
Eve: A Measurement-Centric Emulation Environment
for Adaptive Internet Servers

Hani Jamjoom
IBM Watson Research

jamjoom@us.ibm.com

Chang-Hao Tsai
University of Michigan

chtsai@eecs.umich.edu

Kang G. Shin
University of Michigan

kgshin@eecs.umich.edu

Sharad Singhal
HP Labs

sharad@hpl.hp.com

Abstract

Emulation plays a central role in the performance eval-
uation, capacity planning, and workload characterization of
servers and data centers. Emulation tools usually require de-
velopers to focus on mimicking application behavior as well
as to deal with system-level details of managing the emula-
tion. With the continuing increase in computing capacity and
complexity, capturing the interactions between different parts
of an emulation (e.g., clients’ reactions to server reconfigu-
ration) increases the complexity and overhead of emulation
design. Furthermore, since the amount of measurement data
can easily be huge, efficient data management is becoming
a key requirement to the proper scalability of any emulation
tool. In this paper, we proposeEve, an efficient emulation en-
vironment that provides rapid development of distributed and
adaptive emulators. By incorporatingin-path data processing
andcustom triggersinto a distributed shared variable (DSV)
core, Eve provides full and customizable control of how and
when measurement data is moved from the source to the DSV,
where the data is stored. Both functions simplify data man-
agement and minimize the overhead of frequent updates, thus
enhancing the created emulator’s scalability. They also sim-
plify feedback monitoring and control when creating adaptive
emulators. The capabilities of Eve are shown to allow emula-
tion designers to focus on application behavior rather than on
system-level details.

Keywords—Service Emulation, Distributed Emulation, Adap-
tive Services

1 Introduction

The importance of emulation to system evaluation has long
been recognized for accurate and repeatable experiments.
However, the advent of high-capacity servers, offering rich
and dynamically-created content, has elevated the complex-
ity of proper emulation to a much higher-level. Especially in

emerging data centers and consolidated server environments,
emulation plays a key role in the provisioning and configu-
ration of servers by mimicking realistic workloads, on both
the client and the server sides. On the client side, emula-
tion is used to re-create client interactions with a given ser-
vice, while, on the server side, it must offer enhanced fea-
tures that deal with persistent states, feedback monitoring,
dynamic adaptation and reconfiguration. In this paper, we in-
troduceEve, an efficient emulation environment that provides
seamless integration of signaling and data management: both
are used for dynamic adaptation and management of complex
clients/services.

Signaling and data management in Eve are realized by the
Distributed Shared Variable(DSV) layer. The DSV provides
a location-independent view of the underlying data and en-
forces data sharing at the object level, where objects represent
initialization parameters, measurement data, etc. Eve inte-
gratesin-path data manipulationto allow for customizable
conflict resolution and consistency enforcement. Eve also
integratescustom triggersthat initiate data exchange when
guard conditions are met, which are essential for implement-
ing feedback adaptation and monitoring. As we will show,
both features substantially reduce the overheads (in terms of
development time and running costs) that are associated with
monitoring and data collection.

To illustrate its capabilities and usefulness, we use Eve to
implement an afeedback-triggered adaptive service emula-
tor (FASE) that is specifically targeted for testing dynamic
reconfiguration of services in a consolidated server environ-
ment. This setting imposes three key criteria that cannot be
easily addressed with existing tools. First, clients must main-
tain a persistent state and arrive at a sustained rate, i.e., do
not just generate a series of uncorrelated requests. As shown
in [12], client persistence can dramatically change the under-
lying workload. Second, the emulated services can be mi-
grated as the load on the underlying server varies. This clearly
requires feedback monitoring and control. Finally, as services

CNS '07 17 ISBN 1-56555-312-8

mailto:jamjoom@us.ibm.com
mailto:chtsai@eecs.umich.edu
mailto:kgshin@eecs.umich.edu
mailto:sharad@hpl.hp.com

are added or removed, adaptive changes in the emulated client
behavior are necessary. For instance, if a Content Distribu-
tion Network (CDN) is used to offload a portion of a server’s
content during very high load, emulated clients must adapt
to the change (namely, issue fewer requests to static objects
since these requests are no longer visible to the server). FASE
has three parts: (1) a client-side emulator that relies on Eve’s
distributed user-threads to simultaneously stress-test multiple
servers while accurately mimicking client behavior (with per-
sistent state), (2) a server-side emulator that relies on Eve’s
rich set of resource abstractions to allow for the emulation of
a wide variety of services, and (3) a controller that relies on
the integrated signaling and data management to monitor and
adapt the behaviors of clients and services.

This paper is organized as follows. We describe the general
architecture of Eve in Section 2, detailing its underlying com-
ponents. Section 3 discusses how Eve’s flexible architecture
is used to emulate end-clients and running services in FASE.
In Section 4, we evaluate the effectiveness and efficiency of
Eve. The paper ends with a discussion of related-work and
conclusions in Sections 5 and 6, respectively.

2 Architecture of Eve

Figure 1 shows a high-level architecture of Eve, consisting of
three basic components: a kernel, modules, and helper appli-
cations. Eve Kernel manages modules and facilitates efficient
data storage. Eve modules are the basic building blocks; they
can be easily connected—viaEve Module Substrate(EMS)—
and are relatively autonomous. However, data exchange and
management is done automatically by the underlying lay-
ers. Helper applications are used to further enhance the func-
tionality of Eve, e.g., a configuration and control graphical
user interface (GUI). Internally, these components combine
several key features that provide Eve with its flexibility and
power.

Each participating machine in Eve must run an instance
of the Eve Kernel, whose primary function is to manage the
running modules (illustrated by theModule Managerin the
figure). TheModule Manageris used for initialization, ap-
propriately configuring the communication channels (to fa-
cilitate signaling and data exchange), and performing post-
experiment cleanup. An Eve Kernel may also host the DSV
and EGS (Eve’s Global Signaling) functionalities to provide
the necessary data and signaling exchange capabilities.

2.1 Integrated Signaling in User-Level
Threads

Clearly, supporting concurrency is crucial; there are several
models to choose from, each comes with its trade-offs. Mo-

Emulation Entity

Eve
Module 2

Eve Module 1

Eve
Module N

provides EMP
interface

DMM

DMM DMM

DMM

DMM

Eve Module Substrate (EMS)

Eve Kernel

User-level Threading Lib

DSV Proxy

DSV EGS

EGS Proxy

Module Manager

Helper Application

Eve
Management

Protocol (EMP)

GUI Controller

DSV = Distributed Shared Variable
DMM = Data Manipulation Module
EGS = Eve’s Global Signaling

Figure 1: High-level architecture of Eve. Modules connect toEve
Kernel using a thin substrate. Both modules and Eve Kernel can
customize (using plug-in DMMs) how data is managed.

tivated by [19], we used the well-testedGNU Pth user-level
threading library [10] in our implementation and provided the
appropriate wrapper functions that allow straightforward mi-
gration to emerging threading libraries like Capriccio [20].
User-level threading ensures scalability within the boundaries
of a single machine. However,inter-machinescalability re-
mains an important issue that is not completely addressed
by the available user-level libraries. Addressing this issue
requires the ability to manage as well as control distributed
threads.

One key extension to the user-level threading library is
Eve’s Global Signaling(EGS). EGS is conceptually similar to
existing message passing techniques. However, EGS focuses
on conditional delivery of the associated signals. Essentially,
each signal can be associated with an arbitrary guard condi-
tion (which can be externally defined) that dictates when a
signal should be delivered. As we will show later, having
these guard conditions (calledtriggers) can greatly reduce
the overheads of implementing adaptive control in emulators.
When designing EGS, we wanted to minimize the overhead
of setting and raising a signal. This was achieved by design-
ing a lightweight EGS component to act as a proxy in the
EMS of each module. When a signal is set, it is first reg-
istered with the EGS proxy, which adds the corresponding
thread to the list of interested ones. The proxy then registers
itself in Eve Kernel as having interest in receiving that signal.
To invoke a signal, a request is relayed through Eve Kernel to
the appropriate proxies.

ISBN 1-56555-312-8 18 CNS '07

/

lib 1

lib 1 lib 1

mod 2

mod 2

mod 1

mod 1

var 1

var 1

var 2

var 2

var 3

var 3

var 4

var 4 var 4

var 5 var 6

var 6

Module
View

Eve Kernel
View

Partial Shadow CopyShadow Copy

Module 1 Module 2

DSV 1 DSV 2

Figure 2: Variable organization inside the DSV. Libraries in the
DSV are place holders (akin to abstract classes in OOP) and are
used for convenience.

2.2 Integrated Data Management and Control

Eve’s power lies in its flexibility and customizability when
managing measurement data and enforcing memory coher-
ence. As with any distributed shared memory system, the
DSV separates data access from data management. Data ac-
cess is provided by two standard calls to access shared vari-
ables. They areeve in andeve out, which are similar to
Linda’sin andout methods [5].

Similar to Munin [3], the DSV enforces sharing at the ob-
ject level. All variables (or objects) have a master copy that
is stored in the DSV on Eve Kernel (referred to as theDSV
server). When the number of objects is large, multiple DSV
servers can be configured to spread the master copies across
multiple machines and help distribute the load (Figure 2). Ob-
jects in the DSV are organized in a two-level directory, where
the first-level directory corresponds to modules or libraries
and the second-level to variables. Each shared variable is
identified by its full path to avoid name conflicts across dif-
ferent modules (e.g.,/mod1/var1 in Figure 2). That said,
the DSV assumes a strong trust model (as expected in a typ-
ical emulation environment), where modules can access each
other’s variables.

To improve the performance of the DSV, objects are locally
cached at the module level; cached objects are calledshadow
copies. The DSV uses two key principles to provide seam-
less access to distributed data without enforcing a prescribed
model of memory coherence. The first is the ability to per-
form in-path data manipulation, allowing measurement data
to be pre- or post-processed at the source (a module) or sink
(Eve Kernel), respectively. Here, post-processing enforces
customized conflict resolution. The second is the ability to
associate arbitrary triggers (not just data updates) with each
variable to perform data synchronization or adaptation.

In-path data manipulation allows the emulation designer to

Eve Module 1

Eve Kernel

EMS
DSV Proxy

DSV

DMM for var X

DMM for var X

thread generates
data

pre-process
data & update
shadow copy

wait for
trigger

wait for
trigger

DSV intercepts data
and redirects it to
appropriate DMM

(upon trigger)
synchronize with
DSV Kernel

1

3

4

8’

‘

2

5’

Redirect to
appropriate
Kernel DMM

6’

shadow data

master data

post-process
data and store

7’

(upon trigger)
update other
shadow copies

‘9’’

Figure 3: In-path data manipulation. Theeve in andeve out
requests are redirected to the corresponding DMM to perform pre- or
post-processing. Triggers are registered to indicate when an update
is performed.

write (or reuse) custom functions that pre-process the data
at the module side and then post-process them at Eve Ker-
nel. These custom functions control how and when data is
updated. When an emulation designer is interested in over-
riding the default behavior of the DSV (which is release con-
sistency), s/he must define the new behavior in adata manip-
ulation modules (DMM), which may reside at either the client
module or at Eve Kernel, depending on which functionality is
to be overwritten (Figure 1). Each DMM must export three
functions: one that overrideseve in, another that overrides
eve out, and finally a trigger handler that defines how the
shadow variables should be updated to their corresponding
master version in Eve Kernel. This final function responds to
triggers and is used for feedback, synchronization, and peri-
odic updates.

Much like other parts of Eve, a DMM is configured at run-
time in the configuration file. There, the DMM defines one
or more variables to listen on and also defines which module
to hook into. Other DMM-specific parameters can also be de-
fined (such as an update interval, if any). Whenever the corre-
sponding variable in the DSV is accessed (for reading or writ-
ing), the corresponding function in the interested DMM—
instead of the defaulteve in or eve out—is called. The
replica of this behavior is performed on Eve Kernel.

In-path data manipulation alone does not provide on-
demand updates. The DSV addresses this issue by introduc-
ing the ability of customizing when updates occur in both di-
rections: from the module to Eve Kernel and vice versa. Trig-
gers are used to specify when an update is pushed to the mod-

CNS '07 19 ISBN 1-56555-312-8

ule or Eve Kernel. Triggers can represent different events, not
just a change in the shadowed variable. Triggers can be spec-
ified on both the module and Eve Kernel sides. Also, a trigger
in Eve Kernel can be used to periodically request (i.e., pull)
an update from the modules, rather than wait for the update
to be pushed.

Figure 3 highlights how in-path data manipulation and trig-
ger updates are performed. One important argument regard-
ing the design of these mechanisms is whether manual pro-
gramming of such optimization inside each emulation entity
is sufficient, eliminating the underlying complexities in the
lower layers. Here, the basic question is whether complexity
should be implemented at the EMS level or at the Emulation
Entity level. We justify our design decisions with three rea-
sons. First, because many data collection (and tracking) tech-
niques share the same goal, only one version of the DMM
need to be implemented. This allows better reusability of op-
timized code (i.e., reusing the same DMM) as well as simpler
design of emulation entities. Second, the architecture of Eve
allows the DMM to be plugged at Eve Kernel as well, provid-
ing even greater flexibility than only modifying the Emula-
tion Entity. Finally, as far as performance is concerned, since
we have implemented the function as part of the EMS (which
uses user-level threads), the difference between manual and
automatic data management is minimal.

3 Implementing a Feedback-Triggered Adap-
tive Service Emulator (FASE) with Eve

In this section, we motivate and describe the use of Eve
for creating a feedback-triggered adaptive service emula-
tor (FASE). Similar to traditional service emulators (e.g.,
SPECWeb [8]), FASE has a client-side and server-side parts.
However, FASE goes a step further by capturing the poten-
tial dynamics between client and service behavior, which en-
ables the evaluation of complex server configurations, such
as testing the effects of service migration, client persistence,
and content adaptation. Figure 4 gives a high-level architec-
ture overview of FASE. FASE focuses on three important el-
ements: (1) emulated clients can change their behavior based
on their observation of server performance and content avail-
ability, (2) emulated services can be dynamically moved or
configured to mimic the addition, removal, or reconfigura-
tion of services in a multi-tiered environment, and (3) both
client and service behaviors are managed via an independent
controller module, which is free to implement any manage-
ment or control algorithm. The remainder of this section de-
scribes the implementation of both the client- and server-sides
of FASE and also a potential controller that dynamically ma-
nipulates both clients and server behaviors.

Emulated
Service

Server MachinesClient
Machines

Virtual
Emulated
Server

clients Resource Demand
Records

DSV

Controller

Figure 4: Architecture overview of FASE

3.1 Distributed Client Emulation in FASE

The client-side of FASE (FASE-client) is responsible for
modeling real clients and generating representative requests.
The basic model is based on those proposed in [1, 7, 12],
where clients’ accesses are divided into active and inactive
periods. Our FASE-client implements the following four key
features:

CF1: The clients’ arrival rate is sustained regardless of the
server’s response. Each client is represented by a new session
and maintains a persistent state; a session consists of a series
of visits (active and inactive periods).

CF2: Each request consists of a Resource Demand Record
(RDR), which describes the resource consumption on one or
more emulatedservices. RDRs, described in Section 3.2,
are used to maximize the reconfiguration flexibility of FASE.
Note that clients use pre-recorded RDR trace files to decide
the next request to send. To play back actual HTTP logs, reg-
ular HTTP trace files can be easily used. Probabilistic models
(similar to the one used by Surge [1]) are also implemented.

CF3: Clients create abehavior adaptationfunction, which is
tied to a trigger, allowing the controller to change the client
behavior in response to server reconfiguration. This is needed
whenever a server updates its content or introduces new ser-
vices, which may change the arrival and access distributions
of main and embedded objects. In Section 3.3 we detail how
the controller performs this task.

CF4: Statistics regarding server throughput, in terms of re-
quest delay, isautomaticallycollected. This is simplified by
the DSV, where measurements are updated by all participat-
ing FASE-clients. However, whenever a variable is updated, a
DMM intercepts the update request and performs in-path data

ISBN 1-56555-312-8 20 CNS '07

manipulation. As we will show in Section 4, this dramatically
reduces the number of required writes.

3.2 Distributed Service Emulation in FASE

In many data center setups, servers are dynamically allocated
and assigned to running services to improve resource utiliza-
tion and management. Several algorithms have been pro-
posed to manage data centers [6]. However, it is not trivial
to evaluate these efforts. To simplify the evaluation and veri-
fication of newly-adopted management techniques, we imple-
mented the server-side part of FASE (FASE-service) to pro-
vide repeatable and scalable emulation of arbitrary resource
demands on distributed servers while simplifying the mea-
surement process and service migration or reconfiguration.
In FASE-service, there are two important design challenges.
The first is to specify how resource requirements should be
defined. The goal is to provide a rich syntax that can em-
ulate services at different granularities. The second is to al-
low for the dynamic configuration and administration of these
emulated services to fully observe how an on-line resource
management algorithm would behave. To address these chal-
lenges, we have implemented FASE-service with three key
features:

SF1: FASE-service is composed of two elements:emulated
services(ESs) andvirtual emulated services(VESs). An ES
is implemented as a module in Eve. So, multiple ESs can
share a single server, and similarly, multiple VESs can share
a single ES. A VES is, thus, logically equivalent to Virtual
Hosts in Apache. The organization of VESs within ESs and
across servers can be used to emulate different configurations
of applications and services.

SF2: Work is triggered by the arrival of a request, called a
Resource Demand Request(RDR). An RDR is a variable-
length structure which contains a fix-sized header and a list
of Resource Demand Instructions(RDIs). An RDI is used
to describe resource consumption on a VES and the relation-
ship between different VESs (Figure 5). So, the behavior of
the system can be controlled by the RDR generator, which
simplifies testing different configurations. Two types of in-
structions are implemented:resource consumptionandflow
instructions. Each instruction contains three fields: (1) a VES
ID, (2) a resource type, and (3) a data field.

Currently four resource types and nine resource consump-
tion instructions are defined in Eve: CPU, memory (allo-
cate, access, free), network, and disk I/O (create, read, write,
delete). Each of them takes a 32-bit payload to indicate (in
general) the amount of resource to consume. Details of these
instructions are omitted due to space limitation.

Because dependencies between VESs can be arbitrary, we

Emulated
Service (ES) 1

ES 2

ES 3

ES 4

C0

C1

C2

C3

C4

Resource Demand Request (RDR)

C0 C0C1 C2 C3 C3 C4[||]

RDR

(C3),CPU,10 (C3,NET,2) (C3, ,)f

parallel fork

consumption of multiple resources
on the same VES

return
instruction

RDI

Server 1 Server 2 Server 3

Virtual Emulated
Server (VES) 0

Figure 5: Example of possible node dependencies and the corre-
sponding Resource Demand Request

have introduced two flow instructions to control the request’s
flow in the system and capture resource dependencies and
parallelism of typical services:RETURN andFORK. In Fig-
ure 5, for example, when C0 (which is a VES) needs two
other application components C1 and C2 to complete a re-
quest, several possible relationships can exist between these
three components. To solve this ambiguity, aRETURN in-
struction is introduced to mark the end of the work in one
component. When the VES executes this instruction, it sends
the next instruction pointer back to its caller. Otherwise, the
request is sent to next components and the server waits for
the next instruction pointer to be returned. To place workload
on more than one component simultaneously in a specific re-
quest, aFORK instruction is introduced. When the server exe-
cutes theFORK instruction, it creates two (user-level) threads
to concurrently execute the two subsequences, each can con-
tain any number of RDIs. However, at the end of each sub-
sequence, the control returns to its parent, which was waiting
for the two subsequences to complete before processing ad-
ditional RDIs.

SF3: The mapping between VESs and ESs is performed on-
line. Thus, after an instruction (RDI) is executed, the current
VES is also responsible for routing the corresponding request
(RDR) to the next VES, which is defined in the next instruc-
tion’s VES ID. The routing process involves two stages: map
lookup and request delivery. It is in the map lookup stage
that we used of Eve’s well-managed data dissemination in-
frastructure. VES-to-ES mappings are stored in the DSV,
where Eve provides caching of these mappings and allows
map updates by other modules (e.g., controller or GUI). By
re-mapping a VES to a different ES, it is effectively migrated,
and both the order and location of execution can be dynami-

CNS '07 21 ISBN 1-56555-312-8

cally tested.

The above instructions are only building blocks that must
be augmented with stochastic models to fully capture the ex-
pected behavior of applications. These stochastic models are
integrated at the source, which sends the RDRs. In fact,
FASE-client has the ability to integrate arbitrary probabilis-
tic models in both request generation (i.e., the distribution
of request arrivals at the system) and RDR generation (i.e.,
the distribution of resource requirements in each VES). Ad-
vanced service profiling to extract appropriate resource con-
sumption models is the subject of our ongoing research.

3.3 Emulating Service Migration and Control
in FASE

As with our client- and service-sides, Eve’s flexibility enabled
seamless integration of measurement data and feedback con-
trol to emulate service migration. As a proof of concept, we
have created a controller (FASE-controller) that reads both
request delay from FASE-clients and service utilization from
the VESs. Since both data are stored in the DSV, it is straight-
forward to obtain them. Whenever the client response time
exceeds the threshold for an acceptable delay, our simple
service-reconfiguration algorithm is executed. The algorithm
moves the most utilized VES into an empty ES, if any. Oth-
erwise, depending on the type of the VES (e.g., mimicking
static content), the algorithm may remove it (implying its
move to an external CDN) and signals an adaptation in the
clients’ arrival behavior. To migrate the service, the controller
simply changes the VES-to-ES mapping, which is stored in
the DSV and determines the VES-to-ES binding. Note, how-
ever, that this simple service-migration algorithm is used to
illustrate the usefulness of Eve, rather than the effectiveness
of the algorithm.

4 Evaluation

Eve is implemented in C on the Linux kernel version 2.4.20,
but its cross-platform porting is straightforward. In Section 3,
we showed how Eve can be used to implement a feedback-
triggered service emulator. Due to space limitations, we only
focus on evaluating two aspects of FASE: (1) the effective-
ness of using Eve to adapt client behavior and emulate service
migration, and (2) the potential benefits of having customized
DMMs.

We used a testbed of up to 4 identical machines (Intel Pen-
tium 4 PC with 2.66 GHz and 1 GBytes of RDRAM) con-
nected through a FastEthernet switch. In some tests, two ad-
ditional server machines were used (Intel Pentium 4 PC with
1.7 GHz and 512 MBytes RDRAM). The first set of machines

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150 180 210
 0

 100

 200

 300

 400

 500

C
lie

nt
 D

el
ay

 (
m

se
c)

S
er

ve
r

T
hr

ou
gh

pu
t (

re
q/

se
c)

Time (sec)

Client
Server 1
Server 2

Figure 6: Adaptation example in FASE.

run FASE-client and issue RDR requests to two server ma-
chines running FASE-service, each running an instance of a
VES to mimic Web-like services. The two VESs, however,
had different restrictions. VES-1 can be migrated both to an
internal server and to an external CDN. This is akin to an
HTTP server handling static content, such as embedded ob-
jects. On the other hand, VES-2 can by replicated and mi-
grated only to an internal server. This is akin to an HTTP
server providing dynamic content. FASE-clients were con-
figured to send a mix of requests to both servers. The request
arrival rate is also gradually increased to mimic time-of-the-
day effects.

Figure 6 shows the change in client delay and throughput of
the running servers. At the beginning both VES-1 and VES-
2 run on the same server. However, whenever the average
client- perceived delay starts to increase, the adaptation algo-
rithm is invoked. Because requests for VES-2 are configured
to require more resources, the adaptation algorithm replicates
VES-2 to a second available server and remaps VES-2 on
two servers, which cause the load to automatically be load-
balanced. This happens at t=69 sec in Figure 6, after which,
we observe a drop in the throughput of server 1 as server 2
starts to handle some of the incoming load. As client load
continues to increase, the adaptation algorithm is triggered
once again at t=157 sec, which deletes VES-1 to mimic mi-
grating it to an external CDN. FASE-clients are also triggered
to stop sending requests to VES-1 as these request would be
handled by an external server.

While space limitation prevented us from presenting the
actual code, emulating a relatively complex scenario that
requires both on-line monitoring and reconfiguration was
greatly simplified by Eve. Furthermore, because the ability
to perform in-path data manipulation, we were able to dra-
matically reduce data exchange to minimize its overhead and

ISBN 1-56555-312-8 22 CNS '07

interference on the experiments. To see effects of in-path data
manipulation, we tracked the number of kernel accesses for
updating the client-perceived delay while enabling different
kinds of DMMs. Along with a conflict resolver DMM on
the DSV, two types of client DMMs were implemented to
manage the delay value. The first implements a time-based
DMM, which writes back the change in the delay at a con-
figurable rate. The second is a sample-based DMM, which
writes back the change in the delay after a configurable num-
ber of samples is collected. Figure 7 shows the number and
frequency of DSV accesses for the delay. Here, the actual de-
lay values are not important; what is important is how often
the DSV is accessed to update this value. Four configurations
are shown: (1) when no DMMs are used (thus requiring lock-
ing, reading the content, updating the value, and unlocking of
variables), (2) Eve Kernel-side DMM is used to perform cus-
tomized conflict resolution (only adds the change in the value,
which eliminates the need for the global lock/unlock and read
operations), (3) both Eve Kernel- and Module-side DMMs
are used with a sample-based trigger (updates are triggered
every 10 samples), and (4) both Eve Kernel- and Module-
side DMMs are used with a time-based trigger (updates are
triggered every 5 seconds).

The first part of Figure 7 clearly shows the benefits of hav-
ing in-path data manipulation. Obviously, by changing the
trigger sample/period, the actual overhead will change. In the
second part of Figure 7, the ordinate plots the actual sum of
measurement samples. We note that the values for the differ-
ent configurations do not match because they represent dif-
ferent experiments with many non-deterministic components
(i.e., even with the same random seed, the server/network de-
lay changes these values). What is important, however, is that
the plot shows the change in frequency as different configu-
rations are used; with each update, the value of the variable
becomes consistent. We note here in cases 2, 3, and 4, the
actual code for FASE-client did not change, but the configu-
ration file is used to enabled or disabled the DMMs.

5 Related Work

Eve uses many well-established concepts in OS and dis-
tributed systems. In many ways, our implementation of
EGS resemble existing message passing mechanisms such as
UNet [2], MPI [13], and PVM [11], to name a few. In EGS,
however, we implemented a lightweight mechanism that is
tailored to user-level threads and provides external control of
message delivery. Because of the large number of potential
signals, EGS would benefit from a multicast-based design,
similar to [18].

The heart of Eve is its efficient data-manipulation layer.
The ideas there build on existing distributed shared memory

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

D
S

V
 K

er
ne

l A
cc

es
se

s
(x

10
00

)

Total Variable Updates (x1000)

No DMM
Kernel-side DMM

Sample-based DMM
Time-based DMM

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

S
am

pl
e

S
um

 (
m

se
c)

Time (sec)

No DMM
Kernel-side DMM

Sample-based DMM
Time-based DMM

Figure 7: Benefits of in-path data manipulation: (right) number of
DSV accesses (left) frequency of DSV accesses

systems [3–5, 9], which have also focused on various aspects
of keeping memory consistent. Our work provides fully cus-
tomizable data handling similar to Astrolabe [17]. However,
it also allows the implementation of reusable consistency and
conflict resolution models.

We have used Eve to implement a feedback-triggered ser-
vice emulator. There are several popular tools that are
used for similar purposes (e.g., SPECWeb [8], Surge [1],
httperf [15], LoadRunner [16]). What distinguishes Eve from
the other tools is its ability to incorporate feedback control
and adaptation with little development overhead. Eve is also
able to achieve a high level of flexibility and customizabil-
ity (similar to [14]). Tools like SPECWeb and Surge follow
a black-box architecture and are created as a monolithic ap-
plication. Any modification may require intimate knowledge
of the tool’s internal behavior. Some tools like httperf [15]
do provide hooks for extension, but they tend to be limited to
certain functionalities. Eve also allows custom data manipu-
lation and centralized control, which are key for stress-testing
today’s powerful servers.

CNS '07 23 ISBN 1-56555-312-8

6 Conclusions

Emulation tools must not only be efficient, but also adaptive,
extensible, accurate, and scalable. In this paper we presented
Eve, an emulation environment that met these five design
objectives. We used Eve to implement FASE, a feedback-
triggered adaptive service emulator. FASE mimics the possi-
ble interactions between clients and services. While we fo-
cused on using FASE to appropriately provision server re-
sources, the flexibility of Eve allows us to extend FASE to be
used for root causes analysis. FASE-clients can be used for
playing back test transactions to identify potential problems
during unusually high loads, such as flash crowds or denial-
of-service attacks. Malicious clients, for instance, can be con-
structed as plug-in modules and used to analyze the behavior
of the tested services.

References

[1] P. Barford and M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
in Proceedings of Performance’98/ACM Sigmetrics’98, May
1998, pp. 151–160.

[2] A. Basu, V. Buch, W. Vogels, and T. von Eicken, “U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing,” inProceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP), Copper Mountain, CO,
December 1995.

[3] J. K. Bennett, J. K. Carter, and W. Zwaenepoel, “Munin: Dis-
tributed Shared Memory Based on Type-Specific Memory Co-
herence,” inProceedings of the Second ACM Symposium on
Principles and Practice of Parallel Programming, 1990, pp.
168–176.

[4] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, “The
Midway Distributed Shared Memory System,” inProceedings
IEEE COMPCON Conference. IEEE, 1993, pp. 528–537.

[5] N. Carriero, D. Gelernter, and J. Leichter, “Distributed Data
Structures in Linda,” inProc. ACM Symposium on Principles
of Programming languages, 1986, pp. 236–242.

[6] A. Chandra, W. Gong, and P. Shenoy, “Dynamic Resource
Allocation for Shared Data Centers Using Online Measure-
ments,” in Proceedings of the Eleventh IEEE/ACM Interna-
tional Workshop on Quality of Service (IWQoS 2003), Mon-
terey, CA, June 2003.

[7] L. Cherkasova and P. Phaal, “Session Based Admission Con-
trol: a Mechanism for Improving Performance of Commercial
Web Sites,” inProceedings of Seventh IWQoS. IEEE/IFIP
event, May 1999.

[8] S. D. Committee, “SPECweb,” Tech. Rep., April 1996,
http://www.specbench.org/osg/web/.

[9] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro,
“Lightweight Logging for Lazy Release Consistent Distributed
Shared Memory,” inProceedings of the Second Symposium on

Operating Systems Design and Implementations (OSDI’98),
Seattle, Washington, October 1996.

[10] R. S. Engelschall, “GNU Pth - The GNU Portable Threads,”
http://www.gnu.org/software/pth.

[11] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos, “PVM
and MPI: a Comparison of Features,”Calculateurs Paralleles,
vol. 8, no. 2, 1996.

[12] H. Jamjoom and K. G. Shin, “Persistent Dropping: An Ef-
ficient Control of Traffic Aggregates,” inProceedings of the
ACM SIGCOMM ’03, Karlsruhe, Germany, August 2003, pp.
287–298.

[13] Message Passing Inerface Forum, “MPI-2: Exten-
sions to the Message-Passing Interface,” http://www-
unix.mcs.anl.gov/mpi/.

[14] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” inProceedings on Symposium on Op-
erating Systems Principles, December 1999, pp. 217–231.

[15] D. Mosberger and T. Jin, “Httperf — A Tool for Measuring
Web Server Performance,” HP Research Labs, Tech. Rep.

[16] M. I. W. Paper, “Load Testing to Predict Web Per-
formance,” Mercury Interactive Corporation, Tech. Rep.,
www.mercuryinteractive.com.

[17] R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A
Robust and Scalable Technology for Distributed System Moni-
toring, Management, and Data Mining,”ACM Transactions on
Computer Systems (TOCS), vol. 21, no. 2, pp. 164–206, May
2003.

[18] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel,
“SCRIBE: The Design of a Large-scale Event Notification In-
frastructure,” inProceedings of the Third International Work-
shop on Networked Group Communication, London, UK,
November 2001.

[19] R. von Behren, J. Condit, and E. Brewer, “Why Events Are a
Bad Idea (for High-Concurrency Servers),” inProceedings of
the 2003 HotOS Workshop, May 2003.

[20] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer, “Capriccio: Scalable Threads for Internet Ser-
vices,” in Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles, October 2003.

ISBN 1-56555-312-8 24 CNS '07

http://www.specbench.org/osg/web/
http://www.gnu.org/software/pth
http://www-unix.mcs.anl.gov/mpi/

