
Distributed Authentication of Program Integrity Verification in Wireless Sensor
Networks

Katharine Chang and Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122
{katchang, kgshin}@eecs.umich.edu

Abstract

Security in wireless sensor networks has become impor-
tant as sensor networks are being used for an increasing
number of applications. The severe resource constraints in
each sensor make it very challenging to secure sensor net-
works. Moreover, sensors are usually deployed in hostile
and unattended environments, and hence, are susceptible
to various attacks, including node capture, physical tam-
pering, and manipulation of the sensor program. The au-
thors of [15] proposed a soft tamper-proofing scheme that
verifies the integrity of the program in each sensor device,
called the Program Integrity Verification (PIV). This pa-
per addresses how to authenticate PIV Servers (PIVSes)
in a fully-distributed manner. Our distributed authentica-
tion protocol of PIVSes (DAPP) uses the Blundo scheme [5]
and allows sensors to authenticate PIVSes without requir-
ing commonly-used trusted third parties, such as authenti-
cation servers (ASes), in the network. We implement and
evaluate both the DAPP and the PIV on Mica2 Motes and
laptops. We also analyze the security of DAPP under differ-
ent attack models, demonstrating its capability to deal with
various types of attacks.

1. Introduction

Wireless sensor networks are becoming important for
many emerging applications such as military surveillance,
alerts on terrorist attacks, burglar threats, fire, earthquake,
and volcanic emergency systems. Therefore, security in
sensor networks becomes very important. However, due to
the limitations of each sensor device’s battery energy, mem-
ory, computation, and communication capacities, achiev-
ing security in a sensor network has become a great chal-
lenge. Moreover, sensor networks are often composed of a
large number of small low-capacity devices and deployed in
hostile and unattended environments, thereby making them

susceptible to physical capture and compromise, which, in
turn, makes it difficult to keep the integrity of the original
sensor program. Even just one compromised sensor can
make the entire network insecure. Thus, making sensor de-
vices tamper-resistant is a must. Another important issue
is the authentication of the communication between sensor
nodes and the servers in the network. A sensor node has
to verify that the messages had really been sent by the gen-
uine sender, and protect itself from communicating with a
malicious server that pretends to be a legitimate one.

For the purpose of securing a network, there are usually
two lines of defense. The first line is intrusion prevention.
Typical intrusion prevention measures, such as authentica-
tion and encryption, can be used to prevent external nodes
from disrupting the network. However, intrusion preven-
tion can only counter outsider attacks, and cannot handle
insider attacks. For example, if a sensor node is physically
captured and compromised, then the attacker can obtain the
cryptographic keys held by the sensor node. Thus, intru-
sion prevention measures that often require sharing secrets
between nodes will not help defend against inside attacks.

The second line of defense is an intrusion detection sys-
tem (IDS) that can detect insider attacks of compromised
nodes in the network. Once an intrusion is detected, a re-
sponse measure can be made to minimize damages to the
network. Given the new vulnerabilities that continue to be
discovered, the IDS has to be effective and efficient in iden-
tifying attacks, and then successfully responding to them.

We implement and demonstrate a soft tamper-proofing
scheme based on the Program-Integrity Verification (PIV)
[15] on Mica2 sensor devices [3]. We also propose a dis-
tributed authentication protocol called DAPP, for sensors
to communicate with PIVSes securely without the AS in-
frastructure assumed in [15]. DAPP acts as the first line of
defense for the network by enabling a senor node to prove
the identity of a server before communicating with it. The
sensors will then use the PIV protocol to verify their pro-
gram with the authenticated PIVSes, and will be allowed to
join the network only after passing the verification test. The

1-4244-0423-1/06/$20.00 ©2006 IEEE

authentication here means the degree to which one commu-
nicating party can ensure the valid identity of another party
in the network. The DAPP we propose is used to enable
sensors to validate a PIVS to be safe to use.

The remainder of this paper is organized as follows. For
completeness we first give an overview of the PIV protocol
[15] in Section 2. We present the motivation of this work as
well as the assumptions we made, and give an overview of
DAPP design in Section 3. Section 4 describes the details
of DAPP. Section 5 analyzes the security of DAPP and PIV,
which is followed by our DAPP and PIV implementations
in Section 6. Section 7 presents the performance evaluation
of DAPP. Finally, we discuss the related work in Section 8
and conclude the paper along with future work in Section 9.

2. Background: Overview of PIV

The PIV protocol [15] verifies the integrity of the pro-
gram and data stored in a sensor device. It is purely
software-based protection from physical attacks in sensor
networks. It is also lightweight in that it is only triggered
infrequently, and the verification of each program incurs a
very small overhead, so it will not degrade normal sensor
functions and services.

The PIV Server (PIVS) verifies the integrity of the pro-
gram of each sensor device using the digests of the sensor
programs maintained in a database. Conventional authen-
tication servers (ASes) are used by sensors to ensure the
PIVSes are authentic, and are safe to communicate with and
execute the codes received from them.

The PIV protocol performs: (1) authentication of each
PIVS via the AS; (2) transmission and execution of PIV
code (PIVC); (3) program verification by PIVC and PIVS.
The sensor that wants to join the network will first ask an
AS for authentication of a PIVS. If authentication succeeds,
the sensor will then ask the PIVS for verification of its pro-
gram. During verification, the PIVS will send a mobile
agent, PIVC, to the sensor, and then computes a hash value
from the digest of the sensor program maintained in its data-
base. After the sensor receives the PIVC from the PIVS, it
executes the PIVC on its program to compute a hash value.
The hash value will then be sent back to the PIVS for ver-
ification. The PIVS finally checks if the two hash values
match to determine the integrity of the sensor’s program. If
the sensor passes the verification, then the PIVS registers
it in its database PIV DB which contains all successfully-
verified sensor IDs. Otherwise, the sensor will be locked,
with its ID deleted from PIV DB if it had passed PIV be-
fore, becoming unable to join the network. Fig. 1 depicts the
interactions among AS, PIVS, and the sensor during PIV.

Figure 1. Interactions among AS, PIVS, and
the sensor during PIV.

3. Motivation, Assumptions, and an Overview

We now state our motivation and the assumptions we
made, and give an overview of our DAPP design.

3.1. Motivation

Our main goal is to eliminate the need for ASes in the
PIV infrastructure. As the AS is needed for sensors to au-
thenticate PIVSes, it will easily become a bottleneck for
reliability, security, and communication. Also, requiring a
centralized service is inconsistent with the distributed struc-
ture of sensor networks. Moreover, sensors that are de-
ployed near the AS will consume more energy to route mes-
sages for other sensors, and will die of exhausted batteries
first. So, having a centralized AS will not scale well to a
large network.

The communication traffic to/from a single AS can, of
course, be reduced if the AS is replicated in the network.
However, since ASes act as trusted third parties, they are
presumed to be trusted and secure. Therefore, ASes will
need secure computing platforms to protect the servers from
attacks. Also, as ASes require more memory, more energy,
and stronger computation power than sensor devices, de-
ploying more ASes in the network will increase the cost for
deployment. For these reasons, we would like to remove
the need for ASes from the PIV infrastructure, and distrib-
ute the authentication function to PIVSes themselves.

3.2. Assumptions

Listed below are the assumptions we make in this paper.

A1. Sensors and PIVSes are deployed randomly in their
coverage area. Therefore, we have no prior knowledge
about the neighbors or the location of each sensor and
PIVS before deployment.

A2. Sensors and PIVSes in the network have unique node
IDs.

A3. PIVSes are equipped with more energy, larger mem-
ory, and more computation and transmission power
than sensor devices.

A4. PIVSes have all of the sensor programs stored in their
memory before deployment. The sensor programs
stored at the PIVSes are used for verification of the
integrity of the sensors’ programs.

A5. PIVSes have dual radio interfaces that the radios for
communication with sensors and other PIVSes will not
interfere with each other.

A6. After deployment, each PIVS has at least t neighboring
PIVSes.

3.3. Design Overview

We exploit the PIV [15] protocol summarized in Section
2 to protect the integrity of sensor programs. In order to
remove ASes from the PIV infrastructure, we use PIVSes
to perform the AS functions and to authenticate one another
to achieve the distributed authentication of PIVSes.

For PIVSes to authenticate one another before a sensor
starts to use the PIV protocol with one PIVS to verify its
program, PIVSes need to share some secrets with one an-
other. We use the idea of Blundo scheme [5] for establish-
ing pairwise keys in the network. Before deployment, each
PIVS and sensor node will be loaded with a function to gen-
erate pairwise keys. After deployment, sensors and PIVSes
can use the loaded function to establish pairwise keys with
any node in the network.

Besides the distribution of the AS function to PIVSes,
we also want to reduce the total number of messages ex-
changed in the network and the energy consumed by each
sensor with the use of distributed authentication.

4. DAPP

In the original PIV design [15], protection of a sensor
from a malicious server/code disguised as a PIVS/PIVC is
achieved by using the AS that acts as a trusted third party.
The AS can help a sensor ensure that the PIVS is authentic,
and the PIVC it receives from the PIVS is safe to execute.
Here, we propose a protocol, DAPP, for the sensors to au-
thenticate PIVSes without using such an AS.

For a sensor network that has a maximum of n sensor
nodes and s PIVSes, all sensors and PIVSes in the network
have unique node IDs. All PIVSes store all the sensor pro-
grams for verification of each sensor.

Listed below are notations used in the rest of the paper.

• A,B, . . . are principals, such as PIVSes or sensor
nodes.

• NA is a nonce generated by A, which is also a
randomly-generated number that is unpredictable and
is used to achieve freshness.

• KAB is the shared pairwise key between A and B.

• MAC(K,M) is the message authentication code
(MAC) of message M generated with a symmetric key
K.

• f is a symmetric bivariate k-degree polynomial for es-
tablishing pairwise keys in the network.

We apply the Blundo scheme [5] for setting up PIVSes’
and sensors’ pairwise keys. We can also use the pairwise
key establishment scheme in LEAP [22]. Next, we describe
the protocol using the Blundo scheme.

Recall that the PIVSes are computationally more power-
ful than sensors, and their memory, energy, and transmis-
sion capabilities are also greater than sensors’. Suppose,
after the deployment of PIVSes, each PIVS has at least t
neighbor PIVSes.

4.1. Initialization and PIVS Discovery Phase

We now describe the initialization and PIVS discovery
phase of DAPP. Note that nodes can be added to the network
later, and apply the same phase to join the network.

A. Pre-deployment Initialization Phase

Before the deployment of sensors and PIVSes, all the
nodes are secured. In this phase, we establish the identity
of each PIVS/sensor and its security basis. There are a max-
imum of n sensor nodes and s PIVSes. Not all sensor nodes
and PIVSes need to be deployed at once; some can join later
to the network. All s PIVSes have the n sensor programs
stored in their memory.

A key server randomly generates a symmetric bivariate
k-degree polynomial f(x, y) =

∑k
i,j=0 aijx

iyj over a fi-
nite field Fq, where q is a prime number that is large enough
to accommodate a cryptographic key. For each PIVS and
sensor node A, the key server computes f(A, y), and loads
the k + 1 coefficients as a function of y to node A. The
function is used for nodes to establish pairwise keys with
other nodes later in the network.

B. Post-deployment PIVS Discovery Phase

The sensors and PIVSes are then randomly deployed to
the field. After the deployment of sensors and PIVSes, they
can discover neighbor PIVSes within their communication
range in this phase.

After deployment, each PIVS will periodically broadcast
a PIVS Beacon Message containing its ID. The neighbor
PIVSes that receive this PIVS Beacon Message can estab-
lish shared pairwise keys with the PIVS. When PIVS B
wants to establish a pairwise key with PIVS A, it computes
f(B,A) by substituting y in f(B, y), the function pre-
loaded by the key server in the pre-deployment initialization
phase, with A. Likewise, A can compute f(A,B). Since
f(x, y) is a symmetric function, f(A,B) = f(B,A), there-
fore A and B can establish a pairwise key KAB = f(A,B)
between them. The two PIVSes can now verify one an-
other’s authenticity using the shared pairwise key KAB .

A → ∗ : PIVS Beacon Message(A)
B → A : B,NB , MAC(KAB , B|NB)
A → B : A,NA, MAC(KAB , A|NA|NB)
B → A : B, MAC(KAB , B|NA)

Note that here we use MAC for message authenticity and
integrity. MAC can be viewed as a secure cryptographi-
cal checksum for the message. The sender and the receiver
must both have a secret shared pairwise key to compute the
MAC. The computed MAC value helps the receiver detect
any change to the message content.

We optimize the protocol by including the nonce implic-
itly in the MAC computation. The receiver PIVS recom-
putes the MAC and compares it with the MAC value it re-
ceived. If the values match, then the receiver PIVS can be
sure of the sender PIVS’s identity. Otherwise, it will reject
the sender PIVS’s messages. After two PIVSes verified the
authenticity of each other with their shared pairwise key,
they will add the ID of each other to their PIVS Reference
List.

Moreover, the PIVS Beacon Messages allow the newly-
deployed sensors to receive the information about the
PIVSes within its communication range. If a newly-
deployed sensor doesn’t receive any PIVS Beacon Mes-
sage for a certain period of time, it will broadcast a PIVS
LookUp Message to search for a PIVS in its transmission
range. Any PIVS in the network that receives the PIVS
LookUp Message will then broadcast the PIVS Beacon
Message again, or just unicast it directly to the sensor.

4.2. PIVS Authentication Phase

After the initialization and PIVS discovery phase, the
sensors that want to join the network need to authenticate
the PIVSes before starting PIV and then have their pro-
grams verified. In this phase, the sensors will authenticate
PIVSes which will then authenticate each other for the sen-
sors.

Based on the strength of signals (PIVS Beacon Mes-
sages) received from all the PIVSes, a sensor node can

choose the one that is closest to it to verify its program. Sen-
sors will first choose PIVSes that are one-hop away from it
to authenticate. If no such PIVSes exist, then sensors can
communicate to PIVSes that are multiple hops away via
secure routing [11]. The sensor will first authenticate the
PIVS, and if the PIVS is trustable, the sensor will start the
PIV protocol [15] with it. However, if the PIVS fails to
authenticate itself, the sensor will choose another PIVS to
verify its program with, and restart the authentication phase
with the other PIVS.

For sensor E to authenticate PIVS A, it will first com-
pute the shared pairwise key KAE = f(E,A) with A. Sen-
sor E will then send a PIVS Auth Message to A, which in-
cludes a randomly-generated nonce NE and the MAC value
of NE computed using KAE . Upon receiving the message,
PIVS A will generate the shared key KAE = f(A,E), and
verify the PIVS Auth Message sent by E. If the message
is authentic, then PIVS A will send PIVS Ref Messages
including sensor E’s ID, nonce NE , and the MAC value
computed using the shared pairwise keys to the PIVSes on
its PIVS Reference List. The PIVSes that receive the PIVS
Ref Messages will check the authenticity of the message
it received. To check the authenticity of a PIVS Ref Mes-
sage, the PIVS simply recomputes the MAC value using the
shared pairwise key, and compare the MAC value included
in the message. If the two values match, then the message
is really sent from PIVS A since it has the correct pairwise
key. However, if the two values don’t match, then the mes-
sage is sent from a malicious PIVS faking to be A, and the
message will be discarded.

After a reference PIVS authenticates A, it will grant an
authentication ticket to A which can then provide the au-
thentication ticket to E, proving its authenticity. Each au-
thentication ticket includes the reference PIVS’s ID, and the
MAC value of NE computed using the reference PIVS and
sensor E’s pairwise key. One PIVS needs to show Nauth

authentication tickets to the sensor in order to pass the au-
thentication. The complete protocol of the PIVS Authenti-
cation Phase is shown below.

E → A : PIVS Auth Message(NE , MAC(KAE , NE))
A → B : PIVS Ref Message(E,NE , MAC(KAB , E|NE))
B → A : E, AuthTicket(B, MAC(KBE , NE)),

MAC(KAB , E|AuthTicket(B, MAC(KBE , NE)))
......
A → E : AuthTicket(B, MAC(KBE , NE))|

AuthTicket(C, MAC(KCE , NE))|..., MAC(KAE , NE)

For PIVS A to authenticate another PIVS B, A needs to
hold a pairwise key with B. Therefore, if B has received
PIVS Ref Message from A, it is on A’s PIVS Reference
List, and should share a pairwise key with A. When B
grants A the authentication ticket, it will also include the

MAC of sensor E’s ID and the authentication ticket com-
puted using A and B’s pairwise key KAB . If the MAC
value of B’s message matches, then A is sure that B is also
trustable, and will use the authentication ticket issued by B.
After A receives Nauth authentication tickets issued by its
reference PIVSes, it will forward the authentication tickets
along with the MAC value of NE computed using the pair-
wise key KAE to sensor E for authentication.

When sensor E receives the response from PIVS A, it
will first check if A has replied with the correct MAC value
of NE . If the value is correct, then E will continue to check
the Nauth authentication tickets. If the value is incorrect,
E will conclude that A failed the authentication. From
the Nauth authentication tickets issued by A’s referenced
PIVSes, the authentication result must mask the effects of d
or less malicious PIVSes. If we consider Byzantine failures
in the network, then t ≥ Nauth ≥ 3d + 1, where t is the
minimum number of neighbor PIVSes each PIVS will have
after deployment. If we don’t consider Byzantine failures,
then t ≥ Nauth ≥ 2d+1. Thus, the design parameter Nauth

needs to be determined by the PIVSes’ failure model.
If A provides a correct MAC value, then sensor E will

check the correctness of the authentication tickets and use a
simple majority rule to determine A’s authenticity. If more
than Nauth/2 of the authentication tickets have the correct
MAC value, then E will conclude that A is trustable. Other-
wise, E will try to verify its program with another PIVS, if
any, and restart the authentication procedure with that PIVS.

5. Security Analysis

We first discuss the network survivability in the event of
sensor and PIVS compromises, and then analyze the secu-
rity of DAAP and PIV against various attacks.

5.1. Survivability

After compromising a sensor or a PIVS, the adversary
can discover the node’s keying materials, such as the pre-
loaded key functions. If a PIVS is found to have been com-
promised, it can be evicted by using a revocation scheme
based on cooperation of its neighbor PIVSes. On the other
hand, if the compromise of a sensor is detected/suspected,
the sensor will be required to re-verify its program using
PIV. The sensor will be excluded from the network if it fails
to pass PIV.

For the case when the compromise of the sensors and
PIVSes go undetected, we need to analyze the survivability
of the network. For this, we will consider the general attacks
an adversary can mount after it compromises a node.

Since each node in the network is only preloaded with
the keying function for it to establish pairwise keys with
other nodes in the network, revealing such a function will

only allow the attackers to pretend to be that node. The
Blundo scheme [5] is proven to be unconditionally secure
and k-collusion resistant. That is, when no more than k
nodes are compromised, the adversary will know nothing
about the pairwise key between any two uncompromised
nodes in the network. However, if more than k nodes have
been compromised, then the symmetric bivariate k-degree
polynomial will be revealed, and the adversary will know all
the pairwise keys in the network. Therefore, it is important
to choose a large enough k for the polynomial to generate
the pairwise keys. As mentioned in [21], for the current
generation of sensor nodes, k can be around 200.

5.2. Defense Against Various Attacks in Sensor Net-
works

We now describe how DAPP and PIV can defend against
various attacks in sensor networks.

A. Defense Against Passive Attacks

In DAPP, all messages are sent out in plain text, along
with the MAC value of the message. Even though an at-
tacker can eavesdrop on the messages, the only content that
is revealed is the nonces that the sensors and PIVSes ex-
change. Therefore, the attackers will not gain any insight
by eavesdropping on the network.

After a sensor authenticates a PIVS, all the messages
transmitted between sensors and PIVSes in PIV are en-
crypted using shared pairwise keys. Therefore, the attackers
cannot get the content of the messages by simply eavesdrop-
ping on the messages in the network.

B. Defense Against Active Attacks

Having every message include the MAC value of the
message computed using a pairwise key between two nodes
to achieve authenticity and integrity can prevent an adver-
sary from spoofing or inserting false data. By including
nonces in the messages prevents replay attacks. For sen-
sors or PIVSes that keep dropping packets, the malicious
nodes can be detected by an IDS [13] in the network.

Service disruption and Denial-of-Service (DoS) attacks
are caused by malicious sensors or PIVSes. There is no
way to prevent such nodes from launching attacks. Again,
if there is an efficient and effective IDS [14, 13, 20] in the
network, we can rely on the IDS to detect and identify the
malicious sensors or PIVSes, and then design a PIVS revo-
cation scheme or use the PIV protocol to exclude malicious
nodes from the network.

Sybil attacks [8] are particularly harmful in sensor net-
works where a Sybil node illegitimately pretends to have
multiple identities in the network. It is not possible for the
attackers to launch Sybil attacks against DAPP since each

node will need to have a pairwise key with its communicat-
ing node to authenticate its identity. Since each node will
have a pre-loaded function for establishing pairwise keys,
no nodes can generate the pairwise keys and fake to be an-
other node without knowing the function.

However, if any two compromised PIVSes in the net-
work can collude together, then one compromised PIVS
can issue authentication tickets for any compromised PIVS
in the network. If one PIVS can find Nauth compromised
PIVSes to collude with, it can pass the authentication with
any sensor. DAPP can defend against the above-mentioned
attack because PIVSes have stronger transmission power
than sensors, so one sensor can also receive the PIVS Bea-
con Messages sent by some of a PIVS’s neighbor PIVSes.
Therefore, even though one sensor doesn’t know about the
entire topology of the network, it knows part of the network
topology in its proximity. So, if one PIVS shows authenti-
cation tickets from all other PIVSes that the sensor doesn’t
know, then one must suspect the PIVS. Or, a sensor can
even send a list of PIVSes that it wants to have authentica-
tion tickets from, and force the compromised PIVS to fail
the authentication.

6. Implementation of DAPP and PIV

This section describes our implementation of the DAPP
and the PIV protocol [15] on Mica2 Motes [3] and laptops.
The Mica2 sensor nodes have 128 Kbytes in-system repro-
grammable flash, and 4 Kbytes internal SRAM. We use Java
to write the PIVS, nesC [9] to write the Boot code with
assembly embedded inside, C embedded with assembly to
write the mobile agent PIV Code (PIVC), and assembly to
write the flash downloader.

Fig. 2 describes DAPP and the modified PIV we imple-
mented between PIVSes and a sensor. The sensor starts
the DAPP with one PIVS, and other reference PIVSes will
authenticate the PIVS for the sensor. The sensor will de-
termine the success or failure of the authentication of the
PIVS based on the response of the authenticating PIVS and
the authentication tickets from the reference PIVSes. If the
PIVS passes the authentication, the sensor will then start the
PIV protocol with the PIVS to verify its program.

6.1. Message Authenticity and Integrity

In DAPP, we use MAC to achieve message authenticity
and integrity, and allow sensors to authenticate PIVSes. The
security of the MAC depends on the length of the MAC.
Conventional security protocols use MACs of 16 bytes. We
choose to use HMAC-MD5 [12, 16] for generating MACs in
our implementation, and to truncate the output of the MAC
to use a 10 byte MAC.

Figure 2. Overview of the implementation of
DAPP and PIV between PIVSes and a sensor.

The most well-known and widely-used MAC algorithms
are CBC-MAC and HMAC [12]. CBC-MAC (Cipher Block
Chaining Message Authentication Code) utilizes block ci-
phers in CBC mode to create a message authentication code.
HMAC is a keyed-hash message authentication code and
is calculated using a cryptographic hash function in com-
bination with a secret key. Crypto++ 5.2.1 benchmarks [2]
are speed benchmarks for some of the most commonly-used
cryptographic algorithms. In Crypto++ 5.2.1 benchmarks,
HMAC-MD5 outperforms CBC-MAC-AES. Therefore, we
decide to implement HMAC-MD5 for MAC computation.

6.2. PIVS, Boot Code, PIVC, and Flash Downloader
Development

We now present some implementation details for each
component of DAPP and PIV.

A. PIVS Development

The Mica2 Mote sensor used for our implementation
runs under TinyOS. A laptop is used as a PIVS and a serial-
line communication forms the primary channel for wired
communication between a PIVS and the laptop. On the lap-
top, a simple Java application, SerialForwarder, provided
a relay between the serial data over a TCP/IP socket con-
nection. The PIVS sensor that connects to the laptop is for
sending and receiving messages from the other sensors and
PIVSes over the radio. The received messages will be re-
layed from the sensor to the laptop through the serial cable,
and the send messages will also be relayed from the laptop
to the sensor for broadcast or unicast.

The PIVS is written in Java, and we implemented
HMAC-MD5 [12, 16] for generating MAC when PIVSes
run DAPP. The shared pairwise key between two PIVSes

will be used for generating and verifying MACs. The key
length is 16 bytes and the MAC length is 10 bytes. All of
the sensor programs are stored on the laptop as files in bi-
nary formats, and are used for verification. PIVS calls a C
program to compute HMAC MD5 and hash over the stored
sensor programs to verify the integrity of the programs on
sensors. When sending PIVC to a sensor, the PIVS will read
the PIVC from a PIVC binary file, and send it over the radio
to the sensor.

The PIVS takes care of sensors’ requests for authentica-
tion, requests for update of a mobile agent PIVC, requests
for the hash key, requests for verification, and requests for
checking the verified sensors in its PIV DB. Upon updating
the PIVC or sending the hash key to the sensor, a simple
error checking is done by letting the sensors acknowledge
to the PIVS the previous data it received. If the data is not
the same, then there was data corruption during the previous
transmission, and the PIVS will resend the previous data to
the sensor.

PIVSes will randomly generate hash keys for each sen-
sor during verification. If the previously-sent hash key bytes
were corrupted, the PIVS will re-generate the corrupted
bytes of the hash key, and retransmit the hash key bytes to
the sensor. This is to prevent the sensors from reporting the
wrong hash key bytes and try to gain time to generate the
correct hash value for verification.

B. Boot Code Development

The Boot code is used for the sensor as a communication
module between the sensor and the PIVS. The Boot code
also allows the program pointer to jump back and forth be-
tween the Boot code, the PIVC, and the flash downloader.

We implemented the Boot code in nesC [9], along with
inline assembly mixed in nesC code. After the communi-
cation between the sensor and the PIVS has built up, the
Boot code will jump to the PIVC to get the version num-
ber of the PIVC, and then send it to the PIVS for checking
if the version number is up-to-date. If not, then PIVS will
send the new PIVC to the sensor, with 4 bytes of the PIVC
per message. The bytes of the PIVC received by the sensor
will first be stored in the SRAM. After one page, which is
128 words or 256 bytes, of the PIVC has been received, the
Boot code will jump to the flash downloader and write the
page from the SRAM to the Flash. After the entire PIVC
has been written to the Flash, the Boot code will report its
new PIVC version number to the PIVS again. If the ver-
sion numbers match, then PIVS will send the hash key to
the sensor for computing the hash value over its program.
Finally, the Boot code will jump to the PIVC to start the
hash computation over the entire Flash, and then send back
the hash value for verification. Upon receiving the verifica-
tion result from the PIVS, the Boot code will either activate

the main application code on the sensor if the sensor passes
the verification or otherwise lock the sensor to keep it from
joining the network.

The message-loss problem is handled with timeouts and
retransmissions. If a timer has expired and the sensor still
has not received any message from the PIVS, then the sen-
sor will resend the message to the PIVS.

C. PIVC Development

The PIV Code (PIVC), or the mobile agent, is written
in C along with inline Assembly. The main function of the
PIVC is to perform HMAC-MD5 on the sensor over the en-
tire sensor Flash for verification.

The hash keys we use for HMAC-MD5 has a key length
of 16 bytes, and the hash values are also 16 bytes. Our
design for the PIVC has the flexibility to change the hash
function, key length, and hash value length as needed. With
the update of a new version of the PIVC, the changes can
be made. When sending the hash key or the hash value over
the network, the PIVS and the sensor will always specify
the length of the data it is transmitting, and thus, the new
version of the PIVC will work correctly. The version num-
ber of the PIVC is placed at the last part of the PIVC. This is
to prevent the sensor from receiving only part of the PIVC
but holds the up-to-date PIVC version number. The size
of PIVC is about 10 Kbytes, and it takes about 5 minutes to
transmit the entire PIVC from the PIVS to the sensor. When
performing HMAC-MD5 over the entire 128 Kbytes of the
Flash, we hash 64 bytes at a time, and XOR the 2048 hash
values to get the final hash value for verification.

Since the PIVC needs to coexist with the Boot code in
the Flash, and the variables will all be stored in the SRAM,
we need to assign locations for the PIVC to be placed
in the Flash, and the PIVC variables in the SRAM with-
out overwriting the Boot code and its variables. We use
avr-objdump command in TinyOS to create a dump file
to analyze the Boot code memory information. The Flash
location will be set inside the PIVC C program. We place
the PIVC below the Boot code and the main application
code in the Flash. Then, when compiling and linking the
PIVC C program, we explicitly assign the SRAM location
for the PIVC. The PIVC and the Boot code will also use
SRAM space for variable value passings, such as the pass-
ing of the PIVC version number from the PIVC to the Boot
code.

D. Flash Downloader

The flash downloader is written in assembly for writing
one page of data to the sensor Flash with the one page of
data in SRAM. The sensor Flash is divided into two con-
stant sections, the Read-While-Write (RWW) section and
the No Read-While-Write (NRWW) section [1]. Fig. 3

Figure 3. Read-While-Write section vs. No
Read-While-Write section in the sensor Flash.

shows the limit between the two sections in the sensor
Flash.

The main differences between the two sections are:

• While erasing or writing a page inside the RWW sec-
tion, the NRWW section can be read.

• The CPU is halted during the entire operation of eras-
ing or writing a page located inside the NRWW sec-
tion.

Therefore, our flash downloader is placed in the NRWW
section to allow read while writing a page of the PIVC to
the RWW section in the Flash.

The program memory is updated in a page by page fash-
ion. We use self-programming in the Flash to write the data
to the Flash from SRAM. Before programming a page with
the data stored in the SRAM, we first perform a page erase
on the Flash. We then fill in the temporary page buffer one
word at a time with the data in the SRAM. We finally per-
form a page write to write the data in the page buffer to the
page in the Flash and complete the update.

7. Performance Evaluation

We first present the evaluation results using simulation.
Then, we evaluate the computation and communication cost
of DAPP, and the storage requirement for a sensor and PIVS
to keep the pairwise keys.

7.1. Evaluation

We simulated DAPP with random networks consisting of
1000 sensors and 250 PIVSes in a 1000 × 1000 unit2 area.
We assume each sensor has a communication range of 150
units, and PIVS normally communicates within 200 units.
Each sensor node initially is given 0.5 J of energy. Once a
sensor node runs out of battery, it dies.

We compare the number of sensors alive when DAPP
is used to when only one AS is available in the network

Figure 4. Number of sensors that remain alive
using DAPP and AS for authentication, with
(A) ReAuth = 0.05 and, (B) ReAuth = 0.1.

for authentication. In our simulation, the AS is placed at
(x = 1070, y = 1070). When DAPP is used for authen-
tication, PIVSes monitor and cooperate to authenticate one
another, but the sensor only needs to communicate with the
authenticating PIVS. We choose Nauth = 5, i.e., a PIVS
needs to show 5 authentication tickets to one sensor to pass
the authentication, for our simulation. When a dedicated
AS is employed for authentication, since the AS is usually
farther away from the network and placed in a safe area,
the sensors might need to route through other sensors to
reach the AS. After the authentication, the authenticated
PIVS will act as a cluster head, and sensors will periodi-
cally transmit reports to the PIVS for data gathering.

Each sensor has a probability of ReAuth that it needs
to re-authenticate with its cluster head or PIVS. Our eval-
uation is done for different re-authentication probabilities
ReAuth. Fig. 4 shows the number of sensors alive us-
ing DAPP and a dedicated AS for authentication, with
ReAuth = 0.05 and 0.1.

Fig. 4 shows that using DAPP can have more sensors
alive in the network than using a single AS in the network.
Especially when the network is deployed in a highly hos-
tile environment, and the sensors need to re-authenticate
PIVSes more often, DAPP becomes more valuable.

For the same network, we also compare the messages ex-
changed and the average sensor energy consumption in the
network when using DAPP and a dedicated AS. In the case
of DAPP, since PIVS has dual radio interfaces, the commu-
nications between PIVSes will not interfere sensor commu-
nications. For each sensor to authenticate one PIVS, there
are 2 messages exchanged between the sensor and the PIVS.

Since there are 1000 sensors in the network, assuming no
transmission error has occurred, at least 2000 messages
must be exchanged in the network for each sensor to au-
thenticate one PIVS. And the average energy dissipated on
each sensor for every sensor to authenticate one PIVS is 782
uJ. If a single AS is used in the network, then there will be
an average of 21,873 messages exchanged in the network,
and the average energy dissipated on each sensor for every
sensor to authenticate one PIVS is 7,860 uJ. The increase of
message traffic and energy consumption comes from sen-
sors relaying authentication messages for other sensors. It
is not difficult to see that the sensors deployed near the AS
will die first due to relaying more messages for other sen-
sors.

7.2. Computation Cost

The computation overhead of DAPP mostly comes from
the setup of pairwise keys and the generation/verification
of MAC value of the messages. We show below that both
actions are very efficient.

A. Pairwise Keys Establishment

In DAPP, two nodes (either a sensor or PIVS) establish a
pairwise key to authenticate their identities to each other.
The Blundo scheme [5] is used to establish the pairwise
keys between nodes. A node needs to compute k modu-
lar multiplications and k modular additions for a k-degree
polynomial in order to generate a key. As stated in [21], if
we choose k = 100, the size of the pairwise key to be 64
bits, and the size of node ID to be 16 bits, then the cost of
computing a pairwise key is only about 1/10000 of that of
creating a RSA signature, or the same order for computing
an AES encryption.

B. MAC Generation and Verification

We use HMAC [12] for MAC generation and verification
in DAPP. HMAC does not rely on encryption, but instead
uses a cryptographic hash function in combination with a
secret key. According to [17], HMAC consumes approxi-
mately 45.6 uJ if it runs on a Mote, which is less than the
energy for transmitting 3 bytes.

7.3. Communication Cost

The communication overhead of DAPP is associated
with a PIVS’s authentication request to its neighbor PIVSes.
For a PIVS to authenticate another PIVS, 2 messages need
to be transmitted. A PIVS has to authenticate itself with
Nauth neighbor PIVSes in order to pass the authentica-
tion. Therefore, there will be 2Nauth messages transmit-
ted. However, DAPP will only be used before a sensor runs

PIV and wants to authenticate a PIVS. Since a sensor will
only run the PIV protocol infrequently, the communication
overhead is not high. And since PIVSes have dual radio in-
terfaces, the communications between PIVSes will not in-
terfere sensor communications.

7.4. Storage Requirement

Each sensor and PIVS needs to store a k-degree poly-
nomial for establishing pairwise keys, and will occupy
(k+1) log q

8 bytes. For a sensor to authenticate one PIVS,
it needs to establish a pairwise key with it. The sensor
will also need to decrypt the Nauth authentication tickets is-
sued by the authenticating PIVS’s reference PIVSes. There-
fore, in DAPP, each sensor will need to establish at least
Nauth+1 keys before it can authenticate a PIVS. Since each
key is 128 bits (or 16 bytes) long, if we choose Nauth = 5,
then a sensor will only need to store 6 keys, so a total of
96 bytes will suffice. Since a Mica2 Mote has 4 Kbytes
SRAM, using 96 bytes to store keys requires only 2.3% of
the sensor SRAM. PIVSes have more memory than sensors,
therefore can store more keys than sensors.

Overall, DAPP is scalable and efficient in computation,
communication, and storage in sensor networks.

8. Related Work

Weimerskirch and Thonet [19] present a security model
for low-value transactions, especially focusing on authenti-
cation in ad-hoc networks. They use recommendation pro-
tocol to build trust relationships and extend it by requesting
for references in ad-hoc networks. Each node maintains a
local repository of trustworthy nodes in the network, and a
path between any two nodes can be built by indirectly using
the repositories of other nodes. The authors also introduced
the idea of threshold cryptography [7] in which as long as
the number of compromised nodes is below a threshold, the
compromised nodes cannot harm the network operation.

Hubaux et al. [10] list the threats and possible solu-
tions for basic mechanisms and security mechanisms in
mobile ad-hoc networks. They develop a self-organizing
public-key infrastructure. In their system, certificates are
stored in local certificate repositories and are distributed
by the users. Bauer and Lee [4] propose a distributed au-
thentication scheme that is efficient and robust using the
well-known concepts of “secrets sharing” cryptography and
group “consensus”. However, it still needs a centralized
Processing Center (PC) which is responsible for coordinat-
ing the distribution of secret keys to each node in the net-
work, thus lowering the value of its distributed nature.

Saxena et al. [18, 6] present a secure, efficient and a fully
non-interactive admission control protocol and schemes that

allow a pair of nodes to compute a shared key without a cen-
tralized support in ad-hoc networks. Without the assistance
of any centralized trusted authority, they also use secret
sharing techniques based on bi-variate polynomials. As a
comparison, our work focuses on authentication of servers,
and [18, 6] feature admission control and pairwise key es-
tablishment.

9. Conclusions and Future Work

In this paper, we presented a distributed authentica-
tion protocol of PIVSes (DAPP) for sensors to authenticate
PIVSes in sensor networks, and implemented DAPP and the
PIV protocol [15] on Mica2 Motes. We also made modifi-
cations and improvements to the original PIV design. Our
main contribution is the development of DAPP, to achieve
the authentication of PIVSes without requiring a dedicated
and trusted authentication server (AS), an important depar-
ture from [15]. DAPP maintains the distributed nature of
sensor networks, and reduces the total traffic in the network
and the energy consumption on each sensor, compared to
the case of using a centralized trusted AS.

However, an intrusion detection system (IDS) for sensor
networks is needed to initiate PIV on suspicious sensors af-
ter their initial admission, and is needed to detect malicious
PIVSes in the network. Once the IDS identifies any mali-
cious or malfunctioning sensors, it can collaborate with the
PIV protocol to request for the sensor to re-verify with the
PIVS. Once a malicious PIVS is detected in the network,
other PIVSes can collaborate to revoke it. Unfortunately,
there is not much work done on intrusion detection for sen-
sor networks. This is a matter of our future inquiry.

References

[1] Atmel co., 8-bit AVR Microcontroller with 128 KBytes In-
System Programmable Flash - ATmega128, ATmega128L
http://www.atmel.com/dyn/resources/prod documents/
doc2467.pdf.

[2] Crypto++ 5.2.1 benchmarks,
http://www.eskimo.com/˜weidai/benchmarks.html.

[3] Crossbow co., MICA2 - Wireless Measurement System
http://www.xbow.com/Products/Product pdf files/
Wireless pdf/MICA2 Datasheet.pdf.

[4] K. Bauer and H. Lee. A distributed authentication scheme
for a wireless sensing system. In Proceedings of the 2nd In-
ternational Workshop on Networked Sensing Systems, INSS
’05, June 2005.

[5] C. Blundo, A. Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung. Perfectly-secure key distribution for dynamic
conferences. In Advances in Cryptography - Crypto ’92,
August 1992.

[6] C. Castelluccia, N. Saxena, and J. H. Yi. Self-configurable
key pre-distribution in mobile ad-hoc networks,. In The 4th
International IFIP-TC6 Networking Conference, May 2005.

[7] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In
Advances in Cryptography - Crypto ’89, August 1989.

[8] J. R. Douceur. The sybil attack. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems, IPTPS ’02,
March 2002.

[9] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to net-
worked embedded systems. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation 2003, June 2003.

[10] J.-P. Hubaux, L. Buttyàn, and S. Ĉapkun. The quest for se-
curity in mobile ad hoc networks. In Proceedings of the 2nd
ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing, MobiHoc ’01, October 2001.

[11] C. Karlof and D. Wagner. Secure routing in wireless sen-
sor networks: Attacks and countermeasures. In Proceedings
of the 1st IEEE International Workshop on Sensor Network
Protocols and Applications, May 2003.

[12] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. IETF Network Work-
ing Group, RFC 2104, February 1997.

[13] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating rout-
ing misbehavior in mobile ad hoc networks. In Proceedings
of the 6th Annual International Conference on Mobile Com-
puting and Network, MobiCom ’00, August 2000.

[14] A. Mishra, K. Nadkarni, and A. Patcha. Intrusion detection
in wireless ad hoc networks. IEEE Wireless Communica-
tions, 11(1):48–60, February 2004.

[15] T. Park and K. G. Shin. Soft tamper-proofing via program in-
tegrity verification in wireless sensor networks. IEEE Trans-
actions on Mobile Computing, 4(3):297–309, May/June
2005.

[16] R. Rivest. The MD5 Message-Digest Algorithm. IETF Net-
work Working Group, RFC 1321, April 1992.

[17] S. Sancak, E. Cayirci, V. Coskun, and A. Levi. Sensor wars:
Detecting and defending against spam attacks in tactical ad-
hoc sensor networks. In 2004 IEEE International Confer-
ence on Communications, ICC ’04, June 2004.

[18] N. Saxena, G. Tsudik, and J. H. Yi. Efficient node admission
for short-lived mobile ad hoc networks. In Proceedings of
the 13th IEEE International Conference on Network Proto-
cols, ICNP ’05, November 2005.

[19] A. Weimerskirch and G. Thonet. A distributed light-weight
authentication model for ad-hoc networks. In Proceedings
of the 4th International Conference on Information Security
and Cryptology, ICISC ’01, December 2001.

[20] Y. Zhang and W. Lee. Intrusion detection in wireless ad hoc
networks. In Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking, Mobi-
Com’00, August 2000.

[21] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved
hop-by-hop authentication scheme for filtering false data in-
jection in sensor networks. In IEEE Symposium on Security
and Privacy, May 2004.

[22] S. Zhu, S.Setia, and S. Jajodia. Leap: Efficient security
mechanisms for large-scale distributed sensor networks. In
Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS ’03, October 2003.

