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Abstract—Constructing runtime tasks, or operating system-level processes/threads, from the components of software design models

is crucial to the model-based development of embedded control software. A better method should explore more design choices and

reduce the overheads of the runtime system to meet the timing and resource constraints of embedded control software. This paper

presents a novel, two-step method for systematic and automatic construction of runtime tasks from software design models. It uses

graph transformation to construct a task set meeting system-level end-to-end (e2e) timing constraints. Its first step decomposes the

system-level e2e timing constraints into the components’ timing constraints, which form a necessary condition for any valid and

feasible schedule. The second step iteratively merges the components into tasks and sequences their executions. A thus-constructed

task set is proven to meet both intercomponent precedence and system-level e2e timing constraints and to minimize runtime

overheads by minimizing the total number of resultant tasks. Our evaluation results based on randomly generated software models

have shown that the proposed method outperforms commonly used methods and is also scalable.

Index Terms—Task construction, model transformation, model-based design, embedded software.
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1 INTRODUCTION

SOFTWARE for today’s large embedded control systems is
very complex, consisting of many intercommunicating

components for various devices and control functions.
These embedded control systems are usually mission and
safety-critical. The control software for these systems must
then meet stringent timing constraints imposed by the
target applications. On the other hand, the platform—con-
sisting of supporting software, such as operating system
(OS) and middleware, and hardware for the execution of
application software—is typically resource-limited. Finding
feasible solutions to the problem of running such complex
software with stringent timing constraints on a resource-
limited platform poses a serious challenge to the designers
of embedded control software.

Model-based software design, which focuses on archi-

tecture-level optimization instead of traditional code-level

optimization, has been shown to be very promising [4],

[10], [21]. In model-based software design, an abstract

software model is first synthesized using software compo-

nents to implement the designed control functions. Since

the software must be organized as tasks in order to be

implemented as threads/processes for scheduling and

execution on a platform, the component-based software

model must be transformed to a task-based model while

considering all constraints as the design process progresses.

This transformation step, called task construction in our e2e
software design process, is essential for software imple-
mentation, as well as for offline analyses to ensure the
system correctness. It is highly desirable and necessary to
automate such a task-construction process in order to
support automation of the e2e software design process
and to explore better solutions quickly and effectively in the
large design space.

This paper presents a novel method for automatic task
construction, which can be integrated into an existing/
emerging e2e software design tool chain. The method starts
with a discretized control represented in a component-
based software model with the precedence and e2e timing
constraints specified. The components in the model are
assumed to be allocated to the devices on a platform that
supports multitask scheduling. For such a model, tasks can
be constructed in two steps. The first step derives the timing
constraints of each component, including its invocation rate,
earliest-start-time (EST), and latest-completion-time (LCT),
from the precedence and e2e timing constraints. The
resulting components’ timing constraints form a necessary
condition for any valid and feasible schedule of the
software and, thus, can be used to verify each choice and
prune those choices leading to infeasible solutions at each
step. The second step iteratively groups the components to
form tasks according to rate similarity and execution overlap
to reduce the number of constructed tasks, which, in turn,
lowers the storage and runtime overheads of task manage-
ment, without complicating task scheduling and runtime
management in OS. During the task construction, the
components in each task are sequenced for execution using
the minimum-EST heuristic.

The task construction is, in general, a difficult problem
because it may require transformation of a model in one
model-of-computation (MoC) to a model in another while
preserving the properties of the original model. Such a
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model transformation between different MoCs is not always

possible, nor easy. In this paper, we consider only the case

where the MoC supported by the platform always comes

with richer semantics than the MoC used for software

design. As the platform MoC comes with richer semantics,

there may exist multiple models in the platform MoC with

the same properties as the original software design model

after making a transformation. Although our approach is

based on transformation of the models in two specific

MoCs, similar algorithms can be developed to implement a

model transformation between any two MoCs that are

semantically transformable.1 As it is based on graph

transformation, our proposed approach can fully automate

the task-construction process while still allowing the

designer to interact with the e2e design process iteratively

to make architecture-level trade-offs and provide criteria to

evaluate the system optimality under complex, and some-

times conflicting, design constraints.
The rest of the paper is organized as follows: Section 2

states the system models and the task-construction pro-

blem. Section 3 details our task-construction method and

algorithms. Section 4 presents the experimental results

using randomly generated software models. Section 5

discusses related work. The paper concludes with Section 6.

2 SYSTEM MODEL AND PROBLEM FORMULATION

The task construction is to generate individual schedulable

OS processes/threads from a software architecture that

implements the discretized control functions. Any task

construction method should then be based on models for

the software architecture and tasks.

2.1 Software Architecture Model

The software architecture in our task construction is

modeled as a set of concurrent transactions, each of which

describes software components and their interactions in an

e2e information processing flow.

Definition 1. A transaction is defined as a weighted directed

acyclic graph, GT ¼ ðC;L; loc; F ;HÞ, where

. C is a set of port-based software components;

. L is a set of directed links representing synchronous
data communications, each of which connects an
output port Oi of a component ci to an input port Ij
of another component cj (with fOig \ fIjg ¼ ; for all
components);

. loc : C ! Nþ defines a function that uniquely maps a
component to an integer representing a computation
device on the target platform;

. F : C
S
L! Qþ0 defines a weight function that maps

a component/link to a nonnegative rational number in
Qþ0 , representing the resource demand;

. H defines a set of system-level timing constraints of a
transaction, including invocation rates, release offsets
for each input, and a deadline for each output.

In Definition 1, the components in C are considered as
basic building blocks, each of which is modeled as a
reactive port automaton [22]. Upon invocation, a compo-
nent executes a set of predefined functions in a run-to-
completion manner, transforms the inputs to outputs, and
delivers the result(s) to all of its output ports upon
completion of its execution. This indicates that the
components in our model are process-oriented and not
object-oriented. For a transaction containing components
whose structures are modeled in an object-oriented model-
ing language, such as UML [18], we can transform the
model to one with only process-oriented components by
tracing the interaction models (e.g., collaboration diagrams
and/or sequence charts in UML) in the object-oriented
model and generating port-dependency graphs (PDGs), as
described in [10]. The transformation requires that the
potential blocking caused by the mutually exclusive access
of an object’s internal data between its method calls be
uncovered and then included in the PDG as a part of the
component’s resource demand.

In this work, we start with discretized control, so no
cycle exists in a transaction model. A component without
any incoming link, called an input component, models the
beginning of the transaction. An input component is
triggered by an external signal, such as a timer or a data-
arrival event. The designer is responsible for discretizing
the control with a proper transaction rate to maintain the
freshness of data. Similarly, a component without any
outgoing link, called an output component, models the
completion of concurrent computations of the transaction.
Synchronous, directed links specify the precedence con-
straints among the components, indicating a firing token
sent to a downstream component. A noninput component
starts only when all its inputs are available. This implies
that the MoC for components’ concurrency in a transaction
follows synchronous data flow (SDF) [9]. An invocation of a
transaction, therefore, starts upon release of its earliest
input component and finishes upon completion of its last
output component.

Here, we also assume that the task construction starts
with a model whose components have already been
allocated to the computation devices using, for example,
the techniques in [14], [27]. These techniques consider only
resource consumptions. For every component c, locðcÞ
defines the device that will execute c. The resource demand
F ðcÞ of a component c, in terms of uninterrupted computa-
tion time, can then be determined based on the character-
istics of the device where c is located. Similarly, the resource
demand F ðlÞ needed for communications of components on
different devices can also be determined according to the
network characteristics. The communication delays be-
tween components on the same device are assumed to be
negligible (F ðlÞ ¼ 0).

Each transaction Ti is specified with a set of system-level
e2e timing constraints obtained from control discretization,
including invocation rate riðcinÞ and release offset oiðcinÞ for
each input component cin, and relative deadline DiðcoutÞ for
each output component cout. The invocation rate, riðcinÞ,
models the frequency at which an input is updated. Under
the synchronous transaction model, all the input compo-
nents, and, consequently, all other components, of the
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transaction must run at the same rate. Such a rate ri is called
the invocation rate of the transaction Ti and satisfies the
relationship ri ¼ riðcinÞ. For a transaction whose inputs
arrive aperiodically, we mark its rate as event-triggered.
The release offset, oiðcinÞ, is defined as the distance in time
between the start of the transaction’s invocation period and
the event/data arrival at cin. It is used to model the
synchronization among different inputs. The deadline,
DiðcoutÞ, specified for each output component cout, bounds
the duration from the start of the invocation period to the
completion of the output component cout. We allow the
transaction Ti’s period Pi � DiðcoutÞ (where Pi ¼ 1=ri),
implying that there can be multiple active instances of a
transaction. However, every component ci must satisfy
F ðciÞ � Pi, implying that component ci can have at most
one active instance at any given time.

The system software model can then be represented by a
set of concurrent transactions in each system mode that
represents the system runtime status. We allow data
communications among concurrent transactions in such a
software architecture model. Keeping the communications
in a transaction following the SDF model, we relax the
directed links of the data communications between different
transactions to carry no firing tokens. Therefore, a compo-
nent may start its execution upon availability of its inputs in
the same transactions and without block-waiting for data
from other transaction(s). In case the data among different
transactions are carrying firing tokens, for example, in the
multirate control scenario, signal-aggregation functions are
required to satisfy the balance equations of SDF. The
software architecture model may also contain multiple
concurrent transaction sets, each of which contains transac-
tions for a given system mode. Different components,
communications, and e2e timing constraints are allowed to
be specified for the same or different transactions running
in different modes.

Fig. 1 shows an example of a software architecture model
with the above definition. The model contains three
transactions, T1, T2, and T3, with their components allocated
to two computation devices. T1 has an input component c1

with rate r1 and release offset o1 and an output component
c5 with deadline D1. T2 is an event-triggered (aperiodic)
transaction with an input c6 triggered by an external event
and a deadline D2 for its output c7. T2 and T1 communicate
via components c7 and c3. The data passed from c7 to c3

does not carry any firing token, modeled as a dashed link.
T3 has two inputs, c8 and c9, with rates and offsets of (r2; o2)

and (r2; o3), respectively, allocated on different devices. T3

also has two output components, c12 and c13, with their
relative deadlines D3 and D4, respectively.

2.2 Task Model

A task in our system is the basic unit that can be scheduled
directly by the supporting software, such as OS, on a
computation device. In most of today’s supporting soft-
ware, a task is typically implemented as a process or thread.
We assume that the block-waiting thread architecture in
[19] is used to implement tasks. The thread execution
follows run-to-completion semantics. In the task model, we
make no assumptions on how a task is scheduled for its
execution.

Definition 2. A task is defined as � ¼< �; P ; d; o; w; loc > ,
where

. �: a sequence of components;

. P : task’s invocation period;

. d: task’s relative deadline;

. o: task’s release time offset;

. w: � ! Qþ0 is the task’s resource demand with
wð�Þ ¼

P
c2� F ðcÞ þ

P
l2� F ðlÞ; and

. loc: � ! Nþ maps each task to an integer representing
a computation device.

In this model, a task may contain components from
different transactions. All components in a task are executed
sequentially with run-to-completion semantics. In other
words, � defines a total order of the components in a task � .
If component ci�1 precedes component ci in � (i.e., ci�1 � ci),
ci cannot start before the completion of ci�1, regardless of the
relationship between ci�1 and ci in the original model. locð�Þ
restricts each task to not crossing the boundary of a
computation device, meaning that no task contains the
components allocated to different computation devices. This
condition, along with the static allocation of components,
binds each task statically to a computation device. The
resource demand of a task includes the resource demands for
the constituent components’ computation, F ðcÞ, and for their
communications, F ðlÞ. Since the components of a task reside
on the same device and execute sequentially,F ðlÞ in a task can
be ignored. Thus, we use wð�Þ ¼

P
c2� F ðcÞ as � ’s resource

demand in the rest of this paper.
The runtime software architecture can then be modeled

as a set of task graphs, each of which models the runtime
architecture of the concurrent transaction set for a system
mode. A task graph consists of the above-defined tasks as
nodes and internode communications as edges. The readi-
ness for execution of a task is controlled by 1) the task’s
release offset, which is defined as the duration between the
start of its period and the time when the task can run, and
2) the data generated by the task’s predecessors and
required for the task’s execution. The model of computation
for a task graph with thus-defined tasks is a timed
multithreading model [15] with a relaxation that the task
execution is controlled by the release guard protocol [23].

Fig. 2 shows an example of task graph for the software
system in Fig. 1. In this task graph, components from
different concurrent transactions (c1, c2, c3 from T1 and c9

from T3) can be grouped and sequenced to run in the same
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Fig. 1. An example software model with three transactions.



task (�1). The dashed link between �2 and �1 implements the
data communication without a firing token between c7 and
c3 in Fig. 1. It indicates that the release of �1 depends on its
release offset only. Other links in Fig. 2, representing task
dependencies with release guard control, implement the
data dependencies with firing tokens in Fig. 1.

2.3 Problem Statement

Given the above definitions and assumptions, our task-
construction problem can be regarded as a model-transfor-
mation problem, determining which components should be
in which task, their execution sequence, and the tasks’
timing attributes. This task-construction problem is stated
formally as follows:

Given a software architecture model containing concurrent
transactions T ¼ fT1; T2; . . . ; Tmg and the e2e timing constraints
in fHig, transform T into tasks � ¼ f�1; �2; . . . ; �ng such that

S1. 8ck 2 C, there exists one and only one task �i 2 � with
ck 2 �i.

S2. Meeting �i, Pi, di, and oi of every task �i 2 � leads to
satisfaction of the precedence constraints in Li and the
system-level timing constraints in Hi of every transaction
Ti 2 T .

S3. The total number of the thus-constructed tasks j� j is
minimal while the �i of every �i executes contiguously.

We want to develop a method for automatically
transforming T to � while satisfying S1, S2, and S3. In such
a transformation, S1 ensures that the constructed tasks
perform the same system functionality (as before the
transformation) and with the same application workloads.
S2 guarantees the implementation with the thus-con-
structed tasks to meet the original system constraints. S3
minimizes the total runtime task-management overhead
while still maintaining the unblocking nature of tasks. Note
that the problem of meeting these conditions with a given
set of communicating components is NP-hard [26], so we
need heuristics to make the transformation scalable to large
embedded systems.

During the transformation, tasks are generated for each set
of concurrent transactions under the same system mode. For a
multimode system, the transformation needs to be repeated
for each mode. Repeating the transformation for each mode
may result in the same component(s) assigned to different
tasks in different modes. This is acceptable at runtime and
does not violate S1 since the system modes are mutually
exclusive and the system reorganization is inevitable during

mode transition. After the tasks are constructed, generation of
a task graph is a trivial process of identifying the commu-
nicating components in different tasks and creating links for
communications among those tasks.

3 THE TASK-CONSTRUCTION METHOD

The task-construction problem is complex as there are a large
number of ways to group the components in a software model
to form a task set. Different ways of grouping components
result in different resource consumptions and performances
of the final system. One, therefore, has to make design trade-
offs and evaluate/validate whether all constraints are met, or
not, at each construction step.

Our task construction relies on a two-step process to
search for a solution that maintains the schedule flexibility
and minimizes the runtime overheads. This process is
illustrated in Fig. 3.

3.1 Timing Assignment

The first step in the task construction process, called timing-
assignment, determines the timing constraints of each
component, which include the invocation rate, the earliest
start time (EST ), and the latest completion time (LCT ) of
the component. They are assigned conservatively so that
meeting these constraints will automatically satisfy the
system-level e2e timing constraints.

The rate assignment is achieved through a rate-propaga-
tion process. As the rates are only specified for the input
components of a transaction, the process uses a breadth-
first-like algorithm to assign the components’ rates, starting
from the inputs. It assigns the rates of reachable compo-
nents, whose rates have not been assigned, to the rate of
their predecessors along the directed links, until the output
component(s) is reached.

Derivation of EST starts from the input component(s)

and traverses the transaction Ts by following directed links

toward the output component(s). During the visit to

component ci, the method determines EST ðciÞ along the

current incoming link. For ci with m � 1 incoming links,

EST ðciÞ is finalized as the latest EST among all its

incoming links.

EST ðciÞ ¼
max1�j�mfEST ðcji�1Þ þ F ðc

j
i�1Þ þ F ðl

j
i�1;iÞg

if ci is not an input component
oTsðciÞ if ci is an input component;

8<
:

ð1Þ
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where lji�1;i is the link between ci and its immediate
predecessor cji�1 along the jth incoming link (1 � j � m),
F ðciÞ and F ðlji�1;iÞ are the resource demands of component
ci and link lji�1;i, respectively; oTsðciÞ is ci’s release offset if ci
is an input component; the max operator chooses the latest
EST among all ci’s incoming links.
LCT ðciÞ is derived similarly by traversing a transaction

from each output component backward to the input
component(s). Given ci has m � 1 outgoing links, LCT ðciÞ
is determined after all its successors’ LCTs are assigned, as
follows:

LCT ðciÞ ¼
min1�j�mfLCT ðcjiþ1Þ � F ðc

j
iþ1Þ � F ðl

j
i;iþ1Þg

if ci is not an output component
DTsðciÞ if ci is an output component;

8<
:

ð2Þ

where lji;iþ1 is the link between ci and its immediate successor
cjiþ1 along the jth outgoing link; DTsðciÞ is the deadline
specified at the output component; themin operator chooses
the earliest LCT among all of ci’s outgoing links.

The components’ ESTs and LCTs derived using the
above method form a necessary condition for a valid and
feasible schedule of the transaction. A schedule is said to be
valid if all components’ precedence constraints are pre-
served. A schedule is said to be feasible if all of the e2e
timing constraints are met. This is shown in Lemma 1.

Lemma 1. For any component schedule � with component
sequence < c1; c2; . . . ; cn > , � is valid and feasible only if the
start and completion times of any component ci in �, denoted
by sðciÞ and eðciÞ, respectively, satisfy both EST ðciÞ � sðciÞ
and eðciÞ � LCT ðciÞ.

Proof. The proof is straightforward by using contradiction.
For feasibility, any component ci with sðciÞ < EST ðciÞ in
� implies that ci starts before the completion of some of
its predecessors, contradicting the fact that � is valid.
Thus, EST ðciÞ � sðciÞ must be true. Similarly, any
component with LCT ðciÞ < eðciÞ makes � infeasible.
Thus, eðciÞ � LCT ðciÞ must be true. tu

Lemma 1 holds for the timing assignments of both the
components in a transaction and the components of con-
current transactions communicating through data with firing
tokens. According to Lemma 1, the pair ðEST ðciÞ; LCT ðciÞÞ
defines an execution time window for component ci in a
valid and feasible schedule. We can, therefore, use ESTs
and LCTs to verify the satisfaction of the constraints and
prune those solutions that violate them. ESTs and LCTs
can further be used to verify the satisfiability of e2e timing
constraints before tasks are constructed and software
scheduling mechanisms are determined. In case the condi-
tion LCT ðciÞ � EST ðciÞ � F ðciÞ is not met for any compo-
nent, no feasible schedule can possibly be found and the
design parameters must be changed.

3.2 Task Formation

The second step in the process, called task formation,
constructs tasks by grouping and sequencing the compo-
nents in the transactions. The objective of this step is to
generate a minimum task set in which each task can run

continuously if it runs alone. Tasks in such a set can be
directly implemented as processes/threads on a target
platform and do not require special support for task-
execution control from the underlying system. To generate
such tasks, the components in each task must 1) run at the
same rate, 2) be located on the same device, and 3) execute
sequentially in a run-to-completion manner. Further, the
task should not contain any idle time inside itself. Task � ’s
internal idle time, denoted by �ðciÞ, is the time between the
completion of a component ci, eðciÞ, and the start of its
immediate successor ciþ1, sðciþ1Þ, in � ’s component sche-
dule �, i.e., �ðciÞ ¼ sðciþ1Þ � eðciÞ, where ci and ciþ1 both
belong to � . If there exists an internal idle time within � ,
then max8cið�ðciÞÞ > 0. The existence of internal idle times
within a task requires special mechanisms to control the
component interrelease time within the task (for example,
the system function call delay() or sleep() implemented in
OS), which complicates task implementation, scheduling,
and runtime execution management.2 Note that the block-
ing and preemption times during the execution of a task are
not considered as internal idle times under this definition.

Given c1; . . . ; cn are the components of a concurrent
transaction set T ¼ fT1; . . . ; Tmg with the components’
timing constraints assigned, our task-construction process
starts with an initial set of n tasks � ¼ f�1; . . . ; �ng, each of
which contains one component, and is modeled as
�i ¼< ci; 1=rðciÞ; LCT ðciÞ; EST ðciÞ; F ðciÞ; locðciÞ > . T h e s e
tasks are then merged iteratively to minimize the total
number of tasks in the final system. The components from
different tasks are sequenced during the merge according to
their timing constraints. In this process, we must address
two issues: 1) determine which tasks are to be merged and
2) sequence the components after the merge.

Selection of tasks to be merged. Tasks are merged
iteratively. At each iteration, our algorithm selects two tasks
on the same computation device for merge according to rate
similarity and execution overlap. Rate similarity requires the
selected tasks to have harmonically related invocation rates.
Execution overlap requires the selected tasks to have over-
lapping execution windows. These criteria ensure the non-
existence of task internal idle times, as proven in Lemma 2.

Lemma 2. Given two tasks �i ¼< �i; Pi; di; oi; wi; loci > and
�j ¼< �j; Pj; dj; oj; wj; locj > (Pi � Pj) with contiguous
c o m p o n e n t s e q u e n c e s �i ¼ fa1; a2; . . . ; amg a n d
�j ¼ fb1; b2; . . . ; bng, �i and �j are merged to form a new

task �ij without any internal idle time in �ij if and only if:

1. Pi is a divisor of Pj (Pj ¼ NPi, where N is an
integer).

2. Executions of �i and �j overlap at the beginning:

maxðoi; ojÞ �minðoi; ojÞ �
wi if oi � oj;
wj otherwise:

�
ð3Þ

3. �j has a sufficiently long execution time to fill idle
times between the invocations of �i:
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wj þ ðN � 1Þwi �
ðN � 1ÞPi if oi � oj;
ðN � 1ÞPi þ oi � oj otherwise:

�

ð4Þ

Proof. Sufficiency: According to Condition 1, Pj ¼ NPi, we

need to consider only one cycle of Pj. Denote the start

and completion times of component ak 2 �i by siðakÞ and

eiðakÞ, those of component bl 2 �j by sjðblÞ and ejðblÞ, and

those of component ci (ci ¼ ak or bl) in merged �ij by

sijðciÞ and eijðciÞ.
Suppose oi � oj. We have

oj � oi � wi; oj ¼ sjðb1Þ; oi ¼ siða1Þ
) sjðb1Þ � siða1Þ � wi
) siða1Þ � sjðb1Þ � siða1Þ þ wi ¼ eiðamÞ:

So, the executions of �i and �j overlap. According to

Condition 3, we have

wj þ ðN � 1Þwi � ðN � 1ÞPi
) wj � ðN � 1ÞðPi � wiÞ:

Since the maximum idle time during Pi is Pi � wi when

�i runs alone, the maximum idle time during Pj � Pi
when running �i alone is ðN � 1ÞðPi � wiÞ. So, wj �
ðN � 1ÞðPi � wiÞ implies that the idle time between the

completion of the current �i and the start of the next �i

during Pj can be filled by �j.
Similarly, for the case of oi > oj, oi � oj � wj ensures

the overlapping execution of �i and �j and wj is long
enough to fill not only all ðN � 1ÞðPi � wiÞ, but also
between oj and oi.

According to the above discussion, for any pair of
components ci and ciþ1 in �ij after the merge, if
ci ¼ ak; ciþ1 ¼ akþ1, �ðciÞ ¼ �ðakÞ ¼ 0 since �i has no
internal idle time. Similarly, if ci ¼ bl; ciþ1 ¼ blþ1,
�ðciÞ ¼ �ðblÞ ¼ 0 since �j has no internal idle time. If
ci ¼ ak; ciþ1 ¼ bl, according to Conditions 2 and 3,
sijðciÞ < sjðblÞ < eijðciÞ. This results in sijðblÞ ¼ eijðciÞ.
Thus, �ðciÞ ¼ 0. Similarly, we can prove �ðciÞ ¼ 0 for
ci ¼ bl; ciþ1 ¼ ak. Therefore, satisfying the three condi-
tions can lead to �ðciÞ ¼ 0 for all components in the
merged component sequence �ij.

Necessity: Suppose Pi is for �i to start with a1 and Pj
for �j to start with b1 (oi � oj), the difference of the
release offsets between �i and �j at the kth cycle of Pj,
denoted by �kðb1Þ, can be computed as

�kðb1Þ ¼ ðkPj þ ojÞ �min kPj þ oj; kPj
Pi

j k
Pi þ oi

� �
k ¼ 0; 1; 2; . . . ;

LCMðPi;PjÞ
Pj

� 1:
ð5Þ

Suppose ai in �i is the immediate predecessor of b1 in
�ij, then �ijðb1Þ ¼ sijðb1Þ � eijðaiÞ � �kðb1Þ. To guarantee
�ijðb1Þ ¼ 0, �kðb1Þ ¼ 0 must hold for any k. According to
(5), �kðb1Þ ¼ 0 holds when Pi is a divisor of Pj, i.e.,
Pj ¼ NPi. The case of oi > oj can be proven similarly.

For Condition 2, let us assume oij ¼ oi (a1 is the first
component in �ij). This implies oi � oj. Since �ijðciÞ ¼ 0
for any ci in �ij, b1 must satisfy �ijðb1Þ ¼ 0. This implies
the existence of ai in �i such that eijðaiÞ ¼ sijðb1Þ.
Therefore,

eijðaiÞ ¼ sijðb1Þ
) sijðaiÞ < sjðb1Þ < eijðaiÞ
) siða1Þ < sjðb1Þ � eiðamÞ
) sjðb1Þ � siða1Þ þ wi; siða1Þ ¼ oi; sjðb1Þ ¼ oj
) oi þ wi � oj
) oj � oi � wi
) maxðoi; ojÞ �minðoi; ojÞ � wi:

Likewise, we can prove that the condition is also true for
the case of oi > oj.

For Condition 3, let us assume oij ¼ oi first. �ij has
�ðciÞ ¼ 0 for any component ci. Given Pj ¼ NPi, the
completion time of �ij can be computed as

oij þ wij þ
P

k �ijðckÞ ¼ oij þ wij
) oi þ wij ¼ oi þ wj þNwi
) oi þ wj þNwi ¼ oi þ w1

j þ ðN � 1Þwi þ wi þ w2
j

) oi þ wj þNwi � oi þ ðN � 1ÞPi þ wi
) wj þ ðN � 1Þwi � ðN � 1ÞPi:

In the above derivation, w1
j is the resource demands by

the components in �j that are executed during
(oi; ðN � 1ÞPi þ oi), while w2

j is the resource demands
by the remaining components in �j. Similarly, for the
case of oij ¼ oj, the above derivation will become

oij þ wij þ
P

k �ijðckÞ ¼ oij þ wij
) oj þ wij ¼ oj þ wj þNwi
) oj þ wj þNwi � oi þ ðN � 1ÞPi þ wi
) wj þ ðN � 1Þwi � oi � oj þ ðN � 1ÞPi:

ut

According to Lemma 2, we can first merge �i and �j on
the same computation device with Pi ¼ Pj, then with
Pj ¼ N � Pi. For the latter, we can roll up �i to create
N tasks �ki ¼< �i; Pj; d

k
i ; o

k
i ; wi; lociÞ ð1 � k � NÞ during each

cycle of Pj with the parameters modified as:

. dki ¼ ðk� 1Þ � Pi þ di;

. oki ¼ ðk� 1Þ � Pi þ oi.
These N tasks �1

i ; . . . ; �Ni can then be merged with �j as
individual tasks of the same rate. Note that only those tasks
that meet all conditions in Lemma 2—not tasks that only
meet Pi ¼ N � Pj—will be rolled up. This ensures that the
tasks are either merged into one (if it passes the timing
check) or are kept separate (if it fails the timing check) when
the process completes. Thus, the size of a task set after each
merge is always nonincreasing. We further constrain the
merge to start with the tasks with the minimum computa-
tion resource demands wð�iÞ when there are more than two
eligible tasks, thus making task selection deterministic.

For the components in aperiodic transactions, our
process merges those of the same transaction with their
executions overlapping into one task. The resulting tasks
are aperiodic.

Sequencing components. The components within a task
must execute sequentially. Sequencing components subject
to their timing constraints is NP-hard [7]. Both EST and
LCT have been used as heuristics in real-time systems to
sequence tasks in a schedule to meet precedence con-
straints. Since our objective is to generate a near-minimum
task set without introducing internal idle times, heuristics
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used for scheduling, such as latest-start-time and deadline
monotonic that can yield near-optimal schedule, may not be
optimal for generation of the minimum task set without
internal idle times. Thus, we choose minimum-EST-first as
our heuristic to execute the components as early as possible
in the merged task.

We adopt a branch-and-bound process to determine
the sequence of components. EST is used to expand a
branch and the component’s execution time window
ðEST;LCT Þ is used to bound the search. Specifically,
given �i ¼ < a1; . . . ; an > and �j ¼< b1; . . . ; bm > are the
component sequences of two tasks, �i and �j, with oi < oj,
we insert b1; . . . ; bm into �i in their execution order in �j

to form �ij of the merged task �ij. Let the start time of
component al in �i be siðalÞ and its completion time be
eiðalÞ. An eligible position for bj (assuming after ai) in �ij

should satisfy: 1) EST ðaiÞ < EST ðbjÞ � EST ðaiþ1Þ, 2)
maxfeijðaiÞ; eijðbj�1Þg � sjðbjÞ, and 3) no timing constraints
of bjþ1; . . . ; bm and aiþ1; . . . ; an are violated after inserting bj.
The start time of bjþ1; . . . ; bm in �j and aiþ1; . . . ; an in �i

should then be updated using

siðaiþ1Þ ¼ eijðbjÞ; siðakÞ ¼ siðak�1Þ þ F ðakÞ; ð5Þ

sjðbjþ1Þ ¼ eijðbjÞ; sjðblÞ ¼ sjðbl�1Þ þ F ðblÞ: ð6Þ

If there does not exist any position for bj that satisfies all
of the above conditions, we consider the process failed and,
hence, keep the two tasks separate. The algorithm for
sequencing components in a task merge is detailed in
Algorithm 1.

Algorithm 1 Component sequencing.

begin

1 initialize the search with start-point p 1 and end-point

q n;

2 for j ¼ 1 to m do

3 find i between ½p; q� in �i with

EST ðaiÞ < EST ðbjÞ � EST ðaiþ1Þ;
4 if no such i then exit-loop;

5 find k between ½i; q� in �i with

siðakÞ � LCT ðbjÞ � F ðbjÞ < siðakþ1Þ;
6 if no such k then exit-loop;

7 find a position l between ½i; k� in �i to insert bj;

8 if no such l can be found then returnfail;

9 else

10 insert bj to �i before l;
11 update sjðbkÞ for bjþ1; . . . ; bm;

12 update siðakÞ for alþ1; . . . ; an;

13 if any alþ1; . . . ; an with eiðapÞ > LCT ðapÞ or any

bjþ1; . . . ; bm with ejðbqÞ > LCT ðbqÞ then return fail;

14 p l;

15 end-if-else

16 end-for

17 if j < m then

18 add the rest components bj 2 �j to the end of �i;

19 revise sijðbjÞ; eijðbjÞ for these components;

20 end-if

21 return succ, �ijð�iÞ;
end.

Lemma 3 shows that the task merging with the above

algorithm does not introduce any internal idle time.

Lemma 3. Given two tasks �i and �j with the same rate, if both

component sequences �i and �j are with �iðaiÞ ¼ 0 and

�jðbjÞ ¼ 0 and oi < oj < oi þ wi or oj < oi < oj þ wj, then

the merged sequence �ij that is obtained from using

Algorithm 1 has �ijðciÞ ¼ 0 for every ci.

Proof. We prove this lemma by contradiction. Suppose

there exists a ci in �ij such that �ijðciÞ > 0 in �ij of the

merged task �ij, then

�ijðciÞ ¼ sijðciþ1Þ � eijðciÞ > 0:

We examine the following two cases:
Case 1: ci; ciþ1 are from the same task �i. Since ci and

ciþ1 are immediately next to each other in �ij, ci; ciþ1

must be immediately next to each other in �i according
to the algorithm. �iðciÞ ¼ siðciþ1Þ � eiðciÞ > 0. This con-
tradicts �iðaiÞ ¼ 0 for �i.

Case 2: ci; ciþ1 are from different tasks. Without loss of
generality, we can assume ci 2 �i and ciþ1 2 �j. According
to the algorithm, ci and ciþ1 are next to each other in �ij

after merging only if there exists < ci; cj >2 �i between
which ciþ1 is inserted. Suppose �k

ij and �kþ1
ij are the

sequences before and after inserting ciþ1 and there are
k components in �j that have been merged with �i.

�k
ij ¼ c1; . . . ; ci; cj; . . . ; cnþk

�kþ1
ij ¼ c1; . . . ; ci; ciþ1; cj; . . . ; cnþkþ1:

After inserting ciþ1, we have skijðcjÞ ¼ skþ1
ij ðciþ1Þ and

ekijðciÞ ¼ ekþ1
ij ðciÞ. If �ijðciÞ > 0, then

sijðciþ1Þ � eijðciÞ > 0
) skþ1

ij ðciþ1Þ � ekþ1ðciÞ > 0

) skijðcjÞ � ekijðciÞ > 0

) sk�1ðcjÞ � ek�1ðciÞ > 0
) s0

ijðcjÞ � e0
ijðciÞ > 0:

�0
ij is the sequence of �i without any component in �j

inserted. So, �0
ij ¼ �i. According to the above derivation,

we must have �iðciÞ ¼ siðcjÞ � eiðciÞ > 0. This contradicts

the fact that �i is contiguous.
Since only the above cases are possible for immediate

adjacent components in the merged sequence, we can
conclude that �ijðciÞ ¼ 0 for �ij. tu

After the selected tasks are merged and their compo-

nents are sequenced, we can finalize the merged task’s

properties of

�ij ¼ ð�ij; Pij; dij; oij; wij; locijÞ

with

Pij ¼ Pi ¼ Pj;

dij ¼
di þ wj if di � dj
dj þ wi if di > dj

�

oij ¼ minðoi; ojÞ;
wij ¼ wi þ wj;
locij ¼ loci ¼ locj:
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Theorem 1. The tasks constructed above satisfy the three
conditions in the problem statement.

Proof. For S1, since the task construction starts with each
component in a task and no component is duplicated in
the merge, the constructed task set satisfies S1. For S2,
since the components in the constructed tasks satisfy the
derived components’ timing constraints, all output
components will meet their deadlines (according to the
derivation of EST and LCT ). According to Lemma 1 and
minimum-EST-first heuristic, the constructed task set
meet both e2e system-level timing constraints and
components’ precedence constraitns. For S3, according
to Lemmas 2 and 3, the constructed tasks are all with
contiguous executions. The set of tasks is minimal as the
tasks cannot be merged any further without introducing
internal idle times. tu

Note that we make no assumption on the implemented
scheduling algorithm on the final target. This allows our
task-construction process to be used in the software design
independently of the platform design. After the target
platform is decided, the schedulability analysis is required
to ensure that the generated task set is indeed schedulable
on the platform with the given scheduling algorithm. In
case the generated task set is not schedulable on a platform
when all information becomes available, some iterative
refinement, as described in [17], is necessary to improve the
design. Optimization can also be applied to the obtained
task set to improve the performance and resource usage
after the details of the platform are decided.

4 EVALUATION

We now evaluate the task-construction method described
thus far using a set of randomly generated models, focusing
on its scalability and effectiveness. A baseline construction
method was implemented and used as a reference for
comparison. It adopted an algorithm that synthesizes tasks
using components of the same transaction running at the
same rate on the same processor. This is similar to the
specialized architecture presented in [19] and is based on
the fact that such a strategy is commonly seen in current
industrial practices [6], [24].

We first evaluated the scalability of our task-construction
method. The metric used in this evaluation was the number
of algorithm steps taken to generate a task set. The number
of steps reflects the size of the design space explored, thus
indicating the method’s scalability. A more scalable method
explores fewer nodes and executes fewer steps. In each

experiment, we first generated a system model and applied
both the baseline and proposed methods to the model. Each
experiment used a model with a fixed number of
components ranging from 100 to 1,000 at an increment of
100. Other parameters of the random generation of the
system models are given in Table 1. To simplify the
experiments, we fixed the number of computation devices
in the platform at five and allocated the components to
these computation devices using the allocation algorithm in
[27] with a load-balancing policy.

Fig. 4 shows the number of steps taken to construct the
task set using our algorithm (TFA) and using the baseline
algorithm (baseline). To fit the results in the diagram, we
used the natural logarithm of steps, lnðsÞ. It showed that the
number of steps required to form the task set increased with
the number of components for both the baseline method
and TFA. TFA always took more steps than the baseline
method because it requires merging and sequencing
components from different transactions and with different
rates. Despite the additional steps TFA took, it demon-
strated the same trend, with more variation, of the required
number of steps. The same trend implies that TFA is
scalable as the baseline method. The variation indicates that
TFA is more sensible to the model properties (connectivity,
resource demands, and rates) than the baseline as these
properties have a significant impact on the selection and
sequencing of merged tasks.

We also investigated the effectiveness of TFA for a given
system model. The total number of resultant tasks was
chosen as the metric. A method is considered more effective
if it generates a smaller task set while meeting all system
constraints. Unlike the evaluation of scalability, the experi-
ments for effectiveness evaluation used randomly gener-
ated models with a fixed number of rates while varying
from 5 to 30 at an increment of 5. The rates used in the
experiments were predefined and organized in two
different groups with rates harmonically related within
each group but not across groups to reflect the existence of
multiple rate groups in real-world applications. The
number of transactions in the system model was randomly
generated and multiple transactions were allowed to run at
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one rate. Further, we considered the factors of system
workload and component concurrency in this evaluation.
The system workload may result in overlapping executions
of different components. We chose the system workload to
be light (utilization = 0.1), medium (utilization = 0.3), or
heavy (utilization = 0.6). To minimize the noises introduced
by different generations of the system model in different
experiments, we generated a model with the heavy work-
load first, then scaled the workload of every component
equally to obtain the medium and light workloads without
changing the structure of the system model. Component
concurrency may also affect the resultant number of tasks
since fewer component dependencies may result in more
components merged into a single task. We controlled the
model concurrency in each experiment by constraining the
number of outgoing links allowed for each component
during the random generation of the model. A larger
number of components’ outgoing links yields a model with
higher concurrency. For the same reason of minimizing
experiment noises, we first generated the system model
with high component concurrency, then adjusted the links
among the components to reduce the concurrency without
altering the other properties of the model (i.e., the number
of components, components’ workloads, and system rates).
As in the scalability evaluation, we fixed the computation
devices in the platform at five and allocated the components
to these devices using a load-balancing policy. Other
parameters used in the random generation of the system
model for the experiments are given in Table 2.

The results of these experiments are shown in Fig. 5 and
Fig. 6. For the baseline, we only showed the results under
heavy workload since the results under medium and light
workloads were the same. This was because we chose to
keep the same model structure and scale the components’
workload equally. As the results of the baseline depended
only on the locations, rates, and links of the components,
changing the components’ workloads had no effect on the
results given that the allocation strategy (algorithm and
policy) and the model structure did not change.

TFA was shown to generate fewer tasks than the baseline
method in all experiments. For all cases, the number of tasks
generated by both the baseline and TFA increased as the
number of system rates increased, but at a slower speed for
TFA. Hence, TFA is more effective than the baseline for a
system model with more rates. This increasing effectiveness
with the number of rates is a direct result of considering the
components with harmonically related rates in TFA. As the
workload increased, the difference in the results between
TFA and the baseline also increased, meaning that the
difference between TFA and the baseline was less

significant for light workloads than for heavy workloads,
regardless of component concurrency. This indicates that
the TFA is more effective for heavily loaded systems. In
such a case, more components may have overlapping
executions and, therefore, can be merged. A method that
becomes more effective under heavy workloads is desirable
because resources must be managed better when the system
deals with heavy workloads than with light workloads.
Both methods were shown to construct fewer tasks for
higher concurrency. The difference between different
concurrency levels was more pronounced for medium and
light workloads than for heavy workloads. Better results
under high concurrency come from fewer dependencies,
thus merging more components in one task. A low
concurrency model, on the other hand, contains more
dependent components on different computation devices,
which cannot be grouped into one task. The effect of model
concurrency can be reduced significantly for a system with
heavy workloads due to more overlapping components’
executions. Note that a smaller task set for high concurrency
may also be the result of the load-balancing allocation
policy and may be reduced by using a different policy that
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Fig. 6. Number of resultant tasks (low concurrency).



allocates more dependent components to the same device.
From the above evaluation results, we can conclude that our
task-construction method is both scalable and effective.

5 RELATED WORK

Several solutions to automatic task construction using
software design models based on the object-oriented
modeling paradigm have been proposed. Burns and
Wellings [2] and Cornwell and Wellings [3] proposed a
task construction method for the HRT-HOOD model which
is an object-based modeling paradigm. In this method, tasks
are constructed through transaction specification and
timing assignments. Since the final implementation targets
using Ada programming language, some modeling con-
structs corresponding to Ada implementations are intro-
duced to facilitate target generation. Saksena et al. [19]
developed a method for automatic task construction based
on the software design models in ROOM [20], which is an
object-oriented real-time modeling language. It models the
computation as event streams, with each event triggering an
object action. During the task construction, the priority of
each event is determined according to the schedulability
analysis. Then, the actions of the components are assigned
to the threads using a branch-and-bound technique,
although the details of the algorithm are not available.
The method is simplified in implementation by imposing
architectural restrictions, such as mapping all events for the
same component (or in the same transaction or with the
same priority) to the same thread. A similar scenario-based
task construction approach was developed in [12]. In this
method, the thread is constructed based on capsule
instances. However, it is up to the designer to determine
how many threads in the system and which capsule
instances are merged with this method. Both the above
two methods need to deal with mutually exclusive data
access in a shared object, which is difficult to automate.
There are some task-construction methods based on
process-oriented component models, such as timed multi-
tasking system [16], Matlab/RTW [25], and ETAS ASCET
[5]. Among these methods, timed multitasking can con-
struct task automatically with requirements that all tasks
must be synchronized by delivering all outputs only at the
end of each timing frame. The task constructions in RTW
and ASCET are still manual processes. There also exist task-
construction methods using the time-triggered model [13],
but they are limited to systems with periodic activities and
harmonic rates.

Our approach, on the other hand, uses a process-oriented
model, which naturally fits many modeling environments
for control design and, hence, facilitates the integration with
modeling environment. Compared to other task-construc-
tion methods, our method constructs minimal task sets with
smaller overheads while meeting the system-level timing
constraints. Our timing assignment is different from
traditional timing derivation [8] and deadline distribution
[11] in that our derived constraints form a necessary
condition for a valid feasible schedule and, thus, can be
used to verify the task construction during the process. The
assignment imposes no requirement on the scheduling

policy and, thus, the platform design can choose the one
that best suits the target application.

6 CONCLUSIONS

Task construction using software design models is essential
to model-based embedded control software development. It
is also desirable to be able to automate to support e2e
design automation using integrated design tool chains. In
this paper, we presented a novel, two-step approach to the
automatic task-construction problem. Taking a software
model—which contains transactions with process-oriented
communicating components and system-level e2e timing
constraints—as input, our task construction first assigns the
components’ timing constraints according to the precedence
and e2e timing constraints. Such timing constraints,
including invocation rates, ESTs, and LCTs, form a
necessary condition for building any valid feasible sche-
dule. Then, the tasks are iteratively merged according to
rate similarity and execution overlap to minimize the total
number of tasks, which, in turn, minimizes the runtime
overheads. While components are merged, the components
from different tasks are sequenced to form a new
component sequence that meets their timing constraints.
Our evaluation results have shown that the proposed task-
construction approach is scalable and effective. The devel-
oped methods, together with modeling methods, have been
implemented and integrated in an embedded control
software design tool, called AIRES [1] and have been
applied to applications in both avionics and automotive
domains.

Our future work includes in-depth evaluation and
improvement of the proposed task-construction approach.
First, we would like to improve our solution to support
iterative design refinements according to the analysis
results at a later design phase. The method will be more
effective and integrable in an e2e design process if it
provides options for task-construction strategies according
to the later-phase analysis and allows the designer to choose
from these options. Further, we would like to investigate
the runtime performance of the constructed task set. This
will help us determine the efficiency of the task-construc-
tion approach. We would also like to improve the approach
by “optimizing” the task construction using techniques
such as simulated annealing. Finally, applying the proposed
approach to a wider range of applications with different
types of design models and design objectives would also be
worthwhile.
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