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ABSTRACT
Data centers are often under-utilized due to over-provisioning
as well as time-varying resource demands of typical enter-
prise applications. One approach to increase resource uti-
lization is to consolidate applications in a shared infrastruc-
ture using virtualization. Meeting application-level quality
of service (QoS) goals becomes a challenge in a consolidated
environment as application resource needs differ. Further-
more, for multi-tier applications, the amount of resources
needed to achieve their QoS goals might be different at each
tier and may also depend on availability of resources in other
tiers. In this paper, we develop an adaptive resource con-
trol system that dynamically adjusts the resource shares to
individual tiers in order to meet application-level QoS goals
while achieving high resource utilization in the data cen-
ter. Our control system is developed using classical control
theory, and we used a black-box system modeling approach
to overcome the absence of first principle models for com-
plex enterprise applications and systems. To evaluate our
controllers, we built a testbed simulating a virtual data cen-
ter using Xen virtual machines. We experimented with two
multi-tier applications in this virtual data center: a two-
tier implementation of RUBiS, an online auction site, and
a two-tier Java implementation of TPC-W. Our results in-
dicate that the proposed control system is able to maintain
high resource utilization and meets QoS goals in spite of
varying resource demands from the applications.
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1. INTRODUCTION
Today’s enterprise data centers are designed with a silo-

oriented architecture in mind: each application has its own
dedicated servers, storage and network infrastructure, and a
software stack tailored for the application controls these re-
sources as a whole. Due to the stringent requirements placed
on the enterprise applications and the time-varying demands
that they experience, each application silo is vastly over-
provisioned to meet the application service goals. As a re-
sult, data centers are often under-utilized, while some nodes
may sometimes become heavily-loaded, resulting in service-
level violations due to poor application performance [3]. For
example, Figures 1(a) and 1(b) show the CPU consump-
tion of two nodes in an enterprise data center for a week.
Each node has 6 CPUs, and we can see that both nodes
are utilized under 10% most of the time. We also note that
the maximum CPU usage is much higher than the aver-
age CPU usage. Similar problems are observed in other re-
sources including disk, network and memory. So, if we were
to provision the resources based on either the maximum or
the average demand, the data center may either be grossly
under-utilized or experience poor application-level QoS due
to insufficient resources under peak loads.

Next-generation enterprise data centers are being designed
with a utility computing paradigm in mind, where all hard-
ware resources are pooled into a common shared infrastruc-
ture and applications share these resources as their demands
change over time [12]. In such a shared environment, meet-
ing application-level QoS goals becomes a challenge as each
application consumes different amount of resources. Revisit-
ing the previous scenario of two application servers, Figure
1(c) shows the sum of the CPU consumptions from both
nodes. It is evident that the combined application demand
is well within the capacity of one node at any particular
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(a) CPU consumption of node 1
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(c) Sum of CPU consumptions from both nodes

Figure 1: An example of data center server con-
sumption

time. If we can dynamically allocate the server capacity
to these two applications as their demands change, we can
easily consolidate these two nodes into one server.

Unfortunately, the complex nature of enterprise applica-
tions poses further challenges for this vision. Enterprise ap-
plications typically employ a multi-tier architecture where
distinct components of a single application are placed on
separate servers; for example, three-tier web applications
consist of a web server tier, an application server tier, and
a database server tier, spread across multiple servers. First,
the resource demands placed on these separate tiers vary
from one tier to another; e.g., the web tier may consume
CPU and network bandwidth, whereas the database tier
mainly consumes I/O bandwidth. Second, the resource de-
mands across tiers are dependent and correlated to each
other; for example, a database tier only serves connections
established through the web tier. Finally, resource demands
vary from one application to another; e.g., for the same num-
ber of user sessions served in the web tier, we may be seeing
vastly different resource demand profiles at the database tier
for different applications. As a result, dynamically adjusting
resources to an application not only has to take into account
the local resource demands in a node where a component of
that application is hosted, but also the resource demands of
all the other application components on other nodes.

In this paper, we address the problem of dynamically
controlling resource allocations to individual components of
complex, multi-tier enterprise applications in a shared host-
ing environment. We rely on control theory as the basis
for modeling and designing such a feedback-driven resource
control system. We develop a two-layered controller archi-
tecture that accounts for the dependencies and interactions
among multiple tiers in an application stack when making
resource allocation decisions. The controller is designed to
adaptively adjust to varying workloads so that high resource
utilization and high application-level QoS can be achieved.
Our design employs a utilization controller that controls the
resource allocation for a single application tier and an ar-

biter controller that controls the resource allocations across
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Figure 2: A testbed of two virtualized servers host-
ing two multi-tier applications

multiple application tiers and multiple application stacks
sharing the same infrastructure.

To test our controllers, we have built a testbed for a vir-
tual data center using Xen virtual machines (VMs)[5]. We
encapsulate each tier of an application stack in a virtual
machine and attempt to control the resource allocation at
the VM level. We experimented with two multi-tier appli-
cations in our testbed: a two-tier implementation of RUBiS
[2], an online auction application, and a two-tier Java imple-
mentation of TPC-W [6], an online ecommerce application.
We ran experiments to test our controller under a variety
of workload conditions that put the system in different sce-
narios, where each node hosting multiple virtual machines
is either saturated or unsaturated.

Our experimental results indicate that the feedback con-
trol approach to resource allocation and our two-layered con-
troller design are effective for managing virtualized resources
in a data center such that the hosted applications achieve
good application-level QoS while maintaining high resource
utilization. Also, we were able to provide a certain degree
of QoS differentiation between co-hosted applications when
there is a bottleneck in the shared infrastructure, which is
hard to do under standard OS-level scheduling.

2. PROBLEM STATEMENT
In this paper, we consider an architecture for a virtual

data center where multiple multi-tier applications share a
common pool of server resources, and each tier for each ap-
plication is hosted in a virtual machine. This type of shared
services environment has become of interest to many enter-
prises due to its potential of reducing both infrastructure
and operational cost in a data center.

Figure 2 shows a testbed we built as an example of such an
environment. This setup forms a small but powerful system,
which allows for testing our controller in various scenarios.
To avoid confusion in terminology, we use “WWW VM” and
“DB VM” to refer to the two virtual machines that are used
to host the web server and DB server software, respectively.
We use “WWW node” and “DB node” to refer to the two
physical machines that are used to host the web tier and the
DB tier, respectively.

The high level goal of the resource controller is to guar-
antee application-level QoS as much as possible while in-
creasing resource utilization in a utility computing environ-
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application

ment. More specifically, our controller design has the fol-
lowing three main objectives:

• Guaranteed application-level QoS: When system
resources are shared by multiple multi-tier applica-
tions, it is desirable to maintain performance isolation
between them and to ensure that each application can
achieve its QoS goals. In this paper, this is realized
by dynamically allocating virtualized resources to each
virtual machine hosting an application component and
always providing a safety margin below 100% utiliza-
tion if possible, which generally leads to high through-
put and low response time in the application.

• High resource utilization: It is also desirable to
increase overall utilization of the shared resources so
that more applications can be hosted. One way to
achieve this is to maintain a high enough utilization
in individual virtual machines such that there is more
capacity for hosting other applications. There is a fun-
damental trade-off between this goal and the previous
goal. It is up to the data center operators to choose
an appropriate utilization level to balance these two
objectives.

• QoS differentiation during resource contention:
Whenever a bottleneck is detected in the shared re-
sources, the controller needs to provide a certain level
of QoS differentiation that gives higher priority to more
critical applications. For example, one can aim to
maintain a certain ratio of response times when the
system is overloaded based on service level agreements
of the respective applications.

3. SYSTEM MODELING
In control theory, an object to be controlled is typically

represented as an input-output system, where the inputs
are the control knobs and the outputs are the metrics being
controlled. Control theory mandates that a system model
that characterizes the relationship between the inputs and
the outputs be specified and analyzed before a controller
is designed. For traditional control systems, such models
are often based on first principles. For computer systems,
although there is queueing theory that allows for analysis
of aggregate statistical measures of quantities such as uti-
lization and latency, it may not be fine-grained enough for
run-time control over short time scales, and its assumption
about the arrival process may not be met by certain applica-
tions and systems. Therefore, most prior work on applying
control theory to computer systems employs an empirical
and “black box” approach to system modeling by varying

the inputs in the operating region and observing the corre-
sponding outputs. We adopted this approach in our work.

A feedback control loop requires an actuator to implement
the changes indicated by the control knobs and a sensor
to measure the value of the output variables. We use the
CPU scheduler of the virtual machine monitor (or hyper-
visor) that controls the virtual machines as our actuator.
The hypervisor we used provides an SEDF (Simple Earli-
est Deadline First) scheduler that implements weighted fair
sharing of the CPU capacity between multiple virtual ma-
chines. The scheduler allocates each virtual machine a cer-
tain share of the CPU cycles in a given fixed-length time
interval. Since these shares can be changed at run time,
the scheduler serves as an actuator (A) in our control loop
to effect allocation decisions made by the controller. The
SEDF scheduler can operate in two modes: capped and non-
capped. In the capped (or non-work-conserving) mode, a
virtual machine cannot use more than its share of the to-
tal CPU time in any interval, even if there are idle CPU
cycles available. In contrast, in the non-capped (or work-
conserving) mode, a virtual machine can use extra CPU
time beyond its share if other virtual machines do not need
it. We use the capped mode in our implementation as it pro-
vides better performance isolation between the VMs sharing
the same physical server.

The hypervisor also provides a sensor (S) to measure how
many of the allocated CPU cycles are actually consumed
by each virtual machine in a given period of time. This
gives the resource controller information on utilization lev-
els of individual virtual machines. In addition, we modi-
fied the RUBiS client and the TPC-W client to generate
various application-level QoS metrics, including average re-
sponse time and throughput in a given period.

Before describing our modeling approach, we first define
some terminology. We use “entitlement” (u) to refer to the
CPU share (in percentage of total CPU capacity) allocated
to a virtual machine. We use “consumption” (v) to refer to
the percentage of total CPU capacity actually used by the
virtual machine. The term “VM utilization” (r) is used to
refer to the ratio between consumption and entitlement, i.e.,
r = v/u. For example, if a virtual machine is allocated 40%
of the total CPU and only uses 20% of the total CPU on av-
erage, then its CPU entitlement is 40%, the CPU consump-
tion is 20%, and the VM utilization is 20%/40% = 50%.
Note that all of these terms are defined for a given time
interval.

Figure 3 illustrates an input-output representation of the
system we are controlling, a multi-tier application hosted in
multiple virtual machines. The inputs to the system are the
resource entitlements for the WWW VM (uw) and the DB
VM (ud). The outputs include the utilizations of the WWW
VM (rw) and the DB VM (rd), as well as the application-
level QoS metrics (y) such as response time and through-
put. The incoming workload (d) to the hosted application is
viewed as a “disturbance” to the controlled system because
it is not directly under control while having an impact on the
system outputs. Typically as the workload varies, the input-
output relationship changes accordingly, which increases the
difficulty in modeling as well as controller design.

In the remainder of this section, we first describe our ex-
perimental testbed. Then we describe a set of system mod-
eling experiments we performed to determine a model for
the dynamic behaviour of our multi-tier application under
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Figure 4: Input-output relationship in a two-tier RUBiS application for [500, 700, 900, 1100] clients

various configurations. Our modeling experiments consists
of two parts. First, we model the dynamic behavior of a
single instance of our multi-tier application, and then we
develop a model for the dynamic behavior of two multi-tier
applications sharing the same infrastructure.

3.1 Experimental Testbed
Our experimental testbed consists of five HP Proliant

servers, two of which are used to host two applications. Each
application consists of two tiers, a web server tier and a
database server tier. Apache and MySQL are used as the
web server and database server, respectively, hosted inside
individual virtual machines. Although the grouping of ap-
plication tiers on each physical server can be arbitrary in
principle, we specifically chose the design where one ma-
chine hosts two web servers and the other hosts two DB
servers. This is a natural choice for many consolidated data
centers for potential savings in software licensing costs.

We chose Xen as the virtualization technology and we use
Xen-enabled 2.6 SMP Linux kernel in a stock Fedora 4 dis-
tribution. Each of the server nodes has two processors, 4
GB of RAM, one Gigabit Ethernet interface, and two local
SCSI disks. These hardware resources are shared between
the virtual machines (or domains in Xen terminology) that
host the application components and the management vir-
tual machine (which we will refer as dom0 as in the Xen
terminology). In a few testing scenarios, we restrict the vir-
tual machines hosting the applications to share a designated
CPU and direct the dom0 to use the other CPU to isolate it
from interference.

Two other nodes are used to generate client requests to
the two applications, along with sensors that measure the
client-perceived quality of service such as response time and
throughput. The last node runs a feedback-driven resource

controller that takes as inputs the measured resource utiliza-
tion of each virtual machine and the application-level QoS
metrics, and determines the appropriate resource allocation
to all the virtual machines on a periodic basis. This setup
forms a small but powerful system, which allows for testing
our controller in various scenarios.

We have used two workload generators for our experi-
ments: RUBiS [2], an online auction site benchmark, and
a Java implementation of the TPC-W benchmark [6]. The
RUBiS clients are configured to submit workloads of differ-
ent mixes as well as workloads of time-varying intensity. We
have used a workload mix called the browsing mix that con-
sists primarily of static HTML page requests that are served
by the web server. For more details on the workload gen-
eration using RUBiS see [2]. The TPC-W implementation
also provides various workload mixes. We have used the
shopping mix, which primarily stresses the DB server.

The use of two different workloads allows us to change
overall workload characteristics by varying the intensities of
the individual workloads. In particular, by increasing the
relative intensity of the TPC-W workload we can increase
the load on the database tier (relative to the load on the
web tier), and vice versa. We are now ready to describe our
system modeling experiments in this testbed.

3.2 Modeling single multi-tier application
In this subsection, we would first like to understand how

the outputs in Figure 3 change as we vary the inputs, i.e.,
how the changes in the WWW/DB entitlements impact the
utilization of virtual machines and the QoS metrics.

For this experiment, a single testbed node was used to
host a two-tier implementation of RUBiS. A single RUBiS
client with the browsing mix was used with a certain number
of threads simulating many concurrent users connecting to



the multi-tier application. In our experiment, we pinned the
WWW VM, the DB VM, as well as dom0 to one processor.
We varied the CPU entitlement for the WWW VM from
20% to 70%, in 10% increments. Since the DB consumption
for the browsing mix is usually low, we did not vary the
CPU entitlement for the DB VM and kept it at a constant
of 20%. The remaining CPU capacity was given to dom0. For
example, when uw = 50%, we have ud = 20%, and udom0 =
30%. At each setting, the application was loaded for 300
seconds while the average utilization of the three virtual
machines and the average throughput and response time
experienced by all the users were measured. The experiment
was repeated at different workload intensities, as we varied
the number of threads in the RUBiS client from 500 to 1100,
in 200 increments.

Figures 4(a), 4(b), 4(c) show the CPU consumption by the
WWW VM (vw), the DB VM (vd), and dom0 (vdom0), re-
spectively, as a function of the WWW entitlement (uw). In
each figure, the four different curves correspond to a work-
load intensity of 500, 700, 900, 1100 concurrent clients, re-
spectively, while the straight line shows the CPU entitlement
for the respective virtual machine, serving as a cap on how
much CPU each virtual machine can consume. As we can
see from Figure 4(a), with 500 concurrent clients, the WWW
CPU consumption goes up initially as we increase uw, and
becomes flat after uw exceeds 30%. Figure 4(d) shows the
corresponding utilization for the WWW VM, rw = vw/uw ,
as a function of uw . Note that the utilization exceeds 1 by at
most 5% sometimes, which is within the range of actuation
error and measurement noise for CPU consumption. We
can see that the relationship between the virtual machine
utilization and its entitlement can be approximated by the
following equation:

rw = {
100%, if uw <= V ;
V

uw

, if uw > V,
(1)

where V is the maximum CPU demand for a given workload
intensity. For example, for 500 concurrent clients, V = 30%
approximately. This relationship is similar to what we ob-
served for a single-tier web application as described in [30].
With a workload of 700 concurrent clients and above, the re-
lationship remains similar, except when uw reaches 70%, the
WWW consumption starts to drop. This is because when
uw = 70%, dom0 is only entitled to 10% of the total CPU
capacity (see Figure 4(c)), which is not enough to handle
workloads with higher intensity due to higher I/O overhead.
When dom0 becomes a bottleneck, the web server CPU con-
sumption decreases accordingly. We do not see correlation
between the DB CPU consumption and the DB entitlement
or the workload intensity from Figure 4(b), other than the
fact that the consumption is always below 20%.

Figure 4(e) shows the average offered load and achieved
throughput (in requests/second) as a function of the WWW
entitlement for different workload intensities. We observe
that the offered load is not a constant even for a fixed
workload intensity. This is because RUBiS is designed as
a closed-loop client where each thread waits for a request
to be completed before moving on to the next request. As
a result, a varying amount of load is offered depending on
how responsive the application is. For all workload inten-
sities that were tested, an entitlement of 20% is too small
for the web server, and thus the application responds slowly

DB node unsat. DB node sat.
WWW node unsat. WU-DU WU-DS
WWW node sat. WS-DU WS-DS

Table 1: Four scenarios for two multi-tier applica-
tions

causing the offered load to drop below its maximum. As
the WWW entitlement increases, the offered load increases
as well because the multi-tier system is getting more work
done and responding more quickly. The offered load finally
reaches a constant when the web server is getting more than
its need. Similarly, as the WWW entitlement is increased,
the throughput increases initially and then reaches a con-
stant load. For a larger number of clients (700 and above),
we see a similar drop at uw = 70% in both the offered load
and the throughput because dom0 starts to become a bot-
tleneck as discussed earlier. We also see a significant loss
(requests not completed) with a larger number of clients.

Figure 4(f) shows the average response time as a func-
tion of the WWW entitlement, validating our observation on
the throughput-entitlement relationship. As uw increases,
response time decreases initially reaching a minimum and
then rises again at 70% entitlement because of dom0 not
getting enough CPU. We also note that the response time
is roughly inversely proportional to the throughput because
of the closed-loop nature of the RUBiS client.

3.3 Modeling co-hosted multi-tier applications
Now we move on to consider a model for two multi-tier

applications sharing the same infrastructure, as illustrated
in Figure 2. The two applications may be driven with dif-
ferent workload mixes and intensities that can change over
time, resulting in different and likely time-varying resource
demands for the individual virtual machines hosting differ-
ent application components. At any given time, either the
WWW node or the DB node may become saturated, mean-
ing the total CPU demand from both virtual machines ex-
ceeds the capacity of the node, or they may be saturated at
the same time. If we use W to represent the WWW node, D
to represent the DB node, S to represent saturated, and U
to represent unsaturated, then the four cases in Table 1 cap-
ture all the scenarios that may occur in the shared hosting
environment.

The input-output model in Figure 3 needs to be aug-
mented to capture the inputs and outputs for both multi-
tier applications. In particular, it will have four inputs (uw1,
ud1, uw2, ud2) to represent the CPU entitlement for all the
four virtual machines. It will also have four outputs (rw1,
rd1, rw2, rd2) to represent the utilization of the four virtual
machines, and two more outputs (y1, y2) to represent the
end-to-end QoS metrics for the two applications. We also
need a relative metric to enable differentiated service to the
two applications when at least one of the nodes is saturated
and both applications are contending for resources. Here we
define a QoS differentiation metric as follows:

yratio =
y1

y1 + y2

. (2)

Note that we use a normalized ratio as opposed to a direct
ratio to avoid numerical ill-conditioning. The QoS metric y
can be average response time, throughput, or loss as mea-
sured in the number of connections that are reset due to
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Figure 5: Loss ratio and response time ratio for two RUBiS applications in the WS-DU scenario

timeouts, etc. in a given time interval.
In the following subsections, we explain the relationship

between the inputs (entitlement) and the outputs (VM uti-
lization and QoS) in all the four scenarios. We used two
RUBiS instances in WU-DU, WS-DU cases and two TPC-
W instances in WU-DS case, because the TPC-W clients
stress the database more than the RUBiS clients.

3.3.1 WU-DU case
When neither the WWW node nor the DB node is sat-

urated, the two applications can have access to the shared
resource as much as they need to. Therefore they can be
viewed as two independent applications as if they each had
their own dedicated nodes. In this case, the model we
showed in Section 3.2 is applicable to each application and
no QoS differentiation metric is necessary. As a result, we
can have a controller that controls the resource entitlements
for the two applications independently.

3.3.2 WS-DU case
This is the scenario where the WWW node is saturated

but the DB node is unsaturated. In this case, the CPU
capacity of the WWW node cannot satisfy the needs of the
two WWW VMs simultaneously. Arbitration is required to
decide how much CPU capacity each WWW VM is entitled
to based on a given QoS differentiation metric. We can
either use a loss ratio or a response time ratio as defined in
equation (2) as the differentiation metric.

Figures 5(a) and 5(b) show the average loss (number of
connections reset per second) and average response time
(seconds) for two RUBiS applications as a function of the
WWW entitlement (percentage) for application 1 (uw1).
Note that uw2 = 1− uw1. Figure 5(c) shows the normalized
loss ratio and response time ratio between the two applica-
tions as a function of uw1.

As we can see from Figure 5(a), as the first WWW en-
titlement increases, the loss experienced by clients of both
applications first increases and then decreases, resulting in a
non-monotonic relationship between the loss ratio and uw1

as evident from Figure 5(c). This is again due to the closed-
loop nature of the RUBiS client where the offered load is
reduced as either of the application components becomes a
bottleneck.

Figure 5(b) shows a different behavior for response time,
where the response time for application 1 goes up and the
response time for application 2 goes down, when uw1 is in-
creased and uw2 is reduced, showing a monotonic relation-
ship between the response time and the WWW entitlement,
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Figure 6: Response time ratio for two TPC-W ap-
plications in the WU-DS scenario

when the WWW VM is a bottleneck and the DB VM is not.
As a result, the response ratio also shows a monotonic rela-
tionship with uw1 as indicated in Figure 5(c). Furthermore,
the relationship is close to linear. Simple linear regression
shows the following relationship,

∆yratio = −1.65∆uw1 . (3)

This means a simple linear controller can be designed to
find the right value of uw1 (and uw2 accordingly) to achieve
a given target for the response time ratio.

3.3.3 WU-DS case
In this scenario, the WWW node is unsaturated but the

DB node is saturated. We use TPC-W as the hosted appli-
cation since it has a higher DB load than what RUBiS has.
We use a total capacity of 40% on the DB node to force it
to be saturated. (The reason why we cannot make the DB
node 100% utilized is due to anomalites in the Xen SEDF
scheduler.) This means, ud2 = 40% − ud1.

The relationship between the response time ratio and ud1

is similar to the WS-DU case, as shown in Figure 6. Again
the relationship can be approximated using the following
linear equation:

∆yratio = −2.75∆ud1. (4)

Again, a simple linear controller can be designed to man-
age the response time ratio between the two applications.

3.3.4 WS-DS case



Figure 7: A two-layered controller architecture

We were unable to create this scenario in our testbed due
to anomalies in the Xen SEDF scheduler. The problem is
pronounced with the capping option in scheduling (which
provides us with an actuator). Whenever capping is enabled,
we always ran into very low CPU consumption on WWW
VMs which resulted in low consumption in the DB VMs
as well. After various experiments, we concluded that the
problem lies in how the Xen scheduler handles capping in
the context of I/O-intensive applications. We are currently
investigating this further.

4. CONTROLLER DESIGN
In order to achieve the controller objectives outlined in

Section 3.4, we designed a two-layered architecture for the
controller, as illustrated in Figure 7.

The first layer consists of four independent controllers,
each of which can be viewed as an “agent” for each of the
four virtual machines, w1, w2, d1, d2. The role of these
agents is to compute the required CPU entitlement (ureq)
for each virtual machine such that, 1) the hosted application
component gets enough resource so that it does not become
a bottleneck in the multi-tier application; 2) the virtual ma-
chine maintains a relatively high resource utilization. In our
design, the way to achieve these goals is to maintain a spec-
ified level of utilization in each virtual machine. Therefore,
the first layer controllers are referred to as utilization con-

trollers (UCs). We describe how the utilization controllers
work in Section 4.1.

The second layer controller works on behalf of the shared
nodes and serves as an “arbiter” that determines whether
the requested CPU entitlements (ureq) for all of the virtual
machines can be satisfied, and if not, decides the final CPU
entitlement (u) for each VM based on a specified QoS differ-
entiation metric, such as the response time ratio discussed
earlier. It is hence referred to as the arbiter controller (AC)
and will be described in Section 4.2.

4.1 Utilization controller
Resource utilization is commonly used by data center op-

erators as a proxy for application performance because of
the monotonic relationship between the two and the fact

Adaptive 

Controller
Container

rref e u

v

r
d

Workload

−

Figure 8: Adaptive utilization controller

that utilizaiton is easily measurable at the OS level. Take re-
sponse time as an example. Simple queuing theory indicates
that, when CPU is the bottleneck resource, the response
time increases sharply as the CPU utilization gets close to
100%. Therefore, most operators prefer to maintain their
server utilization below 100% with a certain safety margin
to ensure good application performance. At the same time,
utilization should be high enough in order to maintain high
resource efficiency in the data center. In our design, we
choose 80% as the desired utilization level for the individual
VMs. This is determined by examining Figures 4(d), 4(e)
and 4(f) together, which show that both the response time
and the throughput are at an acceptable level when the uti-
lization of the bottleneck tier, the WWW VM, stays below
this target.

We have developed an adaptive integral controller in [30]
for dynamic sizing of a virtual machine based on its con-
sumption such that the relative utilization of the VM can
be maintained in spite of the changing demand. The block
diagram for the controller is shown in Figure 8. At the
beginning of the control interval k, the controller takes as
inputs the desired utilization (rref ) and the measured con-
sumption during the previous interval (v(k − 1)). The con-
troller computes the utilization of the VM (r) as r(k − 1) =
v(k − 1)/u(k − 1) and the tracking error (e) as e(k − 1) =
rref − r(k− 1), and decides the resource entitlement (u) for
the VM for the next interval.

This controller is applied in our work as the utilization
controllers in the first layer of our controller architecture.
For each VM, the UC calculates the required CPU entitle-
ment (ureq) using the following control law:

ureq(k) = ureq(k − 1) − K(k)e(k − 1). (5)

The integral gain parameter K(k) determines how aggres-
sive the controller is in correcting the observed error. The
value of K(k) adapts automatically to the varying workload
by calculating K(k) = λ ∗ v(k − 1)/rref , where λ is a tun-
able constant. Compared to a standard integral controller
that has a fixed K value, our adaptive integral controller
with a self-tuning gain makes a better tradeoff between sta-
bility and efficiency of the closed-loop system. In addition,
it has been proven that this controller is globally stable if
λ < 1/rref [30].

4.2 Arbiter controller
The four utilization controllers submit the requested CPU

entitlements, ureqw1, ureqw2, ureqd1, and ureqd2, to the ar-
biter controller as shown in Figure 7. There are four possible
scenarios the arbiter controller needs to deal with, as shown
in Table 1 in the previous section. Next, we describe the
controller logic for each of the scenarios.



• WU-DU case (ureqw1 + ureqw2 ≤ 1 & ureqd1 +
ureqd2 ≤ 1): In this case, all of the requested CPU en-
titlements can be satisfied. Therefore, the final CPU
entitlements are, ui = ureqi, i ∈ {w1, w2, d1, d2}.

• WS-DU case (ureqw1+ureqw2 > 1 & ureqd1+ureqd2 ≤
1): In this case, the DB node has enough CPU capac-
ity to satisfy both DB VMs, but the WWW node does
not have sufficient capacity. Therefore, the arbiter
controller grants the DB VMs their requested entitle-
ments, i.e., ud1 = ureqd1, ud2 = ureqd2. At the same
time, another control algorithm is needed to compute
the appropriate values for uw1 (and uw2 = 1 − uw1)
such that the QoS ratio yratio is maintained at a spec-
ified level. Here we use a simple integral controller to
perform this task. A regular integral controller im-
plements a control law similar to the one in Eq. (5),
except with a constant gain value K, which determines
the aggressiveness of the controller in its corrective ac-
tions. We use a fixed gain instead of a variable one in
this case because the relationship between yratio and
uw1 is linear, as indicated by the empirical model in
Eq. (3). As a result, we can show that this controller
is stable if K < 1/1.65 = 0.61. We chose K = 0.1 in
our implementation to provide some stability margin
in face of model uncertainty and measurement noise.

• WU-DS case (ureqw1+ureqw2 ≤ 1 & ureqd1+ureqd2 >
1): This case is similar to the WS-DU case, except
that now it is the DB node that does not have enough
capacity to satisfy both DB VMs. Therefore, we let
uw1 = ureqw1, uw2 = ureqw2, and a similar inte-
gral controller is implemented to compute ud1 (and
ud2 = 1 − ud1) to maintain the same QoS ratio. A
similar analysis shows that we need to have an inte-
gral gain K < 1/2.75 = 0.36 for stability. Similarly, we
chose K = 0.1 for better robustness of the controller.

• WS-DS case (ureqw1+ureqw2 > 1 & ureqd1+ureqd2 >
1): This occurs when both the WWW and DB nodes
are saturated. In principle, the arbiter controller needs
to compute both uw1 and ud1 in order to maintain the
desired QoS ratio. However, we could not produce this
scenario in our experiments as mentioned earlier and
therefore, will not discuss it further.

The QoS ratio is the key metric that drives the arbiter
controller. We have discussed the properties of both the loss
ratio and the response time (RT) ratio in Section 4. In the
next section, we will show experimental results using both
metrics, and validate that the RT ratio is a more sensible
metric for QoS differentiation between two applications.

5. EXPERIMENTAL RESULTS
This section presents experimental results that validate

the effectiveness of our controller design in a variety of sce-
narios.

5.1 Utilization controller validation
We first need to validate the behavior of the utilization

controllers to move forward with more complex experiments.
The goal is to validate that when the two nodes are not
saturated, 1) the utilization controllers achieve a set tar-
get utilization for the individual virtual machines; 2) both
applications have QoS metrics that are satisfactory.

In this experiment, two RUBiS clients with 300 threads
each were used to submit requests under a browsing mix. In
the middle of the run, 300 more threads were added to the
first client for a duration of 300 seconds. Initially, the two
WWW VMs were each given a 50% CPU entitlement, and
the two DB VMs were each given a 20% entitlement. Then
the four utilization controllers adjusted the entitlement for
each VM every 10 seconds, using a target utilization of 80%.

Figures 9(a) and 9(c) show the measured CPU consump-
tion (v) of all the VMs, and how the entitlement (u) for each
VM was adjusted by the utilization controller such that a
roughly 20% buffer was always maintained above the con-
sumption. It is clear that the utilization controller can auto-
matically allocate higher CPU capacity to the first WWW
VM when its user demand was increased.

Figures 9(b) and 9(d) show the resulting throughput (re-
quests/second) and response time (seconds) for the two ap-
plications. Both applications were shown to achieve their
maximum throughput and a low response time in spite of
changes in resource demands throughout the run, except
during the transient period.

5.2 Arbiter controller - WS-DU scenario
In this scenario, the WWW node is saturated, but the DB

node is not saturated. Based on the two-layered controller
design, the two utilization controllers for the two DB VMs
are used to compute CPU entitlements on the DB node (ud1

and ud2), while the arbiter controller is used to determine
entitlements for the two WWW VMs, where uw1 + uw2 =
1. We performed a set of experiments to understand the
behavior of the arbiter controller with different QoS ratio
metrics. Again we used two RUBiS clients under a browsing
mix.

5.2.1 Experiment with loss ratio
First, we drive the arbiter controller using a target for

the ratio of loss seen by both clients. Loss is defined as the
number of connections that are dropped after five retries.
Intuitively it looks like a good metric capturing the level of
performance loss when at least one component of the multi-
tier application is overloaded.

In this experiment, we used 1000 threads on each client so
that the total required CPU entitlement, ureqw1 +ureqw2 >
1, causing the WWW node to become saturated. As a result,
both applications may experience some performance degra-
dation. We set the target loss ratio to be 1:1, or the target
for the normalized ratio, yratio = y1

y1+y2

, at 50%, where the

loss (yi) is normalized with respect to the offered load for
application i. The two WWW VMs were given a CPU enti-
tlement of 70% and 30% initially. The desirable behavior of
the arbiter controller is that it should eventually (after tran-
sients) distribute the WWW node’s CPU capacity equally
between the two WWW VMs because the resource demands
from the two hosted applications are identical.

Figure 10(a) shows the measured CPU consumption (vw1

and vw2) and the CPU entitlement (uw1 and uw2) deter-
mined by the arbiter controller for the two WWW VMs.
Figures 10(b) and 10(c) show the resulting throughput and
response time for the two applications. Figures 10(d) and
10(e) show the the normalized loss ratio (yratio) and abso-
lute loss (requests/second) seen by the two clients. As we
can see, although the normalized loss ratio was maintained
around 50%, as time progressed, the second WWW VM was
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Figure 9: Utilization controller results in the WU-DU case

actually receiving higher and higher CPU entitlement over
time. As a result, application 2 was able to deliver much
better throughput and response time compared to applica-
tion 1.

This behavior is highly undesirable. It can be explained by
revisiting Figure 5(c) in Section 3. Because the relationship
between the loss ratio and the entitlement is not monotonic,
any given target loss ratio can either be unachievable (if too
high or too low), or may have more than one equilibrium.
This means that a loss ratio of 1:1 can be achieved not only
when uw1 = uw2, but also when uw1 6= uw2. This again is
due to the closed-loop nature of the RUBiS client. A slight
disturbance in the CPU entitlement can cause one client to
submit less load thus getting less throughput. However, the
normalized loss seen by this client may still be equal to that
of the other client, resulting in the loss ratio maintained at
1:1, and the controller cannot see the erratic behavior. This
problem can be fixed by using the response time ratio as the
QoS differentiation metric.

5.2.2 Experiments with RT ratio
Figures 11(a), 11(b), 11(c), 11(d), 11(e) show the results

using the RT ratio as the driving metric for the arbiter con-
troller. The remaining test conditions were kept the same,
and an RT ratio of 1:1 was used. Here, we see very de-
sirable behavior where the arbiter controller grants equal
entitlements to the CPU capacity between the two WWW
VMs. Consequently, the two multi-tier applications achieve
fairly comparable performance in terms of throughput and
response time. Comparison between this result and the re-
sult from the previous experiment shows that the RT ratio is
a fairer metric than the loss ratio to be used for QoS differ-
entiation among co-hosted applications. One natural ques-
tion around this subject is, why not use a throughput ratio
instead? The answer is two-fold. First, for a closed-loop
client, response time is on average inversely proportional to
throughput when the server is overloaded. Therefore, an RT
ratio implicitly determines a throughput ratio. Second, the
absolute throughput is upper-bounded by the offered load.
Therefore, it is not sensible to enforce an arbitrary through-
put ratio between two applications if they have drastically
different offered loads.

We repeated the experiment using RT ratio under differ-

ent workload conditions, including workloads with different
intensities and time-varying workloads, to make sure that
the controller is behaving properly. Time-varying workloads
can be realized by starting and stopping different numbers
of threads in either of the clients over time. Figures 12(a),
12(b), 12(c), 12(d), and 12(e) show the the behavior of the
controller in an experiment where both clients started with
500 threads each, and client 2 jumped to 1000 threads at
the 20th control interval and dropped back to 500 threads
later. The target for the normalized RT ratio is set to 70%.
When both workloads were at 500 threads (before sample
20 and after sample 95), only the utilization controllers were
used because neither node was saturated. Note that in Fig-
ure 12(d), the RT ratio is shown at exactly 70% for the
initial period. This is not from measurement. Rather it is
an indication of the fact that the arbiter controller was not
used and the target RT ratio was not enforced during these
two periods. The arbiter controller was only triggered when
the demand from client 2 was suddenly increased and the
WWW node became saturated. During this period of time,
the arbiter controller was able to maintain the normalized
RT ratio at the target. Since the target gives priority to ap-
plication 2, it was able to achieve lower response time and
higher throughput than application 1.

For comparison, we ran the experiment under similar time-
varying workload without using a controller. The results are
shown in Figures 13(a), 13(b), 13(c), 13(d), and 13(e). In
this case, no resource entitlements are enforced. This is done
by using the non-capped mode of the SEDF scheduler in
Xen, which allows both VMs to use as much CPU as needed
until the node is saturated. As we can see, the two WWW
VMs consumed roughly equal amount of CPU capacity on
the WWW node when both clients had 500 threads. The
situation on the DB node was similar. As a result, both
applications achieved comparable throughput and response
time during this period of time, and the normalized RT ra-
tio is kept around 50% on average. However, when client
2 jumped to 1000 threads at the 15th interval, the resource
demand for application 2 suddenly increased. This led to an
increase in CPU consumption in both WWW VM 2 and DB
VM 2, and an increase in both the throughput and response
time for this application. Consequently, the normalized RT
ratio becomes approximately 10%, as shown in Figure 13(d).
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Figure 10: Loss ratio experiment results
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Figure 11: RT ratio experiment results
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Figure 12: RT ratio experiments - time-varying
workload, with controller
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Figure 13: RT ratio experiments - time-varying
workload, without controller



The exact value will be different for different combinations
of workload intensities. Because we do not have control over
how CPU capacity is scheduled inside the kernel, we cannot
enforce a specific level of differentiation between the two
applications.

5.3 Arbiter controller - WU-DS scenario
This is the case where the WWW node is un-saturated but

the DB node is saturated. Similarly, the arbiter controller is
needed to determine the CPU entitlements for the two DB
VMs. We tested our controller by using two instances of the
TPC-W benchmark as the two applications. A shopping
mix was used to generate the client requests in order to
place more stress on the DB tier. Since the total DB load
does not go up to 100%, we capped the sum of ud1 and ud2

at 40% in order to create the WU-DS scenario for testing
our controller. Again, a target RT ratio of 70% was used.

We tested the controller against different workload com-
binations. An example is shown in Figures 14(a), 14(b),
and 14(c) where two TPC-W clients each with 300 threads
were used. The arbiter controller was able to maintain the
normalized RT ratio around the target, but with more oscil-
lation than was present in the WS-DU case. This can be ex-
plained by inspecting the measured CPU consumption and
response time over time. Both metrics show a great deal of
variation, indicating the greater burstiness of a DB-intensive
workload compared to a web-intensive workload. It is also
shown in the larger scaling factor in Eq. (4) compared to
Eq. (3), indicating a higher sensitivity of the response time
with respect to a small change in the entitlement. In spite
of the noise in the various metrics, application 2 did receive
better QoS from the system in general, as driven by the RT
ratio for service differentiation.

Again, for comparison, we ran the experiment under the
same workload condition without using a controller. The
results are shown in Figures 15(a), 15(b), and 15(c). As
we can see, the CPU capacity of the DB node was shared
roughly equally between the two DB VMs resulting in com-
parable average response time for the two applications. Fig-
ure 15(c) shows the resulting RT ratio oscillating around an
average value of 50%. This result re-confirms that, without a
feedback-driven resource controller, we cannot provide QoS
differentiation between the two applications at a specified
level when the system is overloaded.

6. RELATED WORK
Control theory has recently been applied to computer sys-

tems for resource management and performance control [10,
14, 13, 17]. The application areas include web server per-
formance guaranteees[1], dynamic adjustment of the cache
size for multiple request classes [22], guaranteed relative de-
lays in web servers by connection scheduling [21], CPU and
memory utilization control in web servers [9], and to adjust
the resource demands of virtual machines based on resource
availability [31]. We focus on controlling the allocation of
system resources to application components given an appli-
cation’s resource demand. Whereas prior work focused on
one single-tier application only and required modifications
to the application, we consider multiple multi-tier applica-
tions and do not require any application modifications as we
only use sensors and actuators provided in the virtualization
layer along with external application QoS sensors.

Dynamic resource management in a cluster environment
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Figure 14: Database heavy load - with controller
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has been studied with goals such as QoS awareness, perfor-
mance isolation and higher resource utilization. It is for-
mulated as an online optimization problem in [4] using pe-
riodic utilization measurements and resource allocation is
implemented via request distribution. Resource provision-
ing for large clusters hosting multiple services is modeled
as a “bidding” process in order to save energy in [8]. The
active server set of each service is dynamically resized adapt-
ing to the offered load. In [25], an integrated framework is
proposed combining a cluster-level load balancer and node-
level class-aware scheduler to achieve both overall system
efficiency and individual response time goals. In [19], re-
source allocation is formulated as a two-dimensional pack-
ing problem, enforced through dynamic application instance
placement in response to varying resource demands. In our
work, we study more fine-grained dynamic resource alloca-
tion in a virtualized server environment where application
components are hosted inside individual virtual machines as
opposed to individual nodes in a server cluster, and resource
allocation is implemented through a fair share scheduler at
the hypervisor level.

There are other efforts on dynamic resource allocation in
shared data centers. In [7], time series analysis techniques
are applied to predict workload parameters, and allocation
involves solving a constrained nonlinear optimization prob-
lem based on estimation of resource requirements. A recent
study is described in [28] for dynamic provisioning of multi-
tier web applications. With the estimation of the demand in
each tier, the number of servers are dynamically adjusted us-
ing a combination of predictive and reactive algorithms. In
our work, the kernel scheduler in the virtual machine moni-
tor is used as the actuator for our resource control system.
The resource demand of a workload is assumed to be time-
varying which may or may not be predictable. Dynamic re-
source allocation is done with tunable time granularity based
on the measured VM utilization and application-level QoS
metrics. No estimation is required for the workload demand,
and the controller adapts to the changing demand from the
workload automatically. Moreover, our controller can deal
with resource contention between multiple applications and
achieve a desired level of performance differentiation.

In our prior work, we have developed a suite of dynamic
allocation techniques for virtualized servers, including adap-
tive control of resource allocation under overload conditions
[20], nonlinear adaptive control for dealing with nonlinearity
and bimodal behavior of the system [30], and nested con-
trol for a better tradeoff between resource utilization and
application-level performance [32]. These approaches are
suitable for applications that are hosted inside a single vir-
tual machine. In this paper, we present a dynamic resource
allocation system for multi-tier applications with individual
components distributed in different virtual machines.

Traditional work on admission control to prevent comput-
ing systems from being overloaded has focused mostly on
web servers. Recent work has focused on multi-tier web ap-
plications. A “gatekeeper” proxy developed in [11] accepts
requests based on both online measurements of service times
and offline capacity estimation for web sites with dynamic
content. Control theory is applied in [16] for the design of a
self-tuning admission controller for 3-tier web sites. In [18],
a self-tuning adaptive controller is developed for admission
control in storage systems based on online estimation of the
relationship between the admitted load and the achieved

performance. These admission control schemes are comple-
mentary to the dynamic allocation approach we describe in
this paper, because the former shapes the resource demand
into a server system whereas the latter adjusts the supply
of resources for handling the demand.

Proportional share schedulers allow reserving CPU capac-
ity for applications [15, 23, 29]. While these can enforce the
desired CPU shares, our controller also dynamically adjusts
these share values based on application-level QoS metrics.
It is similar to the feedback controller in [26] that allocates
CPU to threads based on an estimate of thread’s progress,
but our controller operates at a much higher layer based on
end-to-end QoS metrics that span multiple tiers in a given
application. Others studied resource overbooking in shared
cluster environments leveraging application profiles [27] and
calendar patterns (e.g., time of day, day of week) [24] to
provide weak, statistical performance guarantees. These ap-
proaches require application demand profiles to be relatively
stable and do not provide performance differentiation under
overload situations. In contrast, our controller can cope with
workload variations, even short term unanticipated changes
and provides performance differentiation.

7. CONCLUSIONS AND FURTHER WORK
In this work, we built a testbed for a data center host-

ing multiple multi-tier applications using virtualization. We
have developed a two-layered controller using classical con-
trol theory. The controller algorithms were designed based
on input-output models inferred from empirical data using
a black-box approach. The controller was tested in vari-
ous scenarios including stressing the web and the database
tier separately. The experimental results confirmed that our
controller design achieves high utilization of the data center
while meeting application-level QoS goals. Moreover, it is
able to provide a specified level of QoS differentiation be-
tween applications under overload conditions, which cannot
be obtained under standard OS-level scheduling that is not
QoS-driven.

We still see space for improvement in controller perfor-
mance, in terms of better stability and responsiveness, espe-
cially for DB intensive workloads. In this paper, only static
models were used to capture the input-output relationship
in the steady state, which simplifies both the modeling pro-
cess and the controller design. In future work, we would like
to explore the use of a dynamic model that captures more
transient behavior of the system and use it as the basis for
better controller design. We also want to explore the affect
of VM migration on our controller.

There is a lot more work to be done in this area. We would
like to extend our work to control sharing of memory, disk
I/O, and network resources. These resources pose unique
challenges as sharing I/O resources usually involves sharing
of related buffers in the kernel as well. Currently, the virtu-
alization technologies do a poor job of providing control of
sharing and isolation of I/O resources. With the advent of
I/O virtualization technologies from CPU vendors, this may
change and we would like to apply our algorithms to take
full advantage of the new hardware capabilities.

We also discovered various problems with Xen virtualiza-
tion technology while performing this work. For example, we
encountered certain anomalies with the Xen scheduler while
scheduling highly-loaded DB-intensive applications. This is
the main reason why we were unable to create the WS-DS



scenario where both the WWW and DB nodes are satu-
rated. We would like to investigate this further and propose
changes to the scheduler such that it not only provides bet-
ter accuracy but also becomes more amenable to resource
control.
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