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Abstract—Multihomed, mobile wireless computing and communication devices can spontaneously form communities to logically

combine and share the bandwidth of each other’s wide-area communication links using inverse multiplexing. But, membership in such

a community can be highly dynamic, as devices and their associated WWAN links randomly join and leave the community. We identify

the issues and trade-offs faced in designing a decentralized inverse multiplexing system in this challenging setting and determine

precisely how heterogeneous WWAN links should be characterized and when they should be added to, or deleted from, the shared

pool. We then propose methods of choosing the appropriate channels on which to assign newly arriving application flows. Using video

traffic as a motivating example, we demonstrate how significant performance gains can be realized by adapting allocation of the shared

WWAN channels to specific application requirements. Our simulation and experimentation results show that collaborative bandwidth

aggregation systems are, indeed, a practical and compelling means of achieving high-speed Internet access for groups of wireless

computing devices beyond the reach of public or private access points.

Index Terms—Network communications, wireless communications, mobile computing, mobile communication systems, mobile

environments.
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1 INTRODUCTION

AN increasing number of multihomed wireless mobile
computing devices are being equipped with two

distinct types of wireless communication interfaces: a local
area network (WLAN) interface such as IEEE 802.11x and a
wide area network (WWAN) interface such as a 2.5G or later
generation cellular link. The capabilities of these interfaces
differ greatly, most notably with the available WLAN
bandwidth exceeding the WWAN’s bandwidth by one to
three orders of magnitude. For the foreseeable future, we
anticipate that this bandwidth disparity between local and
wide area wireless network connections will remain intact.

Public high-speed Internet connectivity from such de-
vices is now typically achieved by connection via the WLAN
interface to an access point which is connected to a high-
speed, wired network. It remains unlikely, however, that
opportunistic deployment of these access points will ever
realize ubiquitous—or even relatively geographically
broad—access. Even where access points are densely
deployed, seamless roaming between access points remains
a technical challenge and may not serve the business
interests of either access point operators, venue owners, or
service providers. Further, even where access point coverage
is rich, the transmission rate of the wired connection
—typically 1.5 Mb/s—is limited and shared among a

possibly large group of users and unlikely to increase
significantly in transmission speed in the foreseeable future.

To overcome the limited geographic coverage of public
access points, we envision an alternative, complementary
solution to high-speed Internet access through collaborative
resource sharing. A group of wireless, mobile computing,
and communication devices in close proximity can dyna-
mically form communities interconnected through their
compatible high-speed WLAN interfaces; we call these
ad hoc communities Mobile Collaborative Communities
(MC2s). Each MC2 member independently uses its WWAN
interface to create a communication channel to an inverse
multiplexer and optionally offers to other members (full or
partial) access to this channel. The set of participating
channels connecting the MC2 members to the inverse
multiplexer can be logically combined with an inverse
multiplexing protocol to yield a higher-speed aggregated
channel than is available from any one of the individual
MC2 members.

The envisioned bandwidth aggregation mechanism is an
enabling technology, as illustrated by the following exam-
ple. A group of train commuters, who do not have Internet
access through their WLAN interfaces, could spontaneously
form a MC2, and all members could receive a video stream
delivered at a higher bandwidth—and higher quality—than
any one member could receive. Each MC2 member would
also enjoy higher speed, statistically multiplexed WWAN
access, a service often far more desirable than private, but
lower-speed access.

Striping data across multiple, parallel communication
channels is a conventional communications technique used
to improve system performance or reliability in relatively
statically configured disk storage systems [35] and fixed,
wired LAN-WAN interconnection systems [12], [44]. In
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stark contrast to the multihomed device scenario, due to
end-device heterogeneity, mobility, and time-varying link
transmission characteristics, the system we consider here is
highly dynamic and must be assembled, administered, and
maintained in a decentralized fashion. This paper makes the
following key contributions:

. We present the design of a collaborative bandwidth
aggregation architecture that is both practical and
readily deployable. The proposed architecture en-
ables third-party bandwidth aggregation service
and does not require kernel modification at the
end-clients.

. Based on simulations and testbed experiments, we
have shown that significant performance gains can
be realized by application-level striping that adapts
the shared WWAN link selection to the specific
application requirements of the communication
flows. As an illustration, we demonstrate how the
quality of a hierarchically layered video stream
transmitted over lossy channels can be improved
by a priority/application-aware traffic assignment.

We introduced our MC2 system in [40] and, in this
paper, we present a thorough design and extended
evaluation through various scenarios and analyses in
simulations and testbed experiments.

The rest of the paper is organized as follows: Section 2
explores the issues and trade-offs faced in creating a
decentralized inverse multiplexing system. Section 3 intro-
duces algorithms for the assignment of application flows to
heterogeneous WWAN channels, and Section 4 describes
the specific system architecture we chose to study.
Performance evaluation results from an ns-based simulation
are presented in Section 5, and Section 6 describes the
implementation of a prototype system used to corroborate
our findings. Related work is summarized in Section 7, and
our conclusions are presented in the final section.

2 ISSUES, CHALLENGES, AND APPROACHES

2.1 Basic Setup

Let us first consider a relatively basic channel aggregation
system. Assume that each shared channel contains only the
single WAN link between each participating MC2 member
and the inverse multiplexer. Suppose we seek to provide a
single, bidirectional, unicast connection between an Internet
source and a single MC2 node. End-system applications are
oblivious to the presence of the aggregated channel in the
downstream path; all upstream traffic follows the single
WAN link associated with the shortest return path. No
cross traffic is present on either LAN or WAN links. Each
packet flowing downstream is received by an MC2 member
and immediately forwarded to the destination via the
receiving device’s LAN interface.

At the receiving end, we assume that devices belong to a
single, self-organizing MC2. Each device is exactly one
wireless LAN hop away from any other device. MC2

membership is dynamic; a newly arriving device can join
an existing community and contribute its (partial or full)
WAN channel to the resource pool. Member devices can also
leave the community—typically without prior announce-
ment—due to either device failure or movement out-of-range

of LAN communications. We assume that a mechanism
exists to detect such departures from the resource pool,
though packets may be lost until the system can detect and
recover from that resource loss.

Even with this remarkably simple system model, we are
immediately faced with several intriguing questions. What
is the performance loss associated with an unannounced
departure of a single, actively used WAN channel? How
does this performance loss vary with the traffic type
traversing the channel? What is the minimum time duration
that a newly arriving channel participates in an aggregated
channel such that its throughput is increased?

To begin to address this last question, consider the
decision of whether to run a TCP connection over a single,
persistent link, or an inverse-multiplexed connection
comprising that same link plus a second link of equal
capacity alternating between connected and disconnected
states. It is intuitive that the multiplexed connection might
promise greater average bandwidth capacity, but the
fluctuating presence of the second link may result in TCP
window size reductions in response to packet losses, such
that the two links can have lower throughput than the
single persistent link. Selecting links to maximize the
throughput of a TCP connection is an even greater
challenge when more than two links are available, and
each of the links has different communication character-
istics; see the appendix of our technical report [39] for a
more rigorous development of a method for best channel
selection.

The challenge of designing an effective inverse multi-
plexing system becomes far harder when we recognize that
the components are heterogeneous, imperfect, and support-
ing time-varying workloads. For example, WAN link
transmission characteristics (i.e., bandwidth, packet latency,
and loss) will vary, possibly dramatically, as end devices
move around. Links from different service providers may
be of dissimilar technologies with different costs, compli-
cating link selection. Links of the same type from a single
network operator might have dependent or correlated
transmission characteristics or outages.

The potentially large latencies introduced by packet
forwarding through power and processing-limited mobile
computing devices are also a challenge. Disparities in the
forwarding latency on different paths traversing hetero-
geneous computing devices with time-varying computing
workloads can introduce packet misordering in the end-to-
end path that can affect certain applications adversely. For
example, noninteractive multimedia streaming applications
will typically be lightly affected, though larger client buffer
capacities might be desired. Although packet reordering
might not reduce multimedia application performance
noticeably, it can complicate TCP RTT computation and
decrease TCP throughput. Packet reordering is not un-
common in today’s Internet [4] and, in the event that
reordering becomes significant, there are approaches that
can mitigate performance degradation [5].

2.2 Multiplexing Layer

A key issue in our overall system design is the identification
of the preferred protocol layer for the multiplexing
function. Since IP performs routing and multiplexing, it is
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natural to consider a network layer multiplexing imple-
mentation. An IP-based solution could be implemented
exclusively at the communicating end-systems; in this case,
any packet scheduling, reordering, and reassembly would
occur, as usual, only at the source and the destination.
Though such a network layer implementation can be
achieved in several ways, each requires end-system kernel
modification, restricting the availability of channel aggrega-
tion to data transfers between modified end-systems. An
additional disadvantage of network layer striping is that it
could restrict the channel assignment policies (i.e., the
intelligent mappings of flows to available channels) that we
might seek to implement since the network layer is
generally not aware of application characteristics and
requirements. Performing multiplexing at the network
layer, however, does have the advantage that it would not
require any changes to existing applications.

An alternative solution is to perform multiplexing at the
transport layer. Once again, end-system protocol stacks
would require modifications, though transport-layer chan-
nel assignment policies could potentially be made more
easily aware of application requirements. The obvious
deployment issues associated with either network or
transport-layer multiplexing suggest solutions using appli-
cation-layer multiplexing. Although such an implementa-
tion would incur more packet processing overhead, it
requires no kernel modification and is easy to install,
maintain, and monitor. Application-layer multiplexing also
permits controlling packet scheduling on a per-application,
per-connection, or per-packet priority basis. Like transport-
layer and network-layer multiplexing, application-layer
multiplexing is also transparent to the applications and does
not require modifications to the applications themselves.

2.3 Forwarding Mechanism

What forwarding mechanism should an inverse multiplexer
use to transmit a packet over a chosen channel? Irrespective
of a packet’s destination, different packets must traverse
different routes. There are several means of achieving this.
One approach is to change each packet’s destination
address to the IP address of the appropriate MC2 member’s
WAN interface. When a packet arrives at the MC2, its
destination address would be reverted back to the original
MC2 member destination address. This would, in a sense,
be similar to providing a Network Address Translation
(NAT) service, albeit in a distributed manner. But packet
modification and processing overhead at the forwarding
nodes associated with this approach might be significant.

Another packet forwarding approach could use loose
source routing to forward a packet through the intermediary
interfaces associated with the desired WAN channel to
traverse. This would avoid the need to provide a special
NAT-like packet forwarding service beyond ordinary IP
routing itself. However, loose source routing has multiple,
well-known weaknesses (e.g., use of IP options and extra
router processing) as well as limited router support, making
its use largely unworkable.

A preferred packet forwarding implementation would
use tunnels between the inverse multiplexer and each MC2

node. Tunneling has long been used to establish static paths
[47] and most OS network stacks today have built-in support

for tunnels. In such a system, packet forwarding would
operate as follows. Unicast packets sent from an Internet-
connected source would be routed normally to the inverse
multiplexer, where each would then be forwarded, accord-
ing to the multiplexer’s flow-to-channel assignment policy,
to the tunnel corresponding to the appropriate WAN
channel. Upon arrival at the MC2 node, the packet would
be decapsulated and forwarded on the wireless LAN to its
intended destination. In this simple case, all upstream traffic
would be sent over a single WAN link, typically—but not
necessarily—the receiver’s own. Fig. 1 shows a bandwidth
aggregation service architecture using Generic Routing
Encapsulation (GRE) [13] tunnels.

2.4 Proxy Placement

Another key question in the design of our system is the
appropriate placement of the inverse multiplexer in the
end-to-end connection. In principle, this function can be
located at almost any point between the WAN link
terminations and the connection end-point (e.g., origin
server), including the end-point itself. The preferred
location depends on many factors, including the type of
WAN links, who is providing the aggregation service,
whether collaborating devices agree to connect to a
common multiplexing point, and how generally accessible
the multiplexing service must be from a wide range of
origin servers.

If all the WAN links from an MC2 terminate at the same
point, a preferred location for the inverse multiplexer is that
termination point. It is natural to think of a proxy providing
this service, and to ease our discussion, we will simply use
this term to refer to the location of the inverse multiplexer,
regardless of whether a distinct physical component is used
to implement the function. If the proxy is located near the
WAN link termination points, then it is likely easier and
more efficient for a wide range of services to use the proxy
to transfer data to the MC2. In such a case, the aggregation
service can be provided as a value-added service by the
MC2 members’ common Internet Service Provider (ISP).
The proxy can alternatively be located at the network edge
close to the origin server, or even at the origin server itself.
While this location avoids the potential restriction of
requiring a common WAN link termination point, MC2

members might have to communicate with different
aggregation services to communicate with different servers.
As we will describe later, one can also envision an
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aggregation service being provided by a third party by
placing the proxy in the middle of the network.

2.5 Communication Dynamics

Both the availability and the quality of shared communica-
tion channels can be expected to vary with time. Yet, these
dynamics must be monitored and communicated to the task
mapper to provide proper task assignments. Community
membership itself will change as hosts join and leave the
community, due to either end-system failures (e.g., power
loss) or simply moving out-of-range of WLAN communica-
tions. WWAN channel quality may change often and
unpredictably because of fading, interference, and loca-
tion-dependent coverage gaps. Delay and delay jitter will
change as the heterogeneous, CPU-limited devices forward-
ing packets between WWAN and WLAN interfaces are
subject to time-varying computing workloads.

How do we monitor these communication dynamics?
One possible approach is to deploy a monitoring agent
within each community to oversee the communication
environment. The main advantage of deploying a monitor-
ing agent here is the ease of detecting changes to
community membership quickly. The drawback, however,
is that if the agent resides on a single node, it is difficult to
monitor the WAN channel performance of other nodes in
the community. Moreover, relying on a single (or even a
few) monitor(s) can result in both a performance and
reliability bottleneck.

This problem can be solved by either replicating the
monitoring agent or making every member a monitoring
agent, i.e., distributed monitoring. Distributed monitoring
works as follows: Each member broadcasts its channel
characteristics and associated information (e.g., commu-
nication costs and its energy balance) either periodically,
upon detection of an event, or when a threshold is
exceeded. Each broadcast is timestamped. Upon receiving
such a broadcast, all the other members update the
corresponding entry of their copy of the community
communication status database. The task mapper can
obtain a copy of the database in either of two ways. First,
the task mapper can request a copy of the database from
any community member. Requests can be sent to a
randomly selected member or a member identified by
inspection of the most recent database the task mapper has
received. For example, an inquiry might be directed to a
member with ample advertised available processing power,
residual energy, or network bandwidth. An inquiry might
be issued periodically or be driven by an event such as the
need to remap channels for a newly arriving flow. The
second way that a task mapper can obtain the database is
simply by receiving an update report periodically or when a
monitoring agent observes a significant local event (e.g.,
sudden channel failure).

An alternative approach is to perform monitoring at the
location where the task mapping is done. When transport
protocols that require end-to-end feedback (e.g., TCP) are
used, end-hosts can piggyback their measured channel
condition and membership information (e.g., will move out,
will turn the device off because of low battery power, etc.)
on the acknowledgment/feedback packets. Out-of-band
signaling may be utilized when transport protocols without

end-to-end handshaking, such as UDP, are running.
Although this approach has the advantage of easily
monitoring the communication channel state, there may
be delay in obtaining the information from every member.
To make matters worse, the feedback messages may not
reach the other end due to wireless transmission errors or
unidirectional/asymmetric links. Hence, the right prefer-
ence could be to use a combination of the two approaches.

2.6 Collaboration Incentives

Aggregated bandwidth channels can be realized only when
hosts willingly collaborate by sharing their communication
channels. Willingness to collaborate is not an issue for a
single user with multiple mobile devices (e.g., cell phone,
PDA, laptop, etc.) forming a “community” (i.e., personal
area network), nor might it be an issue for colleagues or
acquaintances. But, what are the incentives for collaboration
between hosts owned by multiple parties with little or no
preexisting relationship? Clearly, if many community
members seek access to the same content (e.g., multicast
video), then the members will be well-motivated to take
advantage of faster download or streaming. But, if each host
seeks to receive unique content, will the community
members each be willing to sacrifice their computing and
communications resources?

Such questions regarding the social use of shared
resources have occurred in many settings and have arisen
recently in investigations of forwarding incentives in ad hoc
network routing [7], [10], [36], [43], [48]. In ad hoc networks,
when the destination node is outside the radio transmission
range of the source node, the communication end-points
rely on intermediate nodes on the path to forward the
packets for them. The source and destination nodes, in turn,
will forward data packets when they become the inter-
mediate nodes for other communication pairs.

We have reason to be optimistic that collaborating
communities will occur spontaneously in public settings.
The benefits of aggregated channels are high, particularly
when members seek to access large files or high-quality
media objects. In some cases, no viable alternative means of
access will exist. In addition, the “cost” of the resources
being offered (e.g., bandwidth) is relatively low, members
can experiment at low risk by offering partial resources, and
offered resources may be reclaimed with little difficulty.
Moreover, users will tend to share their WWAN bandwidth
if the aggregation is performed only on idle channels. The
recent success of peer-to-peer file sharing leads us to believe
that device owners may be willing to share communication
and computational resources as readily as they do informa-
tion, particularly if they directly and immediately benefit
from resource sharing.

In the following, we provide a simple analytical model of
incentives for sharing bandwidth in our MC2 network. Let
the set of nodes n in a community be represented by I .
Every node i 2 I is connected to all other nodes via a
WLAN with bandwidth B in addition to its WWAN
connection whose bandwidth is represented by Oi. We
denote the bandwidth that node j offers to node i by Oji.
We also assume that Oi ¼ Oj; 8i; j 2 I .

We devise the following algorithm for the community
members for sharing bandwidth. Every node i in the system
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keeps a set of normalized weights, which we denote byWi,
that contains a value for every node in the system. It is
computed as follows:

Wi ¼ ½wi;0; wi;1; . . . ; wi;n�1�; ð1Þ

wi;j ¼
OjiP
k Oki

; 8k 2 I : ð2Þ

Then, node i will compute how much bandwidth to offer a
node j as

Oij ¼ wi;j:Oi: ð3Þ

We claim that this algorithm offers incentives to nodes in
the system to share their bandwidth as it will directly affect
their performance. In what follows, we prove this claim by
showing that the system has a Nash Equilibrium.

We define the utility of node i as

ui ¼
P

k OkiP
k Oik

: ð4Þ

Intuitively speaking, a node i wants to offer as little as
possible of its bandwidth while getting as much as possible
from all the WWAN bandwidth of the nodes in the
network. Node i would want to maximize its utility. The
obvious solution of setting the denominator to zero
(offering no bandwidth to any node) will backfire since all
nodes will set their wj; i to zero and ui will become zero.
Thus, we need to maximize the numerator. In fact, we have

max
X
j

Oji ¼
X
j

maxðOjiÞ ¼
X
j

maxðwj;i:OjÞ

maxðwj;i:OjÞ ¼ max
Oij:OjP
k Okj

� �
:

However, we already know that Oj is constant and, thus,
the problem becomes that of maximizing:

max
OijP
k Okj

¼ max 1

1þ � ;

where � ¼
P

k 6¼ji Okj

Oij
should be minimized by maximizing

Oij, the bandwidth that node i offers to node j.
In fact, the best a node i can do is to offer all of its

WWAN bandwidth Oi and compete for
P

j6¼i Oj. As a
result, it will acquire WWAN bandwidth BOi that is
bounded as

Oi � BOi � ðn� 1Þ:Oi:

In the remainder of this paper, we will focus on the
proper design of a proxy’s channel allocation and packet
striping algorithms and show that such a design can
achieve significant performance gains. There are many
other intriguing issues beyond the scope of this paper,
including policing malicious MC2 community members
[26], retaining privacy of information transmitted through
MC2 devices, and a host of questions associated with more
sophisticated topologies involving devices participating in
multiple MC2s, connections transmitted over one or more
inverse-multiplexed hops (in sequence or in parallel), and
fairness issues between flows being assigned to channels.

3 CHANNEL ALLOCATION AND PACKET STRIPING

For each active flow, a proxy is responsible for two tasks.

First, the proxy must select a set of channels on which to

forward packets to the MC2 destination. Second, the proxy

must intelligently stripe arriving packets across those

channels. Efficient channel allocation and striping algo-

rithms map or remap the flows to the channels based on

both application requirements and the number and the

condition of available channels. Hence, the algorithms we

examine in this section are both application-aware and

channel-adaptive. As an example, the algorithms we con-

sider would seek to assign a flow from an audio or video

source to channels that would maintain that application’s

stringent delay or delay jitter requirements, while assigning

bulk data transfer (e.g., FTP) flows to channels that might

incur longer delays but are reliable. Of course, both the

number and condition of assignable channels might vary

over a given flow’s lifetime. Channel allocation and

striping algorithms can be categorized along the following

orthogonal dimensions:

. Channel-adaptive: These algorithms assign packets
on different channels according to the channel
conditions such as bandwidth, loss, and delay. For
example, a Weighted Round Robin (WRR) algorithm
stripes packets to channels in proportion to each
channel’s available bandwidth.

. Application-aware: Striping algorithms can also use
knowledge or a profile of an application flow and its
end-system requirements for channel selection and
packet striping. Since applications can have different
profiles, each application would potentially need a
different algorithm. These algorithms promise to
provide better performance than application-agnostic
algorithms, but they have the burden of obtaining
information about a flow’s requirements. This infor-
mation can be obtained explicitly from the traffic
source, or may be inferred by examining the flow
itself, or some combination of both. For instance, a
source might mark its packets (e.g., ToS field in the IP
header) or a proxy might infer the application type
from the destination information (e.g., TCP or UDP
port numbers) or even the application payload.

A given striping algorithm can be both channel-adaptive

and application-aware, as summarized in Table 1.1

We now 1) define and characterize application require-

ments, and 2) describe how to monitor and update channel

characteristics before presenting illustrative algorithms for
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Categorization of Channel Allocation and Scheduling

1. (a) We propose layer-priority striping for hierarchically layered videos
in Section 3.4. (b) Application-aware algorithms are application-specific and
also require channel information.



intelligently mapping/remapping and scheduling flows to
available channels using video as a motivating example.

3.1 Application Characteristics

Each application flow can be described by itself (intrachar-
acterization) or against other application flows (interchar-
acterization). Examples of the former include Multiple
Description video Coding (MDC) [2], [46] and the imprecise
computation model [22] that is widely used in the real-time
computing community. That is, an application flow has
multiple representations or versions expressing different
degrees of satisfaction (being minimally-to-fully satisfac-
tory). The proxy must allocate and schedule resources to
at least guarantee the minimum degree of satisfaction for
each given application flow. That is, timely delivery of the
base layer or essential part of each application flow must be
guaranteed and the enhancement layer or the optional part
receives lower priority. For more general types of applica-
tions (including video), an application flow itself is also
characterized by its minimum packet interarrival time,
burstiness, multiple QoS levels, bandwidth, loss rate, delay,
and jitter requirements.

On the other hand, the intercharacterization deals with
relative importance among different applications, rendering
their priority order. In general, it is more “beneficial” to
give more important application flows priority over less
important ones in scheduling their data transmission or
allocating bandwidth.

3.2 Channel Characteristics

The number and condition of channels between the proxy
and MC2 can change with time due to many factors
including interchannel interference and communication
failures due to MC2 members’ departures, device mobility,
or power depletion. While a proxy must be continuously
aware of channel conditions, it does not have the benefit of
observing packet reception or MC2 member behavior
directly. The proper design of a monitoring system
providing such feedback is crucial to achieving superior
system performance, and we have investigated it in detail in
a separate paper [38].

We studied several approaches to channel monitoring
in Section 2.5. In this paper, we assume that our
bandwidth aggregation system has a two-sided channel
monitor (i.e., one side on the MC2 and the other side at
the proxy) that is jointly responsible for detecting
membership changes, “sensing” channel characteristics
(e.g., bandwidth, error rate, latency, security, reliability,
cost, etc.), and ensuring that the proxy has reasonably
current channel information. Further, to facilitate WAN
channel monitoring and overall system reliability and
responsiveness, the MC2-based agents are distributed,
operating on many or all of the member devices [38].

The proxy is thus capable of ordering channels in its
resource pool according to the application requirements of
arriving flows. For example, channels can be sorted accord-
ing to their delay and reliability characteristics, and then the
proxy may choose the nmost reliable channels for transport-
ing the base layer (or essential part) of a video flow while
choosing less reliable channels for the enhancement layer.

3.3 Allocation/Reallocation of Channels

Each application flow fi, 1 � i � k, is assumed to have been

demultiplexed into an ordered (according to the application
characteristics) set of nfi � 1 subflows fsfj : j ¼ 1; . . . ; nfig.
The traffic of each subflow sfj is represented by either a
simple token bucket model ð�j; �jÞ or a linear bounded

arrival process ðpj; smaxj ; bmaxj Þ [11], where

�j: average token drain rate,

�j: bucket size,

pj: minimum or average time separation between two

consecutive packets,

smaxj : maximum packet size (in bytes), and
bmaxj : maximum burst size (in bytes) for subflow j.

Let C ¼ fch‘ : ‘ ¼ 1; . . . ; ncg be an ordered (according to
their condition) set of channels available. Note that the size
and ordering of this set changes with time and will be

updated by the monitor. The problem is now to select one
or more channels from C on which to assign each subflow j.
This selection must also be adapted to reflect the changing

number and condition of available channels.
We first treat the simple case of only one application flow

between a proxy and an MC2, and then the more general
case of multiple application flows.

3.3.1 Case I: Single Application Flow

We want to map a demultiplexed application flow
fi ¼ fsfij : j ¼ 1; . . . ; nfig to a changing set of channels
C ¼ fch‘ : ‘ ¼ 1; . . . ; ncg. Recall that the subflows of fi are

ordered according to their importance to the application,
while the channels are ordered according to their rele-
vance to the application requirements. For example, fv ¼
fsfv1 ; sfv2g and C ¼ fch1; ch2; ch3g, where sfv1 and sfv2
represent the base and enhancement layers of a video
stream fv, respectively, and chis are ordered according to
their reliability or their signal-to-noise ratio values. In this

case, sfv1 may be transported via ch1 and ch2, and sfv2 via
ch3, assuming that the former requires two channels while
the latter requires only one channel.

In general, as many topmost (say, k) channels as

necessary for transporting sfi1 are assigned first to sfi1,
and then repeat the same procedure with the remaining
channels for sfi2, and so on. If sfi1 does not need the entire

bandwidth of channel chk, the remaining bandwidth of
this channel is assigned to sfi2, and chk will transmit the
packets of sfi1 and sfi2 using a Weighted Round-Robin
(WRR) scheduling algorithm where the weights between

the two subflows are determined based on the chk’s
bandwidth assigned to sfi1 and sfi2. Also, if there is not
enough bandwidth available, the least important subflows

are not transported at all, realizing a form of imprecise
computation [22].

The actual number of channels to be allocated for each
subflow are determined by the subflow’s requirements of

delivery delay or bandwidth. For example, one can
compute the bandwidth and delay requirements of both
the base and the enhancement layers for layered videos,

and derive the effective bandwidth of each channel from its
raw bandwidth and loss-rate information.
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3.3.2 Case II: Multiple Application Flows

In the case where there are multiple application flows fi,
i ¼ 1; . . . ; nf , the channels between the proxy and the MC2

must be shared among these flows according to the
relative importance of the flows and the channel condition.
We now order application flows according to their relative
importance and allocate channels to the application flows
exactly in the same way as the channels are allocated to the
subflows in the previous subsection (i.e., all subflows of
the most important application flow are allocated to
channels first, then to the subflows of the next important
application, and so forth). Multiple application flows of the
same importance share some channels using WRR where
the weights are assigned according to their bandwidth
requirements.

If (weighted) fairness is used instead of importance, or if
all channels are of the same quality, one can use a WRR
scheduling algorithm to “serve” the different application
flows. If multiple flows are multiplexed on a channel,
packet transmissions of the multiplexed flows can be
scheduled using either WRR or Weighted Fair Queuing
(WFQ) to reflect the difference in the flows’ bandwidth
requirements, or Rate-Monotonic (RM) or deadline sche-
duling [21] for delay guarantees.

3.4 Example: Assignment of Video Flows

The potential benefit of application-aware channel assign-
ment is best illustrated by considering the case of video
traffic. First, a high-quality video flow might be of such high
bandwidth that it cannot be transmitted over a single WAN
channel. Second, link transmission characteristics can
directly affect the perceived quality of the transmission.
We present three “strawman” algorithms, based on simple
heuristics, for striping video packets.

. Layer-Priority Striping (LPS): This algorithm can be
used for video streams that are hierarchically layer-
coded [27], [45]. This encoding process generates a
base layer ‘0 containing information required for
decoding, and one or more optional enhancement
layers (‘i : i ¼ 1; . . . ; n) in a hierarchical structure of
cumulative layers. The reconstruction is progressive
(i.e., enhancement layer ‘k can only be used if all
sublayers {‘i : i ¼ 0; . . . ; k� 1} are available). Thus,
the layer index i corresponds to the layer priority.

The LPS algorithm matches the layer-priority to
the channel reliability as described in Section 3.3.1.
For instance, the base layer ‘0 is assigned to the most
reliable channels, where the channel loss rate is used
as the metric for reliability. The packets for each
layer are striped in WRR fashion onto the allocated
channels. If a new channel with higher reliability
becomes available, the allocation of layers is shifted
up to channels with higher reliability. Similarly, if
the channel with the highest reliability becomes
unavailable, the allocation is shifted down.

. Frame-Priority Striping (FPS): This algorithm can be
used for MPEG video traffic [18]. The MPEG video
stream is separated into three subflows (sfI; sfP ; sfB)
based on frame types. The priority order for the
frames in MPEG Group of Pictures (GoP) is

I > P > B. Similar to the LPS algorithm, the channels
are allocated according to the subflow priority. The
I-frame subflow (sfI) is sent over the most reliable
channels, and so on.

. Independent-Path Striping (IPS): This algorithm is
well suited to multiple state video coding [2], [46],
where a stream is encoded into multiple indepen-
dently decodeable subflows. Moreover, information
from one subflow can be used to correct the errors in
another subflow. Hence, it is important for a receiver
to successfully receive as many complete subflows
or components as possible, and it is desirable to
achieve a low correlation of loss across different
subflows.

The IPS algorithm tries to achieve path diversity
by allocating a separate channel for each description.
Since the video can be reconstructed (albeit at lower
quality) even if one or more entire subflows are lost,
video reception is protected against one or more
complete channel failure(s).

We will later show using simulation that even these
simple algorithms based on heuristics can improve video
quality significantly in realistic settings.

4 ARCHITECTURE

Considering the many systems issues identified in
Section 2, we chose a channel-aggregation architecture
that is both simple and scalable. Fig. 1 shows the proposed
architecture, which permits deployment by various types
of network transport and service providers, including
content owners, Internet access providers, wireless tele-
communication service providers, or content distribution
network operators.

The system architecture has three principal components:
a dedicated appliance providing channel-aggregation proxy
services, standard LAN-based announcement and discov-
ery protocols, and standard protocol tunnels. The dedicated
aggregation proxy performs inverse multiplexing at the
application layer.

Generic Routing Encapsulation (GRE) [13] tunnels are
used to create channels between the proxy and participating
MC2 members and support packet forwarding. This
approach requires no modification to MC2 members, as
most contemporary OSs (e.g., Linux, FreeBSD, and Win-
dows) have built-in support for GRE tunnels. Each packet
received by a MC2 member over a GRE tunnel is auto-
matically decapsulated and forwarded via the wireless LAN
to the destination device. Since the destination is oblivious to
which MC2 node forwarded the data packets, no additional
data reassembly functionality is required at the receiver.

To participate in MC2 formation and channel aggrega-

tion, a standard announcement and discovery protocol is

required on end-devices. The choice of a standard protocol

enables end-devices to participate in other types of resource

or service discovery and access. Though the specifics of

these protocols are beyond the scope of this paper, Jini,

Universal Plug and Play (UPnP), and the Service Location

Protocol (SLP) [15] may all be suitable candidates. Besides

the basic join-leave protocol, we have designed a distributed
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monitoring architecture. The proposed architecture is

decentralized; every community member participates in

monitoring. Each member has a monitoring agent which

joins a well-known multicast group Gm for exchanging

community status information. Each monitoring agent

broadcasts a local report Rl addressed to Gm on the LAN.

Each local report contains information about the current

state of the member and its offered WAN link(s).
Upon receiving a local report from member mi, each

member updates the information about member mi in its
locally maintained community status database. In steady-
state, each member has up-to-date information about all
community members. Each member issues a single packet
containing the local report once every local reporting
interval Il. The collective information about the community
members is sent to the inverse multiplexing proxy in proxy
reports Rp. The community reports its current state to the
proxy once every proxy reporting interval Ip. Instead of
electing a particular member to send proxy reports, every
member shares the responsibility. Each member sets a
suppression timer for duration of Ip þ �, where � is a
uniform random variable on ½0; Sd�. Upon expiration of its
suppression timer, member mi sends Rp to the proxy via its
local WAN link, and also multicasts the same report to the
community on group Gm. Upon receipt of the multicast
proxy report, the members other than mi cancel their
suppression timers and report transmissions. The details of
the monitoring architecture and simulation results are
discussed in detail in [38].

The performance gains that our channel aggregation can
realize will be explored through simulation and implemen-
tation in Sections 5 and 6. These benefits come at the
expense of some computing and communication overhead.
Note, for example, that it will not be possible in general to
have a proxy on the shortest path between a source and a
destination. Clearly, both an application-layer proxy as well
as tunneled channels incur packet-processing overhead.

5 PERFORMANCE EVALUATION: SIMULATION

We evaluated the proposed bandwidth aggregation
system using the ns-2 [31] simulator. Fig. 2 shows the
network topology we used for simulating an entire end-
to-end system. The number of MC2 members was varied

from 2 to 14, and the MC2 members were interconnected
via an 11 Mb/s wireless LAN. In our experiments with
homogeneous WAN links, the link bandwidth was set at
115.2 kb/s, roughly consistent with currently available
2.5G cellular services. With the exception of the single
dedicated receiver, each MC2 member was equipped with
both a WAN and LAN interface. The receiver could
communicate upstream only using one of the other
members as a gateway. We consider a variety of scenarios
with varying link characteristics such as bandwidth, loss,
and membership dynamics. We first evaluate the benefits
of bandwidth aggregation for different applications: We
use 1) bulk file transfer over TCP and measure TCP
throughput, and 2) CBR traffic over UDP and measure
packet loss rate and delay jitter. We then study how much
performance improvement application-aware striping can
make using layered video as an example application. We
also evaluate the importance of efficient channel monitor-
ing system by studying the impact of feedback latency on
application-aware striping. For experiments with TCP and
UDP traffic, we implemented three application-agnostic
striping algorithms: random, round-robin (RR), and
weighted round-robin (WRR).2 We implemented the LPS
algorithm described in Section 3.4 for application-aware,
channel-adaptive striping algorithms.

5.1 TCP Throughput

We first evaluate the effect of the addition or deletion of a

WAN link in an aggregated channel on TCP throughput. Let

us consider the simple case of a fixed membership MC2. We

measured TCP throughput by transferring a 1 MB file from a

data source to an MC2 receiver using 2 � 14 identically

configured links aggregated into the shared pool. To provide

a baseline for measured TCP throughput, we also performed

the experiment with a single channel (i.e., no aggregation).
Fig. 3 plots the measured TCP throughput as the MC2

size changes. The average throughput achieved with a
single link was 103.2 kb/s. As expected, the TCP
throughput increases nearly linearly as the number of links
grows under both RR and WRR policies until saturation
occurs with six links. This saturation occurs due to the limit
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Fig. 2. Simulation topology. Fig. 3. TCP throughput as a function of MC2 size.

2. To be precise, since packets are not fragmented in the proxy, we have
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imposed by the receiver’s maximum window. As the
number of available channels increases, the bandwidth-
delay product increases, but TCP cannot utilize all the
available bandwidth because of the small receiver window.
The TCP throughput continues to increase linearly if the
receiver-advertised window is increased to accommodate a
larger bandwidth-delay product. The random policy does
not perform as well as (W)RR because it causes undesired
side effects, such as packet reordering and unstable RTT
calculation, thus reducing the TCP throughput.

We next explore TCP performance for the highly
dynamic case where the channels were frequently added
or removed from the pool. It is difficult to predict the likely
rates of joins and leaves in a MC2, as the behavior will likely
change dramatically with the actual setting (e.g., a bus or a
conference room). Hence, we conducted a variety of
experiments to study join and leave dynamics, repeating
the file-transfer scenario described earlier. In this set of
experiments, there was no significant difference in the
achieved throughput for RR and WRR striping. Hence, it is
difficult to distinguish between the two in the figures
presented here.

5.1.1 Case I: Three Persistent Links, One Transient Link

In this scenario, three links always remain active in the pool.
The fourth link periodically joins the pool for up-time and
leaves for down-time. The sum of up-time and down-time was
kept constant at 20 seconds. That is, an up-time of 20 seconds
is the same as striping continually over four links (i.e.,
100 percent duty cycle) and a down-time of 20 seconds is the
same as continually striping over only three links (i.e.,
0 percent duty cycle). Fig. 4 shows that as the duty cycle
increases, the TCP throughput increases for RR and WRR
schemes, whereas the random striping cannot effectively
utilize the available bandwidth of the transient link.

5.1.2 Case II: Two Persistent Links, Two Transient Links

This scenario is identical to the previous one, except that
there are two links remaining active and two links being
simultaneously added and removed from the pool. Fig. 5
shows that, as the duty cycle increases, the average TCP
throughput increases for RR and WRR. Even though two of
the links in the pool are rather short-lived, channel-adaptive
striping is able to utilize their capacity to improve the
transfer rate.

5.1.3 Case III: One Persistent Link, One Transient Link

In this scenario, only one link is persistent and one link is
periodically added and removed from the pool. We varied
the length of the up-time interval from 1 second to 5 seconds.
The duty cycle was kept constant at 50 percent by using the
same value for down-time and up-time intervals. Fig. 6 shows
the TCP throughput as the interval is varied. Although the
duty cycle is constant, the TCP throughput slightly
increases with the length of the up-time interval. Thus, we
observe that TCP throughput varies with not only the
frequency of change in the number of links, but also with
the length of the change intervals.

We also measured the TCP throughput by transferring a
1 MB file over an aggregated channel consisting of four
links with unequal bandwidths of 128 kb/s, 64 kb/s,
32 kb/s, and 16 kb/s. The throughput achieved by
Random, RR, and WRR striping was measured at
41.2 kb/s, 44 kb/s, and 55.6 kb/s, respectively. It is
interesting to note that—even for WRR—the throughput
for the aggregated channel is less than the highest
bandwidth of a single link. Since the proxy does not
fragment packets and, instead, uses an approximation of
bit-WRR, there is frequent packet misordering if the link
bandwidths vary greatly. The effect of link bandwidth
disparity in TCP throughput is explored in [33]. Several
techniques, such as weighted packet fragmentation [42]
and multiple parallel TCP connections [17], [19], have been

288 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 3, MARCH 2007

Fig. 4. TCP throughput with three persistent links and one transient link. Fig. 5. TCP throughput with two persistent links and two transient links.
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proposed. These techniques are orthogonal to our proposed
architecture and can be very easily adopted to address this
problem.

5.2 CBR Media Traffic over UDP

Many media applications generate CBR traffic carried over
UDP. We studied the loss and jitter observed for an 8�
115 kb=s ¼ 920 kb=s CBR stream from a video source to an
MC2 destination. The RTP delay jitter as described in RFC
1889 [37] was measured at the receiver. The topology used
for this set of experiments was the same as the one for the
TCP throughput experiments.

Table 2 shows the packet loss rate as a function of
the MC2 size. Without channel aggregation, we observe
87.6 percent loss as the CBR stream rate was eight times the
bandwidth of a single link. As more links are pooled, the
loss rate decreases. Fig. 7 shows that, except for random
striping, the jitter values remain largely unaffected by
channel aggregation. With random striping, the jitter
increases as the number of MC2 members increases to
eight. As in the case of any switching fabric, the delay jitter
increases as the offered load approaches saturation. The
maximum jitter value of 425 ms was observed with eight
members, i.e., when the offered CBR traffic load is equal to
the sustainable throughput of the pool.

We also studied the performance of different striping
algorithms for UDP streaming over four heterogeneous
links of 128 kb/s, 64 kb/s, 32 kb/s, and 16 kb/s,
respectively. Table 3 shows the loss rates when a CBR
stream of 256 kb/s is sent over the aggregated channel.
Random and RR algorithms do not adapt to channel
bandwidth and allocate an equal number of packets to each
channel. Hence, the lower bandwidth links drop larger
amounts of traffic, resulting in higher total loss rates. In
contrast, WRR achieves a low overall loss rate by assigning

packets proportionally to the bandwidths of various links

and distributing the loss uniformly over different links. A

small penalty is paid through a very slight increase in jitter

under the WRR algorithm as shown in Table 4, but this small

increase in jitter can be easily absorbed in the receiver buffer.
We also evaluated how CBR streaming over UDP is

affected by the dynamics of MC2 membership. Under the

same join and leave dynamics as for the TCP throughput

experiments, the loss rate decreased with the increase in

duty cycle.

5.3 Application-Aware Striping

We now present the results from the application-aware

striping experiments. We experimented with the applica-

tion-aware, channel-adaptive LPS algorithm introduced in

Section 3.4. The scenarios were so chosen as to elucidate the

key benefits of application-aware mechanisms in compar-

ison with application-agnostic schemes.

5.3.1 Availability of Extra Channels

Let us consider a scenario where the proxy has 10 channels

available for striping data. All the channels are identical

except for having different error rates that vary from 1 to

10 percent. The error rate ei for channel chi was set at

i percent. The traffic source generated CBR traffic at 30 kb/s

and the bandwidth of each channel was 20 kb/s. Thus, at

least two channels are required for the transfer. Table 5

shows the average loss rates for the different striping

algorithms. If the proxy is unaware of the application

profile/requirements, then it will use all the available

channels indiscriminately. Hence, the observed loss rate is

higher for the application-agnostic striping algorithms. But,

the proxy using an application-aware algorithm achieves

better performance by striping data over only the two

channels with minimum loss. Hence, even minimal in-

formation, such as the bandwidth requirements of the

application, can make a significant improvement in the

system performance.
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TABLE 2
CBR Loss Rate (Percent) as a Function of MC2 Size

Fig. 7. CBR jitter as a function of MC2 size.

TABLE 3
CBR Loss Rate (Percent) over Four Heterogeneous Links

TABLE 4
CBR Jitter (ms) over Four Heterogeneous Links

TABLE 5
Loss Rate (Percent) with Extra Available Channels



5.3.2 Priority-Awareness

As we discussed in Section 3, different packets in an
application flow can have higher priority than others, such
as base layer or I-frame packets. We now present the results
for striping a hierarchically layered video stream with a
base layer ‘0 and two enhancement layers ‘1 and ‘2. Each
layer was modeled as a 15 kb/s CBR stream. The topology
consists of three MC2 members, each with a 20 kb/s WAN
link. The error rate on the channels was 1, 5, and 10 percent,
respectively. Table 6 shows the percentage loss rate
suffered by each layer. As expected, the random striping
indiscriminately distributes the loss over all the layers.
Since all the layers are constant bit-rate with equal
bandwidth and the number of channels is the same as the
number of layers, the RR algorithm stripes all the packets
from one layer to one channel. Instead of the loss being
spread over all the layers equally, the layer sent over the
most unreliable link suffers the most loss. The loss rate for
the base layer is significantly less with the LPS algorithm.
LPS uses priority-awareness to assign the base layer to the
most reliable link and the highest enhancement layer to the
link with the highest error rate.

The striping algorithms utilize application-awareness to
intelligently drop lower-priority subflows when an insuffi-
cient amount of resource is available. To demonstrate this
benefit of application, we simulated a scenario with two
MC2 members connected to the Internet via 20 kb/s WAN
link. The error rate of the channels was 1 and 5 percent,
respectively. Note that the offered traffic rate exceeds the
aggregated channel bandwidth. Table 7 shows the loss
experienced by different layers while streaming the same
video traffic as described above. Since the two available
channels cannot handle the offered load of all the three
video layers, the LPS algorithm drops the layer ‘2 entirely,
improving the loss suffered by the base layer ‘0 and the
enhancement layer ‘1. The application-agnostic mechanisms
end up spreading the loss over all the layers.

5.3.3 Dynamic Channel Adaptation

What happens if, in the above scenarios, the link error rates
change dynamically? Let us assume that each link has an

error rate of 1 percent for 100 seconds and then 10 percent

for 50 seconds, repeating this cycle several times during the

lifetime of the flow. The changes in error rates are

distributed such that, at any instant, two links have an error

rate of 1 percent and one link has an error rate of 10 percent.

Thus, the total of the error rates of all the links is the same

throughout the experiment. Table 8 shows the measured

loss rates for this experiment. Once again, in the case of

application-agnostic schemes, lack of application knowl-

edge leads to uniform loss rates for all the layers of the flow.

In contrast, LPS is able to protect the base layer from loss,

and instead increase the loss rate of enhancement layers.
We also simulated the limited channel scenario de-

scribed earlier with varying channel error rates. At any

instant, one link experiences 1 percent error rate and the

other 10 percent. Table 9 shows the measured loss for each

layer. In this case, too, with random, RR, and WRR striping,

all the layers suffer similar loss rates. As before, LPS

entirely drops the enhancement layer ‘2 due to limited

channel availability to shield layers ‘0 and ‘1 from loss.

Also, it remaps the base layer to the more reliable channel

as the channel error rates change. Hence, the loss suffered

by the base layer is lower.

5.4 Channel Monitoring Feedback Latency

To illustrate the importance of low latency in reporting

WAN channel status to the aggregation proxy in improving

the performance of an aggregated channel, we simulated an

aggregation system with three community members. Each

member offered a WAN channel with 20 kb/s bandwidth.

Each channel has a time-varying packet loss rate (unknown

to the proxy) that cycles as follows: a loss rate of 1 percent

for 50 seconds, followed by a loss rate of 5 percent for

50 seconds, and then a loss rate of 10 percent for 50 seconds.

The cycle is repeated multiple times during the lifetime of

the session. The changes in loss rates across the three links

are synchronized such that, at any instant, there is exactly

one channel that has error rate of 1 percent, one channel

with 5 percent, and one channel with 10 percent. Thus, the
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total of the error rates of all the channels is the same
throughout the experiment.

Similar to the earlier experiments, the simulated layered
video consists of base layer (l0) and two enhancement layers
(l1 and l2). Each layer is modeled as a 20 kb/s CBR stream.
Using the channel loss rate as the reliability metric, the
aggregation proxy uses the Layer Priority Striping (LPS)
algorithm to map each layer onto one of the three channels,
with higher layers assigned to increasingly less reliable
channels. Fig. 8 shows the packet loss rate of each layer
when the reporting latency (i.e., feedback delay) is varied.
The feedback delay is defined as the time difference
between the instant when the channel error rate changes
and the time when the aggregation proxy remaps the flows
onto the channels based on the newly available information.
As expected, the feedback delay decreases aggregated
channel performance; the base layer is not transmitted over
the most reliable channel during the feedback delay period
following each loss rate transition event. In fact, when the
feedback latency is larger than 18 seconds, the loss rate of
the base layer exceeds that of enhancement layer l1.

6 IMPLEMENTATION, EXPERIMENTS, AND RESULTS

We now present a detailed description of the channel
aggregation testbed we built and the experiments we
performed. The principal goals of the testbed were to
validate our proposed architecture, corroborate our simula-
tion results, and explore deployment issues that might not
readily emerge from our simulations.

6.1 Testbed Implementation

Fig. 9 shows a block diagram of the prototype channel
aggregation system we constructed, with dark arrows
representing control messages and light arrows represent-
ing data traffic. Each MC2 member runs a compact Client
Connection Manager (CCM) application. The CCM partici-
pates in the announcement and discovery of MC2 members
(and their associated WAN links). Though we anticipate
that standard announcement and discovery protocols
would be used in an actual system, resource discovery
was done manually in our testbed. This gave us precise
control over MC2 membership, facilitated automated
testing, and allowed us to modify resource availability on
very short time scales.

The CCM communicates the addition or deletion of links
to the Server Connection Manager (SCM), which resides on
the proxy and maintains the channel resource pool. The
CCM also monitors link transmission characteristics such as
bandwidth and delay that are provided to the striping
proxy. This information can be used as input parameters to
the striping algorithm. The CCM can also request the
striping algorithm to be used for an aggregated channel.
The SCM and CCM together also coordinate the setup and
teardown of the GRE tunnels [13] between the proxy and
the MC2 members.

We implemented a Linux-based inverse multiplexing
proxy. The proxy intercepts each packet destined for an
MC2 and forwards it to the GRE tunnels corresponding to
each active channel. Packet interception at the proxy is
handled by Netfilter [29], a packet filtering subsystem in
Linux that is primarily used for building firewalls and
NATs. For each channel aggregate, the proxy sets up
Netfilter’s forwarding rules to intercept appropriate data
traffic and passes it to the proxy’s user-layer forwarding
engine. The forwarding engine currently implements both
random and round-robin data striping policies. Use of the
IP address of an MC2 member’s WAN interface to set up
the tunnel ensures that each packet sent over the GRE
tunnel traverses the desired WAN channel.

Data reassembly at the receiving side is automatic and
straightforward. Packet forwarding is enabled at each MC2

node sharing a WAN link. When a packet is received by a
node over a GRE tunnel, it is decapsulated and passed to
the node’s routing engine. Since the destination address of
the decapsulated packet corresponds to the receiver’s LAN
address, the packet is forwarded to the LAN.

Fig. 10 shows the topology of the testbed we used for
emulating an entire end-to-end system. The membership of
the MC2 in our experiments varied from two to five
notebook computers running Linux (2.2.16 kernel), each
with built-in support for GRE tunnels. We selected
relatively low-performance systems with an eye toward
ultimately supporting even lower performing handheld
PDAs. Forwarding was enabled on each MC2 node. Our
proxy was implemented on a Linux-based desktop PC.

The MC2 members were connected to each other via a
10 Mb/s Ethernet. WAN links were emulated by connecting
a wired serial null modem running PPP to the NISTnet [28]

SHARMA ET AL.: AGGREGATING BANDWIDTH FOR MULTIHOMED MOBILE COLLABORATIVE COMMUNITIES 291
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network emulator, whose transmission link characteristics
we could control. As in simulations presented in Section 5,
the transmission speed of each serial link was set at
115.2 kb/s. Each MC2 member, with the exception of the
dedicated data receiver, had both an emulated WAN
interface and an Ethernet interface. The data receiver could
only communicate upstream to the Internet using one of the
other members as a gateway.

Traffic generation, collection, and measurement was
performed using NetIQ’s Chariot network measurement
tool version 4.2 [30]. Chariot end-points running on the data
source and receiver generated various packet flows,
emulating reliable data transfers, streams, etc.

6.2 Experimental Results

6.2.1 TCP Throughput

To validate our simulation results in practice, we measured
TCP throughput by transferring a 1 MB file from a data
source to an MC2 receiver using two to four identically
configured, aggregated links. To provide a baseline for
measured TCP throughput, we also performed the experi-
ment with a single channel (i.e., no aggregation), both with
and without the proxy in the data path. Performance was
measured using both round-robin and random striping
policies. Fig. 11 plots the measured TCP throughput as the
number of links in the aggregate pool changes, with error
bars showing the minimum and maximum measured
throughput among the 50 trials.

The average TCP throughput achieved with no proxy
was 45 kb/s. The TCP throughput with a single link and the
proxy in the data path is 38 kb/s, not significantly lower
than the throughput achieved without a proxy, indicating
that the proxy does not introduce a long delay. The TCP
throughput measured in the testbed was lower than the
simulation results due to PPP overhead and the presence of
background traffic. However, the trends with respect to the
number of MC2 members were similar in both the cases.

To study the effect of varying transmission link para-
meters of different WAN channels on TCP throughput, we
used the NISTnet emulator to add extra transmission delay
to one of the WAN channels. Fig. 12 shows the change in
TCP throughput as the extra delay of one of the four links is
varied from 0 to 100 ms. As expected, increasing the link

delay decreases throughput. There are two reasons for this.

First, the increased delay can cause additional packet

misordering, introducing reassembly delays. Second, the

extra delay results in a larger computed value for RTT,

directly decreasing throughput. With unequal link laten-

cies, round-robin is not the optimal scheduling algorithm.

WFQ techniques such as that proposed in [42] can reduce

packet misordering and, hence, improve TCP throughput.
We now measure the TCP throughput in a highly

dynamic MC2, where channels are added and removed

from the resource pool. The topology is the same as that

used in Section 5.1. Fig. 13 shows the TCP throughput as the

duty cycle was changed for two transient links among four

total links. We observe that, as the duty cycle increases, the

average TCP throughput increases in most cases. Although

some of the links in the pool are rather short lived, link

aggregation is nonetheless able to use their capacity to

improve the transfer rate.
Fig. 14 shows the TCP throughput when the length of the

up-time interval is changed for one link while the other link

is persistent. The result verifies our earlier observation from

simulation (Fig. 6) that the interval duration, as well as the

frequency of change in the number of active channels,

affects TCP throughput.
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Fig. 10. Experimentation testbed topology. Fig. 11. Effect of MC2 size on TCP throughput.

Fig. 12. Effect of link latency variation on TCP throughput.



6.2.2 Streaming Media via UDP

We next conducted experiments to study how high

bandwidth streaming is enabled with channel aggregation.

In these experiments, a server streams a stored media file to

the receiver at one of various bit rates (64, 128, 175, and

256 kb/s). Chariot generates a traffic pattern intended to

resemble the video transmission of Cisco’s IP-TV. RTP [37]

is used as the stream transport protocol. Each experiment

was repeated 25 times, measuring the loss rate and RTP

delay jitter observed by the receiver.
Without channel aggregation, the receiver can only

receive a stream with negligible loss at the 64 kb/s rate.

Higher bit-rate streams suffered more than 70 percent loss

and, due to this high loss rate, the tests were prematurely

terminated by Chariot. Note that the limited available

bandwidth precludes use of retransmission for loss recov-

ery. Techniques such as Forward Error Correction (FEC)

cannot be used in this setting, especially for low-bandwidth

links, as it further increases the bandwidth required. Such a

high loss rate can severely degrade the perceived stream

reception quality, making it unwatchable. Yet, striping over

just two links reduced the loss rate dramatically for the

128 kb/s stream; every 128 kb/s stream test completed with

a loss rate of less than 0.1 percent. The 175 kb/s streaming

experiment with striping over two links was also termi-

nated before completion due to high loss rate. Striping over

four links was capable of sustaining a 256 kb/s stream
without significant packet loss.

Fig. 15 shows the streaming data loss rates. Observe that
the data loss rate does not exceed 0.2 percent when dynamic
link striping is performed. This result confirms that
bandwidth aggregation enables high bandwidth multi-
media streams to be delivered to MC2s, which would
otherwise be impossible.

Fig. 16 shows RTP jitter values. Note that the system
generates relatively little jitter. In most cases, the jitter is less
than 10 ms with the maximum jitter occasionally exceeding
20 ms. Such small amounts of jitter can be easily absorbed
by the receiver buffer in multimedia applications and will
have negligible effect on the viewing experience of the
video receiver.

7 RELATED WORK

A combination of a high demand for communication
bandwidth and high tariffs on WAN links has long made
inverse multiplexing a popular technique [14]. In the early
1990s, the Bandwidth on Demand Interoperability Group
(BONDING) created a standard inverse multiplexing
mechanism to achieve a virtual high capacity WAN link
using n� 56 (or 64) kb/s links [6]. Network equipment
providers supported inverse multiplexing for various link-
layer technologies such as frame relay, ISDN, and SMDS.
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Fig. 13. TCP throughput (kb/s) with two transient links.

Fig. 14. Effect of the up-time interval length on TCP throughput.

Fig. 15. Effect of MC2 size on RTP stream loss rate.

Fig. 16. Effect of MC2 size on RTP stream jitter.



The same technique was later applied and standardized
within the context of ATM networks in the Inverse
Multiplexing for ATM (IMA) specification [3]. Each of these
cases assumed highly reliable, homogeneous links with
constant link characteristics such as capacity, delay, and
error rates. Moreover, each WAN connection being bundled
together originated from, and terminated at, the same
endpoints.

Various striping algorithms have been proposed and
implemented to reduce packet reordering, jitter, and load
imbalance. RR scheduling is primarily used for striping
data over homogeneous links, while variants of queuing
algorithms are used in case of heterogeneous links. It has
been shown that maximum throughput is achieved by
striping data over each channel in proportion to the
channel’s bandwidth-delay product [1], [33].

More recent research has explored adaptive inverse
multiplexing for CDPD wireless networks [42]. In this
scheme, the packets are split into fragments of size
proportional to the observed throughput of component
links. Here, the goal is to create variable fragments sizes
such that each fragment can be transmitted in roughly the
same amount of time. The fragment size of each link is
dynamically adjusted in proportion to the measured
throughput. The fragmented packets are then tunneled
over multiple links using Multilink PPP [41]. In this case,
the endpoints of the WAN connections forming the virtual
link are the same.

The bandwidth of mobile users with multiple interfaces
is aggregated at the transport layer in pTCP (parallel TCP)
[17], [16]. pTCP is a wrapper that interacts with a modified
TCP called TCP-virtual (TCP-v). A TCP-v connection is
established for each interface, and pTCP manages send
buffers across the TCP-v pipes. The striping is performed by
pTCP and is based on the congestion window size of each
TCP-v connection. When congestion occurs on a certain
pipe, pTCP performs data reallocation to another pipe with
a large congestion window. One possible problem of this
approach is that the congestion window size may not
accurately reflect the bandwidth-delay product.

A scheduling algorithm for aggregating bandwidth for
realtime applications is detailed in [9]. The authors propose
an Earliest Delivery Path First (EDPF) scheduling algorithm
that is channel and application aware and minimizes the
cost of striping traffic over multiple wireless channels of a
device. This algorithm can also be adopted in our MC2

architecture.
Coordinating communications from multiple mobile

computing devices has become a new focus of interest.
Network connection sharing has been proposed in [32]. This
architecture permits the use of a single, idle WAN
connection among collaborating mobile devices, but it does
not address aggregation of multiple links into a high
capacity bundle.

Our goal of cooperation and resource aggregation among
collaborating devices is similar to the vision of the mobile
grouped devices (MOPED) architecture [8], [20]. The goal of
the MOPED project is to enable group mobility such that a
user’s set of personal devices appear as a single mobile
entity connected to the Internet. The MOPED routing

architecture builds a multipath layer to encapsulate packets
between the home agent and MOPED devices. Unlike our
approach of using GRE tunnels, the home agent and the
mobile devices in MOPED must implement a new light-
weight encapsulation protocol called multipath routing
encapsulation (MRCAP). MOPED architecture provides a
higher-capacity and better-quality connection to the Inter-
net by adapting the Mobile IP home agent to support the
aggregation of multiple links at network and transport
layers. It uses transport-layer inverse multiplexing for
multihomed devices [23]. Aggregating bandwidth at the
transport layer requires different protocols for different
applications. MOPED presents two new transport proto-
cols, namely: 1) R-MTP (Reliable Multiplexing Transport
Protocol) [25] for data, and 2) M-MTP (Multimedia Multi-
plexing Transport protocol) [24] for multimedia. Additional
transport protocols might be needed as the application
requirements change. Modifications to both client and
server kernels are also required. Our application-level
approach does not require any kernel changes and allows
support for different application profiles.

The commuter Mobile Access Router (MAR) project [34]
also leverages wireless WAN connection diversity to
provide high speed Internet access to mobile users. Instead
of using the WAN connections of the users, it relies on
preprovisioning the MAR with different WAN connections,
limiting the aggregation to the already exiting links.

8 CONCLUSION

We have designed, implemented, and evaluated a deploy-
able bandwidth aggregation system, providing high-speed
Internet access to a collaborating community of wireless
end-systems. We have demonstrated that the system not
only improves access service quality, but otherwise enables
unachievable services, such as the delivery of high-
bandwidth streaming media. Further, we have shown that
network and application-aware allocation and assignment
policies do indeed improve system performance.

Though not described in this paper, we performed
various experiments with bandwidth-adaptive multimedia
applications over aggregated connections. Ideally, such
applications would measure available bandwidth and
smoothly increase or decrease audio or video quality to
optimize perceived reception quality. We typically ob-
served an application decreasing its streaming rate to a
predefined fraction of its maximum rate; often, this rate was
well below the available bandwidth of the aggregated
connection. The application would subsequently maintain
that low rate, remaining nonresponsive to any increase in
available bandwidth, no matter how large it is. Since the
widely used applications we tested were proprietary, we
were unable to modify their adaptation algorithms.

To aggregate bandwidth, we have relied upon the
conventional technique of inverse multiplexing. But rarely,
if ever, has inverse multiplexing been applied in such a
dynamic and decentralized setting and made to work. As a
result of operating in this challenging environment, we
have identified a significant number of technical issues
that appear to be fertile areas for future research. Some of
these include WAN cost sharing, accounting, information
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privacy, and security. We have also relied on the assump-
tion that an application’s networking requirements are
well-known, though such a characterization remains a
formidable and long-standing problem. Not surprisingly,
we have found that aggregating relatively homogeneous
communication links is often easier and more successful
than working with heterogeneous links. Opportunity lies
in the development of simple “rules-of-thumb” that help
identify which links are sufficiently homogeneous that
aggregation is likely to perform well.

Opportunities for community channel sharing are not
limited to cellular links from spontaneously formed ad hoc
groups of mobile devices, but also in the context of
aggregating broadband access links (e.g., DSL) among
neighboring residences. With the widespread adoption of
802.11 networks in homes, neighboring residences can form
collaborative communities to share and aggregate their
broadband links. And, there appears to be no other means
of satisfying the growing demand for access bandwidth as
quickly and as cheaply.
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