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Abstract

In a grid, data is stored in geographically-dispersed
virtual organizations with varying administrative policies
and structures. Current grid middleware provide basic
data-management services including data access, trans-
fer and simple replica management. Grid applications
often require much more sophisticated and flexible mecha-
nisms for manipulating data than these, including logical
hierarchical namespace, automatic replica management
and automatic latency management. We propose a view-
oriented framework that builds on top of existing middle-
ware and provides global and application-specific logical
hierarchical views. Specifically, we developed mechanisms
to create, maintain, and update these views. The views
are synchronized using an efficient group communication
protocol. Gvu (pronounced G-view) is built as a distributed
set of synchronized servers and scales much better than
the existing grid services. We conducted experiments to
measure various aspects of Gvu and report on the results,
showing Gvu to outperform existing grid services, thanks
to its distributed nature.

I. Introduction

Grids [1] have become the favorite choice for exe-
cuting data-intensive scientific applications. Scientificap-
plications in domains, such as high energy physics, bio-
informatics, medical image processing and earth observa-
tions, often analyze and produce massive amounts of data
(sometimes of the order of petabytes). The applications
access and manipulate data stored in various sites on the
grid. They also have to distribute and publish the derived
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data.
Let’s consider how a typical scientific application inter-

acts with the data grid.

1) A physicist participating in a high-energy physics
experiment would like to execute a CMS (Compact
Muon Solenoid) application.

2) The application requires various input files. It has
to find the location of files using a catalog, index
or database system where information about the
location of the file is stored. The application usually
uses a logical file name (LFN) to index into the
catalog and find the physical location.

3) The files may have to be replicated at various sites in
the grid for the application to find a nearby location
to quickly access the file.

4) The physicist, having gathered all the information
about the input files, runs the jobs on various sites.
If a site doesn’t have the required input data, the data
is pre-fetched before the job starts.

5) The jobs execute using the input files and produce
derived data.

6) The derived data needs to be distributed to various
sites on the grid for usage by other scientists and for
archival purposes.

7) Finally, the output data locations have to be pub-
lished in a catalog so that other scientists can locate
the data.

Using current middleware and grid file systems as they
currently exist, the above scenario requires the application
to perform complex interactions with grid services. Globus
[2] middleware, one of the most popular grid toolkits,
provides data management mechanisms including GridFTP
[3] and RLS (Replica Location Service) [4]. GridFTP is
an enhanced version of the popular File Transfer Proto-
col (FTP) that provides high performance using parallel
streams, parallel file transfers, command pipelining, etc.



Fig. 1. Data-management mechanisms

To realize the above scenario, ad-hoc mechanisms using
GridFTP, RLS, and metadata catalog services (MCS) [5]
can be developed. Unfortunately, these mechanisms lack
flexibility and power.

Therefore, the key research question is:What are the
data management requirements of typical workloads in
grid environments and how do we provide flexible and
powerful mechanisms for manipulating data?Thain et al.
[6] surveyed six scientific application workloads run in grid
environments and concluded that traditional distributed file
systems are inefficient for thebatch-pipelinednature of
these workloads.

Main characteristics of application data requirements
are:

• Typical workloads includepipeline-shared, batch-
sharedand hybrid workflows;

• Pipeline-shared outputs require mechanisms for dis-
covery of outputs by a reader, but the output need not
be advertised to the same degree as in batch-shared
data [6];

• The workflows use certain metadata (specific to the
application) to find data on the grid;

• Most files are accessed as a whole, and block-level
reads and writes are uncommon;

• Files are accessed with awrite-once and read-many
pattern; and

• Applications usually access a limited set of files
distributed over the grid.

Figure 1 shows various data-management mechanisms
currently available in grid environments. On one hand,
data-management facilities like replica location and meta-
data management can be provided by different services
that can be combined in various ways depending on the
application. On the other hand, one can develop a unified
grid file system that provides a consistent file-system-like
interface to the application. Researchers [7], [8], [9] have
worked on providing a file system-like interface to the
data on the grid (a detailed comparison is provided in
the next section). Although there is no consensus on the
grid file system interfaces, these efforts have succeeded in
providing uniform access to heterogeneous storage systems
distributed over a grid. Certain key features that are miss-
ing are global hierarchical name space and application-

and user-specific views of the data.
Why do we need a global hierarchical name space?

If we consider the scenario explained earlier, jobs of an
application running on different sites can see others’ files
as they are created in a global hierarchical tree.

Why do we need a logical name space?Data in a grid
is stored in various sites at different physical locations.It
would be more flexible for an application to refer to the
data using a logical name instead of a complicated physical
name that might change over time. In a single administra-
tive domain, creating this logical hierarchical name space
is easy. NFS (Network File System) [10] already provides
a simple, though inflexible, mechanism for doing this. In a
grid, the data is scattered in different virtual organizations
(VOs). The key research question is:How do we provide
this view without losing the autonomous nature of the sites
and still maintain flexibility?

Consider a grid file system that provides logical global
hierarchical name space. Would that solve all the prob-
lems in the above scenario? Not completely. Consider the
situation where an application manipulates thousands of
files and produces many more files. How do we allow
flexible access by other applications which want to use
the same data? With the existing tools, this would be a
nightmare. The Virtual Data System (VDS) [11] provides
a convenient way of maintaining and queryingrecipesfor
data derivations [11], but it does not provide a way of
finding and creating files. A view that contains only the
files manipulated by a particular application will solve this
problem. Consider the following scenario to clarify the
usage.

1) A physicist participating in a high-energy physics
experiment would like to execute a CMS application.

2) The application runs various jobs on various sites.
Each job, after starting, requests Gvu to provide all
the files related to the experiment. This is similar to
a
find . -type f -group myexperiment
-name "*"

command in traditional UNIX file systems.
3) Gvu returns a logical view, which appears the same

to all the jobs.
4) The jobs query the VDS to find out the recipe to

generate a new dataset. The input files are accessed
using the logical view and created in the logical
view. Gvu redirects the access to the logical files
to appropriate physical locations.

In this paper, we develop mechanisms for creating
the global hierarchical namespace and application-specific
views on top of it. We first review the existing mechanisms
for manipulating data in a grid or distributed system. We
next describe the architecture of Gvu. We then provide the
details of the implementation. We conclude with experi-
ments demonstrating the usage and performance impact of



Gvu.

II. Related Work

There is a vast volume of literature on distributed file
systems solving various problems that occur in distributed
data sharing. CIFS and NFS (v2 and v3) [10] provide
a global namespace, but the naming is only at a local
domain level. They also have security weaknesses that
are not suitable in wide-area grids. NFSv4 has many
enhancements and provides a global physical view of the
system. An effort called GridNFS, taken up by CITI at the
University of Michigan, to customize NFSv4 for grids is
still in its infancy.

Other distributed file systems including AFS [12], Coda
[13], and GFS [14] are distributed file systems that are
designed for multiple clients to access files by using file
caches, and do not perform very well in the data-intensive
computing environments that are commonly seen in grids.
It is interesting to note that AFS provides a global physical
view of the distributed system. The physical view is quite
inflexible and does not allow sites to export application-
specific views.

In the grid realm, the focus has been on providing high-
performance data access. Grid-specific data access mech-
anisms including GridFTP [3], LegionFS [9], and Gfarm
[7] succeed in this respect. Gfarm provides highly scalable
and high-bandwidth read/write operations by integrating
process and data scheduling. It also provides replica man-
agement and supports file fragments, but creates a static
view of the global namespace similar to AFS and leaves it
to the user to handle it. The centralized metadata database
used in Gfarm might become a bottleneck. It is also unclear
how Gfarm servers interact with each other.

The Storage Resource Broker (SRB) [8] developed by
SDSC provides some interesting capabilities to grid data
management. SRB provides a uniform interface to hetero-
geneous data resources and provides replica management.
The metadata catalog (MCAT), which is a part of SRB,
provides a way of accessing the data sets using attributes.
The key feature of this system with respect to our work is
the usage of logical names. SRB fails, though, in providing
a hierarchical view of the logical names, and has no
concept of application-specific views.

In [15], we provided a detailed comparison of grid
file system features in a survey submitted to the GFS-
WG (Grid File Systems Working Group). This work is in
progress and currently compares Gfarm and SRB, two of
the most popular grid data management mechanisms. GFS-
WG recently released RNS (Resource Namespace Service)
specification, which is still in draft form. It describes many
of the features that we envisioned earlier in this work.

In the realm of traditional file systems, semantic file

systems provide capabilities very similar to what we are
envisioning. A file can be thought of as a poor man’s
database with basic query functionality. On the other end
of the spectrum we have feature-rich databases that can
provide sophisticated query capabilities to data. Semantic
file systems are somewhere in the middle, providing more
semantics than traditional file systems and allowing some-
what sophisticated queries to be executed. For example,
a semantic file system can associate metadata with audio
and video files, and allow queries likefind all the music
by Michael Jackson.

A survey [16] of semantic file systems lists various
semantic file systems and their features. MIT’s SFS [17]
automatically extracts attributes from files with file type
specifictransducers. The concept of virtual directory pro-
vides a query-based view of the file system. Our approach
extends this idea to the grid, where the queries have to
be answered by different file systems. We propose an
architecture in which some sites might have a semantic
file system.

Key to our approach is efficient query execution using
file semantics. We draw ideas from Essence [18] in build-
ing our system. Essence was originally used to find files
with certain attributes in a local file system.

III. Design of Gvu

We have considered the following issues in designing
Gvu.

• Distributed vs. Centralized: Since the metadata and
files are distributed over the grid, Gvu should not be
centralized, but use a set of distributed servers that
are synchronized.

• View ownership: The logical view exported by a site
is owned by the site administrator, but the application
and user-specific views created on top of the global
view are owned by the respective applications or
users.

• Fault-tolerance: Gvu should tolerate faults in a Gvu
server. Currently, Gvu handles the crash failure of
any number of Gvu servers. If a Gvu server goes
down, the user will still be able to access the metadata
related to the files on the corresponding site, but won’t
be able to access the files.

• Performance: Since the Gvu servers are synchronized
over a wide-area network, it is important to keep the
communication among the Gvu servers to minimum.
We have implemented batching of metadata updates
to improve performance.

• Scalability: Gvu should be scalable with the number
of clients. Currently, Gvu provides better scalabil-
ity than RLS and MCS combined because of its
distributed nature. We are running experiments to



Fig. 2. General top-level organization of Gvu
servers

quantitatively measure the scalability and will report
the results in future.

• Consistent, flexible and powerful API: Gvu provides
a familiar file-system-like interface. Once the view is
created, the interaction with the view is very similar
to the interaction with a traditional file system.

The following subsections detail design of Gvu.

A. Gvu Servers

Each site on the grid runs a Gvu server that maintains
the local logical view (explained in the next section) for
that site. Figure 2 shows a grid with Gvu servers. Note that
the Gvu server usually runs on the gatekeeper machine,
which has access to local schedulers, local clusters and
local file systems.

The servers communicate with each other using a re-
liable, fault-tolerant group communication protocol. There
has been a substantial volume of research on provid-
ing reliable, fault-tolerant group multicast. For example,
Newtop [19] is a truly decentralized peer-to-peer system
using Lamport’s clocks which provides total ordering of
messages even in a failure-prone environment. It was de-
signed for static groups, which makes it more appropriate
for a grid. It allows dynamic addition and removal of
nodes in the group. Shima and Takizawa [20] developed a
fault-tolerant group communication protocol. They assume
fault-tolerant groups of processes that are replicated in
clusters. Litiu and Prakash [21] provide a framework called
distview, in which a server pool (called Corona) maintains
the shared information. The publishers (clients) can submit
data to the server pool and subscribers can receive the
data either in synchronous or asynchronous mode. The
communication protocol provided has all the properties
that we require for synchronizing the Gvu servers. We

<?xml version="1.0" encoding="utf-8"?>
<dir name="/">

<dir name="pp" src="/home/ppadala">
<file name="gvu.pdf" src="/tmp/gvu.pdf" />
<attribute key="exp" value="bigbang" />
<attribute key="group" value="umichphys" />

</dir>
<file name="fstab" src="/etc/fstab">

<attribute key="type" value="system" />
</file>
<file name="password" src="/etc/passwd" />

</dir>

Fig. 3. A sample logical view in XML

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://gvu.umich.edu"
xmlns="http://gvu.umich.edu"
elementFormDefault="qualified">

<xs:element name="dir" type="dirtype" />
<xs:complexType name="dirtype">

<xs:attribute name="src" type="xs:string" />
<xs:sequence>

<xs:element name="dir" type="dirtype" />
<xs:element name="file" type="filetype" />

</xs:sequence>
</xs:complexType>
<xs:simpleType name="filetype" type="xs:string">

<xs:attribute name="src" type="xs:string" />
</xs:simpleType>

</xs:schema>

Fig. 4. XML schema for the configuration file

have decided to usedistview, because of its features
and support for distributed collaboration. Other reasons for
using it include the source availability.

B. Logical Views

Each administrator of the site creates a local logical
view that may not necessarily correspond to the physical
view. The logical view is specified using a configuration
file written in XML. An example configuration file can be
seen in Figure 3. The schema for the XML file is shown
in Figure 4. The schema does not specify all the types of
attributes that can be added to the files and directories. It
is left to the user and system administrator’s discretion.
Note that the files and directories in the logical view can
correspond to arbitrary places in the physical view. The
attributes for the files are read from the extended attributes
stored by the on-disk file system. The logical views are
synchronized among the servers usingdistview.

Figures 5(a) and 5(b) show two sites and how their
logical views are formed. Figure 5(a) shows the physical
and exported logical view ofsite1. Note that only a few
directories and files are exported to the grid. The admin-
istrator can also specify attributes in the logical view. The
attributes are not shown in the first two figures for clarity.
Note that the originaloutputs directory is exported as



(a) Physical and exported logical view of site1

(b) Physical and exported logical view of site2

(c) The merged logical view

(d) Application-specific view

Fig. 5. Gvu views

data in the logical view. Similarly,site2 exportsbin
directory asapps. A few of the features provided by Gvu
for the creation of views are worth mentioning. The user
can create a logical directory without any corresponding
physical directory, but the files in the directory have to
be specified with fully qualified physical paths. In Figure
5(a), the data directory is a logical directory. If a directory
has a corresponding src attribute, meaning it has a physical
directory, then the files under the directory are assumed to
be under the corresponding physical directory, unless its
absolute path is specified.

After the Gvu servers are initialized with respective
configuration files, the views are merged and a global
view is formed. Figure 5(c) shows the merged global view.
For clarity,src attribute is not shown in the figure. One
important question while merging is:What should Gvu do
when name conflicts occur?There is no single answer
to this question. Gvu can either provide unique names
automatically or ask the administrator to change the logical
views. We leave the decision to the site administrator.

When an application queries the Gvu to

get all the files related to
experiment "phy"

Gvu returns an application-specific view as shown in the
Figure 5(d), which is formed by running the appropriate
query on the global view.

C. View Synchronization

To support distributed collaboration, views created by
different users have to be synchronized. For example, when
two users run the query explained in the previous section,
they should both see the same view and any changes done
by a user should be seen by all the users sharing the view.

The synchronization is achieved usingdistview
which provides mechanisms to share Java objects in a
distributed system. The objects are required to implement
certain interfaces that specify how the objects have to be
synchronized. More details are given in the implementation
section.

D. View Security

Security is an important issue on the grid due to
different administrative domains and policies. GSI (Grid
Security Infrastructure) [22] is the de-facto standard for
providing security on the grid. We discuss how GSI
provides grid-wide authentication with different local au-
thentication mechanisms, policies and how it affects the
security of Gvu. Each user on the grid belongs to a VO
(Virtual Organization), which provides the user a unique
identity that can be used to access grid resources. Each
VO on the grid can selectively grant permission to use



resources to various users (identities). In current grids,this
is done by mapping an identity to a local user in a global
configuration file calledgridmap-file.

How do the authentication mechanisms affect Gvu
views?There are two issues related to Gvu security: access
control of files and access control of views. We have
implemented security by wrapping Gvu calls with GSI.
GSI can map an identity to a local user and Gvu can check
the permissions of files to see whether a user has enough
privileges to access the file. Adding access control to views
is tricky and complicated. Some of the issues are: How do
we set the access control list for a local logical view?
How can we add access control for application or user-
specific views? Where do we store them? One possible
solution is to create a security configuration file similar
to gridmap-file that specifies access control for local
logical views. Access control lists for user or application
specific views can be maintained by the local Gvu server.
We leave more detailed analysis and implementation as
future work.

IV. Implementation

A. Gvu servers and views

We have implemented Gvu in the Java programming
language usingJDK 1.4.2. Java is chosen, because
distview is written in Java and Globus toolkit (GT3) is
heading towards Java-based web services. XML libraries
provided with the standard Java distribution are used to
parse and execute queries on the views represented in
XML.

The distview toolkit provides mechanisms to share
any objects in a distributed system. The shared ob-
jects have to implement certain functions including
notifyStateChange, notifyStateUpdate and
setValue. We have designed a class calledGvuTree
that implements these functions and can be shared using
the distview toolkit. The GvuTree object is self-
sufficient and can identify the global tree, application, user-
specific views and respective mappings using a global hash
table.

B. Synchronizing the view to the disk

Whenever an update is made to the view, the update
is immediately reflected in the in-memory GvuTree and
distview. As a result, the update will be seen almost
immediately on all the servers. Each server runs a Sync-
Thread that keeps checking the GvuTree for any modifica-
tions to its local logical views and updates the contents of
the disk. This may involve creation or deletion of files and
attributes. This mechanism provides good performance for

TABLE I. Supported commands in the Gvu
server

Session related commands
connect Starts a session with the local Gvu server
disconnect Ends the current Gvu session

View related commands
create view Creates a view for a particular query
delete view Deletes a view with a particular id
ls List the contents of the view in human readable tree

format
ls xml List the contents of the view in raw XML
set view Set the current view to the specified id
create file Create a file in the current view
delete file Delete a file in the current view
read file Read a file using GridFTP

Attribute related commands
attr add Add an attribute to a file
attr delete Delete an attribute from a file

Administrative commands
sync Sync the tree corresponding to the local Gvu server

to the disk
close Close the current connection between client and

server
shutdown Shutdown the local Gvu server

creation and deletion of files. This is similar to the buffer
cache mechanisms employed in traditional file systems. If
a GvuServer tries to read a file before the file is written to
the disk on the server that owns the file, the application is
blocked until the write completes. The SyncThread updates
the contents of the disk every 30 seconds. The periodicity
of sync can be tuned and the value of 30 secs is used,
because it matches with the sync periodicity of pdflush
kernel thread.

C. Gvu Shell

We have implemented a small shell that allows the users
to interact with Gvu servers. The shell connects to the local
Gvu server and interacts with it to create and update views.
A list of implemented commands are given in the Table
IV-A.

D. Query execution

One of the key aspects in creating views is the effi-
cient execution of queries. Currently, Gvu supports simple
queries and complex queries containing boolean opera-
tions. We have implemented a simple XML node matching
algorithm for executing the queries. This can be extended
in various ways using well-known techniques used in XML
databases.

E. An example scenario

Figure 6 shows an example scenario of interactions
between a client application and the Gvu system. The



Fig. 6. Client-server communication

numbers in the figure are explained below.

1) When the Gvu servers #1 and #2 start, they add their
local logical views todistview.

2) When the application starts, it queries the local
Gvu server for a logical view corresponding to a
particular query. It is similar to doing

find . -type f -group "os"
-name "*"

on a standard UNIX system.
3) The local Gvu server runs the query on the global

view (which is kept up-to-date bydistview) and
returns an application-specific view to the user. Note
that the view appears the same irrespective of the
location where the query is executed.

4) The application creates a file in the logical view.
5) Local GvuServer updatesdistview.
6) Distview broadcasts the new contents of the

GvuTree to all the servers containing the view.
7) The file is created at the appropriate server.

The application can use the logical view to perform
various data-management operations. When the applica-
tion reads a file in the logical view, the read request is
forwarded to the appropriate site’s Gvu server.

V. Experimental Results

We have conducted experiments measuring various as-
pects of Gvu. We have set up two separate testbeds for the
experiments. The first testbed is a small grid created in
the RTCL (Real Time Computing Laboratory) at the Uni-
versity of Michigan. We used this testbed for debugging
and for conducting experiments that didn’t depend on the
wide-area nature of a real grid. We used Grid3 production
grid for our real-world scenarios and for understanding the
impact of wide-area network on Gvu.

(a) Results of query execution

(b) GvuTree initial read results

(c) Average creation time

Fig. 7. RTCL grid experiment results



TABLE II. Creation and deletion time for one
file

Creation time 9.78ms
Deletion time 1.34ms

A. Experiments on the RTCL Grid

All the machines we used had a similar hardware
configuration with dual Pentium III processors running at
500 MHz and 512 MB of RAM. They are running Linux
2.4.21 with SMP enabled. We used the extended attributes
provided by the ext2 file system for storing attributes for
files. The machines are connected by 100Mbps Ethernet
LAN, and the load on the machines was minimal when
we ran the experiments.

One of the machines is designated as the Corona server.
Four machines are designated as Gvu servers and two other
machines are used as clients running GvuShell.

We ran tests to find the execution time for queries,
update of GvuTree, creation and deletion time of files.

1) Query Execution:Figure 7(a) shows the execution
time of running queries on established trees. The X-axis
shows the number of nodes (files) in the GvuTree repre-
sented in XML. Four scenarios were run with two types of
queries and two types of tree structure: Simple queries that
check only one attribute per node, and complex queries that
check two attributes. Flat trees had one directory filled with
many nodes, and vines had many directories of increasing
depth. Ten queries were executed for each data point and
the time represents only the time needed to run the query
on the server before the results are sent to the application.

As expected, the search times were linear in the number
of nodes because every node must be checked in the cur-
rent implementation. This could be improved by caching
the results and only regenerating the parts of tree that
have changed since the last query. The difference between
simple and complex queries was negligible. The vines
took up twice as long to execute because of the overhead
involved in the function calls. The total time to execute a
query on 1K nodes is under 60 ms, which is an acceptable
cost.

2) Read time for GvuTree:Figure 7(b) shows the read
time for GvuTree when the server is initialized. One server
is initialized with logical view containing files of sizes
16, 32, . . ., and the time taken to read the GvuTree on a
separate server is recorded. The experiment is conducted
on three different machines after restarting the first server
and Corona. An average of 20 runs is taken on each of the
machines.

The very first read takes a large amount of time due to
Java’s initialization and serialization of the GvuTree object.
Once this is done, the read time for subsequent GvuTree

(a) Machine set #1

(b) Machine set #2

(c) Machine set #3

Fig. 8. Initial GvuTree read time on Grid3



(a) Workflow-I (b) Workflow-II

Fig. 9. Application workflows

reads is minimal.
3) Create and delete time of files:Table V-A.1 shows

the creation and deletion time for a single file. The low
times are due to the in-memory updates. We also ran macro
benchmarks by creating a different number of files in a
single directory and results can be seen in Figure 7(c).
The delay increases as we create more files, because more
time is needed to send the updated (bigger) tree to all the
Gvu servers. This can be improved in various ways. For
example, one can send only updated parts of the tree to
other Gvu servers. Another interesting mechanism would
be batching of commands. We have implemented batching
for the experiments done on Grid3.

B. Experiments on Grid3

Grid3 project developed under the auspices of iVDGL
(International Virtual Data Grid Laboratory) is a data
grid consisting of more than 25 sites with thousands of
processors. Grid3 is used by various scientific communities
including high-energy physics, bio-chemistry, astrophysics
and astronomy.

For all the experiments, the Corona server is run on
a 3GHz machine with 1GB RAM running Linux 2.6.
Information about the various sites used in the experi-
ments can be found on the Grid3 site catalog available
at http://www.ivdgl.org/grid3/

1) Read time for GvuTree:We have run the GvuTree
read experiment with different sites for different number
of files. Figure 8 shows the read times for various sites.
Certain sites were down during a few periods of run-
ning the experiments. Note the high latency experienced
on the Korean and Taiwanese sites (cluster28.knu.ac.kr,
grid1.phys.ntu.edu.tw) and low latencies at the Michi-
gan and Wisconsin sites (linat11.grid.umich.edu, cms-
grid.hep.wisc.edu). The low latency is due to the proximity
of these sites to the Corona server in the RTCL. You can
see certain anomalies in read times at the Florida site

(ufloridapg.phys.ufl.edu). This is due to the high load on
the site at the time of our experiments.

2) Real-world Scenarios:To better understand the be-
havior of Gvu, we have run two workflows that are similar
to CMS workflows in various scenarios. The workflows we
used for our experiments are shown in Figures 9(a) and
9(b). The circles represent the jobs and the arrows show
the data dependencies between the jobs. All the jobs are
similar except that they are run with different inputs and
produce different outputs. The workflows have three levels
of jobs. Experiments are conducted for a different number
of first level jobs. The scheduling of the jobs is done using
a simple load-balancing mechanism with an equal number
of jobs running on each site. The third level job is run on
a separate site.

The workflows are run with Gvu and MCS + RLS
and the execution time of the workflow is compared. The
pseudo-code describing the application is shown in the
Figure 11. The application checks with Gvu or MCS for
the existence of an input file and if it is available it requests
either Gvu or RLS for the location of the file. It produces
the output as soon as all the inputs are available.

Both the workflows are run with two different sets of
sites. The first set of sites are connected by a wide-area
network with latencies on the order of 60ms. The second
set of sites are connected by a wide-area network with
latencies on the order of 20ms. The two different sets of
sites are chosen to demonstrate how Gvu copes up with
the high latencies experienced in wide-area networks.

3) Performance of Workflow-I:As one can see in
Figure 9(a), workflow I has better data locality, since the
level-1 and level-2 jobs are run on the same site. This is the
common mechanism for submitting jobs on the grid. The
execution time of the workflow with high latency network
is shown in Figure 10(a). Note that for 128 jobs, the
workflow didn’t finish when RLS and MCS are used. This
is because of the limit (100) on the number of connections
to RLS. This also shows an important aspect of Gvu

http://www.ivdgl.org/grid3/


(a) Performance of workflow-I with high latency network

(b) Performance of workflow-I with low latency network

(c) Performance of workflow-II

Fig. 10. Grid3 experimental results

with respect to the scalability. Though Gvu servers were
also highly-loaded for 128 first-level jobs, the performance
degraded smoothly, because of the distributed nature of the
Gvu.

Performance of the workflow with a low latency net-
work can be seen in Figure 10(b). As expected, the
performance improvement is small with Gvu, because of
the fast response times from RLS and MCS (due to the low
latency network). However, Gvu still performs better than
RLS and MCS, because most of thestat file requests
are handled locally.

4) Performance of Workflow-II:Workflow-II shown in
Figure 9(b) is similar to workflow I except that the level-2

boolean checkInputFiles(String inputFiles[])
{

foreach file in inputFiles {
/* ask Gvu or MCS whether the file is available */
stat(file);

}
if (all files are available)

return true;
}

main (String inputfiles[])
{

/* connect to local Gvu server or
a centralized MCS server */

connect(Gvu or MCS);
while(checkInputFiles(inputFiles) == false) {

/* sleep for 1000 ms while the inputs
are not available */

sleep(1000);
}
/* ask Gvu or RLS for location of the files */
locations(inputFiles);
/* create output and register with Gvu

or MCS and RLS */
createOutput;
/* register the attributes and location

of the output file with MCS and RLS
respectively */

registerOutput;
}

Fig. 11. Pseudo code for the application

jobs are submitted to different sites. This destroys the data
locality and yields poor performance. However, Gvu still
performs better than RLS and MCS, due to its distributed
nature. Note that the performance improvement is less than
that with workflow I. Figure 10(c) shows the performance
of workflow II with sites connected with an average latency
(30ms) network. We did not run workflow II with a low
latency network as we couldn’t find enough site that are
near us.

VI. Concluding Remarks

A. Conclusions

We proposed a view-oriented framework for grid file
systems that improves usability and allows distributed
collaboration. We developed mechanisms to create, update
and maintain views efficiently. The views are synchronized
and on-disk attributes are updated automatically. A shell
is developed to show various aspects of client interactions
with Gvu servers. Experiments are conducted to measure
Gvu performance, and results indicate that the overhead of
views is minimal and Gvu performs much better than RLS
and MCS.

B. Future Work

Gvu framework raises interesting questions for sharing
data on a grid.How do we synchronize views that share



files? An efficient synchronization algorithm is needed
to update all the views that have a file when the file is
updated. This is not trivial and requires careful design.

Various optimizations can be done to improve the query
execution performance. XML databases may provide clues
on how to implement the queries. Caching can be used on
the client and local Gvu servers to improve performance.
More work is needed to implement access control lists
for and views. Policies need to be developed to resolve
conflicts in merging views. Real-world scenarios have to
be explored to understand the effect of conflicts and when
they occur. More work is also needed for achieving better
fault-tolerance of Gvu and Corona servers.
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