
Distributed Communication Paradigm for Wireless
Community Networks

Puneet Sharma Sung-Ju Lee Jack Brassil
Mobile & Media Systems Lab
Hewlett-Packard Laboratories

Palo Alto, CA 94304
Email: {puneet,sjlee, jtb}@hpl.hp.com

Kang G. Shin
Dept. of Electrical Engineering & Computer Science

University of Michigan
Ann Arbor, MI 48109

Email: kgshin@eecs.umich.edu

Abstract— Distributed computing has been widely embraced
as a cost-effective means of performing compute-intensive tasks
by pooling the computational resources of collaborating sys-
tems. We envision the emergence of an analogous approach
to communication resource sharing which we call distributed
communication. Distributed communication enables sharing a
set of relatively low-speed WAN channels emanating from com-
munities of multi-homed devices interconnected with a high-
speed wireless LAN. We envisage opportunities to aggregate
cellular links from spontaneously formed ad hoc groups of mobile
devices, as well as broadband access links (e.g., DSL) from
neighboring residences. But, will individuals be willing to share
bandwidth as easily as they share bits? A prototype system that
we have constructed convinces us that the technical challenges of
distributed communication can be overcome. And there appears
to be no other means of satisfying the growing demand for access
bandwidth as quickly and as cheaply.

I. INTRODUCTION

Computing users are demanding ever more resource-
intensive services requiring high-speed Internet access, includ-
ing delivery of high-quality streaming media to the home.
Further, there is growing demand for ubiquitous access, as
consumers seek to engage in collaborative activities such
as multi-player gaming from mobile and wireless handheld
devices. Yet despite tremendous growth in raw networking
bandwidth within enterprises and core networks, access link
speeds remain modest and appear unlikely to increase signif-
icantly soon.

In the case of personal mobile wireless computing devices,
multiple wireless communication interfaces have become more
prevalent. Often these devices have two distinct types of
interfaces: a high-speed LAN interface and a relatively low-
speed WAN interface. The wireless LAN interface (e.g., IEEE
802.11x) is primarily used to connect to access points that
have a wired connection to the Internet. The WAN interface,
such as a 2.5G or later generation cellular link, offer near
ubiquitous Internet connectivity when a device is out-of-range
of an access point. There exists, however, a great disparity
between the bandwidths of the interfaces. For example, an
11 Mb/s WiFi connection has approximately 100 times the
typical transmission bandwidth of the Sony Ericsson CG-82
EDGE PC card operating with AT&T’s EDGE (Enhanced Data
for Global Evolution) service on their GSM/GPRS network.

Yet we claim that higher-speed communication can be
achieved even when devices are out-of-range of a wireless
LAN access point. Ad hoc or mobile collaborative communi-
ties (MC2) can be formed by a group of mobile computing
devices in close proximity connected through their com-
patible high-speed LAN interfaces. By pooling independent
communication resources, the community can aggregate the
bandwidths of all members’ WAN links to achieve higher-
speed connectivity to all members.

A similar form of communications resource sharing can
be envisioned to support broadband residential access. Today
Internet access speeds remain limited by both high broadband
access tariffs and enforced rate limits. But high-speed wireless
LANs are increasingly prevalent in homes, and the geographic
reach of these LANs can be readily engineered to reach
hot spots (and their associated wired access links) in nearby
residences.

In this paper we explore an emerging form of communica-
tion link resource sharing we call distributed communication.
We draw both inspiration and pause from the success of
computing resource sharing as developed in the distributed
computing community, where resources have long been ag-
gregated to perform computation-intensive tasks that would
have otherwise been unwieldy. Resource sharing has already
been shown to be of critical importance in mobile computing
and networking environments, where both computation and
communication resources are often scarce.

We show that a decompose-deliver-aggregate paradigm not
only promises to improve communication efficiency and per-
formance but also promises to enable new applications. We
argue that a combination of technical advances and economic
constraints will result in this type of resource sharing in
a wide and growing variety of networking environments.
The principal technical challenge in creating such systems is
that the shared communication resources are geographically
distributed (e.g., WAN links on separate hosts) and must be
coordinated in a decentralized fashion. The principal social
question is whether computing users will embrace forming
collectives to share bandwidth in the same way as they readily
share ‘content.’

The rest of the paper is organized as follows: Section II
introduces and defines the emerging distributed communica-

15490-7803-8938-7/05/$20.00 (C) 2005 IEEE

tion paradigm. In Section III we explore the issues and chal-
lenges of assembling, coordinating, managing, and monitoring
communication resources spread across multiple, collaborating
hosts We then present our bandwidth aggregation system in
Section IV. Additional technical and social challenges for
widespread adoption of distributed communication are dis-
cussed in Section V. The paper ends with concluding remarks
in Section VI.

II. DISTRIBUTED COMMUNICATION PARADIGM

Distributed computing has primarily focused on pooling
the computing resources of a collaborative system for faster
computation. Recently, distributed computing has been em-
ployed to leverage the idle computing power of several thou-
sands of Internet-connected computers to solve large scientific
problems, such as the Search for Extraterrestrial Intelligence
(SETI@home) [1] and the Great Internet Mersenne Prime
Search (GIMPS) [2]. Protein sequencing, breaking encryp-
tion codes, and 3-D film rendering are other examples of
problems being attacked with distributed computing. Each
task is decomposed into smaller subtasks that are mapped
and then executed on a set of collaborating nodes. Upon
completion of subtasks, their (partial) results are merged
together for the complete result. In an analogous fashion,
distributed communication is an emerging paradigm where
(i) communication resources (e.g., channels) are pooled, (ii)
networking tasks (e.g., layered video streams) are decomposed
into subtasks (e.g., component layers), and (iii) these subtasks
are mapped to different channels across multiple hosts with
communicated components integrated after delivery. In this
section we compare and contrast distributed communication
with distributed computing.

Low-bandwidth communication channels have long been
aggregated to create a virtual high-bandwidth link. But the
application of this conventional approach has been largely
confined to a single administrative and ownership domain.
Striping data across multiple, parallel communication channels
has been used to improve system performance or reliability in
relatively statically-configured disk storage systems [3] and in
fixed, wired LAN–WAN interconnection systems [4]. Inverse
multiplexing is used for link-layer aggregation in the Band-
width on Demand Interoperability Group (BONDING) [5] and
in Inverse Multiplexing for ATM (IMA) specifications [6].
In these approaches, each of the WAN connections being
“bundled” together originates from — and terminates at —
a common end-point.

Communication resource pooling has also been applied to
mobile, multi-homed wireless devices [7]–[10]. Once again,
the links being bundled emanate from a single device, and
hence are confined to a single administrative domain.

But the emergence of very high-speed wireless LANs now
permits sharing WAN links across multiple end-systems, and
frequently across administrative and ownership boundaries.
These lines have already been crossed by the distributed
computing community.

The primary reason for not adopting truly distributed com-
munication has been a lack of sufficient bandwidth for the
aggregation phase. Such limitation does not exist in the emerg-
ing mobile collaborative communities as described earlier.
Similar to distributed computing, the distributed communica-
tion paradigm has three stages: (i) task decomposition and
mapping, (ii) subtask execution, and (iii) subtask integration.

The communication tasks can be primarily categorized in
two types:

• Real-time tasks with timeliness requirement (e.g., stream-
ing).

• Non-real-time tasks without any timeliness requirement
(e.g., bulk data transfer).

Decomposition of real-time and non-real-time communi-
cation tasks into subtasks for distribution must be handled
differently. The non-real-time communication tasks are similar
to discrete computation tasks where the partial results from the
subtasks are integrated when the subtasks are completed. But
real-time communication subtasks need to continuously deliver
received data to the end-point for timely reassembly. Thus, the
decomposition techniques used in distributed computation can-
not be directly applied to distributed real-time communication.

Another difference between distributed computing and com-
munication environments is the type of shared resources, and
the rate at which those resources can change. Computing
resources offered in a distributed computing environment are
relatively reliable, though the instantaneous CPU load might
change rapidly. But wireless communication channels can
be highly unreliable, and may also suffer rapidly changing
congestion conditions. Clearly, the mapping and remapping
of communication subtasks in a distributed communication
setting differs from task assignment in a distributed computing
setting.

According to Amdahl’s Law [11] for parallel computing the
speedup is limited by the fraction of computation task that is
parallelizable. The speedup is further reduced due to overheads
associated with interprocessor communication, load imbalance
and additional computation. Theoretically, the communication
tasks are completely parallelizable using bit-striping. Still, it
is not possible to achieve ideal aggregate throughput due to
protocol issues such as packet reordering on heterogeneous
links, etc.

The decompose-deliver-aggregate paradigm of distributed
communication not only improves the performance for faster
downloads for large files but also enables new applications
such as high-quality streaming which might not be possible
over a single low-speed WAN link.

Distributed communication community members would
each enjoy higher-speed, statistically-multiplexed WAN ac-
cess, a service often far more desirable than private, but lower-
speed access. Other possible applications include receipt of
large data-sets quickly using swarming techniques such as
Bittorrent or via simultaneous file transfers using parallel FTP
or GridFTP. Similarly, in case of layered video streaming with
each layer assigned to a different communication channel can

1550

deliver streaming media to heterogeneous end-systems both
reliably and efficiently [12].

III. ISSUES AND APPROACHES IN REALIZATION OF

DISTRIBUTED COMMUNICATION

We next discuss the main issues and challenges we face
in realizing distributed communication systems and present
several approaches to address these challenges.

A. Application Decomposition and Integration

In general, a communication application must be decom-
posed and assigned based on (i) the availability of members
and their resources, and (ii) the application’s unique fea-
tures/requirements. More formally, an application A is decom-
posed into a set of sub-applications A1,A2, · · · ,An which are
then assigned to a set of members {m1,m2, · · · ,m�} by a task
mapping agent. Note that n = � does not hold in general, as
� and the amount and availability of each member’s resource
change with time.

Depending on (i) the number and condition of available
channels and (ii) the nature of sub-applications, the mapping
agent can make intelligent decisions on allocation/reallocation
of channels to the sub-applications [13]. For example, the I-
frames of an MPEG-coded video stream may be transmitted
via the most reliable subset of available shared channels, while
P- and B- frames can be transmitted via less reliable channels,
or even omitted if there are not enough channels available.

B. Execution Requirements and Environment

After decomposition, the communication subtasks are ex-
ecuted on the respective nodes they are mapped to. These
participating nodes may be asked to dedicate not only commu-
nication resources but computing and storage resources also
on the behalf of the community. In certain cases, the assigned
task may be as simple as packet forwarding and might not
require specific task setup at the node. But in some cases
the assigned subtasks might be considerably more involved,
consuming nontrivial resources. To participate in the parallel
download of a large file, a node would typically be asked
to execute a partial file transfer over its WAN interface and
then over its LAN interface. Thus, the assignment of an
appropriate (or optimal) subtask to a given node would vary
based on the overall application requirement, the feasibility
and performance of decomposition and mapping, and the
node’s available resources.

Ideally, a participating node should provide an efficient and
safe environment for the execution of a subtask. The execution
environment will determine how to create and perform the
subtasks. These issues regarding the execution environment
are similar to those seen in active networks [14]. While
packet forwarding is supported in most operating systems,
complex subtasks might require active execution environments
such as JanOS [15], CANEs (Composable Active Network
Elements) [16], and ASP EE [17].

C. Communication Dynamics

Both the availability and the quality of shared communi-
cation channels can be expected to vary with time. Yet these
dynamics must be monitored and communicated to the task
mapper to provide proper task assignments [18]. Community
membership itself will change as hosts join and leave the
community, due to either end-system failures (e.g., power
loss) or simply moving out-of-range of LAN communica-
tions. Wireless WAN channel quality may change often and
unpredictably because of fading, interference, and location-
dependent coverage gaps. Delay and delay jitter will change
as the heterogeneous, CPU-limited devices forwarding packets
between WAN and LAN interfaces are subject to time-varying
computing workloads.

How do we monitor these communication dynamics? One
possible approach is to deploy a monitoring agent within each
community to oversee the communication environment.

The main advantage of deploying a monitoring agent here
is the ease of detecting changes to community membership
quickly. The drawback, however, is that if the agent resides
on a single node it is difficult to monitor the WAN channel
performance of other nodes in the community. Moreover,
relying on a single (or even a few) monitor(s) can result in
both a performance and reliability bottleneck.

This problem can be solved by either replicating the mon-
itoring agent or making every member a monitoring agent,
i.e., distributed monitoring. Distributed monitoring works as
follows: Each member broadcasts its channel characteristics
and associated information (e.g., communication costs and
its energy balance) either periodically, upon detection of an
event, or when a threshold is exceeded. Each broadcast is
timestamped. Upon receiving such a broadcast all the other
members update the corresponding entry of their copy of the
community communication status database. The task mapper
can obtain a copy of the database in two ways. First, the
task mapper can request a copy of the database from any
community member. Requests can be sent to a randomly-
selected member, or a member identified by inspection of
the most recent database the task mapper has received. For
example, an inquiry might be directed to a member with ample
advertised available processing power, residual energy, or
network bandwidth. An inquiry might be issued periodically,
or be driven by an event such as the need to remap channels for
a newly-arriving flow. The second way in which a task mapper
can obtain the database is simply by receiving an update report
periodically or when a monitoring agent observes a significant
local event (e.g., sudden channel failure).

An alternative approach is to perform monitoring at the
location where the task mapping is done. When transport
protocols that require end-to-end feedback (e.g., TCP) are
used, end-hosts can piggyback their measured channel con-
dition and membership information (e.g., will move out, will
turn the device off because of low battery power, etc.) on
the acknowledgment/feedback packets. Out-of-band signaling
may be utilized when transport protocols without end-to-end

1551

handshaking such as UDP are running. Although this approach
has the advantage of easily monitoring communication channel
state, there may be delay in obtaining the information from
every member. To make matters worse, the feedback messages
may not reach the other end, due to wireless transmission
errors or unidirectional/asymmetric links. Hence, the right
preference would be to use a combination of the two ap-
proaches.

D. Collaboration Incentives

Distributed communication requires users to collaborate by
sharing their communication channels. But what are the incen-
tives for users to collaborate? In the case where many users
form a community to simultaneously access the same content
(i.e., multicast), participating community members will pre-
sumably be well-motivated to take advantage of distributed
communication. But what if only one host or a small fraction
of members is receiving content at others’ expense? Will
community members be willing to sacrifice their bandwidth
to permit other members to achieve statistical multiplexing
gains?

A somewhat related debate is underway with regard to
forwarding incentives in ad hoc network routing [19], [20]. In
ad hoc networks, when the destination node is outside the radio
transmission range of the source node, the communication end-
points rely on intermediate nodes on the path to forward the
packets for them. The source and destination nodes will, in
turn, forward data packets when they become the interme-
diate nodes for other communication pairs. Game-theoretic
arguments have been advanced to show that collaboration
by all participating nodes will result in maximum network
throughput. Some researchers suggest use of credit-based, or
reputation-based schemes to stimulate cooperation [19]. For-
warding in ad hoc networks, however, is somewhat different
from the bandwidth sharing we consider. In ad hoc networks,
nodes rely on each other to communicate amongst themselves.

In a distributed communications setting, nodes rely on each
other not for basic connectivity, but for improved performance.
As we will see in Section IV, a node completely controls
access to its shared communication resources, and can revoke
access if its communication needs are not being met by
other community members. Ultimately, it is the ability to opt-
in to achieve better performance, and the ability to opt-out
when necessary, that leads us to conclude that link sharing
is viable. Nonetheless, communities are more likely to form
within domains where a pre-existing trust (or cost sharing)
relationship exists. For example, an individual with multiple
devices (e.g., cell phone, PDA, laptop) interconnected with a
personal area network can benefit from resource sharing, as
can small teams of people working together.

E. Privacy, Security, Fairness and Other Issues

Distributing communications comes at the cost of surrender-
ing one’s resources for community consumption. It also incurs
the risk of exposing one’s communications to eavesdropping.
While passing sensitive information across shared channels

Fig. 1. A bandwidth aggregation service architecture.

should be avoided, encrypting data would be a recommended
practice. In addition, interleaving communications across mul-
tiple users would provide some protection against collusive
eavesdropping.

Participants in a link sharing group also face the lowering
of the barrier of one’s personal system to malicious attacks.
Clearly, participants must determine what communication sub-
tasks are suitable for execution in their environments. Certain
subtasks such as forwarding packets between interfaces using
software already installed on a system, arguably pose less of
a threat than supporting other more sophisticated and untested
subtasks.

Users of file sharing services tend to recognize that such a
system may serve a common goal but provide no assurance
of ‘fairness’ in any sense. Users of link sharing may approach
such systems in a similar spirit. Indeed, even the notion of a
‘system’ is not well-defined. While our discussion has focused
on a single node participating in one community, nothing
precludes a node from participating in multiple disjoint or
overlapping communities simultaneously.

IV. BANDWIDTH AGGREGATION FOR MC2

To explore an instance of a distributed communication
system, we constructed a prototype bandwidth aggregation
system for mobile collaborative communities (MC2), shown
in Figure 1. This prototype has enabled us to investigate many
of the technical challenges and tradeoffs described so far.
In this section we present this proof-of-concept, identify our
design decisions, and describe the system’s overall capabilities
and limitations.

A. Design Choices

1) Multiplexing Layer: A key issue in the overall system
design is the identification of the preferred protocol layer for
the multiplexing function. Since IP performs routing and mul-
tiplexing, it is natural to consider a network layer multiplexing
implementation. An IP-based solution could be implemented
exclusively at the communicating end-systems; in this case any
packet scheduling, reordering, and reassembly would occur
only at the source and at the destination. Though such a
network layer implementation can be achieved in several ways,
each requires end-system kernel modification, restricting the
availability of channel aggregation to data transfers between

1552

modified end-systems. An additional disadvantage of network
layer striping is that it could restrict the channel assignment
policies (i.e., the intelligent mappings of flows to available
channels) that we might seek to implement, since the network
layer is generally not aware of application characteristics and
requirements. Performing multiplexing at the network layer
does have the advantage of not requiring any changes to
existing applications.

An alternative solution is to perform multiplexing at the
transport layer. Once again, end-system protocol stacks would
require modifications, though transport-layer channel assign-
ment policies could potentially be made more easily aware
of application requirements. The obvious deployment issues
associated with either network- or transport-layer multiplexing
suggest a role for solutions using application-layer multi-
plexing. Although such an implementation would incur more
packet processing overhead, it requires no kernel modification
and is easy to install, maintain and monitor. Application layer
multiplexing also permits controlling packet scheduling on a
per-application, per-connection or per-packet priority basis.

2) Forwarding Mechanism: What forwarding mechanism
should an inverse multiplexer use to transmit a packet over a
chosen channel? Irrespective of a packet’s destination, differ-
ent packets must traverse different routes. There are several
means of achieving this. One approach is to change each
packet’s destination address to the IP address of the appro-
priate MC2 member’s WAN interface. When a packet arrives
at the MC2 its destination address is reverted back to the
original member destination address. But packet modification
and processing overhead at the forwarding nodes associated
with this approach would be prohibitive.

Another packet forwarding approach could use loose source
routing to forward a packet through the intermediary interfaces
associated with the desired WAN channel to traverse. This
would avoid the need to provide a special NAT-like packet
forwarding service beyond ordinary IP routing itself. However,
loose source routing has several, well-known weaknesses (e.g.,
use of IP options, extra router processing) as well as limited
router support, making it largely unworkable.

A preferred packet forwarding implementation would use
tunnels between the inverse multiplexer and each MC2 node.
Tunneling has long been used to establish static paths, and
most operating system network stacks today have built-in
support for tunnels. In such a system packet forwarding would
operate as follows. Unicast packets sent from an Internet-
connected source would be routed normally to the inverse
multiplexer, where each would then be forwarded, according
to the multiplexer’s flow-to-channel assignment policy, to the
tunnel corresponding to the appropriate WAN channel. Upon
arrival at the MC2 node, the packet would be decapsulated
and forwarded on the wireless LAN to its intended destination.

3) Proxy Placement: Another key system design question
is the appropriate placement of the inverse multiplexer in the
end-to-end connection. In principle, this function can be lo-
cated at almost any point between the WAN link terminations
and the connection end-point (e.g., origin server), including

the end-point itself. The preferred location depends on many
factors including the type of WAN links, whether collaborating
devices agree to connect to a common multiplexing point,
and how generally accessible the multiplexing service must be
from a wide range of origin servers. If all the WAN links from
the MC2 terminate at the same point, a preferred location for
the inverse multiplexer is that termination point.

If the proxy is located near the WAN link termination points,
then it is likely easier and more efficient for a wide range of
services to use the proxy to transfer data to the MC2. The
proxy can also be located at the network edge close to or
even at the origin server itself. While this location avoids
the potential restriction of requiring a common WAN link
termination point, MC2 members might have to subscribe to
different aggregation services to communicate with different
servers.

B. A Proxy-based System

Figure 1 shows a system that can be readily deployed
by a network access provider, wireless telecommunication
service provider, or a content distribution network operator.
The specific implementation we propose has three princi-
pal components: a dedicated appliance providing aggregation
proxy services, a standard LAN-based announcement and
discovery protocol for mobile host community construction
and maintenance, and standard protocol tunnels to facilitate
both communication across shared links and packet forwarding
at mobile hosts.

The dedicated aggregation proxy performs inverse multi-
plexing at the application layer, striping packets across avail-
able links to the community. Generic Routing Encapsulation
(GRE) [21] tunnels create channels between the proxy and
participating MC2 members, and support packet forwarding.
Each packet received by a member over the tunnel is auto-
matically decapsulated and forwarded via the wireless LAN
to the destination host. Since the destination is oblivious of
which member forwarded the data packets, no additional data
reassembly functionality is required at the receiver. Standard
announcement and discovery protocols such as the Service
Location Protocol (SLP) [22] are relied upon for community
and aggregated channel formation and management.

C. Simulation and Testbed Experiments

We studied the performance benefits of a proxy-based
bandwidth aggregation system through both simulation and
construction of a testbed. We performed various experiments,
including the transmission of high-quality video streams via
UDP over multiple links with reassembly at a single des-
tination node. These experiments successfully demonstrated
that some services that simply could not be handled by the
bandwidth of a single connection [13], could be delivered over
aggregated connections.

Using the ns-2 simulator we also measured TCP throughput
when transferring a 1MB file from a data source to a receiver
using 2∼14 identically-configured links aggregated into the

1553

0

400

800

1200

1600

0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

kb
/s

)

Number of Members

Raw Bandwidth
RR

WRR
Random

No Proxy

Fig. 2. Simulation result of TCP throughput.

TABLE I

CBR LOSS RATE (%).
of members Random RR WRR No proxy

2 75.15 75.15 75.15 87.57
4 50.31 50.3 50.32 87.57
6 25.48 25.45 25.5 87.57
8 1.14 0.61 0.59 87.57

10 or more 0 0 0 87.57

shared pool. We implemented three striping algorithms: ran-
dom, round-robin (RR), and weighted round-robin (WRR).
To provide a baseline for measured TCP throughput, we
also performed the experiment with a single channel (i.e., no
aggregation).

Figure 2 plots the measured TCP throughput as the MC2

size changes. The average throughput achieved with a single
link was 103.2kb/s. As expected, the TCP throughput increases
nearly linearly as the number of links grows under both RR
and WRR policies until saturation occurs with six links. This
saturation occurs due to the limit imposed by the receiver’s
maximum window. As the number of available channels
increases, the bandwidth-delay product increases, but TCP
cannot utilize all the available bandwidth because of the small
receiver window. The TCP throughput continues to increase
linearly if the receiver-advertised window is increased to
accommodate a larger bandwidth-delay product. The random
policy does not perform as well as (W)RR because it causes
undesired side effects, such as packet reordering and unstable
RTT calculation, thus reducing the TCP throughput.

Many media applications generate CBR traffic carried over
UDP. We studied the loss observed for an 8×115 kb/s =
920 kb/s CBR stream from a video source to a mc2 des-
tination. Table I shows the packet loss rate as a function
of the number of the community members. Without channel
aggregation we observe 87.6% loss because the CBR stream
rate was eight times the bandwidth of a single link. As more
links are pooled, the loss rate decreases.

We also conducted experiments on a Linux-based testbed to
validate our architecture and explore deployment issues that
might not readily emerge from our simulations. We measured
TCP throughput by transferring a 1MB file from a data source
to an MC2 receiver using two to four identically-configured,

0

100

200

300

400

500

1 2 3 4

T
hr

ou
gh

pu
t (

kb
/s

)

Number of Links

Raw Bandwidth
Round-Robin

Random
No Proxy

Fig. 3. Testbed result of TCP throughput.

aggregated links. Similar to the simulation study, we also
performed the experiment with a single channel both with and
without the aggregation proxy in the data path. Performance
was measured using both round-robin and random striping
policies. Figure 3 plots the measured TCP throughput as
the number of links in the aggregate bundle changes, with
error bars showing the minimum and maximum measured
throughput among the 50 trials.

The average TCP throughput achieved with no proxy was
45kb/s. The TCP throughput with a single link and the proxy
in the data path is 38kb/s, not significantly lower than the
throughput achieved without a proxy, indicating that the proxy
does not introduce a long delay. The TCP throughput measured
in the testbed was lower than the simulation results due to PPP
overhead and the presence of background traffic. However,
the trends with respect to the number of MC2 members were
similar in both cases. In summary, results from both simulation
and our testbed validate that the performance gains associated
with practical instantiation of distributed communication are
both significant and obtainable.

V. FURTHER CHALLENGES

The design of an effective inverse multiplexing system
becomes very challenging when the component links are het-
erogeneous, imperfect, and support time-varying workloads.
Wireless WAN links can be particularly treacherous to use
effectively; their transmission characteristics (i.e., bandwidth,
packet latency, loss) will vary — possibly dramatically —
as end-devices move around. Links from different service
providers may be of dissimilar technologies with different
communication characteristics and costs, complicating link
selection and task assignment. And even what appear to
be similar links offered by the same access provider may
introduce thorny problems such as dependent or correlated
transmission characteristics or outages.

The potentially large latencies introduced by packet for-
warding through power- and processing-limited mobile com-
puting devices is also a major challenge. Disparities in the
forwarding latency on different paths traversing heterogeneous
computing devices with time-varying computing workloads

1554

can introduce packet misordering in the end-to-end path,
dramatically decreasing aggregate communication rates. For
example, non-interactive multimedia streaming applications
will typically be lightly affected, though larger client buffer
capacities may be desired. Although packet reordering might
not reduce multimedia application performance noticeably,
it can complicate TCP RTT computation and decrease TCP
throughput.

In our investigations we have also observed that certain
applications that do not rely on TCP have trouble coping with
aggregated channels. For example, several of the most popular
streaming media servers use proprietary congestion control
algorithms that reduce bit rates in the face of congestion.
These control systems typically do a poor job of responding
to increases in available bandwidth, and thus failing to capture
the benefit of aggregated channels.

The possibility of widespread communication resource shar-
ing might stir the interest of behavioral economists. It is
immediately obvious that users will face disincentives to link
sharing. Access providers will presumably prohibit carriage
of data from users who are not their direct subscribers.
Though possibly not anticipated in current legal agreements
between access providers and their clients, it is likely that
those agreements will be updated to discourage or disallow
the practice. This raises the intriguing technical question as
to whether a service provider can detect the presence of data
traffic forwarded by, but not originating from, a subscriber.

A decline in the price of higher-speed access would also
discourage cooperative resource sharing. Barring unforesee-
able regulatory and communication infrastructure investment
incentives, the risk of such a pleasant outcome seems low.
There is scant historical evidence that a windfall awaits access
bandwidth consumers. At the same time, we can reasonably
expect that technological advances leading to increased aggre-
gate access bandwidth will permit access providers to increase
revenues by growing their subscriber base rather than offering
more bandwidth to their existing base.

VI. CONCLUSION

The bandwidth mismatch between high speed wireless
LANs and lower speed access networks has set the stage
for access link sharing across administrative and ownership
domains. We have made a case for distributed communica-
tions and its applications to aggregating cellular links and
broadband access links (e.g., DSL). The prototype bandwidth
aggregation system we have constructed has demonstrated that
capturing statistical multiplexing gains is technically feasible.
Link aggregation can realize new, highly desirable services
such as high-quality streaming media delivery or file sharing
(e.g., video downloads) that would otherwise be difficult or
costly to achieve.

We believe that an emerging distributed communication
paradigm will gain increasing importance with the growing
disparity in price and transmission speeds of wireless LANs
and Internet access technologies [23]. While there remain
many technical challenges in the realization of these systems,

they can be solved by the collective effort of the networking
systems research community. However, will the users forming
collectives to share bandwidth perceive the potential perfor-
mance gains to be worth the risk? Perhaps the greatest poser
is how many users will reply in affirmative to the question:
Buddy, can you spare a baud?

REFERENCES

[1] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,
“SETI@home-massively distributed computing for SETI,” IEEE Com-
put. Sci. Eng., vol. 3, no. 1, pp. 78–83, Jan. 2001.

[2] The great internet mersenne prime search (GIMPS). [Online]. Available:
http://www.mersenne.org/prime.htm

[3] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson, “RAID: High-performance, reliable secondary storage,” ACM
Computing Surveys, vol. 26, no. 2, pp. 145–185, June 1994.

[4] C. B. S. Traw and J. M. Smith, “Striping within the network subsystem,”
IEEE Network, vol. 9, no. 4, pp. 22–32, July/Aug. 1995.

[5] BONDING Consortium, “Interoperability requirements for n × 56/64
kb/s calls, version 1.0,” Sept. 1992.

[6] ATM Forum, “Inverse multiplexing for ATM specification, version 1.0,”
July 1997.

[7] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving
aggregate bandwidth on mutli-homed mobile hosts,” in Proc. of ACM
MobiCom, Atlanta, GA, Sept. 2002, pp. 83–94.

[8] A. C. Snoeren, “Adaptive inverse multiplexing for wide area wireless
networks,” in Proc. of IEEE GLOBECOM, Rio de Janeiro, Brazil, Dec.
1999, pp. 1665–1672.

[9] R. Kravets, C. Carter, and L. Magalhaes, “A cooperative approach to user
mobility,” ACM SIGCOMM Computer Communication Review, vol. 31,
no. 5, pp. 57–69, Oct. 2001.

[10] M. Papadopouli and H. Schulzrinne, “Connection sharing in an ad
hoc wireless network among collaborative hosts,” in Proceedings of
NOSSDAV, Florham Park, NJ, June 1999, pp. 169–185.

[11] G. M. Amdahl, “Validity of single-processor approach to achieving
large-scale computing capability,” in Proc. of AFIPS Conference, Reston,
VA, 1967, pp. 483–485.

[12] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. of ACM SIGCOMM, Stanford, CA, Aug. 1996, pp.
117–130.

[13] P. Sharma, S.-J. Lee, J. Brassil, and K. G. Shin, “Handheld routers: Intel-
ligent bandwidth aggregation for mobile collaborative communities,” in
Proc. of IEEE BroadNets 2004, San Jose, CA, Oct. 2004, pp. 537–547.

[14] K. L. Calvert, S. Bhattacharjee, E. W. Zegura, and J. Sterbenz, “Di-
rections in active networks,” IEEE Commun. Mag., vol. 36, no. 10, pp.
72–78, Oct. 1998.

[15] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: A java-oriented OS for
active network nodes,” IEEE J. Select. Areas Commun., vol. 19, no. 3,
pp. 501–510, Mar. 2001.

[16] S. Bhattacharjee, K. Calvert, Y. Chae, S. Merugu, M. Sanders, and E. Ze-
gura, “CANEs: An execution environment for composable services,” in
Proc. of DARPA Active Networks Conference and Exposition (DANCE),
San Francisco, CA, May 2002, pp. 255–273.

[17] R. Braden, B. Lindell, S. Berson, and T. Faber, “The ASP EE: An active
network execution environment,” in Proc. of DARPA Active Networks
Conference and Exposition (DANCE), San Francisco, CA, May 2002,
pp. 238–254.

[18] P. Sharma, S.-J. Lee, J. Brassil, and K. G. Shin, “Distributed channel
monitoring for wireless bandwidth aggregation,” in Proc. of IFIP-TC6
Networking Conference 2004, Athens, Greece, May 2004, pp. 345–356.

[19] S. Buchegger and J.-Y. L. Boudec, “Performance analysis of the CON-
FIDANT protocol (cooperation of nodes: Fairness in dynamic ad-hoc
networks),” in Proc. of ACM MobiHoc, June 2002, pp. 226–236.

[20] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring, “Modelling incentives
for collaboration in mobile ad hoc networks,” in Proc. of WiOpt, Sophia-
Antipolis, France, Mar. 2003.

[21] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic routing
encapsulation GRE,” IETF, RFC 2784, Mar. 2000.

[22] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location
protocol, version 2,” IETF, RFC 2608, June 1999.

[23] J. Gray, “Distributed computing economics,” Microsoft Research, Tech-
nical Report MSR-TR-2003-24, Mar. 2003.

1555

