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Abstract— This paper addresses the problem of managing
a wireless sensor network with mobile managers. The mobile
managers should be able to create their connectivity to the nodes
they manage, and advertise their interests in the management
data to be collected. Also, the network nodes should self-manage
their connectivity to the managers in order to forward the
management data. To meet these requirements, we propose (1)
an algorithm for creating and maintaining encounter-associated
management connectivity and (2) both management data exchange
protocols and programming abstractions for network manage-
ment applications. Both our simulation-based evaluation and
experimentation of the proposed algorithm and architectural
elements on real sensors demonstrated their effectiveness in
meeting the requirements.

I. INTRODUCTION

Wireless sensor networks (WSNs) are becoming an attrac-
tive, cost-effective means to monitor the physical world [1]-
[3]. WSNs are typically characterized by their less-attended
deployment, ad hoc replacement, and limited field view. This is
because individual sensors (i) require little or minimal human
intervention after their deployment; (ii) replace faulty nodes
in an ad hoc manner; and (iii) have a short sensing range and
limited processing power.

For example, the TinyOS [4]-based mica Mote sensor in
Fig. 1 is equipped only with 128KB of programmable memory,
4KB of data memory, and a 916MHz RF wireless channel
capable of transmitting packets at a rate up to 40Kbps. As
shown in Fig. 2, these resource constraints will continue to
be a key design consideration for sensor nodes. They also
pose serious challenges in the design of energy-efficient self-
manageable protocols and services from byte-level protocols
to middleware components, then to applications themselves,
finally to peer-to-peer in-network collaboration.

The introduction of mobile devices into stationary WSNs
has been studied to perform tasks that would otherwise be
difficult to achieve [5]. The same idea has been explored for
WSN management. For example, the authors of [6] addressed
mobile ad hoc network management and the authors of [7]
coined the term of nomadic managers to describe autonomous,
mobile managers in the architectural descriptions of their WSN
management. Indeed, the idea of using mobile managers is
not only the most general way of overcoming the limited
model of centralized management through a fixed gateway or a
base station, but also a practical approach to managing sensor
networks deployed across a large unattended area.

The problem space under consideration in this paper is
not characterized by the managers’ mobility alone. It is also
influenced by the data-centric characteristics of WSNs. In
the data-centric paradigm pioneered by Directed Diffusion
(DD) [8], a data sink issues a query with a list of attribute—
value pairs, which is called the interest in [8], and data are
sent by sensors with data matching the queried interest. During
the propagation of the interest and data, several important
decisions such as the data-reporting rate and direction are
locally made.

An advantage of using this paradigm is significant energy
savings [8], which is a measure of critical importance to
WSNs. Another advantage is localized in-network processing;
it not only saves energy but also enables management in
anonymity where the identity of an individual sensor reporting
management data does not matter as long as the reported data
are a correct aggregate of the situation around a target region.’

A manager is a “sink” that collects management data, which
is an energy-consuming task. Thus, a natural question on
sensor network management is how to exploit data-centric
communication in the context of network management while
getting the most of the data-centric paradigm to achieve energy
savings—this is where we as well as many others [9] start for
WSN management. We design a network management proto-
col for both creating the DD-style management connectivity
dynamically and delivering management data reliably in the
presence of network dynamics such as link/node failures, man-
ager mobility, etc. In fact, the need for enabling management
applications to manipulate their management connectivity has
been identified from both WSN-specific management require-
ments [7], [9] and real-world experimentation [10].

There are several technical challenges in meeting our goal.
First, a mobile manager is not part of the network; as a mobile
manager enters, moves about, and leaves the field arbitrarily,
it has to create and maintain the management connectivity as
needed. Second, nodes managed by a given mobile manager
need to maintain association with the manager to reliably
deliver management information even with manager mobility.
Third, sensors and managers need to have a well-defined
messaging mechanism to exchange management information
between them, so that in-network processing, such as filtering

1Of course, the identity of a sensor is application-dependent or relates to
the granularity of management; some management application may still be
interested in data on each individual sensor.



Mote WeC | rene dot mica mica2 |mica2 doi| iMote
Released 1999 2000 2001 2002 2003 2003 2003
Processor 4 MHz 7 MHz 4 MHz 12 MHz
Flash (code, kB) 8 8 16 128 128 128 512
RAM (kB) 0.5 0.5 1 4 4 4 64
Radio (kBaud) 10 10 10 40 40 40 460
Radio Type RFM ChipCon| ChipCon | Zeevo BT
uController Atmel ARM
Expandable no | yes | no | yes | yes | yes yes

Fig. 1. TinyOS-based mica and dot Motes [4] Fig. 2. TinyOS-based Mote hardware evolution [1]

and aggregation based on the type and importance of manage- Apart from two well-established standard network-

ment data, can be easily supported.

Our main contribution in this paper is the design and im-
plementation of a tiny network management protocol (TNMP)
for low-power smart wireless sensors with mobile managers.
TNMP enables sensors not only to build and self-manage
management connectivity but also to exchange management
information using the thus-constructed management connec-
tivity in spite of managers’ mobility. TNMP is characterized
by the following salient features.

o Self-managed management connectivity: as a cross-
layer interaction with the network layer, TNMP allows
management applications to direct sensors to establish
and maintain the management connectivity as needed.

« Pattern-directed management operations: as manage-
ment programming abstractions, TNMP aims to support
flexible composition of various network management
functions and services in WSNSs via pattern-directed clas-
sifications of management operations.

o Component-grain management messaging: for its
physical realization on resource-limited sensors, TNMP
employs a component-grain addressing, dispatching, and
interaction model. Thus, it aims to fit best in a
component-oriented sensor software architecture.

The rest of this paper is organized as follows. Section II
discusses related work. Section III states our problem formally
and details the design of algorithms and architectural elements.
Section IV highlights the implementation of TNMP and the
associated architecture. Section V evaluates the proposed
protocol and architectural elements and their characteristics.
Finally, we conclude the paper with Section VI.

II. RELATED WORK

A. Network-management architectures and protocols

The Guerrilla Management Architecture (GMA) [7] is pro-
posed to self-manage ad hoc networks with the collaboration
of autonomous nodes and employs a two-tier infrastructure
to facilitate adaptive, autonomous, and robust management of
ad hoc networks. The management architecture for wireless
sensor networks (MANNA) [9] discusses the management
functional areas that are specific to WSNs. However, they do
not address how to design and implement related architectural
frameworks on real, low-powered wireless sensors.

management protocols such as SNMP or CMIP in a wired net-
work, the Ad hoc Network Management Protocol (ANMP) [6]
is a SNMP-compatible lightweight protocol for both managing
and clustering mobile wireless ad hoc networks. Unlike TNMP
that dynamically creates the management connectivity, ANMP
relies on the existence of an underlying cluster-based routing
algorithm for it. Furthermore, none of them are adequate for
low-powered wireless sensors. For example, the mica sensor
we are currently using has, by default, a MAC-layer payload
of length 29 bytes; too limited for SNMP or CMIP.

B. Sensor programming and management abstractions

An abundance of new abstractions, protocols, and ser-
vices for TinyOS-based wireless sensors has been reported
in [1]. In spite of successful adoption of abstractions, such
as TinyDB [11], Hood [12], Abstract Region [13], and
SNACK [14], none of them properly addresses the general
management concerns described in [6], [7], [9] for ad hoc
wireless sensor networks.

Impala [15] describes a middleware architecture that enables
application modularity, adaptivity, and repairability in WSNs.
Moreover, it allows application software to be upgraded over
the air in a modular fashion. Their solution, albeit useful, is
limited to the network-wide software installation.

SNMS (Sensor Network Management System) [10] is also
proposed as a management solution for TinyOS-based sensors.
SNMS focused more on the design of a sensor health-data
collecting service and an event logging service. However, its
management abstractions are restricted in expressing various
management concerns. For example, its messaging structure is
too restricted to be useful for other services and applications.

sNMP [16], an on-going effort to build WSN management
protocols and services, tries to find solutions without the lim-
itations of existing network management approaches, as well
as to offer WSN-specific management functions. However, no
concrete protocol design or system building effort has been
reported so far.

C. Sink-pull network formation protocols.

In a sink-pull system, a data sink periodically or occasion-
ally propagates descriptions of data and events of interest to
itself in a network. During the propagation of such interests, a
routing path and associated cost from each data source to the
sink are found, forming a cost or gradient field from each



source to the sink. Algorithms such as Directed Diffusion
(DD) [8] and GRAB (GRAdient Broadcast) [17] fall into this
category.

DD is closest to our work. The similarity and difference
between the two are as follows. First, we adopt the diffusion
of interests that a sink, in our case a manager, has and the
establishment of the (management) connectivity among nodes
that match the posted interests. Unlike DD, TNMP achieves
the forwarding continuity of management data in the pres-
ence of sink mobility by adopting the destination sequenced
distance in AODV [18]. Second, we choose to use structured
messaging based on the refinement of data or operations. In
DD, every data is exchanged in the form of a list of name-and-
value pairs, which translates to unstructured messaging. The
use of structured messaging helps easily develop and apply a
message-level packet filter or aggregation based on the type
and importance of management data it carries.

III. PROBLEM STATEMENT AND PROTOCOL DESIGN

This section first states the problems to be addressed and
then details the design of solution protocols.

A. Problem statement

Within the context of the aforementioned mobile managers,
we would like to design and implement a protocol (i.e.,
TNMP) by solving the following three related subproblems.

Problem 1 (Self-managed management connectivity):
how to create a network for on-demand management-data
collection, and maintain it as current as possible even if the
manager moves around?

Problem 2 (Pattern-directed management operations):
what is an essential set of management operations, through
which various sensor network applications can easily compose
their management and coordination logic?

Problem 3 (Component-grain management messaging):
how to design an addressing, dispatching, and interaction
model for a wide range of component-based sensor
applications?

B. Self-managed management connectivity

The key idea behind a solution to Problem 1 is to have (i) a
manager advertise its interest as well as an encounter record,
and (ii) any participating node in a management connectivity
record the latest encounter with the manager while propagating
the interest.

The encounter record is represented as a pair of
{mgrseq, mgrhop}, where mgrseq is a monotonically-
increasing sequence number assigned by the manager, and
mgrhop is the distance (in number of hops) to that manager.
As it follows from the name, mgrseq defines a temporal order
of nodes with respect to the manager; the larger mgrseq, the
more recent encounter a node has with the manager. Likewise,
mgrhop defines a spatial order of nodes with respect to the
manager; the smaller mgrhop, the closer a node is to the
manager. Therefore, the encounter defines a spatio-temporal
order of nodes with the manager.

Given this encounter-associated management connectivity,
management data is forwarded to the manager via a hierarchial
routing scheme; a node first forwards data to one of its neigh-
bors that has a recent temporal encounter (larger mgrseq)
and tries next on a neighbor with a close spatial encounter
(smaller mgrhop) if both the node and the neighbor have the
same mgrseq.” Such neighbor is here denoted as mgrsucc,
a successor node to that manager. In general, the path from a
node to the manager becomes a sequence of successors starting
from itself. Since the management connectivity is created and
maintained per manager independently of others, we assume
that a single manager exists in the network.

Creating a management-data collection network. Sim-
ilarly to DD, a manager starts by sending out an
mSetup advertisement message. The mSetup message has
a tuple {mgraddr, mgrseq, mgrhop, lifetime,
interest, ttl}, where mgraddr is the manager’s ad-
dress. A management interest is specified in interest as
a list of (name,value) pairs. The management network may
be permanent or semi-permanent, depending on the value of
lifetime: if this field contains a non-zero number, the
network will disappear after the 11 fetime period; otherwise,
the network will remain forever. Propagation of mSetup is
bounded by the specified tt1 (time-to-live in hop count).

The manager makes an initial self-encounter record
{mgrseg=<unig>,mgrhop=1}, where <unig> is a
monotonically-increasing sequence generator. When a node
receives an mSetup message m from node prev, it makes
the following sequential decisions;

o if it has no encounter with the manager, insert it and set
mgrsucc to prev.
« if it has an encounter record e with the manager,

— if (e.mgrseq < m.mgrseq), replace e with m and
mgrsucc by prev.

- if (esmgrseq = m.mgrseq) N\ (e.mgrhop >
m.mgrhop), replace e with m and mgrsucc by
prev.

« if there is any change in the encounter record, rebroadcast
it with m.mgrhop incremented by 1.

The first rule is called a “freshness rule” in that a fresher
encounter with the manager is preferred, and the second rule is
called a “short-hop rule” in that the encounter with a smaller
hop count to the manager is preferred. We will henceforth
call both rules simply the SUCCESSOR-UPDATE RULE since it
changes mgrsucc for a given manager.

Fig. 3 illustrates this process. An mSetup message adver-
tised by manager M will be propagated through the network.
During this propagation, each node sets up a path to the
manager, as well as a successor node leading to the manager.
For example, node S learns that it is 3 hops away from the
manager, i.e., mgrhop=3, for which it has mgrseq set to

’In case mgrseq wraps around to 0, nodes in the network can identify
it as a more recent temporal encounter by comparing the difference between
the previous value and the wrapped-around 0 against some threshold.
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Fig. 3. An mSetup advertisement and cached encounter entries after
the advertisement ends. Both § and H represent mgrseq and mgrhop,
respectively.

2, and that mgrsucc is A, through which it can reach the
manager.

Maintaining management connectivity. Nodes adver-
tise their encounter with the manager via 1-hop mHello
messages. mHello has a tuple {mgraddr, mgrseq,
mgrhop, lifetime}, where 1ifetime is the remain-
ing lifetime of the link associated with mgrsucc towards
mgraddr. Upon reception of mHello, nodes apply the same
SUCCESSOR-UPDATE RULE as in the reception of mSetup.

There are two types of mHello advertisement: mobility-
induced and event-triggered. The former type is used by a
manager and works as follows. Assuming a manager node
is aware of its moving speed (v) and current transmission
range (r), it advertises mHello at every r/v seconds with
a new self-encounter record. The manager may change its
speed during its journey. The faster it moves, the more often
mHello is advertised. Other refinements of this mobility-
induced advertisement could be possible; for example, a man-
ager knowing of its physical geographic location will advertise
mHello only when it moves away from the previous location
by more than the threshold distance, which may be again a
function of the speed and the transmission range. We do not
explore this any further since a simple periodic model suffices
for our purpose.

The event-triggered advertisement is used by other nodes
in the network, where nodes periodically check if their own
encounter record has been changed since the time of previous
encounter record check. It advertises mHello with an up-
to-date encounter record only if their own encounter record
has been changed. Note that the encounter record changes
asynchronously upon reception of mSetup or mHello from
its neighbors. A manager is assumed to be benign to, and
cooperative with, other nodes in the network; it does not move
back and forth very fast intentionally, flooding mHello and
causing path oscillation. However, even in the case of such
an undesirable movement any potential cascaded flooding of
mHello can be tamed by the event-triggered advertisement
that sends a new encounter record only once regardless of the
number of new encounters received from neighbors during its
encounter check interval.

QUERY|
M|#=2‘H=3'A !
M#=2H=1M |

. 1 z

N o RESULT/
1 REPORT

Fig. 4. Automatic path migration in the encounter-associated management
connectivity. Both # and H represent mgrseq and mgrhop, respectively.

Both of the advertisement schemes guarantee automatic
path migration in the management connectivity. Fig. 4 illus-
trates the concept of automatic path migration. Suppose nodes
C and Z in the figure are those receiving the latest encounter
with M which just moved to another location at time t1.
Eventually, node S may know the movement of its manager
by receiving mHello with mgrseq set to 4. From that point
and onward, packets from S may take a shorter trail toward
M along the path S-X-Y-W-M.

Automatic path migration, however, does not completely
remove the possibility of packet loss resulting from mobility-
caused link breakage. For example, node C may still have
an old encounter record if a new mHello from neighbors
with more recent encounter records is lost, thus making it still
believe that the manager is a 1-hop neighbor of itself. Although
dense sensor deployment in its neighborhood makes such an
event unlikely to occur, node C still needs to discover a new
path to the manager.

To handle this problem, a node issues a local route re-
quest mRRequest via 1-hop broadcast upon detection of a
link or node failure through a link-layer ACK mechanism.
mRRequest has a tuple {mgraddr, mgrseq, mgrhop,
source, srchop}, where source is the node that issues
mRRequest, and srchop is the number of hops taken
from source. When mRRequest is broadcast by source,
srchop is set to 1.

Upon reception of an mRRequest message m, immedi-
ate neighbors or multi-hops-away nodes make the following
decisions:

« If it has no encounter with the manager, drop it.

« If it has an encounter record e with the manager,

— if (sel f = m.mgraddr), send mRReply with a new
self-encounter record;

- if (e.mgrseq > m.mgrseq), send mRReply with
€;

— if (e.mgrseq = m.mgrseq) A ((e.mgrhop +
m.srchop) < m.mgrhop), send mRReply with e;

— if (my successor for m.mgraddr # m.source),
unicast mRRequest to successor with m.srchop
incremented by 1;

— otherwise, drop it.
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Fig. 5. Patterns in sensor network management operations.

Three rules used to send mRReply are called the ROUTE-
REPLY RULE. Note that mRRequest is unicast toward the
manager if there is no feasible successor in the immediate
neighborhood and that mRReply is unicast to the originator
even though mRRequest is received via 1-hop broadcast.

mRReply has a tuple {mgraddr, mgrseqg, mgrhop,
lifetime}, similar to that of mHello. While mRReply
is relayed to mRRequest .source, a reverse path cached
during the propagation of mRRequest is used. Each time
mRReply is relayed, mRReply.mgrhop is incremented by
1. In case multiple mRReplys are received, the SUCCESSOR-
UPDATE RULE is applied on every received message. Since
mRReply is likely to carry information of a new path to
the manager, an intermediate node too applies the same
SUCCESSOR-UPDATE RULE.

However, the originator of mRRequest may still receive
no mRReply at all before its route discovery timer expires.
In such a case, the originator invalidates all encounter records
for the manager. Then, it enters the probe mode in which
it sends mHello with mgrhop set to co at every probe
interval, which should be long enough. The probe mode is
completed when it receives a new encounter advertisement
from neighbors or a link 1ifetime, which was known at
the first encounter with the manager, expires. Any upstream
node using that node as a successor to the manager will, in
turn, detect a link/node failure associated with that node. Then,
a new recovery procedure will be started automatically.

C. Pattern-directed management operations

Nodes need to exchange their management information over
the management connectivity. A solution to Problem 2 is the
definition of sensor-network-specific management operations
similar to SNMP or CMIP management operations in a wired
network.

Three patterns are identified as shown in Fig. 5: basic,
scoped, and delegated patterns.

The basic pattern. This reflects a basic interaction model
among autonomous sensors participating in management and

TABLE I
THE PROPOSED BASIC MANAGEMENT OPERATIONS.

name description mode
mStart | Activates a component. Holistic operation. U
mStop | Deactivates a component. Holistic operation. U
mGet Requests to retrieve the values of attributes. C
mSet Requests to modify the values of attributes. u/C
mAct Requests an action to be executed with operands. | U/C
mRpt Reports the occurrence of an event. U
mErr Reports the occurrence of a processing error. U

coordination applications. Fig. 5(a) gives a pictorial repre-
sentation of arbitrary basic interactions among sensors; the
dark area around nodes represents the exposed attributes and
methods, and a directed arrow represents the invocation of an
operation. The operations in the basic pattern are modelled
after the two standard network management protocols, SNMP
and CMIP, and existing sensor network abstractions. Table I
summarizes their meanings and operational modes. Of the de-
fined basic operations, mStart and mStop are management
operations specific to sensors, whose software is most likely to
be built in a modular fashion with mountable physical sensing
modules and soft-wired functional modules.

The “mode” classifies operations into two categories: a
request-response style, i.e., confirmed (C), and a one-way
request style, i.e., unconfirmed (U). It defines a choice of end-
to-end reliability from an application’s perspective.

Almost all management operations support the unconfirmed
mode, which is a best-effort invocation and is less expensive
messaging in wireless networks. An unconfirmed operation,
albeit less reliable, is suitable for repetitive invocations of
continuous and periodic monitoring operations that are robust
to packet losses to some extent.

A confirmed mode operation is replied with either a
valid/error response from the performer or a timeout locally.
The choice of a confirmed or unconfirmed operation is up to
applications that know best the need of end-to-end reliable
exchange of management operations. For example, unlike a
continuous monitoring operation, migrating or spawning a
management function to another capable node may require
end-to-end reliability between the invoker and the performer
of the management function.

To achieve end-to-end reliability, mErr is used to indicate
the occurrence of an error in processing the requested con-
firmed operation at a remote sensor. However, mErr is not
sent for an unconfirmed operation even if a remote sensor
encounters difficulties in processing the received unconfirmed
request. Thus, any application invoking a confirmed operation
on a remote sensor is expected to receive a normal or error
response from a remote sensor, or a local timeout. Note
that mErr is also subject to loss since it is an unconfirmed
operation.

The scoped pattern. This reflects localized computations
at sensors where a basic operation can be applied to multiple
sensors simultaneously to process a one-to-many management
operation such as configuration changes or many-to-one data
aggregation. Fig. 5(b) illustrates the scoped operation with
a simple rectangular geographic region around the querying



node as its scope constraint. In effect, a scoped operation is the
basic management operation with a scope constraint specifying
which sensors the operation should be applied to. Such a scope
constraint can be expressed several ways: hop-based, region-
based, and attribute-based.

The hop-based or region-based scope constraints are of the
simplest form, such as k-hops away nodes or nodes within
a given geographical region, whereas an attribute-based one
takes a more or less complex form involving a general boolean
filter on a set of attributes.’> Regardless of how the scope
constraint is specified, only those nodes satisfying the specified
scope constraint are eligible to execute the requested operation.

The delegated pattern. The last type is the delegated
pattern through which a basic operation is delegated to another
sensor for its remote execution and the corresponding result is
returned only to the original querying node. Such delegation
will become indispensable to in-network data aggregation and
management. For example, one sensor may issue another sen-
sor a query for a summary of events or aggregation of sensor
readings within the region surrounding that sensor. Fig. 5(c)
illustrates this concept, where a management operation is
delegated by some node in region R1 to another node in region
R2. Although the execution of a delegated operation on a
remote sensor is an algorithmic design problem of the invoked
operation on that sensor, it requires a separate mechanism
to return the execution results to the original querying node,
which is stationary or nomadic, or moves around continuously.

D. Component-grain management messaging

A solution to Problem 3 is the design of a protocol data unit
(PDU) and an architectural framework in resource-constrained
sensors, given the identified management patterns and the
physical characteristics of sensors.*

TNMP uses the operations defined in Table I as protocol
primitives to introduce a management messaging service. A
component-grain addressing and interaction model is intro-
duced to provide a systematic way of building management
and coordination applications that are most likely to be built
component-by-component [1]. A component can be a module
implementing a sensor board, a module implementing a mid-
dleware service, or a management application itself. Therefore,
TNMP operates at any network layer, and provides a commu-
nication service that delivers management and coordination
information between networked components.

The message format of TNMP is given in Fig. 6. pduId
represents the management operation defined in Table I
For unconfirmed operations, pdulds are mStart, mStop,
mSet, mAct, mRpt, and mErr. For confirmed operations,

3 As of this writing, the attribute-based scope constraint is not fully studied
regarding how to specify it within a limited payload size of less than
20 bytes—physical limitation of our current implementation. However, the
CMISFilter in CMIP may help readers understand what an attribute-based
scope constraint looks like. Albeit less than perfect, either hop- or region-based
scope constraints are still most popular with many of current sensor network
aggregation and monitoring applications due to the localized computation.

4We assume use of TinyOS-based mica Mote sensors.

0 8 16 24 32 L

[ pduld | ivkid | calling | called | vars \
(a) TNMP message format

0 8

[ wvarld ] position-bindings

(b) vars (variable-bindings) format

Fig. 6. TNMP PDU format of length L bits over TinyOS-based sensors. Bit
alignments are tailored for TinyOS-based sensors and the actual value of L
depends on the underlying routing primitives.

pdulds are mGetReq, mGetRes, mSetReq, mSetRes,
mActReq, and mActRes.

Associated with mErr are both an error code and an
invocation context. Currently, such an error code is de-
fined to have accessDenied and processingError.
accessDenied is used to indicate that a requested operation
cannot be applied temporarily due to the target component’s
deactivation. processingError indicates an error encoun-
tered during the processing of a received confirmed request.
The invocation context includes information about the calling
component such as its network address and requested opera-
tion. Both the error code and the invocation context will be
carried in vars, which will be described below.

ivkId is used to differentiate between outstanding requests
by associating each request with a unique invocation ID
which will be referenced in case an mErr is returned or a
timeout is signaled. The calling and called are used
to address calling and called components, respectively. Since
the calling and called do not have to be the same, a
general many-to-one consumer and producer relationship can
be established between components.

vars represents variable bindings. Typical variable bind-
ings in SNMP or CMIP are a list of variable names and their
corresponding values. They are also encoded in a machine-
independent transfer syntax when transmitted across the net-
work. However, such canonical variable bindings in a low-
power wireless sensor are too costly for a limited payload
size.> For example, a mica Mote is known to have a payload
of 29 bytes in the TinyOS [4] MAC-level frame.

Instead of using canonical (name, value) pairs, TNMP uses
a design-time agreed-on message structure that consists of
a list of values only, wherever appropriate. This marshalling
scheme is called position-bindings since the starting position
of a variable in the received vars byte streams is known in
advance, and its structure is agreed on a priori, as well. As
shown in Fig. 6(b), the only tag information, represented by
varId, is carried to identify a correct message structure. Note
that such position-bindings are a common practice in TinyOS-
based sensor programming to get around the limited payload
size.
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Fig. 7. Runtime structure of the implemented system. Hidden underneath
AgletNetwork are the control-plane messages for mSetup, mHello,
mRRequest, and mRReply. Aglet is implemented as a collection of
the TinyOS/nesC parameterized interfaces [4], whereas AgletMib and
AgletPlugin are implemented as the TinyOS/nesC configuration and
module [4].

IV. IMPLEMENTATION

Implementing TNMP requires (i) application programming
interfaces (APIs) for binding components, accessing remote
attributes and functions, (ii) TNMP’s finite state machine
(FSM) for dispatching incoming TNMP PDUs and handling
requests & timeouts, and (iii) cross-layer interaction interfaces
(CIIs) between TNMP and the underlying routing protocols
not only to build and maintain the management connectivity,
but also to deliver TNMP PDUs using the connectivity. We
implemented these on mica Mote sensors. Fig. 7 outlines the
runtime structure of the implemented architectural elements.
Due to space limitation, only a brief account of each of them
is given below.

Implementation of APIs. MibAccess and Aglet are
main elements that provide APIs. MibAccess offers uniform
management abstractions, as shown in Fig. 8, that enable ap-
plications to access attributes and methods in the management
information base (MIB) regardless of whether they are local
or remote.

As shown in Fig. 8, these management abstractions are
classified into four categories: confirmed basic operations
(O1), confirmed scoped operations (O2), unconfirmed scoped
operations (03), and unconfirmed basic operations (O4). The
Ol operations are returned with either a valid/error response
from remote sensors or a timeout if the response is not received
from remote sensors within the specified time limit. Depending
on the value of node parameter, a requested operation may
be invoked on local components. If node is multiple hops
away, the request will be sent across the management network.
For those scoped operations such as in (02) and (O3), only
the hop-based scope constraint is implemented. Support for
other scope constraints is left for future work. Note that the
delegated operations do not require any mechanisms other than

STt may still need to use a canonical machine-independent transfer syntax
in a network composed of heterogeneous sensors at the expense of wasted
byes.

these basic and scoped operations.

Aglet is just a collection of parameterized interfaces
for each of the management operations defined in Table I.
The parameterized interface [19] in TinyOS is a heavily-
used programming abstraction that makes it easy to build
a dispatching framework with dynamically-instantiated inter-
faces. For instance, what an application component wishing
to receive TNMP mRpt has to do is to bind this mRpt
operation. Then, a dispatching framework is automatically
built to handle incoming TNMP mRpt messages. Likewise,
other management operations are easily incorporated into a
dispatching framework. The reference [19] details how to build
a dispatching framework by using the prameterized interface.

Implementation of TNMP FSM. Four key elements are
related to handling an Aglet operation (Ago) carried in
TNMP PDUs: AgoCtxPool, AgoTimeout, AgoRequest,
and AgoResponse.

AgoCtxPool keeps track of the invocation contexts as-
sociated with either incoming or outgoing TNMP messages.
The invocation contexts are maintained only for confirmed op-
erations. The information contained in the invocation context
includes the timeout period, and TNMP header information
such as msgId, ivkId, called and calling. Routing
information such as the destination, node, and the casting
mode, cast, is also saved for future reference.

AgoTimeout signals a timeout event to the local appli-
cation component if a response from remote sensors is not
received within the specified timeout period. It also signals
a timeout event to remote sensors if a reply to the received
confirmed request is not generated after the specified timeout
period. In the former case, a timeout event is signaled to the lo-
cal application component through the bound mAgoTimeout
operation via the AgoTimeout interface. In the latter case,
an mErr TNMP message with the processingError error
code is delivered to the remote application component. The
timeout event also frees the associated invocation context from
AgoCtxPool.

AgoRequest utilizes the dispatching framework to pass
the received TNMP message up to a target application compo-
nent. Recall that the target application component is identified
by the called in the incoming TNMP message. Before
calling the target application component, AgoRequest saves
the invocation context for later reference by a valid response
or by a timeout response.

AgoResponse provides an interface through which appli-
cations reply to the received request of confirmed operations.
It looks up the saved invocation context to build a response
TNMP message, as well as the passed-down reply payload
from the application.

Implementation of CIIs. A TNMP PDU can be deliv-
ered via three different types of communication: single-hop
broadcast, multi-hop unicast, multi-hop broadcast. To provide
a transparent transport mapping of TNMP PDU, a facade [20]
design pattern is implemented in AgletNetwork. As shown
in Fig. 7, AgletNetwork multiplexes three different com-
munication types TNMPSHopMsg (single-hop broadcast),



Ol: command result_t {get,set,act}(uint16_t node, uint8_t called, void *pVar, uint8_t timeout);

02: command result_t {get,set,act}Scoped(uint8_t called, void *pVar, uint8_t hops, uint8_t timeout);
03: command result_t {set,act,start,stop } ScopedOneway(uint8_t called, void *pVar, uint8_t hops);
0O4: command result_t {set,act,start,stop,rpt,err }Oneway(uint16_t node, uint8_t called, void *pVar);

Fig. 8.

TNMPMHopMsg (multi-hop unicast), and TNMPSCopMsg
(multi-hop broadcast), each of which is assigned a unique
identifier in the TinyOS MAC-level Active Message (AM)
frame.

Applications inform AgletNetwork of cast mode only,
which specifies the type of TNMP message frame. Conversely,
AgletNetwork, upon reception of an AM message from
below, can tell which type of TNMP message frame is used
by the unique identifier in the AM header. Then, it passes the
received TNMP message up to the application with a pointer to
the starting position of the TNMP message in the AM payload.

V. EVALUATION
A. Quantitative evaluation

We would like to answer the following questions: (i) how
large is the memory footprint that TNMP incurs? (ii) what are
the delivery performance and overhead on real sensors or an
equivalent simulation environment? (iii) what are the delivery
performance and overhead, as compared to other algorithms?
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Fig. 9. Code size breakdown into key architectural elements.

1) Compile-time code-size distribution: Since this archi-
tectural framework is expected to evolve over time, either
through code optimization of an existing implementation or
the addition of new features, any quantitative number may
soon become obsolete. Nonetheless, such a number can be
useful to establishment of a comparative feel for our architec-
tural framework against others. Thus, we calculate the code
size for architectural implementation without any substantial
management application logic.

Our current implementation on the TinyOS mica Mote
sensor requires a total of 15146 bytes out of 128 KB program
Flash memory and 1719 bytes out of 4KB RAM. These
numbers are broken down into architectural elements, as
shown in Fig. 9. The networking part of the implementation is
a major source of this space consumption that is unavoidable

Management abstractions.

in any networked sensor. About 50% of the Flash memory con-
sumed is used by the intrinsic TinyOS AM and physical-layer
implementations, and about 43% of it by AgletNetwork,
a TNMP-specific routing extension to the existing TinyOS
Surge and MultihopRoute networking abstractions.

Thus, the remaining 7% can be thought of as the net
overhead incurred by TNMP-specific elements. This overhead
is broken down as follows. First, the Aglet P1lugin binding
and dispatching element accounts for about 3% overhead or
450B, whereas the overhead incurred by the AgletMib is
less than 1%. The sample application skeleton MgmtApp
incurs about 2% overhead. This application skeleton has only
two incoming TNMP messages, mGetRes and mRpt, as
well as one MibAccess get and an associated timeout
mAgoTimeout. Aglet, which accounts for less than 1%
overhead or about 42B, was written to measure the incre-
mental overhead per incoming TNMP message. Thus, every
addition of one incoming TNMP message handler requires
an additional 42B of the Flash memory due to the additional
comparison and branch code in a dispatching module.

Similar interpretations are also made for RAM space con-
sumption. The networking part is still a major consumer of
RAM. Note that a major portion of RAM space is usually used
by statically-allocated data or table in the code. For instance,
about 72% of the RAM consumption by AgletNetwork is
associated with the size of a default neighbor table, a routing
table, and packet pool. All these values are configurable
for sensors with restricted RAM size. About 26% or 450B
goes to the AgletMib which also maintains catalogs of the
exposed attributes, methods, and variables (or arguments in
the method). The remaning 2% goes to all the other parts.

In summary, our architectural framework except both
AgletNetwork and TinyOS AM components incurs about
500B in both program Flash and RAM spaces, with an
incremental overhead of 42B whenever a new management
operation is added.® Although these numbers may change with
code optimization or feature addition, they indicate the small
memory footprint of the proposed architectural framework.

2) Runtime performance evaluation via PowerTOSSIM:
A sample management scenario was written to understand
the dynamic aspects of the proposed architectural elements
by using PowerTOSSIM [21]. PowerTOSSIM and its base
TOSSIM [22] have been known to provide an accurate and
scalable simulation by running the same actual implementation

5We exclude the space consumption by AgletNetwork and TinyOS AM
for the following reasons. First, the space consumption by an extension of the
existing TinyOS networking component to AgletNetwork is negligible.
Second, both the existing TinyOS networking and AM components are so
intrinsic they should be shared by not only management applications but also
other applications.



code as on real TinyOS-based sensors. Thanks to this property,
a study with PowerTOSSIM is helpful when there is no real
sensor or there are not enough sensors available for meaningful
evaluation of scalability.

The sample management scenario is composed as follows.
A mobile manager enters the sensor field and sets up its
management network by broadcasting mSetup every 100
seconds with its interests and new self-encounter. Other nodes
in the network then participate in building and maintaining
a management network rooted at the manager. They will
check their encounters with the manager every 10 seconds to
determine whether to send mHello or not. One source node
is chosen to emit mRpt to a mobile manager every 4 seconds.

Given this scenario, the following performance metrics are
evaluated.’

e Delivery ratio: the ratio of the total number of packets
received by the mobile manager to that sent by the source.

o Delivery overhead: the ratio of the total number of
packets generated in the network to that received by the
manager, normalized with the measured average number
of hops between the manager and the source. In other
words, it is the overhead per received packet and per
hop. Also, it indicates the energy consumption involved
in the communication, which is a major source of energy
consumption in wireless networks.

o End-to-end delay: average end-to-end (e2e) packet deliv-
ery delay, in simulation seconds, between the source and
the manager.

e E2e hop count: average hop count between the source
and the manager.

Two distinct overheads contribute to the packet-generation
overhead in the network: data overhead and protocol over-
head. The data overhead is mainly associated with retrans-
missions, whereas the protocol overhead is associated with
the routing protocol itself. In our case, mHello is counted
toward the protocol overhead.

Fig. 10 shows a screen shot from the simulation study. A
5x5 grid topology with the stationary manager O at the upper-
left corner and the source 24 at the lower-right corner is used.
The transmission range of a sensor is nominally set to 10,
which is the side length of a grid cell. The plot in the screen
shot shows the cumulative performance evaluation results up
to about 1000 simulation seconds. After a warm-up period
of building the management connectivity, the performance
metrics under study are shown to be stable. For example, we
achieved an almost 99% or high packet delivery ratio with
the delivery overhead of 2. The delay turns out to be about
2 simulation seconds in reporting an event to the manager,
which is 8 hops away from the source.

3) Runtime performance evaluation via ns-2: Although the
simulation study via PowerTOSSIM enables programmers to
debug the code and obtain accurate and dependable informa-
tion before any real-world deployment, its study in the context
of node mobility is limited due in part to the inconsistency

7We extended PowerTOSSIM to measure our performance metrics.
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Fig. 10. Runtime performance evaluation via PowerTOSSIM.

in the link loss probability during the manger’s movement.?
Also it cannot offer a comparative perspective of the proposed
maintenance of the management connectivity against others.
Thus, we use ns-2 [23] for detailed and comparative aspects of
the proposed connectivity maintenance under various manager
mobility scenarios.

In the ns-2 simulation study, nodes remain stationary after
they are randomly deployed in the field of size 1500m X
300m. The number of nodes deployed in the field is 100.
Each simulation runs 1000 seconds. The ns-2 default AT&T
WaveLAN wireless interface card specification is used as a
physical wireless interface. The default IEEE 802.11 CSMA
MAC model is used as the MAC protocol. The transmission
range is homogeneously set to 150m.

While other nodes are stationary, a manager node moves
around the field following the random waypoint model [24].
In the random waypoint model, a node moves from one
random location to another random location at a randomly-
chosen speed, which is uniformly distributed between 0 and
maximum speed—the maximum 20m/s is commonly used in
the literature. Once the destination is reached, another random
location is chosen after a pause. We varied the pause period
from O (continuous mobility) to 999 (no mobility in 1000
simulation seconds). The source node is randomly chosen from
among the stationary nodes.

Given the same management scenario and the simulation
setting as above, we run and compare our connectivity main-
tenance against SWR (Single path With Repair) [25], which
claims to outperform other well-known schemes, DD and
GRAB. SWR maintains the connectivity with sink based on
hop count only. Note that SWR, DD, and GRAB are all sink-
driven network formation protocols without considering the

8 As of this writing, PowerTOSSIM does not update the link loss probability
after a node movement.



sink mobility. To the best of our knowledge, there is no sink-
driven many-to-one network formation algorithm that takes the
sink mobility into account. Nevertheless, evaluation against
SWR gives a comparative perspective of ours since SWR
has a mechanism to cope with a link failure with the sink
regardless of the cause of failure.” For ease of presentation,
TNMP’s management-connectivity creation and maintenance
is abbreviated as MODV (Many-to-One Distance Vector).

Fig. 11 shows the evaluation results under the above-defined
performance metrics, which are averaged over 10 different
topologies. As for the delivery ratio,b MODV is shown to
outperform SWR regardless of the mobile manager’s speed
as shown in Fig. 11(a). When the manager’s mobility is very
low (e.g., characterized by a model with a pause of 700 sec
or more), they are comparable to each other. However, in case
of a high mobility model where the pause time is close to
0, MODYV achieves a much higher packet delivery ratio than
SWR.

As for the delivery overhead, MODV still outperforms
SWR; the faster the manager moves, the larger its performance
gain becomes. However, MODV turns out to traverse longer or
more circuitous paths than SWR—see Fig. 11(d). Therefore,
MODV suffers a longer delay as seen in Fig. 11(c). The
MODV’s increased path length does not necessarily imply that
it incurs more overhead; as already seen in the delivery ratio
and overhead evaluations, it still achieves the highest packet
delivery ratio with the minimum overhead. Our evaluation also
confirms the fact [26] that the minimum hop path routing may
not be the best in wireless networks.

We also investigated the case of multiple sources. In the
multiple sources scenario, each node makes a probabilistic
decision on its mRpt. The probability model intentionally
favors distant nodes from the manager so that the evaluation
result is not obscured by the behaviors of nodes close to the
manager. Specifically, the actual report of mRpt is given as
min{0.2 x H, 1}, where H is the hop count from a node to the
manager. As can be seen in the figure, conclusions drawn upon
the single source scenario still hold for the multiple source
case.

Finally, we studied the impact of the encounter check
interval on the performance metrics under study. Fig. 12 shows
the evaluation results with the check interval ranging from
5, 10 to 20 seconds. Recall that mHello by nodes is not
sent out at every check interval since it uses event-triggered
advertisements, and that mHello by a manager is not af-
fected by this check interval. Nevertheless, the shorter check
interval, the higher chance a node has to detect the manager’s
movement early. The evaluation results in the figure show that
the metrics we investigated are more or less insensitive to the
check interval. Interestingly, frequent checks of the encounter
in the high mobility scenario increase the delivery ratio, but
incur the least overhead.

9We modified SWR to be mobility-aware by making it interpret mSetup
and mHello accordingly. Other link or node failure recovery mechanism is
implemented as described in [25].

B. Qualitative evaluation

We answer the following questions: (i) how similar or dis-
similar are the proposed management operations to traditional
network management operations? (ii) what unique features
to wireless sensor management are introduced against other
sensor network abstractions?

Aside from the need to create and maintain the management
connectivity, TNMP’s programming abstractions and architec-
tural features are compared (Fig. 13) against existing network
management protocols and other sensor network protocols in
terms of programming abstractions. Existing sensor network
programming abstractions like TinyDB, Hood, and Abstract
Region are more or less favoring the applications that need to
share data among neighbors or aggregate sensed data across
the network. Since network management applications tend to
require more than what data sharing or aggregation appli-
cations do, it is natural to follow or adopt existing network
management protocols and abstractions.

We stress that the choice of a proper protocol and abstrac-
tion that matches a given application has a significant impact
on the application performance [27]. Thus, the programming
abstraction and paradigm of TNMP are influenced greatly by
traditional network-management protocols. But it comes with
the addition of sensor-network-specific protocol operations
and constraints. For example, newly-introduced mStart or
mStop reflects the need to support a holistic operation on
sensors. It also comes with current limitations associated with
WSNs. For example, the limitation of managed object repre-
sentation and naming, and the lack of a proper marshalling
scheme reflect less demand for the inter-operability in the
sensor network. Of course, these issues need to be overcome as
heterogeneous sensors with disparate hardware and software
capabilities are likely to be used simultaneously in future.

VI. CONCLUDING REMARKS
A. Conclusion

In this paper, we addressed issues associated with the
management of wireless sensor networks (WSNs) that are
fundamentally different from those associated with traditional
network management. In case of networked autonomous sen-
sors, management functions and roles must be distributed
flexibly and dynamically across the network. Moreover, WSNs
require maximal automation and in-network processing of
management functions and services. Self-manageability of
networked sensors is essential.

However, lack of proper management protocols and abstrac-
tions has hindered the progress in sensor network management.
We addressed this deficiency by designing a tiny network
management protocol (TNMP) and its related management ab-
stractions at a modest—neither too low nor too specialized—
level.

The proposed TNMP has a mechanism not only to cope
with a mobile manager in the network but also to advertise
its interests as needed. Upon such a new advertisement, nodes
in the network will decide whether to join the management
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Fig. 13.

Comparison of TNMP (data-plane only) against two standard network management protocols and other sensor network abstractions.

network or not, depending on the posted interests, and once
joined, it continually manages the connectivity to the manager
by keeping track of encounters with the manager. Thus, it
enables a data-centric management paradigm in WSNss.

Moreover, our proposed architectural framework remedies
the several limitations in existing abstractions at a small

increase in the memory footprint. Especially, our approach
makes best use of a component-oriented sensor software
architecture with a component-grain addressing and interaction
model. The proposed architectural framework has also been
implemented and evaluated on real sensors.



B. Discussion and Future Work

Traditionally, a network management protocol does not
care about the creation and maintenance of a management
network, because (i) it is used for a wired network; (ii) the
network connectivity is no concern to an application running
on the network layer; (iii) there is no need for energy savings.
However, the emergence of wireless systems and wireless
sensors has changed all of these. A new design guideline has
been developed for cross-layer design and optimization [28].
Also, the importance of application-aware communication has
been emphasized by many researchers, especially in wireless
sensors; the authors of [27] showed that application-specific
refinements of an algorithm can affect application performance
by 40-60%. It is, therefore, reasonable for management ap-
plications to be responsible for management connectivity by
interacting with the network layer.

We plan to continue the development and experimenta-
tion of the proposed framework by adding key management
functions. Furthermore, we will investigate the self-managed
encounter-associated connectivity when all sensors are mobile
as an extreme case study. Lastly, we will study the impact of
the duty-cycling of sensors on the self-manageability of the
connectivity. In the duty-cycling mode, sensors turn on and
off their radio interfaces to prolong the lifetime of sensors.
Due to this on-and-off duty-cycling, the routing stability and
continuity are severely disrupted. Thus, we will investigate
how to make our algorithm robust to the duty-cycling of
Sensors.
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