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Abstract

A novel gradient-ascending stateless routing protocol,
called GRASP (GRadient Ascending Stateless Protocol), is
proposed for stationary wireless sensor networks. GRASP
is built with a novel packet forwarding method called FBF
(Footprint-Based Forwarding), in which each node main-
tains a Bloom filter that holds a dejavu image for the nodes
whose packets were relayed through the filter. Forwarding
a packet through networked sensors is then just running a
membership test of the packet’s destination against the net-
worked Bloom filters, either dropping the packet before it
reaches the destination or eventually delivering it to the des-
tination.

An extensive simulation study with various routing sce-
narios has shown the proposed method to achieve about
99% packet delivery while incurring only a small amount of
overhead. It also achieves more than 86% packet delivery
even for a lossy channel with up to 30% loss rate. Further-
more, our comparative evaluation against AODV or sim-
ple flooding shows that GRASP achieves a comparable, or
even better, performance in terms of the packet delivery ra-
tio and overhead under the simulation settings investigated.
GRASP is shown to reduce the delivery overhead by a factor
of 2.37 over AODV or 3.11 over the simple flooding, while
providing more robustness to packet losses—this is a sig-
nificant improvement for low-power sensors in a lossy wire-
less environment. Manipulating Bloom filters incurs a small
space overhead and does not create any protocol conflict
with the underlying gradient-descending protocols, thanks
to its stateless routing.

1. Introduction

What distinguishes emerging sensor networks from the
Internet is not only their severe resource constraints and
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Figure 1. Routing and interaction patterns in
a data-centric network. Typical tree-based
or diffusion-based routing algorithms fall into
gradient-descending protocols.

unattended operational environment, but also their very dif-
ferent set of goals and principles. As claimed in [1], unlike
the Internet that is a collection of independent end-points
that share a common routing infrastructure, sensor networks
tend to be formed with homogeneous nodes deployed for an
application-specific and collaborative purpose.

Further investigations into many real-world applications
developed on TinyOS [2] based sensors corroborate this
observation and show that general arbitrary point-to-point
routing is less common in the applications of embedded net-
works [1]. Instead, interactions tend to be localized with
a small number of data sinks (or leaders). This might re-
flect the data-centric paradigm of sensor network applica-
tions, where sinks create and maintain a data-and-events-
forwarding network for collecting information from other
members/nodes.

However, communications from members to sinks alone
are not enough; the opposite direction (i.e., from sinks to
members) communications must also be supported. Using
so-calledgradient-ascending1 interactions, sinks can per-
form several actions on members, including (i) query allo-

1For ease of exposition, here we coin the two terms that best describe
both interactions: “gradient-descending” (from members to sinks) and
“gradient-ascending” (from sinks to members). In [3–5], the term “gra-
dient” is often used to mean either the difference of hop-counts to the root
of a tree (or a sink) between neighbors, or the hop count to thesink it-
self. We follow the latter convention. Note that the “gradient” in [6] is
more than hop-count. Figure 1 simplifies routing patterns in a data-centric
sensor network based on this classification.



cation, change, and migration; (ii) reconfiguration, diagno-
sis, and summarization; and (iii) other decision-involving
actions in a signal-and-response fashion.

In this paper, we address the problem often encoun-
tered by sinks:how to design an energy-efficient, stateless,
gradient-ascending routing protocol that delivers packets
from a sink to a specific node in a network?

Either using an expensiveflood-based dissemination
protocol or running a separatestateful on-demand routing
protocol such as AODV [7] or DSR [8] could be possible
solutions.2 The main drawbacks of either solution to the
problem are as follows. First, flood-based dissemination is
very costly (hence not energy-efficient) for individual inter-
actions. Usually, it is used for holistic operations on a net-
work, such as network programming via air medium [9,10].

Second, running a separate stateful routing protocol
alongside a stateful gradient-descending routing protocol is
a daunting task. Note that typical many-to-one gradient-
descending routing protocols are a class ofreactivestateful
routing protocols, where routes from many nodes to sinks
are created and maintained as needed. Therefore, running
another stateful routing protocol introduces several difficul-
ties not only in logically reconciling any protocol conflicts
in response to a common network problem such as a link
breakdown, but also in physically scaling them down to
resource-constrained sensors.

The main contribution of this paper to the above-
mentioned problem is the design of a novel gradient-
ascending stateless routing protocol, called GRASP. It de-
livers packets in the gradient-ascending direction by ex-
ploiting the (reverse) forwarding histories accumulated
in the gradient-descending direction during the data-and-
events-forwarding phase to the sinks. GRASP has the fol-
lowing salient properties.

• It is stateless and complements gradient-descending
protocols without creating any protocol conflicts. To-
gether with a gradient-descending protocol, it com-
pletes a data-and-events collecting sensor network
with a control loop.

• It is lightweight in the sense that the forwarding histo-
ries are accumulated in a space-efficient data structure
called theBloom filter[11], incurring only a small (on
the order of few hundred bits) space overhead.

• It is energy-efficient, thanks to a novel packet forward-
ing method using membership-based broadcast, which
incurs significantly less overhead than simple flood-
based dissemination.

• It is robust to not only packet losses over a lossy wire-
less channel, but also gradient field perturbations re-

2In this paper, a routing algorithm that creates and maintainsa route
between two end-points is said to bestateful. Otherwise, it is stateless.

sulting from changes in (reverse) forwarding links to
the sinks.

A location-based stateless routing algorithm such as
GPSR [12] could be used, but it requires a location-
acquisition component that GRASP does not need. There-
fore, GRASP becomes robust to the absence or failure of a
location-acquisition component. All that GRASP requires
is the accumulation of packet forwarding histories in the
gradient-descending direction, which crop up naturally in
any data-and-events collecting sensor networks.

In GRASP, forwarding a packet through networked sen-
sors is just performing a membership test against networked
Bloom filters that keep a dejavu image for other nodes
whose packets were relayed. While going through a se-
ries of networked Bloom filters, packets may be dropped
or eventually forwarded to their destinations. One or more
trails can lead to a destination, being continually con-
structed and reinforced during the data-and-events forward-
ing phase in the gradient-descending direction.

The rest of this paper is organized as follows. Section 2
describes the work related to the design of GRASP and FBF.
Section 3 describes FBF underlying GRASP, which is de-
tailed in Section 4. GRASP is evaluated extensively and
comparatively in Section 5. Finally, we conclude the paper
in Section 6.

2. Related Work

Gradient-descending and on-demand routing protocols
The authors of [6] proposed a data-centric routing algo-
rithm where a data sink advertises its interest with a list
of attribute name and value pairs, and nodes matching the
interest subscribe to it.

Schurgerset.al [4] proposed a gradient-based routing
(GBR), as an extension to the directed diffusion [6], in such
a way that the interest message records the number of hops
taken during the propagation.

Pooret.al [3] proposed an idea similar to GBR. Its dif-
ference lies in that instead of identifying which node to
forward a packet to, a node broadcasts a packet with the
“cost-to-destination” information, which was obtained op-
portunistically when the destination sends out its message.

Similarly, Ye et.al [5] proposed a robust data-delivery
protocol, called GRAB, that uses the notion of “credit” for
robust packet delivery over a gradient-descending forward-
ing mesh.

The TinyOS version of DSDV [13] was written by Intel
to provide many-to-one routing for one destination at a time,
i.e., gradient-descending protocol.3 Besides many-to-one
gradient-descending packet routing, it also uses a flooding

3It is available at /opt/tinyos-1.x/contrib/hsn in a typical TinyOS pack-
age release.



mechanism to send packets to every node or a specific node
in a network (i.e., gradient-ascending protocol).

For general on-demand routing protocols, DSR and
AODV are only considered here since they are represen-
tative of, and basic to, all other extensions and variations.
First of all, DSR, as source routing, is difficult to use in a
sensor with a limited payload. Despite the evolutionary re-
laxation that could allow for a larger payload, creating and
maintaining source routes in DSR is too expensive to be
feasible.

Unlike DSR, AODV creates and maintains routes to
a destination by performing a flood-based extended ring
search as needed. Despite potential reductions in the flood-
ing overhead with the query localization [14], the stateful
routing property of AODV makes it hard for AODV to op-
erate together with other stateful gradient-descending pro-
tocols.

Bloom filters A Bloom filter is one of the important data
structures often used in various areas of computer science to
support a membership query with a small amount of storage
space. We only examine key extensions to the original one.

Li et.al [15] proposedcounting Bloom filtersthat pro-
vide a mechanism to build a summary of the directory of
cached documents at each Web proxy. A counting Bloom
filter maintains a counter associated with each bit of the fil-
ter. Mitzenmacher [16] proposedcompressed Bloom filters
to reduce the number of broadcasts, the false-positive prob-
ability, and/or the amount of computation per lookup.

Rheaet.al [17] proposedattenuated Bloom filters, an ar-
ray of Bloom filters. Associated with eachdth-row Bloom
filter is the summarization of replicas on the neighbor atd
hops away. They use the proposed Bloom filters to enhance
the performance of existing peer-to-peer location mecha-
nisms when a replica for the queried data item exists closer
to the query source.

3. Footprint-Based Forwarding

3.1. Overview

Figure 2 illustrates various applications of FBF in a sen-
sor network for collecting data and events, although use of
FBF is not necessarily limited to them. FBF uses the prior
forwarding history cached in a Bloom filter (or bitmap).
This forwarding history is called afootprint of the node
that sent packets. The forwarding histories in the gradient-
descending direction are usually accumulated during the
phase of forwarding data and events to sinks.4

4The forwarding histories for sinks can also be cached duringthe gra-
dient setup or data dissemination phase from sinks. But such an option is
not explored here since the underlying gradient-descending routing proto-

The footprint of a packet is a bit vector of the same length
as the bitmap, generated after applying independent hash
functions to the packet’s origin address. As a result of this
hashing, some positions in the bit vector are set to 1 and
others to 0. Several bit-wise operators are used to cache and
access the generated footprint in the bitmap.

In the example of Figure 2(a), a packet originating
from node M leaves its footprints on nodes along the trail
M→W→A→C→S. Suppose, upon reception of a signal
from M, sink S responds to M by returning some informa-
tion to it. Then, S just broadcasts a packet with the feedback
information and its destination5 as node M.

When the packet is received by S’s neighbors, each
neighbor performs a membership test of the packet’s des-
tination against the bitmap it has. For example, node C will
first hash the packet’s destination M and get “01010.” The
hashed bit string is then compared with the bitmap it has, a
boxed “01011.” If the packet’s destination turns out to be in
the bitmap, it is rebroadcast, esle it is dropped. This is how
themembership-based broadcastworks.

There may be multiple paths to a given destination, as
shown in Figure 2(b). Note that the false positives associ-
ated with a Bloom filter may create a non-path appearing
to be a real one. Unfortunately, FBF has no way of telling
the difference between the two. A packet under FBF is just
broadcast as long as it passes the membership test.

Figure 2(c) illustrates how FBF can be coupled with
on-demand routing protocols, such as AODV, to localize a
route-discovery query. AODV over FBF could be another
solution to the problem, i.e., an energy-efficient stateful
gradient-ascending routing protocol. We will not explore
this case any further, but it is not difficult to see how FBF
will improve the route-discovery overhead.

3.2. Data structure and hash functions

A Bloom filter is used to manipulate the footprint of a
node. It is a way of representing a setA = {a1, a2, . . . , an}
of n elements (nodes’ addresses) to support membership
queries. It uses a bit vectorB of length m with k inde-
pendent hash functionsH = {h1, h2, . . . , hk}. For each
elementa ∈ A, each hash functionh ∈ H mapsa to an
integer in{0, 1, . . . ,m−1}. Thus, for each elementa ∈ A,
the bit positions{h1(a), h2(a), . . . , hk(a)} in B are set to
1. Conversely, given an elementa ∈ A, a membership test
of a againstB is a simple procedure that checks the bit posi-
tions{h1(a), h2(a), . . . , hk(a)} in B; if all the relevant bits
are set to 1,a is a member; otherwise, it is not.

col is expected to always maintain the (reverse) forwarding links towards
the sinks.

5Here, we assume that a bit in a packet’s header is used to distinguish
a broadcast packet from a unicast one. If a broadcast packet requires the
destination address like 0xFFFFFFFF, the actual destination address will
be carried in the packet’s payload.
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(c) Route query localization

Figure 2. FBF can be directly coupled with stateless routing or used as a low-level primitive to localize
the route-discovery query. The hashed footprint for a packe t en route is shown without a box, whereas
the Bloom filter at each node is shown with a box. A membership t est of “M” against networked
Bloom filters is performed when sink “S” sends data to it. Two i ndependent hash functions and a
Bloom filter of length 5 bits are associated with each node. Ea ch node selects its hash functions
independently of others.

We use acounting Bloom filter[15, 16], an extension to
the basic Bloom filter such that a counter per bit is defined
and used to keep track of the number of times the bit is set
to 1. For ac-bit counter, the counter ranges from 0 and
Cmax = 2c − 1. A Bloom filter without any counter can be
considered as a counter Bloom filter with a 1-bit counter.

In a counter Bloom filter, when a counter changes from
0 to 1, the corresponding bit is set to 1. Similarly, when a
counter changes from 1 to 0, the corresponding bit is set to
0. For a non-zero counter, the corresponding bit is set to 1.
At any time a counterc is non-negative and no larger than
Cmax, regardless of the increment or decrement inc.

A hash functionh ∈ H is defined as a parameterized
function as follows:

h(a) , h(a|p, q, r,m) = ((p× a + q)× r) mod m (1)

wherep, q, r are prime numbers andr > m. To make an in-
dependent hash function, prime numbers are to be selected
independently of other hash functions and other nodes.

3.3. Footprint and operators

Formally, the footprintF(a) of a node whose address
is a, is a vector ofm bits with each of bit positions
{h1(a), h2(a), . . . , hk(a)} set to 1 and the other bit posi-
tions set to 0.

For simplicity, a counting Bloom filter is denoted byBc,
which consists of a bitmap (or an original Bloom filter)B
and itsc-bit counter vectorC. By default,B = B1. Us-
ing common bitwise-AND (&) and bitwise-OR (|) opera-
tors, we define the operators to manipulate the footprint of
a node over a counting Bloom filterBc as follows.

Stamping footprintsS(Bc, a):

C[i]← C[i] + 1, i ∈ {h1(a), h2(a), . . . , hk(a)}

B[j]← 1, j ∈ { i : C[i] > 0}. (2)

Erasing footprintsE(Bc, a):

C[i]← C[i]− 1, i ∈ {h1(a), h2(a), . . . , hk(a)}

B[j]← 0, j ∈ { i : C[i] = 0}. (3)

Initializing footprintsI(Bc):

C ← 0,B ← 0. (4)

Losing footprintsL(Bc):

C[i]← C[i]− 1, i ∈ {randomly chosenk bit positions}

B[j]← 0, j ∈ { i : C[i] = 0}. (5)

Testing footprintsT(B, a):

k∏

i=1

B[hi(a)] (6)

whereB[hi(a)] is the bit athi(a) position ofB.

3.4. Clocking footprints C(Bc)

By definition, counters associated with a footprint indi-
cate the number of times the bits are set to 1. Such counters
could be translated to time ticks, representing the elapsed
time since the last time the bits were set. In general, the in-
terpretation of counters is application-specific. In the next
section, we will describe how GRASP makes use of these
counters.

3.5. Footprint loss model

The entire footprints can be erased through theE opera-
tor, or a random footprint can be lost through theL opera-
tor. Of course, it is possible for footprints to remain forever



once stamped in a bitmap, i.e., no loss model. Usually, the
choice of a proper footprint loss model and its periodic or
occasional enforcement are up to applications that use FBF.
In the next section, we will describe the footprint loss model
defined by GRASP.

4. GRASP

4.1. Per-sink Bloom filter

Usually, a gradient-descending routing protocol operates
over a directed acyclic graph (DAG) rooted at the sink be-
cause the gradient setup and maintenance procedures in
a gradient-descending protocol ensure the availability of
routes from nodes to individual sinks that nodes are com-
municating with. Thus, a node can discern which DAG to
follow in forwarding packets to a given sink. Also, such a
DAG has per-sink properties like the interest and the life-
time.

This defines a per-sink gradient-based network, which
is independently created, destroyed, and maintained by an
individual sink. Thus, it is natural and convenient to have
a per-sink Bloom filter such that the lifetime of a Bloom
filter in a node equals the lifetime of the per-sink gradient-
based network. By using the per-sink Bloom filter, a node
handles multiple Bloom filters independently of other filters
and records the history of forwarding packets in the filter
associated with a specific sink.

Since each of multiple Bloom filters at a node is han-
dled independently of others, we describe the operation of
GRASP for the case of a single sink.

4.2. Footprints accumulation and loss model

GRASP requires to (i) accumulate footprints during the
packet forwarding phase to the sink, and (ii) initialize foot-
prints during the gradient setup phase.6 Accumulating foot-
prints involves the invocation ofS operator to a relevant
Bloom filter, whereas initializing footprints correspondsto
the invocation ofI operator to a relevant Bloom filter.

Accumulation of footprints without erasing them over
the lifetime of a Bloom filter may make the filter useless
by having too many bits in the filter set to 1. However, this
is unlikely to happen due to thespatial localityof a packet
forwarding in a gradient-descending protocol. By “spatial
locality,” we mean that the nodes involved in the packet for-
warding from a specific node to the sink are limited within

6We distinguish the network-wide gradient setup broadcast such as
ADV from the localized gradient maintenance broadcast such as 1-hop
HELLO, both of which may change forwarding nodes to the sink. The
gradient setup is a less frequent operation that is usually invoked when a
sink switches to another, while the gradient maintenance is usually and of-
ten exercised to balance loads or energy consumptions among nodes for a
given sink.

their geographic region in a network. The spatial local-
ity occurs naturally because (i) sensors are stationary, and
(ii) a gradient-descending protocol tends to forward pack-
ets along minimum-hop paths, reducing the possibility of
packets randomly wandering through the network towards
a sink. Note that nodes close to the sink still have many bits
set due to the traffic concentration, i.e., they form a bottle-
neck towards the sink.

However, the assumption of stationary sensors does not
exclude any local perturbation in the gradient field. For ex-
ample, a change of the minimum-hop path from a given
node to the sink can still occur when the forwarding node
to the sink is selected based on other factors, such as nodes’
residual energy. Despite such a perturbation, nodes within
some region, like an ellipse-shaped region, around both
the node and the sink may be frequently used. In fact,
GRAB [5] defines such an ellipse-shaped forwarding mesh
for reliably delivering packets to the sink, which still shows
the spatial locality despite the local perturbation of a gradi-
ent field.

It is also possible to define either a periodic or an oc-
casional footprint loss model. For example, invocations of
L operator followed byS operator may define anaperiodic
random footprint loss model. This ensures those rarely-used
footprints to disappear. Conversely, those frequently-used
footprints will reinforce themselves. However, care should
be taken to adopt such a loss model due to the pigeon hole
principle; a bit in the filter represents the membership re-
lationship with several other nodes, not just with a specific
node. Thus, even turning a single bit off may break paths to
other nodes. In Section 5, we will investigate the impact of
this footprint loss model on the routing performance.

4.3. Forwarding gradient-ascending packets

Assuming the accumulation of footprints during the
phase of forwarding data/events to the sink, GRASP for-
wards any gradient-ascending packet from the sink as in Al-
gorithm 1, which involves interactions with FBF and MAC
upon reception of a packet from one of its neighbors,prev.

Algorithm 1 GRASP
procedure recv(Packet p)

1. assertp.src == sink and findBc for sink

2. rebcast.suppress(p.src,p.seq,p.prev)

3. if (p is not received before andT(Bc,p.dst) == 1),

(a) delay = W × (C(Bc,p.dst) + 0.11 × U(0, 1))

(b) broadcastp afterdelay

(c) rebcast.enque(p)

4. else dropp



Line 1 checks if a packet originates from the right sink
for which a Bloom filterBc is created. This step is nec-
essary since GRASP assumes a per-sink Bloom filter. If a
Bloom filter matchingsink is found, the packet forward-
ing procedure is simple, as shown in line 3.

In line 3, a duplicate broadcast identification method is
used to eliminate any redundant broadcast, which is a triv-
ial operation in any broadcast-based-dissemination. After
passing the membership test, the packet is broadcast again
with some delay to avoid MAC-level broadcast collisions.
The delay is set to no larger than the maximum forwarding
delay, which is1.11W , whereW is a preset forwarding de-
lay, as seen in line 3-a. The second term in the delay is a
tie-breaking random delay when the first terms are same.

The first term in line 3-a is introduced to favor for-
warding packets along a frequently-used trail towards the
packet’s destination. In doing so, we time how long ago a
footprint was created or assess how often it was stamped. It
is denoted asC(Bc) and has the following definition, which
returns the age normalized withCmax:

(1− C/Cmax), whereC =

∑
k

i=1
C[hi(a)]

k
(7)

whereC[hi(a)] is the current counter associated withhi(a)
bit position ofBc. Then, a node with frequently-used foot-
prints will have this value closer to 0. Note that once a
counter reachesCmax, it remains there no matter how long
ago this limit was reached. Also,C(Bc) is not a perfect
measure to indicate the freshness of a footprint since a
counter is not a physical timestamp. Other refinements on
C(Bc) can also be explored.

4.4. Reliable membership-based broadcast

Any routing protocol must provide high end-to-end
packet delivery performance, which depends largely on re-
transmissions of in-transit packets. Unlike unicast-based
delivery that sends a packet several times to a single next
hop, any simple broadcast-based packet delivery transmits
the packet once and relies on multiple next-hop nodes for
its successful advance towards the destination.

Unlike simple broadcast-based delivery, GRASP that
uses the membership-based broadcast may have only a
small fraction of multiple next-hop nodes eligible for re-
laying packets due to the membership test. To get around
this, GRASP employs the concept of retransmissions as
often used in unicast. In GRASP, a node rebroadcasts a
packet several times until either it overhears any of next-
hop nodes rebroadcast the packet (i.e.,passive acknowl-
edgement (ACK)) or it reaches the maximum retry limit.

However, there is a subtle difference between GRASP
and a unicast with passive ACKs. In a typical unicast, a
node knows which node’s transmission to overhear since

it knows where a packet is being forwarded to. But, in
GRASP no forwarding node is specified. Any neighbor-
ing node that has a matched footprint of the received packet
will rebroadcast it. Thus, we define a rule for passive ACKs
in GRASP. Specifically, a packetp sent by a nodef is
said to be passively acknowledged by a packetq transmit-
ted by a noden if (i) p.seq == q.seq andp.src ==
q.src, and (ii)f.height <= n.height. Bothseq
andsrc in the clause (i) uniquely identify a packet, as used
in a typical duplicate packet identification method. The
height in the clause (ii) represents a hop-count relative
to the current sink of the received packet, which is usually
known in the gradient setup phase. Note that a neighboring
node’s height relative to a given sink is also known auto-
matically as a result of exchanging gradient maintenance
messages such as 1-hopHELLO.

Improving the packet-delivery performance through re-
transmissions requires several modifications, some of which
are already highlighted in Algorithm 1. First, each node
needs to check if there is any outstanding packet (passively
un-acknowledged). Line 2 in Algorithm 1 shows this; the
suppress looks for any packet that can be passively ac-
knowledged by the received packet and suppress any further
transmission of packets that are passively acknowledged.
The fieldp.prev in line 2 represents the node that has
just broadcast the received packet.

Second, a node needs to save the received packet for
later retransmissions even after broadcasting it. Line 3-c
in Algorithm 1 shows this; the received packetp is en-
queued into the bufferrebcast. Third, a periodic timer
needs to be created to check if there is any passively-
unacknowledged packet in the buffer and if so, triggers re-
transmissions within the maximum retry limit. Finally, a
destination is supposed to perform 1-hop broadcast once
whenever it first receives the packet, as a passive ACK.

5. Evaluation

5.1. Methodology

Basic setting. The ns-2 [18] is used to evaluate the
performance of GRASP for diverse simulation scenarios.
Nodes remain stationary after they are randomly deployed
in the field of size 1500m× 300m. The number of nodes
deployed in the field is then changed from 60, 80, and up
to 100. Each simulation runs 1000 sec. The results over 10
different topologies are averaged and plotted with the confi-
dence level of 0.95. Thens-2default AT&T WaveLAN and
IEEE 802.11 CSMA MAC are used with the simulation of a
lossy wireless channel by letting each node randomly drop
packets at the physical layer with probability 0, 0.1, 0.2, and
0.3. The transmission range is homogeneously set to 150m.



Gradient setup, maintenance, and perturbation. A
sink enters the field and advertises a gradient setup message,
ADV, and each node exchanges a periodic 1-hopHELLO
message at an average interval of 10 sec. These messages
have a sequence number assigned and incremented by the
sink. Based on both the sequence number and the hop count
to the sink, each node selects a successor to the sink with the
greater sequence number or the smaller hop count if the se-
quence numbers equal. Both messages are broadcast with a
delay proportional to the amount of node’s residual energy.
The operations described so far enable a gradient field to
continually change even in a stationary network — a rea-
sonable and realistic perturbation.

Data report model. Besides gradient setup and mainte-
nance messages, data/events reporting is simulated. Specif-
ically, CBR (Constant Bit Rate) traffic, each packet with a
64-byte payload, is generated at the interval of 4 sec. How-
ever, actual transmission is probabilistic to simulate bal-
anced reporting among nodes to some degree.

By adopting a randomized energy-load balanced clus-
terhead rotation algorithm in [19], each node has the base
probabilityPb defined as1/(ℓ− i mod ℓ), whereℓ = 1/P0

and i is the number of sampling intervals since the last
transmission of data.P0 is set homogeneously to 0.2 in
the simulation, but can be changed. Based on this base
probability, a hop-count-based probability is developed to
prevent nodes close to the sink from using up a wireless
channel for their own traffic. The hop-count-based proba-
bility model on which actual transmission relies is given as
min{α×H×Pb, 1}, whereH is a hop-count from itself to
the sink andα = 0.1. Note that this probability is updated
at every interval asPb is changed at every interval. Other
values forP0 or α will have less impact on GRASP/FBF
since they are more directly related to the traffic intensity
than to the operation of GRASP/FBF.

Feedback model. Given what has been described so far,
three different feedback models from the sink to members
are defined. Each interaction at every 4 sec interval gener-
ates 64-byte CBR traffic from the sink to one of members
in the network. In fact, it is the actual workload on GRASP.
To determine which member to contact, we use three inter-
action models:

• LRR (Least-Recently Reporting), in which the least-
recently reporting node is chosen for the next interac-
tion. For instance, probing sensors or regions that have
not been queried for quite a while falls into this model.

• MRR (Most-Recently Reporting), in which the most-
recently reporting node is chosen for the next interac-
tion. MRR reflects a signal-and-response interaction.

• RND (RANdom selection), in which a node is ran-
domly chosen for the next interaction. RND reflects
random probing of sensors in the network.

Performance measures. The following performance
metrics will be evaluated for GRASP.

• Delivery ratio: the ratio of the total number of packets
received by members to the total number of packets
sent by the sink.

• (Normalized) delivery overhead: the ratio of the total
number of packets generated in the network to the total
number of packets received by members, normalized
with the measured average number of hops between
the sink and members under each of the interaction
models. Namely, the delivery overhead is the overhead
per received packet and per hop.

Two distinct overheads contribute to the packet-
generation overhead in the network:data overheadand
protocol overhead. The data overhead is mainly associ-
ated with retransmissions, whereas the protocol overhead
is associated with a routing protocol itself. For instance,
GRASP has only the data overhead due to its rebroadcast
scheme. But, AODV has an additional protocol overhead
since it is a stateful routing protocol requiring route setup
and maintenance.

GRASP parameter. Six different prime numbers are
used as a bitmap size (m); 37, 79, 131, 239, 359, and 421.
We intentionally choose to use them to perform a sensitivity
analysis of GRASP with respect to the bitmap size. Sensi-
tivity to other parameters is also analyzed. Four different
counters (c) are used: 1, 2, 4, and 8 bit counters. The num-
ber of hash functions (k) is changed from 1 to 3. The num-
ber of retransmissions (r) is changed from 0 to 4.

5.2. Main evaluation results

We will answer the following questions: (i) what is the
delivery ratio GRASP can achieve and the delivery over-
head it incurs? (ii) how robust is GRASP to packet losses
in a wireless channel? (iii) how sensitive is GRASP to
main parameters such as bitmap size, counter size, and retry
limit, and interaction model? (iv) how sensitive is GRASP
to other parameters such as the corruption of a bitmap, the
footprint loss model, the number of hash functions, and the
node density/traffic intensity?

Delivery ratio and overhead of GRASP: GRASP turns
out to achieve an about 99.3% or higher packet delivery ra-
tio when the channel is perfect (no random packet loss at
the physical layer), regardless of the interaction models —
see Figure 3(a)∼ (c) at the loss rate of 0%. Under the same
condition, the delivery overhead incurred, depending on the
channel loss rate, is 3∼5 transmissions per received packet
and per hop, although the variation of the delivery overhead
in LRR is high.

At least three causes of delivery overhead were ob-
served even if there is no rebroadcast at all, i.e., GRASP
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Figure 3. Delivery ratio with ( n = 80, m = 421, k = 2) for (a)∼(c) and ( n,m) varied for (d).
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Figure 4. Delivery overhead with ( n = 80,m = 421, k = 2) for (a)∼(c) and ( n,m) varied for (d). The
estimated delivery overhead in case of simple flooding is abo ut {10.95 (n = 60), 14.60 (n = 80), 18.26
(n = 100)}.

c = {1, 8}, r = 0 in Figure 4(a)∼ (c) at the loss rate of
0%. One probable cause for this is the existence of multiple
redundant paths due to the underlying gradient perturbation
described in the simulation setting. Another probable cause
could be a false positive that makes a false path appear to
be real. An interesting aspect of the delivery overhead in
Figure 4(a)∼ (c) is that an increase in the retry limit (r)
does not incur a proportional increase in the delivery over-
head. For instance, the delivery overhead under GRASP for
r = 4 incurs an additional overhead of less than that for
r = 0 in the same situation. This result shows the efficacy
of the suppression mechanism in GRASP without deterio-
rating the delivery performance.

Finally, we estimate the delivery overhead of simple
flooding by assuming that the delivery ratio in such a case
is always 100%, regardless of the channel loss rate. As im-
plied from its name, the simple flooding makes every node
in the network rebroadcast any non-duplicate packet it re-
ceived. So, the pre-normalized delivery overhead is just the
number of nodes in the network. By using themeasuredav-
erage number of hops under each interaction model, the es-
timated delivery overhead of simple flooding turns out to be
about{10.95 (n = 60), 14.60 (n = 80), 18.26 (n = 100)}.

As compared to this simple flooding, GRASP achieves
almost the same delivery ratio with a dramatic decrease in
the delivery overhead by at least a factor of 3 undern = 80
and the RND feedback model: 3.75 from 14.60/3.89 (loss

rate 0%) and 3.11 from 14.60/4.68 (loss rate 30%) in Fig-
ure 4(c).

Resilience of GRASP to packet losses: GRASP is also
resilient to packet losses, achieving more than an 86%
packet delivery ratio even in the face of channel loss rate
up to 30%, especially under GRASPc = {1, 8}, r = 4. On
the other hand, the delivery overhead tends to increase pro-
portionally to the channel loss rate, but its increase is only
marginal.

Obviously, the retry limit plays a major role in both im-
proving the delivery ratio and incurring the delivery over-
head under such lossy wireless channel conditions — see
Figure 3(a)∼ (c) and Figure 4(a)∼ (c).

Sensitivity of GRASP to main parameters: The bitmap
size (i.e., a Bloom filter size) turns out to affect the deliv-
ery ratio little and the delivery overhead much – see Fig-
ure 3(d) and Figure 4(d). The counter size seems less crit-
ical, although it is directly related to the MAC-level broad-
cast collision — see Figure 3(a)∼ (c). The retry limit, as
already discussed, plays a major role in improving the de-
livery ratio and delivery overhead — see Figure 3(a)∼(c)
and Figure 4(a)∼(c). GRASP under LRR shows more vari-
ance in the packet delivery ratios and higher delivery over-
head than under the other two models. Unlike LRR, the
other two interaction models do not seem to affect the per-
formance of GRASP significantly — see Figure 3(a)∼(c)
and Figure 4(a)∼(c).



One thing to notice in Figure 4(d) is the delivery over-
head when a small-sized bitmap is used. When it is sized
too small, a bitmap produces a lot of false positives and thus
increases the delivery overhead. However, when it is sized
appropriately, the false positive probability can be negligi-
ble. For instance, in the figure, a bitmap of size 131 incurs
almost the same overhead as a bitmap of size 421.

Sensitivity of GRASP to other parameters: The corrup-
tion of a bitmap turns out to increase the delivery overhead
significantly as the corruption ratio increases — see Fig-
ure 5(b). When the footprint loss model is used, such a high
overhead can be avoided at the cost of reduced delivery ra-
tio — see Figure 5(a) and (b). Changes in the number of
hash functions alone seem to have less impact on the per-
formances we investigated. However, its use in conjunction
with a footprint loss model results in a poor delivery ratio
due mainly to the increased false negative probability — see
Figure 5(c) and (d). Any increase in the traffic intensity7 or
node density worsens the delivery overhead slightly — see
Figure 3(d) and Figure 4(d).

Contrary to a normal bitmap whose bits are cleared with
the initialization operatorI upon reception of each gradient
setup message, acorruptedbitmap refers to a bitmap that is
not clearly initialized. The corruption of a bitmap is realized
in the simulation by preloading a bitmap with footprints of
randomly-chosen nodes. For example, in Figure 5(a) or (b),
a bitmap with an initial load 30% undern = 80 means that
a bitmap is preloaded with footprints of randomly-chosen
24 nodes. We assume that such corruption can happen for
reasons like failure of the initialization operator, the mis-
takenly or intentionally sharing of a bitmap across multiple
sinks, and so on.

5.3. Comparison with AODV

We will answer the following question when AODV is
used as a gradient-ascending stateful protocol:is GRASP
as good as, or better than AODV, under what conditions?

Figure 6 illustrates the main results: (i) GRASP achieves
almost the same delivery performance as AODV, while re-
ducing the overhead by a factor of about 2.37 = 7.50(AODV,
basic)/3.14(GRASPc = 8, r = 4) in Figure 6(b) un-
der n = 60; (ii) even in the presence of link failures,
GRASP shows performance comparable to or better than
AODV, while lowering the overhead by a factor of 2.51
= 9.82(AODV, basic)/3.89(GRASPc = 8, r = 4) in Fig-
ure 6(d).

For a fair comparison, we set the maximum retry limit

7The sensitivity to the traffic intensity is not explicitly evaluated here
since it has less impact on the accumulation of footprints in a bitmap, but
more impact on MAC-level collisions. However, MAC-level collisions are
being evaluated via experimentation that uses a different number of nodes
in a network.

equally for both GRASP and AODV.8 AODV runs over the
IEEE 802.11 without any channel reservation (AODV ba-
sic) and with RTS/CTS reservation (AODV rts/cts).

As seen in the figure, the main drawback of using
AODV as a gradient-ascending routing protocol is energy-
inefficiency, i.e., a poor delivery ratio in spite of large over-
head as the loss rate gets worse, due primarily to its de-
fault extended ring search overhead. Especially, the pro-
hibitive protocol overhead involved in creating and main-
taining routes on-demand makes AODV less desirable for a
gradient-ascending protocol.

6. Concluding Remarks

In this paper, we addressed the problem often encoun-
tered in sensor network monitoring and control applica-
tions. With a control loop in the network, data sinks or coor-
dinating nodes take several types of actions on other nodes.
However, existing gradient-descending routing algorithms
that set up and maintain only a data-and-events forwarding
network from nodes to sinks do not consider the interaction
in the opposite direction.

GRASP overcomes this difficulty by exploiting the for-
warding histories accumulated naturally during the data-
and-events forwarding phase to sinks. GRASP com-
pletes the control loop via a lightweight stateless gradient-
ascending protocol with a slight storage overhead to manip-
ulate the forwarding histories through a Bloom filter. From
an architectural point of view, GRASP with FBF is shown
to be an attractive addition to any gradient-descending pro-
tocol thanks to its stateless routing property that does not
incur any protocol conflict with the underlying gradient-
descending protocols. Furthermore, our extensive simu-
lation study has shown that GRASP incurs a very small
overhead, and is robust to packet losses. Both its archi-
tectural merit and routing performance make GRASP very
attractive for practical use in conjunction with any gradient-
descending routing protocol.

GRASP needs to be studied further as follows. First,
we must study how to support sinks that constantly move
around without explicitly updating the entire gradient field.
Second, we need to study how to efficiently share a bitmap
across multiple sinks or manipulate it in mobile ad-hoc sen-
sor networks by using different footprint loss models other
than the aperiodic random footprint loss model evaluated
in our simulation. Finally, we need to study the behavior
of GRASP/FFP over real deployments that could possibly
include unidirectional wireless links.

8Current simulation runs AODV over the IEEE 802.11 MAC which
defines two variables for adjusting the retry count, LongRetryLimit and
ShortRetryLimit whose default values are 7 and 4, respectively. We set
these values to 4.
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Figure 5. Other sensitivity evaluations ( n = 80, m = 421, RND). Y (N) represents that a footprint loss
model is (not) used.
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Figure 6. Comparison against AODV (bitmap size = 421, RND).
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