Online Feedback-based Estimation of Dynamic
Page Service Time

Ashwini Kumar, Kaushik Veeraraghavan, Benjamin Wester, Kang Shin
EECS Department, University of Michigan
{ashwinik, kaushikv, bwester, kgshin} @eecs.umich.edu

Abstract— We present a framework for estimating the service
time of a dynamic HTTP request by using the service times of
past requests to the same URL. Our framework tags incoming
requests with a timestamp. As the request is processed, server
state relevant to the estimation mechanism, such as the number of
threads servicing incoming requests, is stored with each request.
When a request is handled, it is timestamped again, allowing us
to calculate its service time. This service time is added to the
history table and used in the computation of future estimates.
The estimators we evaluated do not produce accurate predictions
when server resources change, leaving room for further work in
estimator design.

I. INTRODUCTION

Unlike traditional web pages that can be cached on a
web server or in the browser, only certain components (such
as standardized text) of dynamic web pages can be served
faster by caching or pre-fetching [4]. With the advent of
adaptive advertisements, personalized online shopping and
similar technologies, dynamic web pages that require extensive
server-side processing are becoming increasingly prevalent.
One concern when serving dynamic pages is determining
the server resources required to provide end-users with good
quality of service. A possible way to do this is to analyze
incoming service requests and provide greater control over
their processing to the web server.

A precise estimate of a request’s service time would be
useful for providing good quality of service. We propose a
general feedback-based framework for estimating this service
time. Our framework functions as follows. For each URL,
the web server tracks the service time of recently-completed
requests in a history table. Upon receipt of a new request,
we use our history table to compute an estimate for the
request. When this request completes, its measured service
time updates the history table.

We built our estimation framework, called Sirocco, atop
the Staged Event Driven Architecture (SEDA) [13] infrastruc-
ture for developing event-driven applications. Our estimation
mechanism predicts request service times when the server is
operating under regular (i.e., non-overloaded) conditions. To
preserve the accuracy of our estimates under varying loads,
we experiment with different estimate computation schemes.
We analyze our results and describe a general set of properties
that estimators should possess.

The estimation framework is:

1) online: estimation is performed at runtime;

2) adaptive: our feedback mechanism tracks varying ser-
vice times (perhaps due to changing service load); and

3) cheap: while increasing the number of tracked URLs is
limited by server-side resources such as memory, this
does not impact end-user request service times.

Along with its use in web services, we envision the impact

of our estimation techniques in other areas:

1) Load balancing: Oftentimes, large websites employ
load-balancing schemes to distribute resources, and traf-
fic, amongst multiple servers. Sirocco will provide a
reasonably accurate service time for every URL, and
help construct better load-balancing mechanisms.

2) Web server administration: An accurate service time
estimation would enable the development of applications
that can better manage web servers. For instance, a
website that distinguishes between paid and unpaid users
can monitor service times for paid users’ accesses and
guarantee them better service.

3) Virtual host services: With the emergence of rentable
enterprise-scale data centers [8], dynamic allocation of
servers, applications and communication bandwidth is
a novel problem. An efficient solution will require
an excellent service and load estimation technique to
correctly predict resource requirements.

There are some limitations to our framework. To have a
meaningful correlation between a URL’s history and its service
time, the page at that URL must be generated in a constant
processing time. We have not fully addressed the behavior of
our history/estimation scheme under server overload scenarios.

The rest of this paper describes our framework design,
implementation and evaluation. We then describe future work.

II. RELATED WORK

Over the years, web servers have incorporated novel
scheduling [2], traffic shaping [12], graceful degradation un-
der overloaded scenarios [1], and other server performance
improvements [13], [10]. To the best of our knowledge, there
is no work that directly deals with the problem of estimating
the service time of dynamic requests to a web server.

III. DESIGN

Figure 1 shows an overview of the framework. The central
component of our framework is the history table. We chose
to denote different dynamic applications as different URLSs.
For each dynamic URL, we maintain a history table entry



History Incoming
I Query
J Request
4
> Estimate
y
Request —

Finished 4
Reauest - Gather Information

Processing \)

~ _ -

Fig. 1. History framework embedded within a web server. Each request is
in a different stage. In the second stage, the history table attaches a tag to a
request. In the final stage, the tag in a finished request is used to update the
history table, providing feedback.

of information from previous requests for that URL. The
information stored depends on the estimator (one of our
estimators store the measured service time). When the server
receives a new request, its URL entry is located in the history
table, and it is given a tag.

A tag is a data structure that is attached to every request.
It encapsulates data relevant to the estimator (in our schemes,
these include the timestamps, the queue length, and the number
of threads). As a request is processed by the server, this
information is stored in its tag. When the request has been
serviced, its tag is used to update the URL’s history table
entry. This completes the feedback loop in our design.

We designed our history table, tagging and estimation
mechanism to work in a simple, cohesive manner that can
be ported to any web server. The framework only tracks
information that is readily available in a web server, and it
can be easily extended. The tagging mechanism requires a
simple function call when request processing is initiated, and
another at completion. On request completion, a history-update
function is also invoked.

A. Estimation

For a given URL, we the history table for information from
past requests. This information is used to compute a service
time estimate for a new request to that URL. This compu-
tation requires a two step effort: i) we need to incorporate a
timestamp mechanism that tracks the request through different
stages of processing in the web server; ii) we need to develop
a suitable estimation scheme capable of generating an accurate
prediction.

We use the tag to store a timestamp when the request is first
encountered and a second timestamp immediately before the
request’s response is queued for transmission. Their difference
is the measured service time.

The design space for an estimation scheme involves several
tradeoffs. A high performance web server that is heavily-
loaded with requests should not expend all its resources
computing a service time estimate. At the same time, a better
estimation method may require more resources. Simplicity
of design and operation is required to ensure that it does
not compound the complexity of the web server. Another
important tradeoff is between adaptability and predictability.
We would like to discards random ‘noise’ and extreme swings

in service time to keep our estimates predictable. However, we
also want the estimates to adapt when the service time does
change, perhaps due to the addition of threads.

With the above tradeoffs in mind, we designed a few simple
estimators. Our first estimator performed a simple average of
past service times and returns this as the estimate. While the
averaging scheme is simple, we found it to be unresponsive
under a changing load, i.e., we had to flush out a majority of
past service times for the estimate to resemble current service
times. We realized that we could better adapt to changing
loads by accounting for the queue length of requests awaiting
processing. For each request, we store ST Q, where:

STQ = Service Time
Queue Length

For an incoming request, an estimate was generated by
retrieving its STQ value and multiplying it by the queue
length at that instant. We found this estimator to perform
significantly better than the averaging estimator. However, its
performance degraded under heavy loads when SEDA detected
an overload and spawned additional handler threads. This led
us to believe that we might be able to further improve our
estimation by incorporating the number of threads servicing
incoming requests into our computation. Our third estimator
stored the following value.

Service Time X Number of Threads

STQT =
0 Queue Length
An estimate is generated by retrieving the average ST QT
from the history table and multiplying it by the queue length
and the number of threads servicing incoming requests at that
instant.

IV. IMPLEMENTATION

Web server architectures fall into three broad models:
process-based, thread-based, and event-driven. Kegel [6] and
von Leitner [11] provide a more-detailed look at the differ-
ences between these models and explain how the design of
event-driven servers, such as Lighttpd [7] and SEDA [13],
scale better than process-based and thread-based servers, such
as Apache.

We designed our framework so that it can scale from
monolithic servers to larger web servers with distributed
data processing backends by passing the request tag across
different machines. Our prototype implementation deployed
the history framework within Haboob, a monolithic event-
driven web server implemented on the Sandstorm platform, a
reference implementation of SEDA [13]. Haboob is structured
as a central execution unit with a set of linked stages that
maintain their own request queue and dynamic thread pool.
An important design decision is that we have SEDA provide
each dynamic URL with its own handler stage. This is later
found to greatly impact resource utilization and our ability to
measure the framework.

The modified version of Haboob incorporating our history
mechanism is called Sirocco. Our changes to Haboob are



M netpserver ==yl Hreptecy |

P
: [ startTime

' ;  queueSize

DynamicHttp

TCP Packets

ATcpConnection

handler1

handler2

< — — —endTime

Fig. 2. This figure shows the main internal stages of Sirocco with the STQ
estimator. All stages (with their own queues) and data flow between stages are
unchanged from Haboob. Sirocco adds the History class. New requests parsed
by httpServer are forwarded to History, which generates the request’s tag.
Using STQ, the tag contains an initial timestamp and the length of the request
handler’s queue. In httpSend, a final timestamp is added to the request’s tag
as the request is queued for transmission. The tag is sent to History to provide
feedback.

shown in Figure 2. The most important change is the addition
of the httpRequestHistory class which holds the history table.
The history table is stored as a hash table that maps each
tracked URL to a data structure containing an array each for
the service times, STQ or STQT values, depending on which
of the three estimators is in effect. Its public interface consists
of two functions: updateHistory() and getTag().

As each incoming request is parsed by the Haboob stage
httpServer (see Figure 2) to generate a request object, getTag()
generates a new history tag for the request containing a times-
tamp and a queue size. At this stage, we update the tag with
the number of requests pending service in the handler queue
(queue length is used in the ST Q estimator) and the number of
thread handlers (used in STQT). Once a request is serviced,
it arrives at HttpSend where it receives the exit timestamp
as it places its response data onto the TCP connection send
queue. If the request came from one of the dynamic handler
stages, HttpSend invokes the updateHistory() function with the
request’s tag as the parameter.

When the history table receives a tag to update, it extracts
the embedded URL and looks up its entry in the history table,
creating a new one, if necessary. Updating a specific URL’s
history involves appending the service time (as measured by
the start and end timestamps), or the computed ST Q or STQT
values to the history table, depending on the estimator used.
We maintain a fixed-length history array for every URL entry.
This array is used as a circular buffer with a Least-Recently-
Used (LRU) eviction policy. This history update acts as a
feedback mechanism which improves future estimated service
times.

V. EVALUATION

There are three main areas in Sirocco that must be evaluated:
1) Overhead — what is the resource cost of our frame-
work?

2) Measurement — how accurately does Sirocco measure
the current request service time?

3) Estimation — how accurately does Sirocco estimate the
current request service time?

A. Methodology

We deployed Sirocco on a Dell GX620 with a Pentium IV
3.4GHz processor and 2GB DDRAM. A ShuttleX PC with
Athlon XP 2400+ and 512MB DDRAM was connected to the
server over a dedicated 100BaseT Ethernet connection and
acted as our client. In this configuration, network delay is
negligible as there are no other machines on the network.

To simulate a computational delay on the server, we con-
structed a dynamic application that accepts an integer as a time
parameter encoded on the URL path and calls Thread.sleep().
In each set of trials, this application sleeps for a constant time,
with some small variation due to Java’s scheduling. While
this does not create any load on the server, it does block the
thread depicting similar behavior as a blocking call to a web
application server.

We use SURGE [3], a web load generator, to test our
estimator under varying load conditions. SURGE generates
test pages with a size distribution based on Zipf’s law and
an invocation model based on a combination of lognormal
and Pareto distributions. We configured it to generate 2,000
files, with the most common file accessed 20,000 times. With
this configuration, the interesting changes in load occur within
the first 25 seconds of the test. Roughly 35% of all requests
are mapped to the dynamic handler. A trial in SURGE is
deterministic, so we can view identical request patterns under
differing server conditions.

We modified Sirocco so that requests to URLSs in the history
table can be tracked as they are processed by different stages
in the web server. These logs serve as our primary data set.

One metric we use is the SURGE worst-measurement. Ten
trials are run against a configuration, and the worst measured
service times for each run are averaged together. All dynamic
requests are mapped through one URL which sleeps for the
same amount of time.

B. Overhead

We have three estimators that use a variable number of
stored history values. Each pair of choices we make for a
configuration may affect the total overhead differently. To
accurately measure the component of the overhead caused by
the estimation framework itself, we remove the estimator and
history from consideration. We measure the overhead of our
framework by comparing i) a server that implements a history
table which stores no values and has no estimator function
and ii) the standard Haboob server augmented with logging
capabilities.

We initially used Hrtperf [9] to compute the overhead of
Sirocco. We configured httperf to send requests to our server
at a constant rate and to measure the connection time for
each request while we varied the server conditions. This test



! —O— Estimate
i —— Measure

Service Time (Seconds)

0 5 10 5 20 25
Request Release Time (Seconds)

Fig. 3. This graph shows the Average Service Time estimator on a SURGE
trial. The estimated service time given to a request is compared against the
measured service time. The points at time x show a request’s measured and
estimated times. Each dotted line indicate the instant when a new thread began
servicing requests. This estimator trails the measured service time.

indicated that our framework added no measurable overhead
under any server variation.

However, by comparing the graphs of SURGE trials, we
found that there was in fact a difference. Using the SURGE
worst-measurement metric, the history gathering framework
produced a worst measurement that was 13% greater than
Haboob. It was necessary to stress our system before any
overhead became evident, and SURGE made the best attempt.

We wanted to measure how the overhead changed as the
system tracked more URLs. Because of our design choice to
use one SEDA stage per URL, adding more URLs resulted
in having more threads in our system. With many threads
we cannot provide enough load to the server to generate
interesting behavior. The large number of stages also consumes
server memory resources. After accessing 3,500 URLs (cre-
ating 3,500 stages), our server ran out of memory. For these
reasons, we could not measure the overhead associated with
a varying number of URLs.

Neither SURGE nor httperf showed any significant perfor-
mance overhead from changing the number of history values
stored.

C. Measuring Service Time

As mentioned before, we measure the service time of a
request by attaching two timestamps to it. We call their
difference the measured service time. The request does pass
through queues outside of this boundary, so the measured time
is inexact. We call the time span including these components
the actual service time.

The difference between these two time values can be ob-
tained by comparing the SURGE logs to the Sirocco logs. The
error value per request is the absolute difference recorded by
these two sources. Our tests produced a mean error of 8.86ms
(standard deviation 35.69). On closer investigation, we found
that half the values are under 2ms, with 95% under 35ms.
There are very few values that have an abnormally large error.
Error does not appear to follow a normal distribution, so it
cannot be easily characterized by its mean value.

—O— Estimate
—— Measure

Service Time (Seconds)

Request Release Time (Seconds)

Fig. 4. This graph shows the ST Q estimator. The estimate deviates from the
measurements in the vicinity of thread additions.

D. Estimating Service Time

1) Average Service Time: Figure 3 shows a plot of a
request’s estimated service time compared to the measured
service time. Clearly, our estimation is not accurate. This is
due to the reactive nature of the request function. Since we
base our estimate off of the average of the response times
in the history, when the server is changing, the values in the
history table will always trail the correct value. This simple
estimator only works well in the trivial case where the server
load for the specific URL is relatively constant.

2) STQ: Figure 4 shows a trial using ST Q estimation. There
are instances where the estimated time closely follows the
measured service time. Two deviations (where the service time
is not accurately predicted) occur for the following reasons.
At time 7.6, a new thread is created. After this event, the
rate at which requests are consumed from the handler’s queue
doubles. Every request in the queue at that time, already had
its service time predicted. Those predictions will not change
when the thread is added; they will continue to reflect an
estimation made when the number of threads was different.
The deviation before such resource changes is unavoidable
unless the estimator can predict future changes in number of
threads.

What about the deviation immediately after the thread
addition? All STQ values implicitly encode the rate at which
requests are processed. When the underlying resources change,
the processing rate changes, and old history entries are no
longer accurate. The ST Q estimator assumes that the rate at
which a request is serviced remains constant throughout the
life of the server. When this assumption fails, STQ will not
give an accurate estimate.

3) STQT: An ST QT estimation trial is given in Figure 5.
Immediately after the thread addition, it recovers to a point
near the measured value. The estimation then further diverges
from the correct path before rejoining the measured values.

An individual request can accurately measure the consump-
tion rate per thread, as long as the number of threads is
constant during that request’s lifetime. In the period after a
thread addition, currently-completing requests contain value
which combine two different rates. As these values replace
older, correct values, the estimation degrades. So while re-



—O— Estimate
—— Measure

Service Time (Seconds)

Request Release Time (Seconds)

Fig. 5. This graph shows the STQT estimator. While its estimations are
closer to the measurements than ST Q’s, estimates after a thread addition are
still not accurate because the addition is still affecting completing requests.

moving all history might have been an improvement for STQ,
an improved ST QT would adjust or ignore new values.

E. Estimator Construction Guidelines

To summarize our evaluation, we offer the following con-
siderations for constructing future estimators.

1) The estimator cannot use only the history table. It takes
time for a request to be processed, so the view captured
in history does not show the current state.

2) Some values seen by the estimator will not follow the
general trend and should not be used in the history table.
Perhaps some sort of adaptive filter could be used to
eliminate extraneous input.

3) When the server’s resources change, old history values
might give the wrong view of a system. Removing these
old values keeps them from interfering with new data.

VI. CONCLUSION

We have developed a method for estimating request service
times for dynamic web applications. A URL’s request history
can be used to extrapolate an estimated service time for an
incoming request to that URL. We evaluated three estimation
functions and found them to behave well for steady loads,
but collapse under changing server conditions. We analyzed
our results to derive a set of properties for constructing better
estimators.

The work presented here could be extended in the following
areas:

o History: Rather than weighing each stored value in the
history table equally, we could adopt a decay mechanism
that weighs the values based on age.

o Estimation: We used several overly-simple estimators in
our current design. We would like to further explore this
design space and experiment with more complex/multi-
dimensional estimators.

o Web load generators: We struggled to stress our web
server and to find a load generator that plays well with
dynamic requests. SURGE may work well for stressing
a server with static requests, but we are unsure of its
applicability to dynamic content. We would like to try
evaluating our server with Eve [5] since it includes

improved modular programmable-client approach that
generates dynamic requests.

o Web server: Our history framework can be implemented
on different types of web servers, which may change its
observed behavior or allow us to test different properties.

The primary observation of our study is that a history mod-
ule which tracks useful information for dynamic requests may
be an accurate method to estimate request service time. This
information can be processed at run-time without significant
overhead.

REFERENCES

[1] Tarek F. Abdelzaher and Nina Bhatti. Web content adaptation to improve
server overload behavior. In WWW ’99: Proceeding of the eighth
international conference on World Wide Web, pages 1563—1577, New
York, NY, USA, 1999. Elsevier North-Holland, Inc.

Nikhil Bansal and Mor Harchol-Balter. Analysis of srpt scheduling:
investigating unfairness. In SIGMETRICS ’01: Proceedings of the
2001 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 279-290, New York, NY, USA,
2001. ACM Press.

Paul Barford and Mark Crovella. Generating representative web work-
loads for network and server performance evaluation. In SIGMETRICS
"98/PERFORMANCE ’98: Proceedings of the 1998 ACM SIGMETRICS
Jjoint international conference on Measurement and modeling of com-
puter systems, pages 151-160, New York, NY, USA, 1998. ACM Press.
Azer Bestavros. Using speculation to reduce server load and service
time on the www. Technical report, Boston, MA, USA, 1995.

Hani Jamjoom. Network Oriented Controls of Internet Services. PhD
thesis, University of Michigan, Electrical Engineering & Computer
Science, 2004.

[6] Dan Kegel. The c10k problem. http://www.kegel.com/c10k.html, 1999.
[7]1 Jan Kneschke. Lighttpd. http://www.lighttpd.net, 2005.
[8] Hewlett-Packard Labs. Data center
http://www.hpl.hp.com/research/dac/index.html, 2006.
David Mosberger and Tai Jin. httperf—a tool for measuring web server
performance. SIGMETRICS Perform. Eval. Rev., 26(3):31-37, 1998.
Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient
and portable Web server. In Proceedings of the USENIX 1999 Annual
Technical Conference, 1999.

Felix von Leitner. Scalable network programming or: The quest for
a good web server (that survives slashdot). http://bulk.fefe.de/scalable-
networking.pdf. 2003.

Matt Welsh and David Culler.
internet servers. 2003.

Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for
well-conditioned, scalable internet services. In SOSP ’01: Proceedings
of the eighteenth ACM symposium on Operating systems principles,
pages 230-243, New York, NY, USA, 2001. ACM Press.

[2

—

3

—

[4

fina

[5

=

architecture.

[9

—

[10]

(1]

[12] Adaptive overload control for busy

[13]



