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Abstract— IP spoofing has often been exploited by Distributed Denialfo
Service (DDoS) attacks to (1) conceal flooding sources andude localities in
flooding traffic, and (2) coax legitimate hosts into becomingeflectors, redi-
recting and amplifying flooding traffic. Thus, the ability to filter spoofed IP
packets near victim servers is essential to their own protémn and preven-
tion of becoming involuntary DoS reflectors. Although an atacker can forge
any field in the IP header, he cannot falsify the number of hopsin IP packet
takes to reach its destination. More importantly, since thehop-count values
are diverse, an attacker cannorandomlyspoof IP addresses while maintain-
ing consistent hop-counts. On the other hand, an Internet seer can easily
infer the hop-count information from the Time-to-Live (TTL ) field of the IP
header. Using a mapping between IP addresses and their hopunts, the
server can distinguish spoofed IP packets from legitimate mes. Based on
this observation, we present a novel filtering technique, deed Hop-Count
Filtering (HCF)—which builds an accurate IP-to-hop-count (IP2HC) map-
ping table—to detect and discard spoofed IP packets. HCF isasy to deploy,
as it does not require any support from the underlying netwok. Through
analysis using network measurement data, we show that HCF caidentify
close to 90% of spoofed IP packets, and then discard them witlittle collat-
eral damage. We implement and evaluate HCF in the Linux kerne demon-
strating its effectiveness with experimental measuremest

However, these router-based solutions require not onlyerou
support, but also coordination among different routers rzetd
works, and wide-spread deployment to reach their poteritial
contrast to the router-based approach, the host-basedaatpr
can be deployed immediately. Moreover, end systems should
have a much stronger incentive to deploy defense mechanisms
than network service providers.

The current host-based approaches protect an Internetrserv
either by using sophisticated resource-management s&{8ine
[6], [40], [47] or by significantly reducing the resource eon
sumption of each request to withstand the flooding traffihsasc
SYN cookies [5] and Client Puzzle [24], [53]. Without a mech-
anism to detect and discard spoofed IP traffic at the verynbegi
ning of network processing, spoofed packets will share dimees
resource principals and code paths as legitimate requbsts.
der heavy attacks, current approaches are unlikely to leetabl
sustain service availability due to resource depletiorseeiby
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I. INTRODUCTION

solutions work at the transport-layer and above, and cgmmest
vent the victim server from consuming CPU resource in servic
ing interrupts from spoofed IP traffic. At high speed, incom-

. S : any router support is essential to protection against®D
into packet headers. IP spoofing is commonly associated with y PP P 9

malicious network activities, such as Distributed Deniaber-
vice (DDoS) attacks [21], [27], [32], which block legitineaac-

cess by either exhausting victim servers’ resources [7]abr S
urating stub networks’ access links to the Internet [18]. sMo

cks. Since filtering spoofed IP packets is orthogon#hé¢o
resource-protection mechanisms at higher layers, it carsed
in conjunction with advanced resource-protection schemes

In this paper, we propose a lightweight scheme that validate

DDosS attacking tools spoof IP addresses by randomizing2he §€Oming IP packets atan Internet server without using aygy-c
bit source-address field in the IP header [12], [13], which-cotodraphic methodology or router support. Our goal is not to

ceals attacking sources and dilutes localities in attartiaffic.

achieve perfect authentication, but to screen out mostbtgfs

The recent “backscatter” study [32], which quantifies DoS afic with little collateral damage. The fundamental idea isitie

tivities in the current Internet, has confirmed the wideesjpr

lize inherent network information—that each packet caraed

use of randomness in spoofing IP addresses. Moreover, s@iéittacker cannot easily forge—to distinguish spoofedeiac
known DDoS attacks, such as smurf[8] and more recent DRDH8M legitimate ones. The inherent network information vge u

(Distributed Reflection Denial of Service) attacks [18B]3are

here is the number of hops a packet takes to reach its destina-

not possible without IP spoofing. Such attacks masqueragle #Qn: although an attacker can forge any field in the IP heauer
source IP address of each spoofed packet with the victim’s §@nnot falsify the number of hops an IP packet takes to reach i

address. Overall, DDoS attacks with IP spoofing are much m

difficult to defend.

To thwart DDoS attacks, researchers have taken two distifft
approachesouter-basecandhost-based The router-based ap-

&igstination, which is solely determined by the Internetirau

infrastructure. The hop-count information is indirectiflected
the TTL field of the IP header, since each intermediateemout
decrements the TTL value by one before forwarding a packet to

proach installs defense mechanisms inside IP routersde the e neéxthop.

source(s) of attack [4], [30], [43], [45], [46], [49], or dmit and
block attacking traffic [15], [23], [25], [29], [31], [36]H0], [56].
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Based on hop-count, we propose a novel filtering technique,
calledHop-Count Filtering(HCF), to weed out spoofed IP pack-
ets at the very beginning of network processing, thus atfelgt
protecting victim servers’ resources from abuse. The nat®
behind HCF is that most randomly-spoofed IP packets, when
arriving at victims, do not carry hop-count values that asa-c
sistent with the IP addresses being spoofed. As a receivér; a
ternet server can infer the hop-count information and clieck
consistency of source IP addresses. Exploiting this olsery,



HCF builds an accurate IP-to-hop-count (IP2HC) mappintgtab Il. BASIC PRINCIPLES INHCF
wh|I§ using a moderate amount of storage, by clusteringesdr In this section, we describe the basic principles of HCF.-Cen
prefixes based on hop-count. To capture hop-count changes un : o

; " . trta to HCF is the validation of the source IP address of each
der dynamic network conditions, we also devise a safe update

procedure for the IP2HC mapping table that prevents poltuti packetwa_l hop-c((j)uhntmspectlon. er fwsgdescrlbehthe_ repme
by attackers. The same pollution-proof method is used fén b gomputation, and then presenta safe update mechanisnafhat c

initializing IP2HC mapping table and inserting additioifalad- ures the Iegltlmate mappings bgtween ”.D addresses and_ hop-
. count values. Finally, we summarize HCF in the form of a high-
dresses into the table.

L _ level inspection algorithm.
To minimize collateral damage, HCF has two running states,

learning andfiltering. Under normal conditions, HCF stays ina - Hop-Count Computation

thelearningstate, watching for abnormal TTL behaviors without . o ) .
discarding any packets. Even if a legitimate packet is irexly Since hop-count mforma‘upn is not d|rectlly stored in the IP
identified as spoofed, it will not be dropped. Thereforereheheader, one has to compute it based on the final TTL value. TTL
is no collateral damage in thiearning state. Upon detection of i @n 8-bit field in the IP header, originally introduced t@sp

an attack, HCF switches to tffiétering state, in which HCF dis- ify the maximum lifetime of each packet in the Internet. Each
cards those IP packets with mismatching hop-counts. Througtérmediate router decrements the TTL value of an in-itaRs
analysis using network measurement data, we show that HEgcket by one before forwarding it to the next-hop. The final
can recognize close to 90% of spoofed IP packets. In additidr L value when a packet reaches its destination is, thezefor
our hop-count-based clustering significantly reduces tmebver the initial TTL decreased by the number of intermediate hops
of false positives. Thus, we can discard spoofed IP packets witfPr Simply hop-count). The challenge in hop-count compaitat
little collateral damage in théiitering state. To ensure that theiS that a destination only sees the final TTL value. It wouldeha
filtering mechanism itself withstands attacks, our desigight- been simple had all operating systems (OSes) used the same in
weight and requires only a moderate amount of storage. We i@l TTL value, but in practice, there is no consensus onttite i
plement HCF in the Linux kernel as the first step of incoming@! TTL value. Furthermore, since the OS for a given IP agsire
packet processing at the IP layer. We evaluate the benefit ey change with time, we cannot assume a single staticlinitia
HCF with experimental measurements and show that HCF is ih[ L value for each IP address.

deed effective in countering IP spoofing by providing sigmifit ~ According to [14], most modern OSes use only a few selected
resource Savings_ initial TTL values, 30, 32,60, 64, 128, and 255. This set dfah

While HCF is simple and effective in thwarting IP spoofing, if | - Values covers most of the popular OSes, such as Microsoft

is not a complete solution to the generic DDoS problem. Rath&/indows, Linux, variants of BSD, and many commercial Unix
it is only an important piece of the puzzle that weeds out &bo systems. We observe that most of these initial TTL valuefaare

IP traffic. Like most other schemes in dealing with the DDo@P2rt, €xcept between 30 and 32, 60 and 64, and between 32 and
problem, HCF has its own limitations. An attacker may cireun0- Since Intermnet traces have shown that few Internet lasts
vent HCF entirely by not using spoofed traffic, or partially b&Part by more than 30 hops [9], [10], which is also confirmed by
bombarding a victim with much more attacking traffic thanrseUr 0Wn observation, one can determine the initial TTL vaitie
before. Also, a “determined” attacker may find a way to build & Packet by selecting the smallest initial value in the sat it
IP2HC mapping table that is accurate enough for most spoof@f€r than its final TTL. For example, if the final TTL value is
IP packets to evade HCF. Moreover, the actual deployment'df2: the initial TTL value is 128. To resolve ambiguities fire t
HCF requires further work in tuning its parameters and hiagdl €as€s 030, 32, {60, 64, and{32, 60}, we will compute a
the IP2HC inaccuracy caused by the Network Address Trandi@P-count value for each of the possible initial TTL valuesd
tor (NAT) boxes and possible hop-count instability. Nelert accept the packet if there is a match with either of the ptessib
less, HCF does greatly enhance the capability to counterD@CP-counts.

attacks by depriving an attacker of his powerful weapondoan The drawback of limiting the possible initial TTL values is
IP spoofing. that packets from end-systems that use “odd” initial TT Lues,

Apay be incorrectly identified as spoofed. This may happen if
a user switches OS from one that uses a “normal” initial TTL
i\ﬁe}lue to another that uses an “odd” value. Since our filtetsta
spection algorithm, which are critical to HCF. Section kirdon- S;Ssi:;?sp\?vgltjeléss()unflfi?gﬁ:;d del;[ﬁﬁgognogitﬁsoljsDéggiigs:h?rr\]e
strates that the proposed HCF indeed works effectivelyiaate X - ’
brop y study in [14] shows that the OSes that use “odd” initial TTke a

ing spoofed packets, based on a large set of previouslgatel ) .
t racer out e data, and also robust against HCF-aware attactk'p'cauy older OSes. We expeqt such OSes to constitutea ver
all percentage of end-hosts in the current Internet. ,Tthes

ers. Section IV presents the construction of the IP2ZHC map-"*"_ _ ) ; :

ping table. Section V details the two running states of HGE, t eneﬁt of deploying HCF ShOl."d outweigh the risk of denying

inter-state transitions, and the placement of HCF. Sedflate- service to those end-hosts during attacks.

scribes our implementation and experimental evaluatidhrF.

Section VIl discusses related work. Finally, the paper tmtes

with Section VIII. To maintain an accurate IP2HC mapping table, we must cap-
ture valid hop-count mappings and legitimate changes in hop

1Those legitimate packets that are incorrectly identifiedpasfed. count, while foiling any attempt to slowly pollute the mapgi

The remainder of the paper is organized as follows. Sectio
presents the TTL-based hop-count computation, the potiuti
proof hop-count capturing mechanism, and the hop-count

B. Capturing Legitimate Hop-Count Values



ets, (3) robustness against evasions, and (4) stabilityopf h
for each packet: counts. In this section, we first assess whether valid haso
extract the final TTLT; and the source IP addreSs to a server are diverse enough so that matching the hop-count
infer the initial TTL T;; with the source IP address of each packet suffices to readgniz
compute the hop-couit; = T; — T; spoofed packets with a high probability. Second, we comsiae
indexSto get the stored hop-couHt; effectiveness of HCF against simple spoofing attacks. Thied
if (Hc# Hs) evaluate the robustness of HCF by examining various ways an
the packet is spoofed; attacker may circumvent filtering, and by showing that emasi
else would be very difficult without severely limiting the damage
the packet is legitimate; exposing the attacking sources, which, in turn, makes thecee
tion and blockage of the attacking traffic much easier. Bmal

Fig. 1. Hop-count inspection algorithm. the stability of hop-count values is discussed.

table. We can accomplish this through TCP connection estab- pjyersity of Hop-Count Distribution

lishment. The IP2HC mapping table should be updaitelg by

packets belonging to TCP connections in tt abl i shed Since hop-count values have a limited range, typically be-

state [54]. The three-way TCP handshake for connectiopsetween 1 and 30, multiple IP addresses may have the same hop-

requires the active-open party to send an ACK (the last packeunt values. Consequently, HCF cannot recognize forgekt pa

in the three-way handshake) to acknow|edge the passivy’gparets whose source IP addresses have the same hop—countwalue t

initial sequence number. The zombie (or flooding sofjrdeat & destination as that of a zombie. It is prudent to examine hop

sends the SYN packet with a spoofed IP address will not reount distributions at various locations in the Interne¢tsure

ceive the victim's SYN/ACK packet and thus cannot complet8at the limited range doesn't severely diminish the effectess

the three-way handshaReUsing packets from established TCPf HCF. A good hop-count distribution should have two preper

connections ensures that an attacker cannot slowly pallistale ties: being symmetric around the mean value, and reasonably

by spoofing source IP addresses. diverse over the entire range. Symmetry is needed to take ad-
While our pollution-proof mechanism provides safety, itymavantage of the full range of hop-count values, and divetstps

be too expensive to inspect and update the IP2HC mapping tabpximize the effectiveness of HCF.

with each newly-established TCP connection, since our tgpda

function is on the critical path of TCP processing. We previd | Type [ Sample Numbej
a user-configurable parameteto adjust the frequency of up- .com sites 11
dates (see Section V-A). Note that the pollution-proof naech .edu sites 4
nism works to capture legitimate changes in hop-count ak wel .org sites 2
as hop-count values of new IP addresses. .net sites 12

foreign sites 18
C. Inspection and Validation Algorithm

TABLE |
Assuming that an accurate IP2HC mapping table is present DIVERSITY OFt r acer out @ GATEWAY LOCATIONS.

(see Section IV for details of its construction), Figure llioes

the HCF procedure used to identify spoofed packets. The iny optain actual hop-count distributions, we use the raw
spection algorithm extracts the source IP address and tak fin, 5cer out e data from 47 different r acer out e gateways
TTL value from each IP packet. The algorithm infers the aliti ;, [11]. The locations of r acer out e gateways are diverse as
TTL value and subtracts the final TTL value from it to obtaia thgpown in Table 1. Figure 2 shows the distribution of the numbe

hop-count. _The source IP address serves as the index into 4pgjients measured by each of the #7acer out e gateways.
table to retrieve the correct hop-count for this IP addréfshie  \1ost of thet r acer out e gateways measured hop-counts to
computed hop-count matches the stored hop-count, the Pagkgre than 40.000 clients.

has been “authenticated”; otherwise, the packet is cledsis

spoofed. Note that a spoofed IP address may happen to have the1

same hop-count as the one from a zombie to the victim. In this Client Population ——
case, HCF will not be able to identify the spoofed packet. How
ever, as shown in Section IlI-C.1, even with a limited ran§e o
hop-count values, HCF is highly effective in identifyingogfed

IP addresses. 06 ]

CDF

IIl. DOESHOP-COUNT FILTERING REALLY WORK? 04 | i

The feasibility of HCF hinges on four factors: (1) diversitfy
hop-count values, (2) effectiveness in detecting spoofatkp 02 - 1

2In this paper, the terms zombie and flooding source are usextfangeably. o ‘ ‘ ‘ ‘
3There are known vulnerabilities with existing OSes wheesitiitial sequence 26000 30000 34000 38000 42000
numbers are fixed or easily predicted. However, this sitnatan be fixed with Number of Client IP Addresses

amore intelligent selection algorithm. Fig. 2. CDF of the number of client IP addresses.



We examined the hop-count distributions at &flacer -  victim as the flooding source. As shown in Section IlI-A, eifen
out e gateways and found that the Gaussian distribution (belhe attacker floods spoofed IP packets from such a zombie, HCF
shaped curve) could be a good first-order approximationyeut should still identify nearly 90% of spoofed IP addresses.FHC
don’t make any claim whether hop-count distributions adesd is highly effective against a single attacking source, oéuythe
Gaussian. Figures 3-6 show the hop-count distributionswf f attacking traffic by one order of magnitude.
selected sites: a well-connected commercial server, anaedu )
tional institute, a non-profit organization, and one sitesile of B-2 Multiple Sources
the United States. Distributed DoS attacks involve more than a single host-Sup

The mean valug of a Gaussian distribution specifies the cerpose there are sources that flood a total & packets, and each
ter of the bell-shaped curve. The standard deviatialescribes flooding source generatég'n spoofed packets. We assume that
the girth of the curve-the larger tioe the more diverse the hop-each flooding source generates traffic without altering tiie i
count distribution, and the more effective HCF will be. Fack tial TTL value. If h; is the hop-count between the victim and
given hop-count distribution, we use ther nfi t function in flooding sourcd, then the spoofed packets from sourdhat
Matlab to computgtando. We plot the CDF of the mean andHCF can identify isE(1— ay,). The fractionZ, of identifiable
standard deviation of the fitted Gaussian function in Figufe spoofed packets generatedibflooding sources is:
and 8. We observe that most of thealues fall between 14 and
19 hops, and the values between 3 and 5 hops. More impor- F (1 ot E (1eap ) n
tantly, in most distributions, the mode accounts for onla16f zZ =" ul — m! —1-Z Z Oy
the total IP addresses, with the maximum and minimum of the nis

47 modes being 15% and 8%, respectively. Thus, the hop-counthis expression says that the overall effectiveness ofnigavi
distributions in our data set satisfy both the symmetry awerd  myltiple flooding sources is somewhere between that of thet mo
sity properties to enable very effective filtering. effective source with the largesioy, and that of the least ef-
fective sourcej with the smallesti,,. Adding more flooding
sources does not diminish the ability of HCF to identify sfaeab
We now assess the effectiveness of HCF by asking the quEspackets. On the contrary, since hop-count distributfohs
tion “what fraction of spoofed IP packets can be detectechby tlow a Gaussian distribution, the existence of less effedtaod-
proposed HCF?” We assume that potential victim servers kniwg sources (with smathy,’s) reduces the total volume of unde-
the complete mapping between their client IP addressesa@md htectable attacking traffic.
counts (to the victims themselves). In the next section, Wie w )
discuss how to construct such mappings. Without loss of gén- Robustness Against HCF-aware Attackers
erality, we further assume that the attacker evenly divities  Once attackers become aware of HCF, they will attempt to
flooding traffic among the flooding sources. To make the analrcumvent the hop-count inspection. The robustness of HCF
ysis tractable, we consider only static hop-counts. (Th#at® against such HCF-aware attackers is a serious concern 4o vic
procedure that captures legitimate hop-count changeséw®s kiim servers. In what follows, we first assess the effectissne
shown in Section 11-B.) of a simple evasion of randomizing initial TTL values. Then,
Most of the available DDoS attacking tools [12], [13] do nojve show that in order to successfully evade HCF, more saphist
alter the initial TTL values of packets. Thus, the final TTUlu@ cated evasion attempts require a large amount of time and re-

of a spoofed packet will bear the hop-count between the ftapdisources, and elaborate planning, i.e., casual attackersirar
source and the victim. We examine the effectiveness of HGkely to evade HCF.

against simple attackers that spoof source IP addressksstithi o -
using the default initial TTL values at the flooding sourc@s. C.1 Randomization of Initial TTLs

assess the performance of HCF against such simple attaeks, Wyhile the hop-count from a single flooding source to the vic-
consider two scenarios: a single flooding source and meltigim is fixed, randomizing the initial TTL values will create a
flooding sources. illusion of attacking packets having many different hopteb
. values at the victim server. Instead of using the defaultaini
B.1 A Single Source TTL value, an attacker may simply randomize the initial TTL
Figure 9 depicts the hop-count distributions seen at a hyp@lues, hoping that many forged packets may happen to carry
thetical server for both real client IP addresses and sploléfe matching final TTL values when they reach the victim.
addresses generated by a single flooding source. Sinceespoof An attacker may generate the full range of hop-counts from
IP addresses come from a single source, they all have anddentl to 30 by randomizing initial TTL values from the ranfg+
hop-count. Hence, the hop-count distribution of spoofeskpts h,— 30, 14+ h;— 1], whereh; is the hop-count from the flooding
is a vertical bar of width one. The shaded area represente thsource to the victim anlj is the default initial TTL value at the
IP addresses — the fractiom, of total valid IP addresses — thatflooding source. The final TTL value§,’s, seen at the victim
have the same hop-count to the server as the flooding souarel, — h,, wherel, represents randomly-generated initial TTLs.
Thus, the fraction of spoofed IP addresses that cannot be 8&ceh; is constant, ifl, follows a certain random distribution
tected isarn, and the remaining fraction- an, will be identified R, thenT,’s follow the sameR random distribution. Because the
and discarded by HCF. victim derives the hop-count of a received IP packet basdtson
The attacker may happen to choose a zombie that is 16Towvalue, the perceived hop-count of a spoofed source IP asldres
17—the most popular hop-count values—hops away from tieealsoR randomly-distributed.

B. Effectiveness of HCF Against Simple Attacks
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As a simple example, we assume that the attacker generdt€ks, each spoofed source IP address has the probabjlity 1
initial TTLs using uniform distribution. Figure 10 illugttes of having the matching TTL value, whet¢ is the number of
the effect of randomized initial TTLs, wherg = 10. We use possible hop-counts. Consequently, for each possiblecbopt
a Gaussian curve with = 15 ando = 3 to represent a typi- h, only a,/H fraction of IP addresses have correct TTL val-
cal hop-count distribution (see Section IlI-A) from real &d- ues. Overall, assuming that the range of possible hop-sount
dresses to the victim, and the box graph to represent the usith;, h;], wherei < j andH = j —i+ 1, the fraction of spoofed
form hop-count distribution of spoofed IP addresses at tbe vsource IP addresses that have correct TTL values, is given as
tim. The large overlap between the two graphs may appear to
indicate that our filtering mechanism is not effective. On th
contrary, uniformly-distributed random TTLs actually caal
fewer spoofed IP addresses from HCF. For uniformly-disted
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Here we use in place of 1— Z to simplify notation. In Fig-
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ure 10, the range of generated hop-counts is between 10 and2@pping table that covers the entire spoofed IP addres&spac

soH = 11. The summation will have a maximum value of 1This is much more difficult than building an IP2HC mapping ta-

thusZ can be at most/H = 8.5%, which is represented by theble at the victim, since the attacker cannot observe the Tkl

area under the shorter Gaussian distribution in FigurerLthis values of normal traffic at the victim. For an attacker to duil

case, less than 10% of spoofed packets go undetected by HGfuch an IP2HC mapping table, he may have to compromise at
In general, an attacker could generate initial TTLs witlhia t least one end-host behind every stub network whose IP eitres

range[hm, hn], based on a certaiR distribution, where the frac- are in the random IP address space, and perfaracer out e

tion of IP addresses with hop-coumtis py,. If the fraction of to geths for the corresponding IP2HC mapping entry. Even if

the real IP addresses that have a hop-couh @& ap,, then the the attacker probes only one host per stub network, withgelar

fraction of the spoofed IP packets that will not be caught BFH IP spoofing space, the probing activity will take considérab

is: amount of time. Moreover, network administrators are atert
n unusual access patterns or probing attempts, it would requi
7= Op - excessive amount of effort to coordinate the probing attesmp
Z hy * Phy - " . .
K= with impunity. Without the corredts values, the attacker cannot

o ) ) fabricate the appropriate initial TTL values to conceabfny.
The term inside the summation simply states that qujyfrac-

tion of IP addresses with hop-couht can be spoofed with Without compromising end-hosts, an attacker may compute
matching TTL values. It is not difficult to see that in ordefOP-counts of to-be-spoofed IP addresses based on amegxisti
to maximizeZ, an attacker must generate spoofed IP addresé@yter-level topology of the Internet, and the underlyingtr
with the most popular hop-couttt, for whicha, is the largest ing algorithms and policies. The recent Internet mappifoy et
among allas. Thus, this “more” sophisticated attack is no moredch as Internet Map [9], Mercator [20], Rocketfuel [48]dan

threatening than the simple attacks in Section 111-B.1. Skitter [10] projects, may make the approach plausible. How
A more rigorous mathematical analysis of HCF's robustne§¥er, the current topology mappings put together snapsiiots
against randomized TTL attacks is given in Appendix . various networks measured at different times. Thus-preduc
topology maps are generally time-averaged approximatiéns
C.2 Learning of Hop-Count Values actual network connectivity. More importantly, inter-daim

A successful evasion requires that HCF-aware attackers Cr&utmg in the Internet is policy-based, and the routingqies

rectly set an appropriate initial TTL value for each spoofe%re not disclosed to the public. The path, and thereforedipe h

packet. Without loss of generality, we assume the samalinit?ount’ between a source and a destination is determinediby ro

TTL value |l for all Internet hosts. A packet from a ﬂoodingIng policies and algorithms that_are often unknown. Evemif a
source, which i$1, hops away from the victim, has a final TTLattacker has accurate information of the Internet topqldwgy

value of| — h,. In order for the attacker to generate Spoofe(&ﬁlnnot obtain the correct hop-counts based on network cenne

packets from this flooding source without being detected, tHV'ty alone_. We believe that the quality of network mapslvwll
initial TTL value of each packet must be sef fom | — (he—hy), Improve with better mapping technology, but we do not antici

wherehs is the hop-count from the spoofed IP address to the VEEEHG any near-term advance that can lead to accurate hagscou

tim. Each spoofed packet would then have the correct final T ased on just Internet topology maps.
value,l — (hs—h;) — h; =1 —hs, when it reaches the victim. Instead of spoofing randomly-selected IP addresses, the at-
An attacker may easily learn the hop-coumnt,from a zombie tacker may choose to spoof IP addresses from a set of already-
to the victim by runningd r acer out e. However, randomly se- compromised machines that are much smaller in number than
lecting the source address feachspoofed IP packet [12], [13] 2%2, so that he can measure hils and fabricate appropriate ini-
makes it extremely difficult, if notimpossible, for the after to tial TTLs. However, this reduces the attacker’s abilitydarch
learnhs. To obtain the corredts values for all spoofed packetsa successful attack in several ways. First, the list of wddd
sent to the victim, the attacker has to budldoriori an IP2HC spoofed source IP addresses is greatly reduced, which rfakes



detection and removal of flooding traffic much easier. Second 0/ 27
source addresses of spoofed IP packets reveal the locations 0/ 26 [24729 29  [26 20|
compromised end-hosts, which makes IP traceback much eas- 32/ 27
ier. Third, the most popular distributed attacking toatg]uding 0/25
mstream, Shaft, Stacheldraht, TFN, TFN2k, Trinoo and Tyjni — 64727
generate randomized IP addresses in the spac& é62spoof- 64/ 26
ing [12], [13]. Thus, the attacker must now modify the avaliéa [ o027 EOISONEONIEENED
attacking tools, which may be difficult for an unsophistézhat- o2 *
tacker. 128027

Overall, although it is not difficult to obtain the appropea 28720 160/ 27
initial TTL for a single IP address, the attacker has to sp&nd 128/ 25 -
significant amount of time and effort to achieve accurate-hop 192/ 27
countinformation for a large IP spoof space. While HCF canno 192126
eliminate DDoS attacks, it will make it much harder for them t 224/ 27
succeed.
D. Hop-Count Stability Fig. 11. An example of hop-count clustering.

‘The stability in hop-counts between an Internet server 81d {gction, we detail our approach to constructing a table. dbur
clients is crumall for HCF to work correctly and effectivefre- ioctivesin building a table are: (1) accurate IP2HC mapp(2p
_quen_t changes in the hop-count petween t_he server and eachrf-’fo-date IP2HC mapping, and (3) moderate storage require
its clients not only lead to excessive mapping updates, I80t 8ment, By clustering address prefixes based on hop-counts, we
greatly reduce filtering accuracy when an out-of-date "e®i 5, puijld accurate IP2HC mapping tables and maximize the ef-

in use during attacks. ~ fectiveness of HCF without storing the hop-count for each IP
Hop-count stability is dictated by the end-to-end routirg b gqgress.

haviors in the Internet. According to the study of end-taten
routing stability in [37], the Internet paths were found te ba, |P Address Aggregation

dominated by a few prevalent routes, and about two thirds of deally. the IP2HC . ble h ¢ h valid
the Internet paths studied were observed to have routesipers |deally, the IP2HC mapping table has one entry for each vali

ing for either days or weeks. To confirm these findings, we ugzé address.dl-!oyvevei_rl,(tﬁlisr\]/vill co?sume avery Iar%e :{;I(_)unt of
dailyt r acer out e measurements taken at ten-minute intervaf§Mory: an Itis l:cn' ey”tl_at an n(';zrnet seryerr\]/w reeele-
among 113 sites [16] from January 1st to April 30th, 2003. wgtimate r_equests rom all live IP addresses in the Inter_B@t
observed a total of 10,814 distinct one-way paths, a mgjofit aggregating I.P ad_dre_gs, we can rec.iuce the space requirefnent
which had 12,000 traceroute measurements each over the fW&HC m_app'?g_s'gn'ﬁ“_c"?‘”“y- More mpor;an;:y, with IP ae;;if:s
month period. In these measurements, most of the pathsiexp%ggrlegat:jodn’ It '? su 'C'e';t tobcaptgre tde opt;c_(l)cljmt v el
enced very few hop-count changes: 95% of the paths had fegBf '~ address from each su nelt In order to build a complete
than five observable daily changes. HCF mapping table. In this following, we present and evaduat

Furthermore, recent Internet experiments [28], [41] ha\}rele techniques for IP address aggregation in construddagC

shown that, despite the large number of routing updatesa (15napp|ng tables.
large fraction of destination prefixes have remarkablylstBlor-
der Gateway Protocol (BGP) routes; (2) popular prefixes ten
have stable BGP routes for days or weeks; and (3) a vast yajori Aggregating hosts according to address prefix, espectadly t
of BGP instability stems from a small number of unpopulardeg4-bit address prefix, is a common method. It is straightfor-
tinations. Within a single domain, a case study of intra-diom ward to implement in practice and can offer fast lookup with
routing behavior [44] indicates that the intra-domain topg an efficient implementation. Assuming an array with onesbyt
changes are due mainly to external chafigesd no network- hop-count entry per network prefix, the storage requirergent
wide instability is observed. 224 pytes or 16 MB. The memory requirement is modest com-
Therefore, it is reasonable to expect hop-counts to beestabl pared to contemporary servers which are typically equipytd
the Internet. Moreover, the proposed filter contains a dyeaninulti-gigabytes of memory. Under this setup, the lookup op-
update procedure to capture hop-count changes as disdnssédation consists of computing a 24-bit address prefix froen th

dA.l Aggregation Techniques

Section IV-B. source IP address in each packet and indexing it into the map-
ping table to find the right hop-count value. For systems with
IV. CONSTRUCTION OFIP2HC MAPPING TABLE limited memory, the HCF mapping table can be implemented as

We have shown that HCF can remove nearly 90% of spoofall §na;ha;tarl1)cl)et g;a;}e:)rfjs?ggﬁ\;v;;“ﬁ ?Stsa. \é\(/arr]u';nzlél-:l:i:gﬁ;yeab
traffic with an accurate mapping between IP addresses and ho y ' y P

counts. Thus, building an accurate IP2HC mapping tabletis cr ution.

cal to detect the maximum number of spoofed 1P packets. &n thi Since IP addresses within each 24-bit address prefix may be
P P -1 Wliocated to different physical networks, these hosts ateac-

“Here the external changes are the routing updates convgyextdrnal link- essanly co-Iocat_ed and most “kew don’t have |d§nt|cap-ho
state advertisements [44]. counts. To obtain a more accurate IP2HC mapping, one can



further divide IP addresses within each 24-bit prefix int@en  the table. +1 Filtering drops packets whose hop-counterdiff
clusters based on hop-count. Using a binary tree, we can clog more than one hop from those in the table, and +2 Filtering
ter IP addresses with the same hop-count. The leaves ofehe ttrops packets whose hop-counts differ by more than two hops.
represent the 254 (excluding the network address and theesul82-bit Strict Filtering is the ideal case where the mappatge
mask) valid IP addresses inside a 24-bit address prefix.dh e&as one entry for each valid IP address. Packet filteringdoaise
iteration, we examine two sibling nodes and aggregate tloe ta table built using hop-count clustering is calletlister-based
nodes as long as they share a common hop-count, or one of théitering.
is empty. If aggregation is possible, the parent node wilktthe Figure 12 presents the combined false positive and false neg
same hop-countas the children. We can thus find the largest pative results for the five filtering schemes: 32-bit Strict; st
sible aggregation for a given set of IP addresses. Figurbdds Strict, 24-bit +1, 24-bit +2, and Clustering-based Filgs. The
an example of clustering a set of IP addresses (with the tast o x-axis is the percentage of false negatives, andythgis is the
shown) by their hop-counts using the aggregation tree (sttpwpercentage of false positives. Each point in the figure semis
the first four levels). For example, the IP address range td 28he pair of percentages for a single web server. We obseate th
245, is aggregated into a 128/25 prefix with a hop-count of 2he 24-bit strict filtering yields a similar percentage dééaneg-
and the three IP addresses, 79, 105, and 111 are aggredatediiives as 32-bit Strict Filtering, only 5% of false negasiv&his
a 64/26 prefix with a hop-count of 20. We are able to aggregdebecause the percentage of false negatives is determjribe b
11 of 17 IP addresses into four network prefixes. The remginidistribution of hop-counts, and 24-bit aggregation doesaiter
ones must be stored as individual IP addresses. the hop-count distribution. However, under 24-bit Stridtef-
Based on the BGP routing table information, a network-awaireg, most web servers suffer about 10% of false positivedewh
clustering technique [26] has been proposed to identifyoagr the percentage of false positives under 32-bit Strict Filtgis
of Web clients that are topologically close to each other azéro. As we relax the filtering criterion as in 24-bit +1/+2&i
likely to be under a single administration. In contrast,foopint ing, false positives of 24-bit aggregation are halved wfalee
clustering is self-reliant, and the IP addresses withindghuime negatives approximately doubled. If one desires a simpipla-
cluster may not be topologically close to each other white/th mentation than Cluster-based Filtering, +1 Filtering urit¥ebit
have the same hop-count to the victim server. aggregation offers a reasonable compromise.
To understand whether our clustering method improves HCFWith hop-count-based clustering, we never aggregate IP ad-
over the simpler 24-bit aggregation, we compare the filteridresses that do not share the same hop-count. Hence, we can
accuracies of mapping tables built under different aggiega eliminate false positives as long as we update the mapping ta

techniques. when client hop-counts change. As shown in Figure 12, where
the points of Clustering-based Filtering overlap with #n0$32-
A.2 Evaluation of Filtering Accuracy bit Strict Filtering, Clustering-based Filtering has rigadenti-

We treat eact r acer out e gateway (Section Ill-A) as a €&l performance as 32-bit Strict Filtering. _
“web server” and its measured IP addresses as clientsgo thiCompared with the 24-bit aggregation, the clustering ap-

web server. We build a table based on the set of client IP &J0&ch is more accurate but consumes more memory. Figure 13
dresses at each web server and evaluate the filtering agaurac SNOWs the number of entries in the IP2HC mapping for each web

der each aggregation method. We assume that the attacker GERYE" Used in our experiments. Thaxis is the web server ID,
erates packets by randomly selecting source IP addressegjarhaked according to the number of client IP addresses, & th
legitimate clients. We further assume that the attackewkrthe XIS IS the number of table entries. The number of entriegund
general hop-count distribution for each web server and inses Cluster-based Filtering does not include the intermediaties
randomly generate a hop-count for each spoofed packet. THfgd t0 generate the mapping, e.g., the internal nodes aitse
is the most effective DDoS attack that an attacker can laun@jing trees, because these internal nodes do not needttree s
without learning the exact IP2HC mapping. in the final mapping table. Since the clustering algorithih tre

We use the percentages of false positives and false negatfygdregation tree are completely deterministic, we carlyeasi
to measure filtering accuracy. False positives are thodtiniege  COnStruct the tree on demand to reduce memory consumption.
client IP addresses that are incorrectly identified as gbofCluStering-based Filtering increases the number of enbiyeno

False negatives are spoofed IP addresses that go unddngcte'aore than 20% in all but one case, in comparison with the 24-bi
HCF. A good aggregation method should minimize both. Strict Filtering. The 32-bit Strict Filtering, while hawgrslightly

Under each aggregation method, we build an IP2HC mappi'ﬂ@her accuracy, increases the number of entries by até@ést

table for eac.h wgb server. Since a 24-bit prefix may contaér) Table Initialization and Update

addresses with different hop-counts, we use the minimur hop

count of all IP addresses inside the 24-bit network address aBefore running HCF, we need to initialize the IP2HC mapping
the hop-count of the network. To filter an IP packet, the seurtable and then keep the mapping table updated. The mostriti
IP address is mapped into the proper table entry through peéPect in initializing and updating the IP2HC mapping tabte

fix matching, and the hop-count in the packet is checked agaifinsure that only valid IP2HC mappings are stored in the table
the one stored in the table. Since 24-bit aggregation cgmeet
serve hop-counts for all IP addresses within each addrefig pr
we examine the performance of three types of filtering pedici  To populate an IP2HC mapping table initially, the admiristr
Strict Filtering, +1 Filtering, and +2 Filtering. Strictligring tor of an Internet server should collect traces of its chdotob-
drops packets whose hop-counts do not match those storedhin both IP addresses and the corresponding hop-courgszalu

B.1 Initialization and Addition of New Entries
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Fig. 12. Accuracy of various filters. (Note that the points of Traceroute Gateway Rank
Clustering-based Filtering overlap with those of 32-biicst Fig. 13. IP2HC mapping table size.
Filtering.)

The initial collection period should be long enough to easuwill probably occur infrequently in practice.
good filtering accuracy even at the very beginning, and the du o
ration should depend on the amount of daily traffic the ses/erC. Hop-Count Ambiguity Caused by NATs

receiving. For a popular site such@sn. comor espn. com The existence of NAT boxes, some of which may connect mul-

a collection period of a few days could be sufficient, whiledo tiple stub networks, could make a single IP address appear to

lightly-loaded site, a few weeks might be more appropriate.  paye multiple valid hop-counts at the same time. This magtow
After the initial population of the mapping table and activahe |P2HC mapping accuracy in the table. However, since a NAT

tion, HCF will continue adding new entries to the mappindeabpox enforces the assignment of a single source IP address to e

when requests with previously-unseen legitimate IP ade@®sery outgoing IP packet, this automatically prevents the zies

are sighted. Thus, over time, the IP2ZHC mapping table wjll capehind NAT boxes from IP spoofing.

ture the correct mapping between IP address and hop-count forg cope with the hop-count ambiguity caused by NAT boxes,

all clients of a server. This ensures that spoofed IP traffitiie 5 simple possible solution is to have NAT boxes reset the TTL

detected, and then discarded with little collateral danthg&ng ya|ue of each outgoing IP packet to a default initial TTL. ihe

a DDosS attack. there will be a strict one-to-one mapping between the IPesir
_ of a NAT box and a hop-count. While the computed hop-count
B.2 Updating Hop-Counts is the one from the NAT box, instead of the end-hosts behind it

IP2HC mapping must be kept up-to-date as hop-counts of
isting IP addresses change. The hop-count from a client t
server could change as a result of relocation of networks; ro
ing instability, or temporary network failures. Some of ske
events are transient and therefore can be omitted, butidega
changes in hop-count must be captured.

Under 24-bit or 32-bit Strict Filtering, a table update itwes
indexing the table u_sing a given IP address and changingthe i V. RUNNING STATES OFHCF
dexed table entry with a new hop-count. Under hop-countclus
tering, an update, or adding a new node, may split a node oSince HCF causes delay in the critical path of packet precess
merge two adjacent nodes on the existing hop_count Clugering, it should not be active at all times. We therefore introel
tree. To carry out the update, one first allocates memory fof¥0 running states inside HCF: thearningstate captures legit-
new clustering tree. The new clustering tree has a fixed forn¥@ate changes in hop-count and detects the presence ofespoof
of depth eight, represented as an array of 511 elements. jie pRAckets, and théltering state actively discards spoofed pack-
ulate the array with nodes on the existing clustering treb up-  €ts. By default, HCF stays in the learning state and monibers
dated hop-count(s). We can then repeat the procedure blegcrirend of hop-count changes without discarding packets. nUpo
in Section IV-A.1. In addition, one may need to split an exisgletection of a flux of spoofed packets, HCF switches to the fil-
ing node because one of its two immediate child nodes now K8ENY state to examine each packet and discard spoofedk? pa
a different hop_count as Clustering percoiates up the iNd®en ets. In this SeCtion, we discuss the details of each statstzowl
this happens, we replace the parent node with its two chidbsp that having two states can better protect servers againefesp
one having the new hop-count and the other retaining thé-orif® traffic, while minimizing overhead.
nal hop-count.

Re-clustering should have a relatively small impact onesyst
performance for two reasons. First, each re-clusterirtgimte is  Figure 14 lists the tasks performed by each state. In thadear
a local event on a tree of at most 511 nodes. Second, since hiag-state, HCF performs the following tasks: sample inc@min
count changes are not frequent in the network as report&¥in [packets for hop-count inspection, calculate the spoofettqia
and re-affirmed by our own limited observations, re-clustgr counter, and update the IP2HC mapping table in case ofdegiti

S)(_the victim, this does not affect the filtering accuracylaaa
iogg as the victim maintains the same skewed hop-count as the
one computed from IP header. The drawback of this simple solu
tion is the required modification at NAT boxes. However, sinc
NAT boxes must manipulate the IP headers of passing packets
anyway, the overhead induced by the proposed TTL reseting is
minor.

A. Tasks in Two States
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In thelearningstate: state must examine every packet (instead of sampling onlpa s

for eachsampledpacketp: set of packets) and discards spoofed packets, if any. HGB sta
spoo f= IP2HC. Inspectp); in the filtering state as long as a certa_in numbe_r of spoofed IP
t = Average$poof); pa(_:kets are detected. Whep the ongoing spooflng ceases, HCF
if (spoof) swnchles back to the Iearmng_ state. This is accomph;hed by
if (t>T1) checking the spoof counteagainst another threshold, which
Switch to thefiltering state; should be smaller tham for better stability. HCF should not
Accept(); alternate between the learning and filtering states wtikerctu-
ates around;. Making the second threshold < T; avoids this
for thek-th TCP control blockch: instability. Note that HCF's filtering accuracy is independ of
UpdateTablefcb); the settings off; andTs.

In our filtering accuracy experiments, we have assumed that
the IP2HC mapping table holds the complete IP addresses of
In thefiltering state: plier_1ts. However, in reality, there are always new requemsts-

for each packep: ing |n.from un§e§n_anress prefixes, regardless of how well a
spoof= IP2HC Inspectp); mapping table_ is initialized or kept up-to-date. To protagainst

attacking traffic that uses unseen IP addresses, we must drop

all packets that have no corresponding entries in the table—

t = Averagespoo);

if (spoof) i : ;
Drop(p); f[he functionl P2_HC_I nsp_ect returns true ifp doesn’t_ _eX|st
elseAccept(); in the table. While undesirable, HCF ensures that legignmext
quests from known IP addresses are still served during ackatt
if(t<To) Clearly, such collateral damage can be made very low by care-
~ switch to thdearningstate: fully aggregating IP addresses and diligently populatim¢i&F
mapping table over a long period of time.
Fig. 14. Operations in two HCF states. B. Blocking Bandwidth Attacks

. To protect server resources such as CPU and memory, HCF
mate hop-c_ount Changes' Pacl_<ets_ are s_ampled at expolyentigl, pe installed at a server itself or at any network devieg ne
distributed intervals with meamin either time or the number of ., carvers ie.. inside the ‘last-mile’ region, such as fire-

packets. The exponential distribution can be precomputed 5| of an organization. However, this scheme will not beseff

made into a lookup table for fast on-line access. For each sae against DDoS attacks that target the bandwidth of a oew
pled paf:ket, IP2HGnspect() return§ a binary numbepoot, 4 trom the server. The task of protecting the access lin&rof
depending on whether the packet is judged as spoofed or RQlire stubh network is more complicated and difficult beeaus

This is then used by Average() to compute an average spgof fijtering has to be applied at the upstream router of the ac
countert per unit time. Whert is greater than a threshold, cess link, which must involve the stub network’s ISP.

HCF enters the filtering state. HCF in the learning statealsid The difficulty in protecting against bandwidth flooding isith

update the IP2HC mapping table using the TCP control block 0f o\t filtering must be separated from detection of spoofed
everyk-t_h_es_tabllshed TCP connection. _ _ ackets as the filtering has to be done at the ISP’s edge router
TO_ minimize the overhgad of hop-coynt |nsp§ct|0n a.nd d¥ne or more machines inside the stub network must run HCF
namic update in the learning state, their execution freqiesn ,, actively watch for traces of IP spoofing by always staying
are adaptively chosen to be inversely proportional to theess 504 |, addition, at least one machine inside the stub owtw

workload. We measure the server's workload by the numbero ys 1o maintain an updated HCF table since only end-harsts ¢
of established TCP connections. If the server is lightgded, oq established TCP connections. Under an attack, thisineach
HCF calls for IP2HC inspection and dynamic update more frggq 14 notify the network administrator who then coordésat
quently by reducing andm, which determine the idle times, i, the |SP to install a packet filter based on the HCF table

forhtabl_le L:pdgtz and Insréeﬁona respec_tlvely. ":j COI‘;,;{IEB't on the ISP’s edge router. Our two running-state design makes
a heavily-loaded server, bothandm are increased. The twoit natural to separate these two functions — detection ated-fil

thresholdsT; and Ty, used for detecting spoofed packets, shoul ., spoofed packets. Once the HCF table is enabled at the
a}lso be adj_usted based on load. Thg general guigleline for s8pg edge router, most spoofed packets will be intercejted

ting execution rates and thresholds with the dynamics o®s& 1,y 5 very small percentage of the spoofed packets that slip
workload is given as follows: through HCF, will consume bandwidth. In this case, having tw
separable states is crucial since routers usually canrssrod
established TCP connections and use the safe update precedu

However, we only recommend these parameters to be user- . y

configurable. Their specific values depend on the requirém Staying "Alert” to DRDoS Attacks

of individual networks in balancing between security and pe In DRDoS attacks, an attacker forges IP packets that contain

formance. legitimate requests, such as DNS queries, by setting thesou
HCF in the filtering state performs a similar set of tasks as IR addresses of these spoofed packets to the actual vid#m’s

the learning state. The key difference is that HCF in therfilte address. The attacker then sends these spoofed packetsge a |

Load * = Rates\, = Threshold\,
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Scenarios with HCF without HCF

number of reflectors. Each reflector only receives a moderate avg | min || avg | mn
flu?(.of sp.oofed IP packgts so that it can eas.ily sustaiq thi-ava TCPZr():gnSiI:’\II ose igg ggg 17500072 gsgg
ability of its normal service. The usual intrusion detestineth- pi ng 64B 396 | 240 || 20194 | 3604
ods based on the ongoing traffic volume or access patterns may pi ng flood 358 | 256 || 20139 | 3616
not be sensitive enough to detect the presence of such spoofe TCP bulk 443 | 168 || 6538 | 3700
traffic. In contrast, HCF specifically looks for IP spoofing, s UDP bulk 490 | 184 || 6524 | 3628
it will be able to detect attempts to fool servers into actisg TABLE Il

reflectors. Although HCF is not perfect and some spoofed-pack CPUOVERHEAD OFHCF AND NORMAL IP PROCESSING

ets may still slip through the filter, HCF can detect and icept
enough of the spoofed packets to thwart DRDoS attacks. mapping table for an entry that corresponds to this soureel{P
dress, and will either overwrite the existing entry or ceemhew
VI. RESOURCESAVINGS entry for a first-time visitor.

This section details the implementation of a proof-of-catc
HCF inside the Linux kernel and presents its evaluation arah r
testbed. For HCF to be useful, the per-packet overhead neust bFor HCF to be useful, the per-packet overhead must be much
much lower than the normal processing of an IP packet. In-adiiwer than the normal processing of an IP packet. We exam-
tion, since HCF operates at the IP layers, spoofed packeds, €ine the per-packet overhead of HCF by instrumenting theinu
when detected, will still consume CPU cycles due to intetrrugernel to time the filtering function as well as the criticakipin
handling and data link layer processing. We justify the dgpl processing IP packets. We use the built-in Linux maatbscl
ment of HCF in practice by measuring the per-packet overhe@drecord the execution time in CPU cycles. While we cannot
of HCF and the amount of resource savings when HCF is actiggneralize our experimental results to predict the perémme

] ] of HCF under real DDoS attacks, we can confirm whether HCF
A. Implementing the Hop-Count Filter provides significant resource savings.

To validate the efficacy of HCF in a real system, we implement We set up a simple testbed of two machines connected to a
a test module inside the Linux kernel. The test module reside 100 Mbps Ethernet hub. A Dell Precision workstation with 1.9
the IP packet receive functionp_r cv. To minimize the CPU GHz Pentium 4 processor and 1 GB of memory, simulates the
cycles consumed by spoofed IP packets, we insert the fiferivictim server where HCF is installed. A second machine gener
function before the code segment that performs the expensies various types of IP traffic to emulate incoming attaaHitr
checksum verification. Our test module has the basic data-strto the victim server. To minimize the effect of caches, we ran
tures and functions to support search and update operationdomize each hash key to simulate randomized IP addresses to
the hop-count mapping. hit all buckets in the hash table. For each hop-count loak-up

The hop-count mapping is organized as a 4096-bucket hagh assume the worst case search time. The search of a 24-bit
table with chaining to resolve collisions. Each entry in tizsh address prefix traverses the entire chained list of 11 entied
table represents a 24-bit address prefix, and it uses a Hirary the hop-count lookup within the 24-bit prefix traverses thre
to cluster hosts within the single 24-bit address prefix.r&ea depth of the tree.
ing for the hop-count of an IP address consists of locatieg th We generate two types of traffic, TCP and ICMP, to emulate
entry for its 24-bit address prefix in the hash table, and fimeh  flooding traffic in DDoS attacks. In the case of flooding TCP
ing the proper cluster that the IP address belongs to in #ee triraffic, we use a modified version btpt r acer out e [1] to
Given an IP address, HCF computes the hash key by XORiggnerate TCP SYN packets to simulate a SYN flooding attack.
the upper and lower 12-bits of the first 24 bits of the source IR addition, we also repeatedly open a TCP connection on the
address. Since 4096 is relatively small compared to thefsetvictim machine and close it right away, which includes sagdi
possible 24-bit address prefixes, collisions are likely ¢oun. both SYN and FIN packets. Linux delays most of the process-
To estimate the average size of a chained list, we hash @t cling and the establishment of the connection control bloak un
IP addresses from [11] into the 4096-bucket hash table to fireteiving the final ACK from the host that does the actipen.
that, on average, there are 11 entries on a chain, with the m8ince the processing to establish a connection is includedr
imum being 25. Thus, we use fixed 11-entry chained lists. Wigen + cl ose experiment, the measured critical path may be
determine the size of the clustering tree by choosing a mimim longer than that in a SYN flooding attack. To emulate ICMP at-
clustering unit of four IP addresses, so the tree has a déptk o tacks, we run two experiments of single-streginmgs. The first
(2% = 64). This binary tree can then be implemented as a lineses default 64-byte packets at 10 ms intervals, and thedeco
array of 127 elements. Each element in this array storesgpe husespi ng flood (pi ng - f ) with the default packet size of 64
count value of a particular clustering. We set the array elgm bytes and sends packets as fast as the system can transmit. To
to be the hop-count if clustering is possible, and zero etfser. understand the impact of HCF on normal IP traffic, we also con-
The clustering overhead has not yet been evaluated. sider bulk data transfers under both TCP and UDP. We compare

To implement table update, we insert the function call iht t the per-packet overhead without HCF with the per-packet-ove
kernel TCP code past the point where the three-way handshhkad of the filtering function in Table I1.
of TCP connection is completed. For evérth established TCP  We present the recorded processing times in CPU cycles in
connection, the update function takes the argument of thiceo Table Il. The column under 'with HCF' lists the execution &m
IP address and the final TTL value of the ACK packet that corof the filtering function. The column under ‘without HCF' s
pletes the handshake. Then, the function searches the IP2ZHE packet processing times without HCF. Each row in the ta-

B. Experimental Evaluation
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ble represents a single experiment, and each experimemtis r 2 ﬁ;:{g;;gg‘sgz;: g;‘ggggi;gggg —
with a large numbers 40,000) of packets to compute the av- %} Filtering 50% of DDoS Traffic ——+— |
erage number of cycles. We present both the minimum and the
average numbers. There exists a difference between aveyage
cles and minimum cycles for two reasons. First, some packets
take longer to process than others, e.g., a SYN/ACK packesta
more time than a FIN packet. Second, the average cycles may in
clude lower-level interrupt processing, such as input essing
by the Linux Ethernet driver. We observe that, in generaifilh o |
tering function uses significantly fewer cycles than the keteal s
attack traffic, at least an order of magnitude less. Congetye ol v
HCF should provide significant resource savings by detgctin o 20 30 pefemagzoomoggnamzo g0 90 100
and discarding spoofed traffic. Moreover, for both TCP andPUD Fig. 15. Resource savings by HCF
bulk transfers, the CPU overhead induced by HCF is smak (les T '
than 7%). Note that the processing of regular packets taeeyf
cycles than the emulated attack traffic. We attribute this@® Despoof requires the administrator to determine which etsck
header prediction and the much simpler protocol processingshould be examined, and to manually perform this verificatio
UDP. It is fair to say that the filtering function adds only aam Thus, the per-packet processing overhead is prohibitiigl
overhead to the processing of legitimate IP traffic. Howgtws for weeding out spoofed traffic in real time.
is by far more than compensated by not processing spoofed tra In parallel with, and independently of, our work, the possi-
fic. bility of using TTL for detecting spoofed packet was dis@ss

To illustrate the potential savings in CPU cycles, we corapuin [51]. Their results have shown that the final TTL valuesrro
the actual resource savings we can achieve, when an attaéketP address were predictable and generally clusteredhdrou
launches a spoofed DDoS attack against a server. Giverkattacsingle value, which is consistent with our observationag-h
and legitimate traffica andb, in terms of the fraction of total counts being mostly stable. However, the authors did natigeo
traffic per unit time, the average number of CPU cycles coa-detailed solution against spoofed DDoS attacks. Neither d
sumed per packet without HCF @s tp +b-t,, wheretp andt,  they provide any analysis of the effectiveness of using Tak v
are the per-packet processing times of attack and legiitnaf ues, nor the construction, update, and deployment of arraecu
fic, respectively. The average number of CPU cycles consumeblL mapping table. In this paper, we examine these questions

70 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

60 1

Percentage of saved CPU cycles

per packet with HCF is: and develop a deployable solution.
There are a number of recent router-based filtering teclesiqu
(1—a)-a-tpe+a-a-tp+b- (t+1tF), to lessen the effects of DDoS packets or to curb their propaga

tions in the Internet. As a proactive solution to DDoS atsck
with tpr andt g being the filtering overhead for attack and legitthese filtering schemes [15], [29], [36], [55], which mustente
imate traffic, respectively, anal the percentage of attack trafficon IP routers or rely on routers’ markings, have been prapose
that we cannot filter out. Let's also assume that the attackes to prevent spoofed IP packets from reaching intended v&ctim
64-bytepi ng traffic to attack the server that implements HCH he most straightforward schemerigress filtering15], which
The results for variousg, b, anda parameters are plotted in Fig-blocks spoofed packets at edge routers, where addresssivimer
ure 15. Thex-axis is the percentage of total traffic contributed relatively unambiguous, and traffic load is low. Howekg
by the DDoS attack, namels They-axis is the number of CPU success of ingress filtering hinges on its wide-deploymeiri
cycles saved as the percentage of total CPU cycles consummders. Most ISPs are reluctant to implement this servieetd
without HCF. The figure contains a number of curves, each cadministrative overhead and lack of immediate benefitse@ th
responding to am value. Since the per-packet overhead of theustomers.

DDosS traffic (20,194) is much higher than TCP bulk transfer Given the reachability constraints imposed by routing and
(6,538), the percentage of the DDoS traffic that HCF can filtefetwork topology, router-based distributed packet fittgri
(1—a), essentially becomes the sole determining factor in redpF) [36] utilizes routing information to determine whettan
source savings. As the composition of total traffic varié®, tincoming packet at a router is valid with respect to the iibext
percentage of resource savings remains essentially the aamsource and destination IP addresses in the packet. Theiexper
(1—a). mental results reported in [36] show that a significant foact
of spoofed packets may be filtered out, and those spoofed pack
VII. RELATED WORK ets that DPF fails to capture, can be localized into five aatei

Several efficient mechanisms [17], [19], [35], [52] are &vaiSites that are easy to trace back.
able to detect DDoS attacks. In addition, researchers Hawe a To validate that an IP packet carries a true source address,
used the distribution of TTL values seen at servers to detect SAVE [29], a source address validity enforcement protocol,
normal load spikes due to DDoS traffic [39]. The Razor teabuilds a table of incoming source IP addresses at each router
at Bindview built Despoof [2], which is a command-line antithat associates each of its incoming interfaces with a sedlaf
spoofing utility. Despoof compares the TTL of a received packincoming network addresses. SAVE runs on each IP router and
that is considered “suspicious,” with the actual TTL of at teghecks whether each IP packet arrives at the expecteddogerf
packet sent to the source IP address, for verification. HeweBy matching incoming IP addresses with their expected vecei



ing interfaces, the set of IP source addresses that anykettag]
can spoof are greatly reduced. 5

Based on IP traceback marking, Path Identifier (Pi) [55] er!]-
beds a path fingerprintin each packet so that a victim canifglen [6]
all packets traversing the same path across the Interret,fev [7]
those with spoofed IP addresses. Instead of probabilistitm
ing, marking in Pi is deterministic. By checking the markingfl
on each packet, the victim can filter out all attacking pa&ke[g]
that match the path signatures of already-known attackingp
ets. Pi is effective even if only half of the routers in theclimtet
participate in packet marking. There also exist commescihl- [10]
tions [22], [34] that block the propagation of DDoS trafficthvi [11]
router support.

However, the main difference between our scheme and thege
solutions is that HCF is an end-system mechanism that ddes no
requireany network support. This difference implies that 0“[13]
solution is immediately deployable in the Internet. HCF kgor
well because no single entity controls the value of the TTidfie [14]
and thus, destinations can use it to fingerprint legitimatpdck-
ets. We speculate that end-host-based filtering can be mggeh
more effective if intermediate routers could do more thanatye
decrementing TTL by one. [16]

VIIl. CONCLUSION AND FUTURE WORK [17]

In this paper, we present a hop-count-based filtering schel®@
that detects and discards spoofed IP packets to consenegrsys
resources. Our scheme inspects the hop-count of incomaig pg19)
ets to validate their legitimacy. Using only a moderate antofi
storage, HCF constructs an accurate IP2HC mapping table ViEEZO]
address aggregation and hop-count clustering. A pollejiaof
mechanism initializes and updates entries in the mappllg.ta [21]
By default, HCF stays in thiearningstate, monitoring abnormal
IP2HC mapping behaviors without discarding any packet.€0Ong2]
spoofed DDoS traffic is detected, HCF switches tofthiering
state and discards most of the spoofed packets.

By analyzing actual network measurements, we have shown
that HCF can remove 90% of spoofed traffic. Moreover, evenlff
an attacker is aware of HCF, he cannot easily circumvent HG#s;
Our experimental evaluation has shown that HCF can be effi-
ciently implemented inside the Linux kernel. Our analysid a [26]
experimental results have indicated that HCF is a simplesénd
fective solution in protecting Internet servers againsiofed 1P
packets. Furthermore, HCF is readily deployable in endesys
since it does not require any network support.

There are several issues that warrant further researct, @ir [28]
install the HCF system at a victim site for practical use, wed
a systematic procedure for setting the parameters of HCR s(R9]
as the frequency of dynamic updates. Second, we would like to
build and deploy HCF in various high-profile server sitesée s [30]
how effective it is against real spoofed DDoS traffic.
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APPENDIX
I. ANALYSIS OF RANDOMIZED TTL ATTACKS AGAINSTHCF

An attacker may somehow modify the initial TTL values, hapihat the
forged packets may carry matching hop-count values wherréaeh the victim.
Assuming that the attacker knows the range of valid hop-cfyhy] to a given
victim server, an attacker may use initial TTLs in the rafige+ h, — hw, 14+
h, — 1], whereh; is the hop-count from the flooding source to the victim &nd
is the default initial TTL value at the flooding source. Thilee randomization
of initial TTL values is the same as subtracting the rightstant between 1 and
hm from I4 + h; to give a matching IP2HC pair that HCF cannot detect.

Here, we study the scenario where for any given IP addresdtaker is only
able to select at random a hop-count value from the réhdw]. Without loss
of generality, we use the random variaieas the hop-count value the attacker
draws from a distributioiP (k),k =1,2,...,hy.



