Extended Abstract: Self-Healing Multi-Radio Wireless
Mesh Networks

Kyu-Han Kim and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, Ml 48109-2121, U.S.A.
{kyuhkim, kgshin}@ eecs.umich.edu

ABSTRACT

We present novel Localized sElf-reconfiGuration algOrithms (LEGO)

for a multi-radio wireless mesh network to autonomously and ef-
fectively recover from wireless link failures. First, LEGO locally
detects link failures by accurately monitoring the network condi-
tion and, upon detection of a failure, triggers network reconfigu-
ration. Second, it dynamically forms/deforms a local group for
cooperative network reconfiguration among local mesh routers in
a fully-distributed manner. Next, LEGO intelligently generates a
local network reconfiguration plan through which a thus-formed
group recovers from local failures, while keeping network changes
to minimum. Finally, by figuring local channel utilization and re-
configuration cost in its planning, LEGO maximizes the network’s
ability to meet diverse links’ QoS demands. LEGO has been im-
plemented on a Linux-based system and experimented on a real-
life testbed, demonstrating its effectiveness in recovering from link
failures and its improvement of channel efficiency by up to 92%.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Self-healing networks, link failures, multi-radio wireless mesh network.

1. INTRODUCTION

Despite the increasing abundance of network resources, multi-
radio wireless mesh networks (WMNs) still suffer from poor re-
source utilization and performance degradation due mainly to het-
erogeneous and fluctuating channel conditions [1,2]. For example,
WMNs in some areas might experience severe channel interference
from other co-existing networks, might suffer from mismatched
resource allocations due to varying links’ QoS requirements, and
might not be able to access some frequency bands owing to spec-
trum regulation in a certain area or during a certain time period [3].

These channel-related problems of WMNs have been researched
extensively, but the resultant solutions still suffer from several im-
portant problems. First, existing network configuration algorithms

Copyright is held by the author/owner(s).
MobiCom’07, September 9-14, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-681-3/07/0009.

326

[4-6] provide (theoretical) guidelines for network planning, but
they usually require “global” changes in network settings, thus in-
curring high overhead and limiting their scalability. Moreover, they
often assume a priori availability of accurate information on the
network condition and rely on static or periodic network configu-
rations, which are unsuitable for dynamically-changing networks.
Second, a greedy channel-assignment algorithm [7] can reduce the
requirement of network changes for failure recovery, but one local
change might cause QoS degradation/failures at neighboring nodes,
triggering “propagation” of QoS failures. Finally, fault-tolerant
routing protocols such as local re-routing [8] or multi-path rout-
ing [9] can be adopted to avoid these side effects. However, their
reliance on detour paths or redundant transmissions requires more
network resources than network reconfiguration.

To overcome the above limitations, we propose novel Localized
sElf-reconfiGuration algOrithms (LEGO) that enable a multi-radio
WMN to autonomously reconfigure its settings (e.g., channel and
link association) to recover from local link failures. LEGO is a
distributed system that is composed of three core bricks: monitor-
ing, reconfiguration, and planning. First, the monitoring brick ac-
curately monitors the network condition and detects network fail-
ures in real time. The brick in every node efficiently measures the
quality of link—such as packet-delivery ratio and data-transmission
rate—to each neighboring node by interacting with the network and
MAC layers. Further, by adopting hybrid measurement schemes
called EAR [10] across multiple radios, LEGO improves both ac-
curacy and efficiency in network monitoring. Based on these mea-
surements, LEGO quickly detects local network failures (e.g., link,
QoS, and spectrum failures), triggering network reconfiguration
immediately.

Second, the reconfiguration brick forms and deforms a local re-
configuration group, allowing for on-demand cooperation among
local mesh nodes. Upon receiving a local failure alarm, this brick
identifies failure-affected nodes and elects the (local) group leader
among the nodes, while collecting necessary information. This in-
formation is delivered to the elected leader as part of the group-
formation process and is used for reconfiguration planning. Be-
sides the group formation, the reconfiguration brick also includes a
deformation protocol that effectively reconfigures network settings
based on the planning.

Finally, the planning brick generates the most effective recon-
figuration plan that requires only /ocal network changes for failure
recovery and meets links’ QoS requirements. To this end, LEGO
takes a top-down approach in its reconfiguration planning. Based
on the collected network information, the planning brick in the
leader node first enumerates feasible network changes for recov-
ery from detected failures by using constraint graphs. By accept-
ing current network settings as constraints, the brick minimizes

changes of healthy network settings, while allowing for local changes
around the failure location. Then, the brick selects plans that satisfy
links’ QoS demands and avoid cascaded network changes, called
the ripple effect. Finally, of the selected plans, it chooses the most
effective plan that improves overall channel utilization.

Our evaluation results on a Linux-based implementation of LEGO
show that it outperforms existing failure-recovery methods, such
as greedy, local re-routing, and static channel assignments. First,
LEGO detects local failures in real time and reconfigures the net-
work, thus improving channel efficiency' by up to 92% over the
local re-routing protocol. Next, LEGO’s planning algorithm effec-
tively generates and identifies reconfiguration plans that improve
overall channel utilization and avoid ripple effects.

2. DESIGN OF LEGO

This section outlines the design of LEGO. We first present a de-
sign overview, and then describe of each brick of LEGO.

2.1 Overview of LEGO

LEGO is a distributed system that is easily deployable in an ex-
isting IEEE 802.11-based multi-radio WMN (e.g., Figure 1) to sup-
port localized self-configuration via the following distinct features.

o [n-network monitoring and detection: LEGO adopts an efficient
and accurate link-quality monitor [10] and extends it for a multi-
radio WMN. Based on network measurements and given links’
QoS constraints, each node detects local link failures, as opposed
to relying on a remote server, and, upon detection of a failure,
triggers network reconfiguration in real time.

Distributed reconfiguration: LEGO includes a distributed group
formation/deformation protocol that helps a WMN reconfigure
its settings autonomously. This protocol enables cooperative
network reconfiguration among failure-affected mesh routers and
minimizes network disruption.

Network planning via a constraint graph: In its reconfigura-
tion planning, LEGO uses a constraint graph to keep network
changes as local as possible. By taking current network settings
as constraints, LEGO can generate a set of feasible reconfigura-
tion plans that allow network configurations to be changed only
in the vicinity of network failures, while retaining configurations
in areas remote from failure locations.

Estimation of reconfiguration effects: LEGO effectively identi-
fies QoS-aware and cost-effective reconfiguration plans by (i)
estimating an expected bandwidth function for LEGO to use to
filter out reconfiguration plans that do not satisfy the QoS re-
quirements; and (ii) deriving channel utilization and reconfigu-
ration cost for evaluation of the benefits and penalty of reconfig-
uration plans, respectively.

LEGO is composed of three core bricks as shown in Figure 2, and
their interactions can be described in four procedures: (1) the moni-
toring brick in every node constantly monitors wireless link-quality
and checks each link for possible failures; (2) on detection of a
failure, the reconfiguration brick triggers the formation of a local
group with the election of a leader; (3) based on collected network
information during the group formation, the planning brick in the
elected leader node runs a network planning algorithm, generating
the most cost-effective plan, and announces the plan to the group
members; and (4) the reconfiguration bricks in group members co-
operatively reconfigure their NICs and routing settings based on the
delivered plan.

! Channel efficiency is defined as achieved throughput per unit air-time.

327

L, channel
number

G

Figure 1: Multi-radio wireless mesh network: A WMN has an
initial assignment of frequency channels as shown above, but
often experiences link failures on a specific channel.

TN
Every Y C
e Monitoring v
Link Failure
Quality Alarm
Reconfiguration
New Group F?";”Z'
Configuration Information | e'ate
| nodes
Leader | . ;
node Planning

Figure 2: Interaction diagram among LEGO bricks: LEGO is
composed of monitoring, reconfiguration and planning bricks,
running in every node. Each brick is selectively triggered and
interacts with each other within/among nodes.

2.2 Network Monitoring

The monitoring brick in LEGO plays a crucial role in autonomous
and QoS-aware network reconfiguration. To build such a brick,
we must overcome the following challenges: (i) how to accurately
measure network information across multiple radios and (ii) how to
effectively determine every link’s health within the network. These
two challenges are elaborated next.

LEGO employs techniques proposed in EAR [10] and apply them
to measure link-quality in a multi-radio WMN. LEGO improves
measurement efficiency by monitoring existing data traffic, while
maximizing accuracy by deriving link-quality from data frame trans-
mission results. In addition, by maintaining a link-state table in
the network layer that coordinates measurements across multiple
radios, the brick can accommodate as many radios as needed for
link-quality monitoring.

The monitoring brick is flexible to detect various types of net-
work failures by employing general parameters such as bandwidth
or transmission cost in the model. Using these parameters, this
brick periodically checks the health of each link in every node, and
triggers an alarm if the link does not satisty given constraints. Note,
however, that this paper focuses on detecting channel-related fail-
ures as explained in Section 1, and detecting hardware failures or
security attacks are beyond the scope of this paper.

2.3 Distributed Reconfiguration

The reconfiguration brick enables a WMN to reconfigure its set-
tings autonomously and cooperatively among local mesh routers.
To this end, the following design issues must be resolved: (i) which
and how to form a cooperative reconfiguration group; and (ii) how
to reconfigure NIC settings with minimum disruptions.

link CI links CIH link IH links IHG link HG
S(C.)3—6 S(I,H)3-3 S(H,G)3-3
R(C.3-5 S(1,H)3—6 S(H,G)3—6
R(I,H)3-,1 R(G,H)3-,1
R(H.D3-5
D(LH)

Examples of feasible plans: [S(C,1)3-.s, S(I,H)3-s, S(H,G)3-.6] [S(C,1)3-6, D(I,H), S(H,G)3-.3]

Figure 3: Example of network planning: LEGO generates per-
link plans (odd columns) and then combines them for feasible
reconfiguration plans (even columns) for the multi-radio net-
work with 6 available channels in Figure 1.

On detection of a failure on a specific channel, the reconfigura-
tion brick in a node(s) requests the formation of a reconfiguration
group among nodes that use the faulty channel. This formed group
is essentially a set of nodes that might be affected by a current link
failure. Since the settings of a faulty link must be changed, the
neighboring nodes that use the same faulty channel can be affected
due to its association.

Once a reconfiguration plan is determined, LEGO deforms group
members’ network settings and remove a formed group. To min-
imize traffic disruption during reconfiguration, LEGO uses either
asynchronous or synchronous network deformation. LEGO sets a
detour path before reconfiguration and then reconfigures networks
asynchronously within a time window. If no detour paths exists, it
relies on accurate network time protocol (NTP) [11] and changes
network settings synchronously.

2.4 Network Reconfiguration Planning

The planning brick in LEGO generates reconfiguration plans for
each group. A key idea behind LEGO is that it takes a top-down
approach to generating reconfiguration plans mainly for minimiz-
ing network changes, as opposed to a bottom-up approach used in
existing scheduling and assignment algorithms [4,5,12]. These ex-
isting algorithms try to find one optimal plan that satisfies the QoS
demands on all links in a greedy fashion, and thus, one change in
assignments might cause cascaded changes in assignments of other
parts. By contrast, LEGO first generates a set of feasible local net-
work changes that satisfy current network connectivity. Then, it
chooses a plan that satisfies the QoS demand and that improves
channel utilization.

To realize such algorithms, the following questions should be
answered: (i) how to generate feasible plans, (ii) how to evaluate
QoS satisfiability, and (iii) how to identify the most effective plan.

First, LEGO generates a set of feasible plans by enumerating
possible changes in each link of a thus-formed group. In this enu-
meration, LEGO follows a two-step procedure based on the divide-
and-conquer principle and uses a constraint graph to avoid unnec-
essary enumerations. As shown in Figure 3, LEGO first generates
all possible changes—such as channel switching (s), radio associ-
ation change (R), and detouring (D)—per each link in a group, and
then makes a set of combinations with the possible changes for all
links in the group (called feasible reconfiguration plans).

Next, LEGO evaluates each feasible plan with respect to QoS
satisfiability and ripple effects. Even though each feasible plan
ensures that a faulty link has different network settings, it might
not satisfy QoS requirements or even cause cascaded changes of
network settings. To filter out such plans, LEGO first estimates
the QoS satisfiability of each plan’s new network settings, based
on measurement results from the monitoring brick. Then, once all
links under one plan satisfy QoS requirements, LEGO checks QoS

328

1
>
g o8 T LEGO 1
% —————— Re-routing
8 Stati
£ 06 atic J
s | N
E 04
IS
<
O 02

0

0 50 100 150 200 250 300 350 400

Time (s)

Figure 4: Gains in channel efficiency: LEGO effectively re-
configures the network around a faulty link, improving chan-
nel efficiency by up to 92%. By contrast, local re-routing
causes degradation in channel efficiency, and static channel-
assignment does not react to the link failure in a timely manner.

satisfiability up to two-hops-away nodes to identify any ripple ef-
fect from a local change(s) and removes plans with the effects.

Finally, LEGO now has a set of reconfiguration plans that are
QoS-satisfiable without causing the ripple effect, and needs to choose
the best plan among them. To this end, LEGO first calculates av-
erage residual bandwidth of links for each feasible reconfiguration
plan. Then, it chooses a plan that allows local networks to have
evenly distributed residual bandwidth. Finally, if multiple plans
have the same distribution, LEGO chooses one plan that incurs the
minimum links’ changes.

3. PERFORMANCE EVALUATION

LEGO has been implemented in a Linux-based system and eval-
uated on our testbed. We first describe our experimentation setup,
and then present its representative evaluation results.

3.1 Experimental Setup

LEGO’s implementation is evaluated in our in-door multi-radio
wireless mesh network, constructed in the fourth floor of the Com-
puter Science Building at the University of Michigan. This network
is composed of 17 mesh nodes, each of which is a small-size wire-
less router—Soekris board 4826-50 [13]. Every node is equipped
with two EMP IEEE 802.11 a/b/g miniPCI cards and a 5-dBi gain
indoor omni-directional antenna, and runs on Linux OS (kernel 2.6)
with a modular implementation of LEGO.

3.2 Experimental Results

We now present two sets of experimentation results in the above
setup: channel efficiency gain and ripple effect avoidance.

3.2.1 Gain in Channel Efficiency

To show LEGO’s gain in channel efficiency—defined as the ratio
of the number of successfully-delivered data packets to the number
of total MAC frame transmissions, we ran one UDP flow at a max-
imum rate over links in our testbed, while increasing the level of
interference every 10 seconds. We also set the QoS requirements of
a link to 6 Mbps as a parameter of LEGO, and measure the channel
efficiency progression every 10 seconds during a 400-second run.
For the purpose of comparison, we also ran the same scenario under
the local re-routing and static channel-assignment algorithms.

As shown in Figure 4, since LEGO uses a better-quality chan-
nel than the one on the faulty link via real-time reconfiguration, the
UDP flow can achieve a high successful frame transmission ratio,
improving channel efficiency by up to 91.5%. On the other hand,

(a) Channel and Flow Assignment

(b) Achieved Throughputs via Different Recovery Methods

Static Re-Route Greedy LEGO

T T T

=

us]

~5
Interference generator] Ideal

aQ

o4 0

=

=

— 3L

=)

£

[=)

=)

51t

IS

Fo

f1:4-7,5:2-7,1::8-10,£:11-10,f5:7-10, f5:14-10 Ty fa fy fsfs

fifafafafsly fifofafafsls fifafafyfsfs ffafafyfsfs

Figure 5: LEGO’s avoidance of ripple effects: LEGO finds a local reconfiguration plan that avoids the ripple effects by considering
neighboring nodes’ channel utilization, whereas the greedy channel switching and local re-routing triggers additional QoS failures in

neighbors’ flows, as shown in Figure 5(b).

using static-channel assignment suffers a poor packet-delivery ra-
tio, resulting in severe degradation of channel efficiency. Finally,
local re-routing often makes traffic routed over longer and low link-
quality paths, thus consuming more channel resources to deliver the
same amount of traffic than LEGO. Note that we do not intention-
ally run a greedy algorithm in this single-hop scenario, because its
gain is the same as LEGO. We, however, compare it with LEGO in
multi-hop scenarios next.

3.2.2 Avoidance of Ripple Effects

We also studied LEGO’s effectiveness in reducing the ripple ef-
fects of network reconfiguration. Figure 5(a) shows initial channel
and flow assignments in our testbed. In this topology, we ran 6 UDP
flows (f1,---, fe) each at the rate of 4Mbps, and measure each
flow’s throughput while injecting interference into a target channel.
Also, we use the four reconfiguration methods (i.e., static, local re-
routing, greedy, and LEGO) for failure recovery and measure the
effects of each method on reconfiguration. We ran the above sce-
nario with interference in 5.28 Ghz to induce failures of links that
use channel 5.26 Ghz. Finally, we also measure the throughput of
each flow without any interference for the ideal case.

Since LEGO considers the effects of local changes on neigh-
boring nodes in its planning, it reconfigures the network settings
to effectively avoid these adverse effects on other nodes. Figure
5(b) shows the average throughput of each flow after network re-
configuration. First, with interference in 5.28 Ghz, links among
nodes 14, 10 and 7 experience link-quality degradation. By using
LEGO, each flow achieves an average 98% of the ideal throughput
after reconfiguration, whereas local re-routing achieves 82% of the
throughput because of its use of detour paths. On the other hand,
the greedy approach causes degradation of neighboring links, while
partially recovering from the original link failures. This is because
one local greedy channel switching (from 5.26 to 5.32 Ghz) re-
quires the neighboring links’ channel (e.g., link between nodes 7
and 2) to change, creating interference to other neighboring nodes’
link (e.g., link between nodes 2 and 4) that use adjacent channels.

4. SUMMARY

We presented localized self-reconfiguration algorithms (LEGO)
for a multi-radio wireless mesh network to autonomously recover
from frequent local link failures. The monitoring brick in LEGO
enables on-line network reconfiguration through an efficient and
accurate network monitoring and real-time failure detection. The
reconfiguration brick allows cooperative reconfiguration among lo-
cal mesh routers during the failure recovery. Finally, LEGO’s plan-
ning brick generates a cost-effective reconfiguration plan that re-
covers from link failures and avoids adverse ripple effects.

LEGO has been implemented on a Linux-based system and eval-
uated on a real-life testbed, demonstrating its improvement of chan-
nel efficiency by up to 92% and the effectiveness in avoiding ripple
effects. Our future work includes a joint optimization of channel
and flow assignments, and measurement study for link-failure char-
acterization in multi-radio WMNss.

S. REFERENCES

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” in Proceedings of
ACM SIGCOMM, Portland, OR, Aug. 2004.

[2] A. Akella, G. Judd, S. Seshan, and P. Steenkiste, “Self-management
in chaotic wireless deployments,” in Proceedings of ACM MobiCom,
Cologne, Germany, Sept. 2005.

[3] M.J. Marcus, “Real time spectrum markets and interruptible

spectrum: New concepts of spectrum use enabled by cognitive

radio,” in Proceedings of IEEE Symposium on New Frontiers in

Dynamic Spectrum Access Networks, Baltimore, MD, Nov. 2005.

M. Alicherry, R. Bhatia, and L. Li, “Joint channel assignment and

routing for throughput optimization in multi-radio wireless mesh

networks,” in Proceedings of ACM MobiCom, Cologne, Germany,

Aug. 2005.

M. Kodialam and T. Nandagopal, “Characterizing the capacity region

in multi-radio multi-channel wireless mesh networks,” in

Proceedings of ACM MobiCom, Cologne, Germany, Aug. 2005.

A. Brzezinski, G. Zussman, and E. Modiano, “Enabling distributed

throughput maximization in wireless mesh networks-a partitioning

approach,” in Proceedings of ACM MobiCom, Los Angeles, CA,

Sept. 2006.

A. Raniwala and T. Chiueh, “Architecture and algorithms for an

IEEE 802.11-based multi-channel wireless mesh network,” in

Proceedings of IEEE InfoCom, Miami, FL, Mar. 2005.

S. Nelakuditi, S. Lee, Y. Yu, J. Wang, Z. Zhong, G. Lu, and Z. Zhang,

“Blacklist-aided forwarding in static multihop wireless networks,” in

Proceedings of IEEE SECON, Santa Clara, CA, Sept. 2005.

S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in

ad hoc networks,” IEEE JSAC, vol. 17, no. 8, pp. 1488-1505, 1999.

[10] K.-H. Kim and K. G. Shin, “On accurate measurement of link quality
in multi-hop wireless mesh networks,” in Proceedings of ACM
MobiCom, Los Angeles, CA, Sept. 2006.

[11] D. L. Mills, “Network time protocol (version 3),” Internet Request
for Comments 1305 (rfc1305.txt), Mar. 1992.

[12] K. Ramanchandran, E. Belding-Royer, and M. Buddhikot, “Interfere-
nce-aware channel assignment in multi-radio wireless mesh net
works,” in Proceedings of IEEE InfoCom, Barcelona, Spain, Apr.
2006.

[13] Soekris Engineering, http://www.soekris.com.

[4

=

[5

—_

[6

=

3
=

[8

[l

[9

—

Acknowledgement

The work reported in this paper was supprted in part by NSF under
Grant CNS 0519498 and Intel Corporation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

