, it is difficult to guarantee how
much buffer and bandwidth each flow within the aggregate
will receive. Therefore, its fairness is worse than per-flow FQ.
Using ALQD+, we can alleviate this unfairness problem.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied TCP performance under aggregate
FQ. We first showed the livelock problem of FQ under
the DropFront scheme, and proposed a simple solution to
the problem. Then, to improve the fairness of aggregate
FQ, we proposed a new active buffer-management scheme
called ALQD+, which is farer than ALQD. Based on these
two enhancements, via simulation, we showed that aggregate
FQ provides not only excellent scalability (small scheduling
and state-maintenance overheads) but also good performance,
especially throughput. In addition to the simulation-based
evaluation, we provided a simple performance analysis.

We still need to find ways to fine-tune the parameters of
ALQD+. Also, it would be useful to study the TCP perfor-
mance under two-way traffic and asymmetric paths, where
ACK packets can be congested and delayed. These are matters
of our future inquiry.

REFERENCES

[1] B. Suter, T. V. Lakshman, D. Stiliadis, et al., “Design considerations
for supporting TCP with per-flow queueing,” in Proc. of IEEE INFO-
COM’98, Mar. 1998, pp. 299-306.

[2] S. Keshav, “Congestion control in computer networks,” Ph.D. disserta-
tion, Univ. of California (Berkeley), Sept. 1991.

[3] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single
node case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344-357,
June 1993.

[4] J. A. Cobb, “Preserving quality of service guarantees in spite of flow
aggregation,” IEEE/ACM Trans. Networking, vol. 10, no. 1, pp. 43-53,
Feb. 2002.

[5] W. Sun and K. G. Shin, “Delay bounds for end-to-end traffic aggregate
under guaranteed rate scheduling algorithms,” Dept. of EECS, Univ. of
Michigan, Tech. Rep. CSE-TR-484-03, 2003.

[6] A. Legout and E. W. Biersack, “Revisiting the fair queueing paradigm
for end-to-end congestion control,” IEEE Network, vol. 16, no. 5, pp.
3846, Sept./Oct. 2002.

[71 F. M. Anjum and L. Tassiulas, “Fair bandwidth sharing among adaptive
and non-adaptive flows in the Internet,” in Proc. of IEEE INFOCOM’99,
Mar. 1999, pp. 1412-1420.

[8] D. Awduche, J. Malcolm, J. Agogbua, et al., “Requirements for traffic
engineering over MPLS,” RFC 2702, Sept. 1999.

[9] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The drop from front
strategy in TCP and in TCP over ATM,” in Proc. of IEEE INFOCOM 96,
Mar. 1996, pp. 1242-1250.

[10] W.-C. Feng, K. G. Shin, D. D. Kandlur, et al., “The BLUE active queue
management algorithms,” IEEE/ACM Trans. Networking, vol. 10, no. 4,
pp. 513-528, Aug. 2002.

“ns2 Simulator.” [Online]. Available: http://www.isi.edu/nsnam/ns/

C. Estan, G. Varghese, and M. Fisk, “Counting the number of active
flows on a high speed link,” UCSD, Tech. Rep. CS2002-0705, 2002.
B. Braden, D. Clark, J. Crowcroft, et al., “Recommendations on queue
management and congestion avoidance in the Internet,” RFC 2309, Apr.

1998.

T. V. Lakshman and U. Madhow, “The performance of TCP/IP for net-
works with high bandwidth-delay products and random loss,” IEEE/ACM
Trans. Networking, vol. 5, no. 3, pp. 336-350, June 1997.

(11]
[12]
[13]

[14]

0-7803-8794-5/04/$20.00 © 2004 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

