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Abstract—IP spoofing has often been exploited by Distributed
Denial of Service (DDoS) attacks to: 1) conceal flooding sources and
dilute localities in flooding traffic, and 2) coax legitimate hosts into
becoming reflectors, redirecting and amplifying flooding traffic.
Thus, the ability to filter spoofed IP packets near victim servers
is essential to their own protection and prevention of becoming
involuntary DoS reflectors. Although an attacker can forge any
field in the IP header, he cannot falsify the number of hops an IP
packet takes to reach its destination. More importantly, since the
hop-count values are diverse, an attacker cannot randomly spoof IP
addresses while maintaining consistent hop-counts. On the other
hand, an Internet server can easily infer the hop-count informa-
tion from the Time-to-Live (TTL) field of the IP header. Using a
mapping between IP addresses and their hop-counts, the server
can distinguish spoofed IP packets from legitimate ones. Based on
this observation, we present a novel filtering technique, called Hop-
Count Filtering (HCF)—which builds an accurate IP-to-hop-count
(IP2HC) mapping table—to detect and discard spoofed IP packets.
HCF is easy to deploy, as it does not require any support from
the underlying network. Through analysis using network measure-
ment data, we show that HCF can identify close to 90% of spoofed
IP packets, and then discard them with little collateral damage. We
implement and evaluate HCF in the Linux kernel, demonstrating
its effectiveness with experimental measurements.

Index Terms—DDoS attacks, IP spoofing, hop-count, host-based.

I. INTRODUCTION

P NETWORKS are vulnerable to source address spoofing

[33]. For example, a compromised Internet host can spoof
IP packets by using a raw socket to fill arbitrary source IP ad-
dresses into packet headers. IP spoofing is commonly associated
with malicious network activities, such as Distributed Denial of
Service (DDoS) attacks [21], [27], [32], which block legitimate
access by either exhausting victim servers’ resources [7] or sat-
urating stub networks’ access links to the Internet [18]. Most
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DDoS attacking tools spoof IP addresses by randomizing the
32-bit source-address field in the IP header [12], [13], which
conceals attacking sources and dilutes localities in attacking
traffic. The recent “backscatter” study [32], which quantifies
DoS activities in the current Internet, has confirmed the wide-
spread use of randomness in spoofing IP addresses. Moreover,
some known DDoS attacks, such as smurf [8] and more recent
Distributed Reflection Denial of Service (DRDoS) attacks [18],
[38], are not possible without IP spoofing. Such attacks mas-
querade the source IP address of each spoofed packet with the
victim’s IP address. Overall, DDoS attacks with IP spoofing are
much more difficult to defend.

To thwart DDoS attacks, researchers have taken two distinct
approaches: router-based and host-based. The router-based ap-
proach installs defense mechanisms inside IP routers to trace
the source(s) of attack [4], [30], [43], [45], [46], [49], or detect
and block attacking traffic [15], [23], [25], [29], [31], [36], [50],
[56]. However, these router-based solutions require not only
router support, but also coordination among different routers
and networks, and wide-spread deployment to reach their po-
tential. In contrast to the router-based approach, the host-based
approach can be deployed immediately. Moreover, end systems
should have a much stronger incentive to deploy defense mech-
anisms than network service providers.

The current host-based approaches protect an Internet server
either by using sophisticated resource-management schemes
[31, [6], [40], [47] or by significantly reducing the resource
consumption of each request to withstand the flooding traffic
such as SYN cookies [5] and Client Puzzle [24], [53]. Without
a mechanism to detect and discard spoofed IP traffic at the
very beginning of network processing, spoofed packets will
share the same resource principals and code paths as legitimate
requests. Under heavy attacks, current approaches are unlikely
to be able to sustain service availability due to resource de-
pletion caused by spoofed IP packets. Furthermore, most of
existing host-based solutions work at the transport-layer and
above, and cannot prevent the victim server from consuming
CPU resource in servicing interrupts from spoofed IP traffic.
At high speed, incoming IP packets generate many interrupts
and can drastically slow down the victim server [42] (also see
Section VI). Therefore, the ability to detect and filter spoofed
packets at the IP layer without any router support is essential
to protection against DDoS attacks. Since filtering spoofed IP
packets is orthogonal to the resource-protection mechanisms
at higher layers, it can be used in conjunction with advanced
resource-protection schemes.

In this paper, we propose a lightweight scheme that validates
incoming IP packets at an Internet server without using any
cryptographic methodology or router support. Our goal is not
to achieve perfect authentication, but to screen out most bogus
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traffic with little collateral damage. The fundamental idea is
to utilize inherent network information—that each packet car-
ries and an attacker cannot easily forge—to distinguish spoofed
packets from legitimate ones. The inherent network informa-
tion we use here is the number of hops a packet takes to reach
its destination: although an attacker can forge any field in the IP
header, he cannot falsify the number of hops an IP packet takes
to reach its destination, which is solely determined by the In-
ternet routing infrastructure. The hop-count information is indi-
rectly reflected in the Time-to-Live (TTL) field of the IP header,
since each intermediate router decrements the TTL value by one
before forwarding a packet to the next hop.

Based on hop-count, we propose a novel filtering technique,
called Hop-Count Filtering, to weed out spoofed IP packets at
the very beginning of network processing, thus effectively pro-
tecting victim servers’ resources from abuse. The rationale be-
hind hop-count filtering (HCF) is that most randomly spoofed
IP packets, when arriving at victims, do not carry hop-count
values that are consistent with the IP addresses being spoofed.
As a receiver, an Internet server can infer the hop-count infor-
mation and check for consistency of source IP addresses. Ex-
ploiting this observation, HCF builds an accurate IP-to-hop-
count (IP2HC) mapping table, while using a moderate amount
of storage, by clustering address prefixes based on hop-count.
To capture hop-count changes under dynamic network condi-
tions, we also devise a safe update procedure for the IP2HC
mapping table that prevents pollution by attackers. The same
pollution-proof method is used for both initializing IP2ZHC map-
ping table and inserting additional IP addresses into the table.

To minimize collateral damage, HCF has two running states,
learning and filtering. Under normal conditions, HCF stays
in the learning state, watching for abnormal TTL behaviors
without discarding any packets. Even if a legitimate packet
is incorrectly identified as spoofed, it will not be dropped.
Therefore, there is no collateral damage in the learning state.
Upon detection of an attack, HCF switches to the filtering state,
in which HCF discards those IP packets with mismatching
hop-counts. Through analysis using network measurement
data, we show that HCF can recognize close to 90% of spoofed
IP packets. In addition, our hop-count-based clustering signif-
icantly reduces the number of false positives.! Thus, we can
discard spoofed IP packets with little collateral damage in the
filtering state. To ensure that the filtering mechanism itself
withstands attacks, our design is light-weight and requires only
a moderate amount of storage. We implement HCF in the Linux
kernel as the first step of incoming packet processing at the IP
layer. We evaluate the benefit of HCF with experimental mea-
surements and show that HCF is indeed effective in countering
IP spoofing by providing significant resource savings.

While HCF is simple and effective in thwarting IP spoofing, it
is not a complete solution to the generic DDoS problem. Rather,
itis only an important piece of the puzzle that weeds out spoofed
IP traffic. Like most other schemes in dealing with the DDoS
problem, HCF has its own limitations. An attacker may circum-
vent HCF entirely by not using spoofed traffic, or partially by
bombarding a victim with much more attacking traffic than seen
before. Also, a “determined” attacker may find a way to build an
IP2HC mapping table that is accurate enough for most spoofed
IP packets to evade HCF. Moreover, the actual deployment of

IThose legitimate packets that are incorrectly identified as spoofed.

HCF requires further work in tuning its parameters and handling
the IP2HC inaccuracy caused by the Network Address Trans-
lator (NAT) boxes and possible hop-count instability. Neverthe-
less, HCF does greatly enhance the capability to counter DDoS
attacks by depriving an attacker of his powerful weapon, random
IP spoofing.

The remainder of the paper is organized as follows. Section II
presents the TTL-based hop-count computation, the pollu-
tion-proof hop-count capturing mechanism, and the hop-count
inspection algorithm, which are critical to HCF. Section III
demonstrates that the proposed HCF indeed works effectively
in detecting spoofed packets, based on a large set of previously
collected traceroute data, and also robust against HCF-aware
attackers. Section IV presents the construction of the IP2HC
mapping table. Section V details the two running states of
HCF, the inter-state transitions, and the placement of HCF.
Section VI describes our implementation and experimental
evaluation of HCF. Section VII discusses related work. Finally,
the paper concludes with Section VIII.

II. BASIC PRINCIPLES IN HCF

In this section, we describe the basic principles of HCF. Cen-
tral to HCF is the validation of the source IP address of each
packet via hop-count inspection. We first describe the hop-count
computation, and then present a safe update mechanism that
captures the legitimate mappings between IP addresses and hop-
count values. Finally, we summarize HCF in the form of a high-
level inspection algorithm.

A. Hop-Count Computation

Since hop-count information is not directly stored in the IP
header, one has to compute it based on the final TTL value. TTL
is an 8-bit field in the IP header, originally introduced to specify
the maximum lifetime of each packet in the Internet. Each in-
termediate router decrements the TTL value of an in-transit IP
packet by one before forwarding it to the next-hop. The final
TTL value when a packet reaches its destination is, therefore,
the initial TTL decreased by the number of intermediate hops
(or simply hop-count). The challenge in hop-count computation
is that a destination only sees the final TTL value. It would have
been simple had all operating systems (OSes) used the same
initial TTL value, but in practice, there is no consensus on the
initial TTL value. Furthermore, since the OS for a given IP ad-
dress may change with time, we cannot assume a single static
initial TTL value for each IP address.

According to [14], most modern OSes use only a few selected
initial TTL values, 30, 32, 60, 64, 128, and 255. This set of initial
TTL values covers most of the popular OSes, such as Microsoft
Windows, Linux, variants of BSD, and many commercial Unix
systems. We observe that most of these initial TTL values are far
apart, except between 30 and 32, 60 and 64, and between 32 and
60. Since Internet traces have shown that few Internet hosts are
apart by more than 30 hops [9], [10], which is also confirmed by
our own observation, one can determine the initial TTL value of
a packet by selecting the smallest initial value in the set that is
larger than its final TTL. For example, if the final TTL value is
112, the initial TTL value is 128. To resolve ambiguities in the
cases of {30, 32}, {60, 64}, and {32, 60}, we will compute a
hop-count value for each of the possible initial TTL values, and
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for each packet:
extract the final TTL T and the source IP address S;
infer the initial TTL T;;
compute the hop-count H. = T; — T;
index S to get the stored hop-count Hy;
if (H:+#Hy)
the packet is spoofed;
else
the packet is legitimate;

Fig. 1. Hop-count inspection algorithm.

accept the packet if there is a match with either of the possible
hop-counts.

The drawback of limiting the possible initial TTL values is
that packets from end-systems that use “odd” initial TTL values,
may be incorrectly identified as spoofed. This may happen if
a user switches OS from one that uses a “normal” initial TTL
value to another that uses an “odd” value. Since our filter starts to
discard packets only upon detection of a DDoS attack, such end-
systems would suffer only during an actual DDoS attack. The
study in [14] shows that the OSes that use “odd” initial TTLs are
typically older OSes. We expect such OSes to constitute a very
small percentage of end-hosts in the current Internet. Thus, the
benefit of deploying HCF should outweigh the risk of denying
service to those end-hosts during attacks.

B. Capturing Legitimate Hop-Count Values

To maintain an accurate IP2ZHC mapping table, we must cap-
ture valid hop-count mappings and legitimate changes in hop-
count, while foiling any attempt to slowly pollute the mapping
table. We can accomplish this through TCP connection estab-
lishment. The IP2ZHC mapping table should be updated only
by packets belonging to TCP connections in the established
state [54]. The three-way TCP handshake for connection setup
requires the active-open party to send an ACK (the last packet
in the three-way handshake) to acknowledge the passive party’s
initial sequence number. The zombie (flooding source?) that
sends the SYN packet with a spoofed IP address will not re-
ceive the victim’s SYN/ACK packet and thus cannot complete
the three-way handshake.3 Using packets from established TCP
connections ensures that an attacker cannot slowly pollute a
table by spoofing source IP addresses.

While our pollution-proof mechanism provides safety, it may
be too expensive to inspect and update the [IP2ZHC mapping table
with each newly established TCP connection, since our update
function is on the critical path of TCP processing. We provide
a user-configurable parameter k to adjust the frequency of up-
dates (see Section V-A). Note that the pollution-proof mecha-
nism works to capture legitimate changes in hop-count as well
as hop-count values of new IP addresses.

C. Inspection and Validation Algorithm

Assuming that an accurate [IP2ZHC mapping table is present
(see Section IV for details of its construction), Fig. 1 outlines

2In this paper, the terms zombie and flooding source are used interchangeably.

3There are known vulnerabilities with existing OSes where the initial se-
quence numbers are fixed or easily predicted. However, this situation can be
fixed with a more intelligent selection algorithm.
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TABLE 1
DIVERSITY OF TRACEROUTE GATEWAY LOCATIONS

| Type | Sample Number |
.com sites 11
.edu sites 4
.org sites
.net sites 12
foreign sites 18

the HCF procedure used to identify spoofed packets. The in-
spection algorithm extracts the source IP address and the final
TTL value from each IP packet. The algorithm infers the initial
TTL value and subtracts the final TTL value from it to obtain
the hop-count. The source IP address serves as the index into the
table to retrieve the correct hop-count for this IP address. If the
computed hop-count matches the stored hop-count, the packet
has been “authenticated”; otherwise, the packet is classified as
spoofed. Note that a spoofed IP address may happen to have the
same hop-count as the one from a zombie to the victim. In this
case, HCF will not be able to identify the spoofed packet. How-
ever, as shown in Section III-C1, even with a limited range of
hop-count values, HCF is highly effective in identifying spoofed
IP addresses.

III. DOES HOP-COUNT FILTERING REALLY WORK?

The feasibility of HCF hinges on four factors: 1) diversity of
hop-count values; 2) effectiveness in detecting spoofed packets;
3) robustness against evasions; and 4) stability of hop-counts.
In this section, we first assess whether valid hop-counts to
a server are diverse enough so that matching the hop-count
with the source IP address of each packet suffices to recognize
spoofed packets with a high probability. Second, we consider
the effectiveness of HCF against simple spoofing attacks.
Third, we evaluate the robustness of HCF by examining various
ways an attacker may circumvent filtering, and by showing
that evasion would be very difficult without severely limiting
the damage or exposing the attacking sources, which, in turn,
makes the detection and blockage of the attacking traffic much
easier. Finally, the stability of hop-count values is discussed.

A. Diversity of Hop-Count Distribution

Since hop-count values have a limited range, typically
between 1 and 30, multiple IP addresses may have the same
hop-count values. Consequently, HCF cannot recognize forged
packets whose source IP addresses have the same hop-count
value to a destination as that of a zombie. It is prudent to
examine hop-count distributions at various locations in the
Internet to ensure that the limited range does not severely di-
minish the effectiveness of HCF. A good hop-count distribution
should have two properties: being symmetric around the mean
value, and being reasonably diverse over the entire range. Sym-
metry is needed to take advantage of the full range of hop-count
values, and diversity helps maximize the effectiveness of HCF.

To obtain actual hop-count distributions, we use the raw
traceroute data from 47 different traceroute gateways in
[11]. The locations of traceroute gateways are diverse as
shown in Table 1. Fig. 2 shows the distribution of the number
of clients measured by each of the 47 traceroute gateways.



WANG et al.: DEFENSE AGAINST SPOOFED IP TRAFFIC USING HOP-COUNT FILTERING 43

1
Client Population —+— ' !
0.8 _
0.6 |- B
(TN
[a]
(&)
0.4 - B
0.2 | L
0 — T ! L 1
26000 30000 34000 38000 42000
Number of Client IP Addresses
Fig. 2. CDF of the number of client IP addresses.
02 T T T T R T
Gaussian fit
Real IP addresses ----------
2 0.15 B
2
4
k=
T
< |y
[:8 01 | 4
k]
c
ke
5
S
Y 005 | -
0 I ! [ 1. H I -
1 5 10 15 20 25 30
Hop-Count
Fig. 3. Commercial.
02 T T T T T
Gaussian Fit
Real IP addresses ---------
» 0151 B
Q
2
[
5
o
<
o 0.1 B
k]
c
S
B8
o
005 - 4
0 1
1 5 30

Hop-Count

Fig. 4. Educational.

Most of the traceroute gateways measured hop-counts to
more than 40 000 clients.

We examined the hop-count distributions at all traceroute
gateways and found that the Gaussian distribution (bell-shaped
curve) could be a good first-order approximation, but we do
not make any claim whether hop-count distributions are indeed
Gaussian. Figs. 3 and 4 show the hop-count distributions of two
selected sites: a well-connected commercial server and an edu-
cational institute.
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The mean value 1 of a Gaussian distribution specifies the
center of the bell-shaped curve. The standard deviation o de-
scribes the girth of the curve—the larger the o, the more diverse
the hop-count distribution, and the more effective HCF will be.
For each given hop-count distribution, we use the normfit func-
tion in Matlab to compute 1 and o. We plot the CDF of the mean
and standard deviation of the fitted Gaussian function in Figs. 5
and 6. We observe that most of the y values fall between 14 and
19 hops, and the o values between 3 and 5 hops. More impor-
tantly, in most distributions, the mode accounts for only 10% of
the total IP addresses, with the maximum and minimum of the
47 modes being 15% and 8%, respectively. Thus, the hop-count
distributions in our data set satisfy both the symmetry and di-
versity properties to enable very effective filtering.

B. Effectiveness of HCF Against Simple Attacks

We now assess the effectiveness of HCF by asking the ques-
tion “what fraction of spoofed IP packets can be detected by
the proposed HCF?” We assume that potential victim servers
know the complete mapping between their client IP addresses
and hop-counts (to the victims themselves). In Section III-B1,
we will discuss how to construct such mappings. Without loss of
generality, we further assume that the attacker evenly divides the
flooding traffic among the flooding sources. To make the anal-
ysis tractable, we consider only static hop-counts. (The update
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procedure that captures legitimate hop-count changes has been
shown in Section II-B).

Most of the available DDoS attacking tools [12], [13] do not
alter the initial TTL values of packets. Thus, the final TTL value
of a spoofed packet will bear the hop-count between the flooding
source and the victim. We examine the effectiveness of HCF
against simple attackers that spoof source IP addresses while
still using the default initial TTL values at the flooding sources.
To assess the performance of HCF against such simple attacks,
we consider two scenarios: a single flooding source and multiple
flooding sources.

1) Single Source: Fig. 7 depicts the hop-count distributions
seen at a hypothetical server for both real client IP addresses
and spoofed IP addresses generated by a single flooding source.
Since spoofed IP addresses come from a single source, they all
have an identical hop-count. Hence, the hop-count distribution
of spoofed packets is a vertical bar of width 1. The shaded area
represents those IP addresses—the fraction «y, of total valid IP
addresses—that have the same hop-count to the server as the
flooding source. Thus, the fraction of spoofed IP addresses that
cannot be detected is oy, and the remaining fraction 1 — a, will
be identified and discarded by HCF.

The attacker may happen to choose a zombie that is 16 or
17—the most popular hop-count values—hops away from the
victim as the flooding source. As shown in Section III-A, even if
the attacker floods spoofed IP packets from such a zombie, HCF
should still identify nearly 90% of spoofed IP addresses. HCF is
highly effective against a single attacking source, reducing the
attacking traffic by one order of magnitude.

2) Multiple Sources: Distributed DoS attacks involve more
than a single host. Suppose there are n sources that flood a total
of F packets, and each flooding source generates F'/n spoofed
packets. We assume that each flooding source generates traffic
without altering the initial TTL value. If h; is the hop-count be-
tween the victim and flooding source 7, then the spoofed packets
from source i that HCF can identify is (F'/n)(1—ay, ). The frac-
tion, Z, of identifiable spoofed packets generated by n flooding
sources is

(F/n)(1—an,)+-+E(1—an,) 1 &
n 1IN
F n;ah

This expression says that the overall effectiveness of having
multiple flooding sources is somewhere between that of the most

7 =
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effective source ¢ with the largest aj,, and that of the least ef-
fective source j with the smallest «j ;. Adding more flooding
sources does not diminish the ability of HCF to identify spoofed
IP packets. On the contrary, since hop-count distributions follow
a Gaussian distribution, the existence of less effective flooding
sources (with small «y’s) reduces the total volume of unde-
tectable attacking traffic.

C. Robustness Against HCF-Aware Attackers

Once attackers become aware of HCF, they will attempt to
circumvent the hop-count inspection. The robustness of HCF
against such HCF-aware attackers is a serious concern to victim
servers. In what follows, we first assess the effectiveness of a
simple evasion of randomizing initial TTL values. Then, we
show that in order to successfully evade HCF, more sophisti-
cated evasion attempts require a large amount of time and re-
sources, and elaborate planning, i.e., casual attackers are un-
likely to evade HCF.

1) Randomization of Initial TTLs: While the hop-count from
a single flooding source to the victim is fixed, randomizing the
initial TTL values will create an illusion of attacking packets
having many different hop-count values at the victim server.
Instead of using the default initial TTL value, an attacker may
simply randomize the initial TTL values, hoping that many
forged packets may happen to carry matching final TTL values
when they reach the victim.

An attacker may generate the full range of hop-counts from
1 to 30 by randomizing initial TTL values from the range [I; +
h, — 30,14 + h, — 1], where h, is the hop-count from the
flooding source to the victim and [ is the default initial TTL
value at the flooding source. The final TTL values, T’s, seen
at the victim are I, — h, where I, represents randomly gener-
ated initial TTLs. Since h is constant, if I, follows a certain
random distribution R, then T,’s follow the same R random
distribution. Because the victim derives the hop-count of a re-
ceived IP packet based on its 1, value, the perceived hop-count
of a spoofed source IP address is also R randomly distributed.

As a simple example, we assume that the attacker gener-
ates initial TTLs using uniform distribution. Fig. § illustrates
the effect of randomized initial TTLs, where h, = 10. We
use a Gaussian curve with ¢ = 15 and o = 3 to represent
a typical hop-count distribution (see Section III-A) from real
IP addresses to the victim, and the box graph to represent the
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uniform hop-count distribution of spoofed IP addresses at the
victim. The large overlap between the two graphs may appear
to indicate that our filtering mechanism is not effective. On
the contrary, uniformly distributed random TTLs actually con-
ceal fewer spoofed IP addresses from HCF. For uniformly dis-
tributed TTLs, each spoofed source IP address has the prob-
ability 1/H of having the matching TTL value, where H is
the number of possible hop-counts. Consequently, for each pos-
sible hop-count 4, only «, / H fraction of IP addresses have cor-
rect TTL values. Overall, assuming that the range of possible
hop-counts is [h;, h;] where i < jand H = j — i + 1, the
fraction of spoofed source IP addresses that have correct TTL
values is given as

7 =

p, ah] 1 .

7 4+ .4 7 :E.;ahk'

Here we use Z in place of 1 — Z to simplify notation. In Fig. 8,
the range of generated hop-counts is between 10 and 20, so H =
11. The summation will have a maximum value of 1, thus Z can
be at most 1/H = 8.5%, which is represented by the area under
the shorter Gaussian distribution in Fig. 8. In this case, less than
10% of spoofed packets go undetected by HCF.

In general, an attacker could generate initial TTLs within the
range [, hy,], based on a certain R distribution, where the
fraction of IP addresses with hop-count hy, is py, . If the fraction
of the real IP addresses that have a hop-count of hy, is avy, , then
the fraction of the spoofed IP packets that will not be caught by
HCF is

Z: Z Oéhk ~ph,k.
k=m

The term inside the summation simply states that only p,
fraction of IP addresses with hop-count A, can be spoofed with
matching TTL values. It is not difficult to see that in order to
maximize 7, an attacker must generate spoofed IP addresses
with the most popular hop-count, hj, for which ay, is the
largest among all as. Thus, this more sophisticated attack is no
more threatening than the simple attacks in Section I1I-B1.

A more rigorous mathematical analysis of HCF’s robustness
against randomized TTL attacks is given in the Appendix.

2) Learning of Hop-Count Values: A successful evasion re-
quires that HCF-aware attackers correctly set an appropriate ini-
tial TTL value for each spoofed packet. Without loss of gener-
ality, we assume the same initial TTL value I for all Internet
hosts. A packet from a flooding source, which is . hops away
from the victim, has a final TTL value of I — h_,. In order for the
attacker to generate spoofed packets from this flooding source
without being detected, the initial TTL value of each packet
must be set to I’ = I — (hs — h.), where hy is the hop-count
from the spoofed IP address to the victim. Each spoofed packet
would then have the correct final TTL value, I —(hs—h.)—h, =
I — hg, when it reaches the victim.

An attacker may easily learn the hop-count, &, from a
zombie to the victim by running traceroute. However, ran-
domly selecting the source address for each spoofed IP packet
[12], [13] makes it extremely difficult, if not impossible, for
the attacker to learn h,. To obtain the correct hg values for all
spoofed packets sent to the victim, the attacker has to build
a priori an IP2HC mapping table that covers the entire spoofed
IP address space. This is much more difficult than building an

IP2HC mapping table at the victim, since the attacker cannot
observe the final TTL values of normal traffic at the victim. For
an attacker to build such an [IP2ZHC mapping table, he may have
to compromise at least one end-host behind every stub network
whose IP addresses are in the random IP address space, and
perform traceroute to get hs for the corresponding IP2HC
mapping entry. Even if the attacker probes only one host per
stub network, with a large IP spoofing space, the probing
activity will take considerable amount of time. Moreover,
network administrators are alert to unusual access patterns or
probing attempts, it would require an excessive amount of effort
to coordinate the probing attempts with impunity. Without the
correct hg values, the attacker cannot fabricate the appropriate
initial TTL values to conceal forgery.

Without compromising end-hosts, an attacker may compute
hop-counts of to-be-spoofed IP addresses based on an existing
router-level topology of the Internet, and the underlying routing
algorithms and policies. The recent Internet mapping efforts
such as Internet Map [9], Mercator [20], Rocketfuel [48], and
Skitter [10] projects, may make the approach plausible. How-
ever, the current topology mappings put together snapshots of
various networks measured at different times. Thus-produced
topology maps are generally time-averaged approximations of
actual network connectivity. More importantly, inter-domain
routing in the Internet is policy-based, and the routing policies
are not disclosed to the public. The path, and therefore the
hop-count, between a source and a destination is determined by
routing policies and algorithms that are often unknown. Even
if an attacker has accurate information of the Internet topology,
he cannot obtain the correct hop-counts based on network
connectivity alone. We believe that the quality of network
maps will improve with better mapping technology, but we do
not anticipate any near-term advance that can lead to accurate
hop-counts based on just Internet topology maps.

Instead of spoofing randomly selected IP addresses, the
attacker may choose to spoof IP addresses from a set of al-
ready-compromised machines that are much smaller in number
than 232, so that he can measure all h,’s and fabricate appro-
priate initial TTLs. However, this reduces the attacker’s ability
to launch a successful attack in several ways. First, the list
of would-be spoofed source IP addresses is greatly reduced,
which makes the detection and removal of flooding traffic
much easier. Second, source addresses of spoofed IP packets
reveal the locations of compromised end-hosts, which makes
IP traceback much easier. Third, the most popular distributed
attacking tools, including mstream, Shaft, Stacheldraht, TFN,
TFEN2k, Trinoo and Trinity, generate randomized IP addresses
in the space of 232 for spoofing [12], [13]. Thus, the attacker
must now modify the available attacking tools, which may be
difficult for an unsophisticated attacker.

Overall, although it is not difficult to obtain the appropriate
initial TTL for a single IP address, the attacker has to spend a
significant amount of time and effort to achieve accurate hop-
count information for a large IP spoof space. While HCF cannot
eliminate DDoS attacks, it will make it much harder for them to
succeed.

D. Hop-Count Stability

The stability in hop-counts between an Internet server and
its clients is crucial for HCF to work correctly and effectively.
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Frequent changes in the hop-count between the server and each
of its clients not only lead to excessive mapping updates, but also
greatly reduce filtering accuracy when an out-of-date mapping
is in use during attacks.

Hop-count stability is dictated by the end-to-end routing be-
haviors in the Internet. According to the study of end-to-end
routing stability in [37], the Internet paths were found to be
dominated by a few prevalent routes, and about two thirds of
the Internet paths studied were observed to have routes per-
sisting for either days or weeks. To confirm these findings, we
use daily traceroute measurements taken at ten-minute inter-
vals among 113 sites [16] from January 1st to April 30, 2003.
We observed a total of 10814 distinct one-way paths, a ma-
jority of which had 12 000 traceroute measurements each over
the five-month period. In these measurements, most of the paths
experienced very few hop-count changes: 95% of the paths had
fewer than five observable daily changes.

Furthermore, recent Internet experiments [28], [41] have
shown that, despite the large number of routing updates: 1) a
large fraction of destination prefixes have remarkably stable
Border Gateway Protocol (BGP) routes; 2) popular prefixes
tend to have stable BGP routes for days or weeks; and 3) a
vast majority of BGP instability stems from a small number of
unpopular destinations. Within a single domain, a case study of
intra-domain routing behavior [44] indicates that the intra-do-
main topology changes are due mainly to external changes* and
no network-wide instability is observed.

Therefore, it is reasonable to expect hop-counts to be stable
in the Internet. Moreover, the proposed filter contains a dynamic
update procedure to capture hop-count changes as discussed in
Section I'V-B.

IV. CONSTRUCTION OF IP2ZHC MAPPING TABLE

We have shown that HCF can remove nearly 90% of spoofed
traffic with an accurate mapping between IP addresses and hop-
counts. Thus, building an accurate IP2HC mapping table is crit-
ical to detect the maximum number of spoofed IP packets. In
this section, we detail our approach to constructing a table. Our
objectives in building a table are: 1) accurate [IP2HC mapping;
2) up-to-date IP2HC mapping; and 3) moderate storage require-
ment. By clustering address prefixes based on hop-counts, we
can build accurate IP2ZHC mapping tables and maximize the
effectiveness of HCF without storing the hop-count for each IP
address.

A. IP Address Aggregation

Ideally, the IP2ZHC mapping table has one entry for each valid
IP address. However, this will consume a very large amount of
memory, and it is unlikely that an Internet server will receive
legitimate requests from all live IP addresses in the Internet. By
aggregating IP address, we can reduce the space requirement
of IP2HC mapping significantly. More importantly, with IP ad-
dress aggregation, it is enough to capture the hop-count value
of one IP address from each subnet in order to build a complete
HCF mapping table. In the following, we present and evaluate
the techniques for IP address aggregation in constructing IP2ZHC
mapping tables.

“4Here the external changes are the routing updates conveyed by external link-
state advertisements [44].
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Fig. 9. Example of hop-count clustering.

1) Aggregation Techniques: Aggregating hosts according to
address prefix, especially the 24-bit address prefix, is a common
method. It is straightforward to implement in practice and can
offer fast lookup with an efficient implementation. Assuming
an array with one-byte hop-count entry per network prefix, the
storage requirement is 22* bytes or 16 MB. The memory re-
quirement is modest compared to contemporary servers which
are typically equipped with multi-gigabytes of memory. Under
this setup, the lookup operation consists of computing a 24-bit
address prefix from the source IP address in each packet and
indexing it into the mapping table to find the right hop-count
value. For systems with limited memory, the HCF mapping table
can be implemented as a hash-table of prefixes of known clients.
While 24-bit aggregation may not be the most accurate, it is a
certainly a deployable solution.

Since IP addresses within each 24-bit address prefix may
be allocated to different physical networks, these hosts are not
necessarily co-located and most likely do not have identical
hop-counts. To obtain a more accurate IP2HC mapping, one can
further divide IP addresses within each 24-bit prefix into smaller
clusters based on hop-count. Using a binary tree, we can cluster
IP addresses with the same hop-count. The leaves of the tree
represent the 254 (excluding the network address and the subnet
mask) valid IP addresses inside a 24-bit address prefix. In each
iteration, we examine two sibling nodes and aggregate the two
nodes as long as they share a common hop-count, or one of them
is empty. If aggregation is possible, the parent node will have the
same hop-count as the children. We can thus find the largest pos-
sible aggregation for a given set of IP addresses. Fig. 9 shows an
example of clustering a set of IP addresses (with the last octet
shown) by their hop-counts using the aggregation tree (showing
the first four levels). For example, the IP address range 128 to
245 is aggregated into a 128/25 prefix with a hop-count of 20,
and the three IP addresses 79, 105, and 111 are aggregated into
a 64/26 prefix with a hop-count of 20. We are able to aggregate
11 of 17 IP addresses into four network prefixes. The remaining
ones must be stored as individual IP addresses.

Based on the BGP routing table information, a network-aware
clustering technique [26] has been proposed to identify a group
of Web clients that are topologically close to each other and
likely to be under a single administration. In contrast, hop-count
clustering is self-reliant, and the IP addresses within the same
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cluster may not be topologically close to each other while they
have the same hop-count to the victim server.

To understand whether our clustering method improves HCF
over the simpler 24-bit aggregation, we compare the filtering
accuracies of mapping tables built under different aggregation
techniques.

2) Evaluation of Filtering Accuracy: We treat each
traceroute gateway (Section III-A) as a “web server,”
and its measured IP addresses as clients to this web server.
We build a table based on the set of client IP addresses at
each web server and evaluate the filtering accuracy under each
aggregation method. We assume that the attacker generates
packets by randomly selecting source IP addresses among
legitimate clients. We further assume that the attacker knows
the general hop-count distribution for each web server and uses
it to randomly generate a hop-count for each spoofed packet.
This is the most effective DDoS attack that an attacker can
launch without learning the exact IP2ZHC mapping.

We use the percentages of false positives and false nega-
tives to measure filtering accuracy. False positives are those
legitimate client IP addresses that are incorrectly identified as
spoofed. False negatives are spoofed IP addresses that go un-
detected by HCF. A good aggregation method should minimize
both.

Under each aggregation method, we build an IP2ZHC map-
ping table for each web server. Since a 24-bit prefix may con-
tain addresses with different hop-counts, we use the minimum
hop-count of all IP addresses inside the 24-bit network address
as the hop-count of the network. To filter an IP packet, the source
IP address is mapped into the proper table entry through prefix
matching, and the hop-count in the packet is checked against
the one stored in the table. Since 24-bit aggregation cannot pre-
serve hop-counts for all IP addresses within each address prefix,
we examine the performance of three types of filtering policies:
Strict Filtering, 41 Filtering, and +2 Filtering. Strict Filtering
drops packets whose hop-counts do not match those stored in
the table. +1 Filtering drops packets whose hop-counts differ
by more than one hop from those in the table, and +2 Filtering
drops packets whose hop-counts differ by more than two hops.
32-bit Strict Filtering is the ideal case where the mapping table
has one entry for each valid IP address. Packet filtering based on
a table built using hop-count clustering is called Cluster-Based
Filtering.

Fig. 10 presents the combined false positive and false neg-
ative results for the five filtering schemes: 32-bit Strict, 24-bit
Strict, 24-bit 41, 24-bit +2, and Clustering-based Filterings.
The x axis is the percentage of false negatives, and the y axis
is the percentage of false positives. Each point in the figure rep-
resents the pair of percentages for a single web server. We ob-
serve that the 24-bit strict filtering yields a similar percentage
of false negatives as 32-bit Strict Filtering, only 5% of false
negatives. This is because the percentage of false negatives is
determined by the distribution of hop-counts, and 24-bit ag-
gregation does not alter the hop-count distribution. However,
under 24-bit Strict Filtering, most web servers suffer about 10%
of false positives, while the percentage of false positives under
32-bit Strict Filtering is zero. As we relax the filtering criterion
as in 24-bit +1/42 Filtering, false positives of 24-bit aggre-
gation are halved while false negatives approximately doubled.
If one desires a simpler implementation than Cluster-Based Fil-
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Fig. 11. IP2HC mapping table size.

tering, +1 Filtering under 24-bit aggregation offers a reasonable
compromise.

With hop-count-based clustering, we never aggregate IP ad-
dresses that do not share the same hop-count. Hence, we can
eliminate false positives as long as we update the mapping table
when client hop-counts change. As shown in Fig. 10, where the
points of Clustering-Based Filtering overlap with those of 32-bit
Strict Filtering, Clustering-Based Filtering has nearly identical
performance as 32-bit Strict Filtering.

Compared with the 24-bit aggregation, the clustering ap-
proach is more accurate but consumes more memory. Fig. 11
shows the number of entries in the IP2ZHC mapping for each
web server used in our experiments. The x axis is the web server
ID, ranked according to the number of client IP addresses, and
the y axis is the number of table entries. The number of entries
under Cluster-Based Filtering does not include the intermediate
nodes used to generate the mapping, e.g., the internal nodes in
the clustering trees, because these internal nodes do not need
to be stored in the final mapping table. Since the clustering
algorithm and the aggregation tree are completely determin-
istic, we can easily reconstruct the tree on demand to reduce
memory consumption. Clustering-based Filtering increases the
number of entries by no more than 20% in all but one case, in
comparison with the 24-bit Strict Filtering. The 32-bit Strict
Filtering, while having slightly higher accuracy, increases the
number of entries by at least 67%.
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B. Table Initialization and Update

Before running HCF, we need to initialize the IP2HC map-
ping table and then keep the mapping table updated. The most
critical aspect in initializing and updating the IP2ZHC mapping
table is to ensure that only valid IP2ZHC mappings are stored in
the table.

1) Initialization and Addition of New Entries: To populate an
IP2HC mapping table initially, the administrator of an Internet
server should collect traces of its clients to obtain both IP ad-
dresses and the corresponding hop-count values. The initial col-
lection period should be long enough to ensure good filtering
accuracy even at the very beginning, and the duration should de-
pend on the amount of daily traffic the server is receiving. For a
popular site such as cnn.com or espn.com, a collection period
of a few days could be sufficient, while for a lightly loaded site,
a few weeks might be more appropriate.

After the initial population of the mapping table and activa-
tion, HCF will continue adding new entries to the mapping table
when requests with previously unseen legitimate IP addresses
are sighted. Thus, over time, the IP2HC mapping table will cap-
ture the correct mapping between IP address and hop-count for
all clients of a server. This ensures that spoofed IP traffic can be
detected, and then discarded with little collateral damage during
a DDoS attack.

2) Updating Hop-Counts: 1P2HC mapping must be kept
up-to-date as hop-counts of existing IP addresses change. The
hop-count from a client to a server could change as a result of
relocation of networks, routing instability, or temporary net-
work failures. Some of these events are transient and therefore
can be omitted, but longer-term changes in hop-count must be
captured.

Under 24-bit or 32-bit Strict Filtering, a table update involves
indexing the table using a given IP address and changing the in-
dexed table entry with a new hop-count. Under hop-count clus-
tering, an update, or adding a new node, may split a node or
merge two adjacent nodes on the existing hop-count clustering
tree. To carry out the update, one first allocates memory for a
new clustering tree. The new clustering tree has a fixed format
of depth eight, represented as an array of 511 elements. We
populate the array with nodes on the existing clustering tree
with updated hop-count(s). We can then repeat the procedure
described in Section IV-Al. In addition, one may need to split
an existing node because one of its two immediate child nodes
now has a different hop-count as clustering percolates up the
tree. When this happens, we replace the parent node with its
two child nodes, one having the new hop-count and the other
retaining the original hop-count.

Reclustering should have a relatively small impact on system
performance for two reasons. First, each reclustering instance
is a local event on a tree of at most 511 nodes. Second, since
hop-count changes are not frequent in the network as reported
in [37] and reaffirmed by our own limited observations, reclus-
tering will probably occur infrequently in practice.

C. Hop-Count Ambiguity Caused by NATs

The existence of NAT boxes, some of which may connect
multiple stub networks, could make a single IP address appear
to have multiple valid hop-counts at the same time. This may
lower the IP2HC mapping accuracy in the table. However, since
a NAT box enforces the assignment of a single source IP ad-
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In the learning state:
for each sampled packet p:
spoof =IP2HC Inspect(p);
t = Average(spoof);

if (spoof’)
if(t>7)
Switch to the filtering state;
Accept(p);

for the k-th TCP control block ¢cbh:
Update_Table(zcb);

In the filtering state:
for each packet p:
spoof =IP2HC Inspect(p);
t = Average(spoof);
if (spoof)
Drop(p);
else Accept(p);

if(t<T)
Switch to the learning state;

Fig. 12. Operations in two HCF states.

dress to every outgoing IP packet, this automatically prevents
the zombies behind NAT boxes from IP spoofing.

To cope with the hop-count ambiguity caused by NAT boxes,
a simple possible solution is to have NAT boxes reset the TTL
value of each outgoing IP packet to a default initial TTL. Then,
there will be a strict one-to-one mapping between the IP address
of a NAT box and a hop-count. While the computed hop-count
is the one from the NAT box, instead of the end-hosts behind it,
to the victim, this does not affect the filtering accuracy at all as
long as the victim maintains the same skewed hop-count as the
one computed from IP header. The drawback of this simple so-
lution is the required modification at NAT boxes. However, since
NAT boxes must manipulate the IP headers of passing packets
anyway, the overhead induced by the proposed TTL resetting
is minor.

V. RUNNING STATES OF HCF

Since HCF causes delay in the critical path of packet pro-
cessing, it should not be active at all times. We therefore intro-
duce two running states inside HCF: the learning state captures
legitimate changes in hop-count and detects the presence of
spoofed packets, and the filtering state actively discards spoofed
packets. By default, HCF stays in the learning state and moni-
tors the trend of hop-count changes without discarding packets.
Upon detection of a flux of spoofed packets, HCF switches to
the filtering state to examine each packet and discard spoofed IP
packets. In this section, we discuss the details of each state and
show that having two states can better protect servers against
spoofed IP traffic, while minimizing overhead.

A. Tasks in Two States

Fig. 12 lists the tasks performed by each state. In the learning
state, HCF performs the following tasks: sample incoming
packets for hop-count inspection, calculate the spoofed packet
counter, and update the IP2HC mapping table in case of legiti-
mate hop-count changes. Packets are sampled at exponentially
distributed intervals with mean rn in either time or the number
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of packets. The exponential distribution can be precomputed
and made into a lookup table for fast on-line access. For each
sampled packet, IP2HC_Inspect() returns a binary number
spoof, depending on whether the packet is judged as spoofed
or not. This is then used by Average() to compute an average
spoof counter ¢ per unit time. When ¢ is greater than a threshold
Ty, HCF enters the filtering state. HCF in the learning state will
also update the IP2ZHC mapping table using the TCP control
block of every kth established TCP connection.

To minimize the overhead of hop-count inspection and dy-
namic update in the learning state, their execution frequencies
are adaptively chosen to be inversely proportional to the server’s
workload. We measure the server’s workload by the number
of established TCP connections. If the server is lightly loaded,
HCEF calls for IP2HC inspection and dynamic update more fre-
quently by reducing k£ and m, which determine the idle times
for table update and inspection, respectively. In contrast, for
a heavily loaded server, both k£ and m are increased. The two
thresholds T3 and 75, used for detecting spoofed packets, should
also be adjusted based on load. The general guideline for set-
ting execution rates and thresholds with the dynamics of server’s
workload is given as follows:

Load /= Rates \,= Threshold \, .

However, we only recommend these parameters to be user-con-
figurable. Their specific values depend on the requirement of
individual networks in balancing between security and perfor-
mance.

HCEF in the filtering state performs a similar set of tasks as in
the learning state. The key difference is that HCF in the filtering
state must examine every packet (instead of sampling only a
subset of packets) and discards spoofed packets, if any. HCF
stays in the filtering state as long as a certain number of spoofed
IP packets are detected. When the ongoing spoofing ceases,
HCEF switches back to the learning state. This is accomplished
by checking the spoof counter ¢ against another threshold 7%,
which should be smaller than 77 for better stability. HCF should
not alternate between the learning and filtering states when ¢
fluctuates around 73. Making the second threshold 75, < T}
avoids this instability. Note that HCF’s filtering accuracy is in-
dependent of the settings of 77 and T5.

In our filtering accuracy experiments, we have assumed that
the IP2ZHC mapping table holds the complete IP addresses
of clients. However, in reality, there are always new requests
coming in from unseen address prefixes, regardless of how well
a mapping table is initialized or kept up-to-date. To protect
against attacking traffic that uses unseen IP addresses, we
must drop all packets that have no corresponding entries in
the table—the function IP2HC_Inspect returns true if p does
not exist in the table. While undesirable, HCF ensures that
legitimate requests from known IP addresses are still served
during an attack. Clearly, such collateral damage can be made
very low by carefully aggregating IP addresses and diligently
populating an HCF mapping table over a long period of time.

B. Blocking Bandwidth Attacks

To protect server resources such as CPU and memory, HCF
can be installed at a server itself or at any network device near
the servers, i.e., inside the “last-mile” region, such as the firewall
of an organization. However, this scheme will not be effective
against DDoS attacks that target the bandwidth of a network

to/from the server. The task of protecting the access link of an
entire stub network is more complicated and difficult because
the filtering has to be applied at the upstream router of the access
link, which must involve the stub network’s ISP.

The difficulty in protecting against bandwidth flooding is that
packet filtering must be separated from detection of spoofed
packets as the filtering has to be done at the ISP’s edge router.
One or more machines inside the stub network must run HCF
and actively watch for traces of IP spoofing by always staying
alert. In addition, at least one machine inside the stub network
needs to maintain an updated HCF table since only end-hosts
can see established TCP connections. Under an attack, this ma-
chine should notify the network administrator who then coordi-
nates with the ISP to install a packet filter based on the HCF
table on the ISP’s edge router. Our two running-state design
makes it natural to separate these two functions—detection and
filtering of spoofed packets. Once the HCF table is enabled at
the ISP’s edge router, most spoofed packets will be intercepted,
and only a very small percentage of the spoofed packets that slip
through HCF, will consume bandwidth. In this case, having two
separable states is crucial since routers usually cannot observe
established TCP connections and use the safe update procedure.

C. Staying “Alert” to DRDoS Attacks

In DRDoS attacks, an attacker forges IP packets that contain
legitimate requests, such as DNS queries, by setting the source
IP addresses of these spoofed packets to the actual victim’s
IP address. The attacker then sends these spoofed packets to a
large number of reflectors. Each reflector only receives a mod-
erate flux of spoofed IP packets so that it can easily sustain
the availability of its normal service. The usual intrusion de-
tection methods based on the ongoing traffic volume or access
patterns may not be sensitive enough to detect the presence of
such spoofed traffic. In contrast, HCF specifically looks for IP
spoofing, so it will be able to detect attempts to fool servers
into acting as reflectors. Although HCF is not perfect and some
spoofed packets may still slip through the filter, HCF can detect
and intercept enough of the spoofed packets to thwart DRDoS
attacks.

VI. RESOURCE SAVINGS

This section details the implementation of a proof-of-concept
HCF inside the Linux kernel and presents its evaluation on a real
testbed. For HCF to be useful, the per-packet overhead must be
much lower than the normal processing of an IP packet. In addi-
tion, since HCF operates at the IP layers, spoofed packets, even
when detected, will still consume CPU cycles due to interrupt
handling and data link layer processing. We justify the deploy-
ment of HCF in practice by measuring the per-packet overhead
of HCF and the amount of resource savings when HCF is active.

A. Implementing the Hop-Count Filter

To validate the efficacy of HCF in a real system, we imple-
ment a test module inside the Linux kernel. The test module
resides in the IP packet receive function, ip_rcv. To minimize
the CPU cycles consumed by spoofed IP packets, we insert the
filtering function before the code segment that performs the ex-
pensive checksum verification. Our test module has the basic
data structures and functions to support search and update oper-
ations to the hop-count mapping.
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The hop-count mapping is organized as a 4096-bucket hash
table with chaining to resolve collisions. Each entry in the hash
table represents a 24-bit address prefix, and it uses a binary tree
to cluster hosts within the single 24-bit address prefix. Searching
for the hop-count of an IP address consists of locating the entry
for its 24-bit address prefix in the hash table, and then finding the
proper cluster that the IP address belongs to in the tree. Given an
IP address, HCF computes the hash key by XORing the upper and
lower 12-bits of the first 24 bits of the source IP address. Since
4096 is relatively small compared to the set of possible 24-bit
address prefixes, collisions are likely to occur. To estimate the
average size of a chained list, we hash the client IP addresses
from [11] into the 4096-bucket hash table to find that, on av-
erage, there are 11 entries on a chain, with the maximum being
25. Thus, we use fixed 11-entry chained lists. We determine the
size of the clustering tree by choosing a minimum clustering
unit of four IP addresses so the tree has a depth of six (2° = 64).
This binary tree can then be implemented as a linear array of
127 elements. Each element in this array stores the hop-count
value of a particular clustering. We set the array element to be
the hop-count if clustering is possible, and zero otherwise. The
clustering overhead has not yet been evaluated.

To implement table update, we insert the function call into the
kernel TCP code past the point where the three-way handshake
of TCP connection is completed. For every kth established TCP
connection, the update function takes the argument of the source
IP address and the final TTL value of the ACK packet that com-
pletes the handshake. Then, the function searches the IP2ZHC
mapping table for an entry that corresponds to this source IP
address, and will either overwrite the existing entry or create a
new entry for a first-time visitor.

B. Experimental Evaluation

For HCF to be useful, the per-packet overhead must be much
lower than the normal processing of an IP packet. We examine
the per-packet overhead of HCF by instrumenting the Linux
kernel to time the filtering function as well as the critical path in
processing IP packets. We use the built-in Linux macro rdtscl
to record the execution time in CPU cycles. While we cannot
generalize our experimental results to predict the performance
of HCF under real DDoS attacks, we can confirm whether HCF
provides significant resource savings.

We set up a simple testbed of two machines connected to
a 100 Mb/s Ethernet hub. A Dell Precision workstation with
1.9 GHz Pentium 4 processor and 1 GB of memory, simulates
the victim server where HCF is installed. A second machine
generates various types of IP traffic to emulate incoming attack
traffic to the victim server. To minimize the effect of caches, we
randomize each hash key to simulate randomized IP addresses
to hit all buckets in the hash table. For each hop-count look-up,
we assume the worst case search time. The search of a 24-bit
address prefix traverses the entire chained list of 11 entries, and
the hop-count lookup within the 24-bit prefix traverses the entire
depth of the tree.

We generate two types of traffic, TCP and ICMP, to emulate
flooding traffic in DDoS attacks. In the case of flooding TCP
traffic, we use a modified version of tcptraceroute [1] to
generate TCP SYN packets to simulate a SYN flooding attack.
In addition, we also repeatedly open a TCP connection on the
victim machine and close it right away, which includes sending
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TABLE II
CPU OVERHEAD OF HCF AND NORMAL IP PROCESSING

Scenarios with HCF without HCF

avg | min avg min
TCP SYN 388 | 240 7507 | 3664
TCP open+close || 456 | 264 18002 | 3700
ping 64B 396 | 240 || 20194 | 3604
ping flood 358 | 256 || 20139 | 3616
TCP bulk 443 | 168 6538 | 3700
UDP bulk 490 | 184 6524 | 3628

both SYN and FIN packets. Linux delays most of the processing
and the establishment of the connection control block until re-
ceiving the final ACK from the host that does the active open.
Since the processing to establish a connection is included in our
open + close experiment, the measured critical path may be
longer than that in a SYN flooding attack. To emulate ICMP at-
tacks, we run two experiments of single-stream pings. The first
uses default 64-byte packets at 10 ms intervals, and the second
uses ping flood (ping -f) with the default packet size of 64 bytes
and sends packets as fast as the system can transmit. To under-
stand the impact of HCF on normal IP traffic, we also consider
bulk data transfers under both TCP and UDP. We compare the
per-packet overhead without HCF with the per-packet overhead
of the filtering function in Table II.

We present the recorded processing times in CPU cycles in
Table II. The column under “with HCF” lists the execution times
of the filtering function. The column under “without HCF” lists
the packet processing times without HCF. Each row in the table
represents a single experiment, and each experiment is run with
a large number (=40 000) of packets to compute the average
number of cycles. We present both the minimum and the av-
erage numbers. There exists a difference between average cycles
and minimum cycles for two reasons. First, some packets take
longer to process than others, e.g., a SYN/ACK packet takes
more time than a FIN packet. Second, the average cycles may in-
clude lower-level interrupt processing, such as input processing
by the Linux Ethernet driver. We observe that, in general, the
filtering function uses significantly fewer cycles than the emu-
lated attack traffic, at least an order of magnitude less. Conse-
quently, HCF should provide significant resource savings by de-
tecting and discarding spoofed traffic. Moreover, for both TCP
and UDP bulk transfers, the CPU overhead induced by HCF is
small (less than 7%). Note that the processing of regular packets
takes fewer cycles than the emulated attack traffic. We attribute
this to TCP header prediction and the much simpler protocol
processing in UDP. It is fair to say that the filtering function
adds only a small overhead to the processing of legitimate IP
traffic. However, this is by far more than compensated by not
processing spoofed traffic.

To illustrate the potential savings in CPU cycles, we compute
the actual resource savings we can achieve, when an attacker
launches a spoofed DDoS attack against a server. Given attack
and legitimate traffic, a and b, in terms of the fraction of total
traffic per unit time, the average number of CPU cycles con-
sumed per packet without HCFis a - tp + b - t1,, where ¢ p and
tr, are the per-packet processing times of attack and legitimate
traffic, respectively. The average number of CPU cycles con-
sumed per packet with HCF is

(l—a)-a-tDF-l-a-a-tD+b~(tL+tLF),
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Fig. 13. Resource savings by HCF.

with tpp and ¢t being the filtering overhead for attack and
legitimate traffic, respectively, and « the percentage of attack
traffic that we cannot filter out. Let us also assume that the at-
tacker uses 64-byte ping traffic to attack the server that imple-
ments HCF. The results for various a, b, and a parameters are
plotted in Fig. 13. The x axis is the percentage of total traffic
contributed by the DDoS attack, namely a. The y axis is the
number of CPU cycles saved as the percentage of total CPU cy-
cles consumed without HCF. The figure contains a number of
curves, each corresponding to an « value. Since the per-packet
overhead of the DDoS traffic (20 194) is much higher than TCP
bulk transfer (6538), the percentage of the DDoS traffic that
HCEF can filter, (1—a), essentially becomes the sole determining
factor in resource savings. As the composition of total traffic
varies, the percentage of resource savings remains essentially
the same as (1 — «).

VII. RELATED WORK

Several efficient mechanisms [17], [19], [35], [52] are avail-
able to detect DDoS attacks. In addition, researchers have also
used the distribution of TTL values seen at servers to detect ab-
normal load spikes due to DDoS traffic [39]. The Razor team
at Bindview built Despoof [2], which is a command-line anti-
spoofing utility. Despoof compares the TTL of a received packet
that is considered “suspicious,” with the actual TTL of a test
packet sent to the source IP address, for verification. However,
Despoof requires the administrator to determine which packets
should be examined, and to manually perform this verification.
Thus, the per-packet processing overhead is prohibitively high
for weeding out spoofed traffic in real time.

In parallel with, and independently of, our work, the possi-
bility of using TTL for detecting spoofed packet was discussed
in [51]. Their results have shown that the final TTL values from
an IP address were predictable and generally clustered around
a single value, which is consistent with our observation of hop-
counts being mostly stable. However, the authors did not pro-
vide a detailed solution against spoofed DDoS attacks. Neither
did they provide any analysis of the effectiveness of using TTL
values, nor the construction, update, and deployment of an accu-
rate TTL mapping table. In this paper, we examine these ques-
tions and develop a deployable solution.

There are a number of recent router-based filtering techniques
to lessen the effects of DDoS packets or to curb their propaga-
tions in the Internet. As a proactive solution to DDoS attacks,

these filtering schemes [15], [29], [36], [55], which must execute
on IP routers or rely on routers’ markings, have been proposed
to prevent spoofed IP packets from reaching intended victims.
The most straightforward scheme is ingress filtering [15], which
blocks spoofed packets at edge routers, where address owner-
ship is relatively unambiguous, and traffic load is low. However,
the success of ingress filtering hinges on its wide-deployment
in IP routers. Most ISPs are reluctant to implement this service
due to administrative overhead and lack of immediate benefits
to their customers.

Given the reachability constraints imposed by routing and
network topology, router-based distributed packet filtering
(DPF) [36] utilizes routing information to determine whether
an incoming packet at a router is valid with respect to the
inscribed source and destination IP addresses in the packet. The
experimental results reported in [36] show that a significant
fraction of spoofed packets may be filtered out, and those
spoofed packets that DPF fails to capture, can be localized into
five candidate sites that are easy to trace back.

To validate that an IP packet carries a true source address,
SAVE [29], a source address validity enforcement protocol,
builds a table of incoming source IP addresses at each router
that associates each of its incoming interfaces with a set of valid
incoming network addresses. SAVE runs on each IP router and
checks whether each IP packet arrives at the expected inter-
face. By matching incoming IP addresses with their expected
receiving interfaces, the set of IP source addresses that any
attacker can spoof are greatly reduced.

Based on IP traceback marking, Path Identifier (Pi) [55] em-
beds a path fingerprint in each packet so that a victim can iden-
tify all packets traversing the same path across the Internet,
even for those with spoofed IP addresses. Instead of proba-
bilistic marking, marking in Pi is deterministic. By checking
the marking on each packet, the victim can filter out all at-
tacking packets that match the path signatures of already-known
attacking packets. Pi is effective even if only half of the routers
in the Internet participate in packet marking. There also exist
commercial solutions [22], [34] that block the propagation of
DDoS traffic with router support.

However, the main difference between our scheme and these
solutions is that HCF is an end-system mechanism that does not
require any network support. This difference implies that our
solution is immediately deployable in the Internet. HCF works
well because no single entity controls the value of the TTL
field, and thus, destinations can use it to fingerprint legitimate IP
packets. It is not difficult to see that end-host-based filtering can
be much more effective if intermediate routers could do more
than merely decrementing TTL by one.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a hop-count-based filtering
scheme that detects and discards spoofed IP packets to con-
serve system resources. Our scheme inspects the hop-count of
incoming packets to validate their legitimacy. Using only a mod-
erate amount of storage, HCF constructs an accurate IP2HC
mapping table via IP address aggregation and hop-count clus-
tering. A pollution-proof mechanism initializes and updates en-
tries in the mapping table. By default, HCF stays in the learning
state, monitoring abnormal IP2ZHC mapping behaviors without
discarding any packet. Once spoofed DDoS traffic is detected,
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HCF switches to the filtering state and discards most of the
spoofed packets.

By analyzing actual network measurements, we have shown
that HCF can remove 90% of spoofed traffic. Moreover, even if
an attacker is aware of HCF, he cannot easily circumvent HCF.
Our experimental evaluation has shown that HCF can be effi-
ciently implemented inside the Linux kernel. Our analysis and
experimental results have indicated that HCF is a simple and
effective solution in protecting Internet servers against spoofed
IP packets. Furthermore, HCF is readily deployable in end-sys-
tems since it does not require any network support.

There are several issues that warrant further research. First,
to install the HCF system at a victim site for practical use, we
need a systematic procedure for setting the parameters of HCF,
such as the frequency of dynamic updates. Second, we would
like to build and deploy HCF in various high-profile server sites
to see how effective it is against real spoofed DDoS traffic.

APPENDIX
ANALYSIS OF RANDOMIZED TTL ATTACKS AGAINST HCF

An attacker may somehow modify the initial TTL values,
hoping that the forged packets may carry matching hop-count
values when they reach the victim. Assuming that the attacker
knows the range of valid hop-count [1, k] to a given victim
server, an attacker may use initial TTLs in the range [I4 + h. —
hary Ig + h. — 1], where h, is the hop-count from the flooding
source to the victim and I, is the default initial TTL value at the
flooding source. Thus, the randomization of initial TTL values
is the same as subtracting the right constant between 1 and hj,
from I; + h. to give a matching IP2HC pair that HCF cannot
detect.

Here, we study the scenario where for any given IP address,
an attacker is only able to select at random a hop-count value
from the range [1, hps]. Without loss of generality, we use the
random variable X as the hop-count value the attacker draws
from a distribution Px (k), k = 1,2,...,hp.

The ability of an attacker to evade HCF can be measured
by the probability that the hop-count value X embedded in a
spoofed IP packet would match the correct hop-count value Y,
or P[X = Y], using Bayes’ formula as follows:

hlw
PIX=Y]=) PX=Y|Y =Fk-PY =k,
k=1
where P[Y = k] = Py(k), k = 1,2,...,hy, is the distri-
bution of hop-count values to the victim server. {X = k} and
{Y = k} are two independent events. Thus, P[X =Y | Y =
k)= P[X = k]= Px(k). We thus reduce the above equation to

h s

PIX =Y]=Y_ Px(k)- Py (k).

The attacker would want to to maximize the summation over
all possible Pxs, or equivalently, use the “best” distribution Py
of hop-count values to fool HCF.

B

max Z Px (k) - Py (k).

This is a special case of a standard Linear Programming
problem, but with a very simple solution. We observe that there
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exists a kpy, for which Px (k) < Px(ky) for all k. Therefore,
we can provide an upper bound for the maximization as follows:
hm hm

ZPX(k) Py (k) < ZPX(k) - Py (kar)
k=1 k=1

ha

=Py (ka) Y Px(k).

k=1

Since the sum Z:Zl Px (k) = 1, it follows that the maxi-
mization is bounded by Py (kps):

har

> Px(k) - Py (k) < Py (k).
k=1

One way to achieve this upper bound is to draw from a dis-
tribution, where Px (k) = 0 for all k # kjr, and Px (kas) = 1.
We have shown that the mode (Py-(kps)) in our data collection
is generally around 10%, so on average, only 10% of spoofed
IP addresses can evade HCF.
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