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Abstract

A distributed real-time control system is modeled by au-
tomatically generating a virtual execution platform and in-
tegrating it with an abstract run-time model. This allows us
to capture the dynamic effects of non-deterministic behavior
of the underlying hardware and real-time operating system
(RTOS), which cannot be accurately evaluated by existing
static approaches. Our framework has been implemented
and integrated with the existing AIRES toolkit. The con-
struction of a virtual execution platform for a control appli-
cation is observed to take 422ms. The integrated platform
and control application consists of 56 software components
connected by 1280 links for data exchanges and precedence
relations, and the constructed platform executes the appli-
cation at a normalized speed—defined as the ratio of simu-
lation time to real time — 10.6. Our preliminary evaluation
has demonstrated the virtual execution platform’s capabil-
ity of providing accurate run-time information at a reason-
able time-cost.

1. Introduction

Embedded software for large-scale distributed real-time
systems, such as automotive control or avionics systems, is
complex and must deal with many interacting control func-
tions. The correctness of such systems depends not only
on the results of functional computation, but also on ‘non-
functional’ properties, such as response time and resource
consumption. The need for accounting for these properties
complicates the development of embedded software.

To develop real-time embedded software that meets the
non-functional requirements, it is essential to characterize
the available software components in terms of their required
properties, such as timing and resource consumption. It
becomes much more difficult to meet system-level require-
ments when the components of a large-scale real-time em-
bedded system must be (i) distributed over multiple proces-
sors connected by a communication network, and (ii) inte-
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grated to meet both the functional and non-functional re-
quirements.

In our previous work on AIRES (Automatic Integration
of Reusable Embedded Software) [1], we developed and
implemented a suite of methods and tools for this purpose.
As shown in Fig. 1, the application structure and its non-
functional requirements are captured in a software model,
and the computation and communication resource informa-
tion is captured in a platform model. These models are
then combined to construct an application run-time model,
which expresses the run-time properties of the application.
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Figure 1: Design and verification of distributed real-time
systems with the AIRES toolkit

An important issue that has not been addressed be-
fore is the run-time properties of the execution platform
that includes the underlying support software (i.e., RTOS)
and hardware (on-board processors and communication de-
vices). Although the application run-time model in Fig. 1
contains all of the static information needed for a run-
time analysis at design-time, the non-deterministic behavior
caused by the execution platform cannot be captured well in
the run-time model. To ensure the non-functional require-
ments to be met, however, a system-level run-time analysis
must include this non-deterministic behavior as well as the
usually-assumed/available static information.

The traditional method for meeting the non-functional
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constraints has been to address them, one-by-one, with
code-level optimization. However, the need to meet mul-
tiple constraints in a large-scale distributed real-time con-
trol system becomes a high-level decision problem (on de-
sign alternatives) during the software component composi-
tion process. It is impractical to mock up a complete system
at an early design stage, and capture more accurate run-time
behaviors in order to verify the system-level requirements
for each design alternative. A more practical (hence desir-
able) approach is to automatically generate a virtual execu-
tion platform and then integrate it with a given application
run-time model that runs on a system-level simulator to ob-
tain accurate run-time performance and behavior.

In this paper, we present a novel method for accurate and
efficient generation of a virtual execution platform which
can be used for design of distributed real-time embedded
systems. This will enable high-level design decisions to be
made on the basis of the results of integrating an application
run-time model with its execution platform. We have devel-
oped a framework for generating a virtual execution plat-
form and running the application on that platform to col-
lect accurate run-time performance data. This framework
has been implemented in, and integrated with, the existing
AIRES toolkit. Our preliminary evaluation results on two
control system applications have shown that the framework
can provide accurate run-time information at a reasonable
time-cost.

The rest of this paper is organized as follows. Sec-
tion 2 presents the system model and assumptions to be
used. Section 3 describes the architecture of an execution
platform and its integration with the application run-time
model. Section 4 presents the results of our preliminary
evaluation based on a simple control system. Section 5 dis-
cusses the related work, and the paper concludes with Sec-
tion 6.

2. System Model and Assumptions

We consider a typical distributed control system that
consists of sensing (input), processing (computation), and
actuation (output) components, as shown in Fig. 2. The
information processing dependencies among these compo-
nents impose precedence constraints between sensing and
processing components, and between processing and actua-
tion components. Moreover, the resource demands of these
software components, such as total CPU time and network
bandwidth, should not exceed the capacity of the execution
platform.

2.1. Hardware

It is assumed that the computation and communication
resources to be provided by the hardware—including the
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Figure 2: An example distributed automotive control sys-
tem

number of processors, a communication network, and the
type of devices to be used—have already been determined
during a previous design phase, by considering constraints,
such as budget, space and weight limitations.

Each controller unit is configured as a set of hardware
components to support an RTOS and external communica-
tions. Its minimum configuration includes an interrupt con-
troller, one timer clock (typically generated by a crystal os-
cillator), and one or more communication devices, together
with a CPU and memory. The interrupt controller handles
external interrupts according to priority to cope with exter-
nal events or data arriving from software components. A
system-wide timer has the highest priority of all interrupt
sources. All communication devices are assumed to have
memory-mapped I/O and generate an interrupt when new
data becomes available.

2.2. RTOS

An RTOS has often been considered as a set of ser-
vices incurring a constant overhead manifested as a context-
switch time or an inter-process communication delay, as
shown in Fig. 3a. This is the usual way of modeling an
RTOS in most embedded software design methods because
it allows the use of existing real-time analysis techniques
or formal methods for the verification of timing constraints
[10].

This traditional constant-overhead RTOS model ignores
interleaved, dependent executions of the RTOS and appli-
cations. Since it does not capture the dynamic behavior
of an RTOS, it is difficult to obtain accurate performance
data of the underlying execution platform for use in the run-
time analysis. In our system model, however, RTOS service
overheads are collected via accurate simulation based on the
integration of the application and the RTOS. For example,
the run-time behavior of CPU scheduling can be captured
at a hardware level with an interrupt handler for the OS tick
timer. We can also capture the dynamic behavior of the
same functionality in the CPU scheduling, which may incur
different overheads, such as ¢; and c9 in Fig. 3b.

An RTOS provides a set of basic services, such as
scheduling, inter-process communication, interrupt, and
timing services. The scheduling policy is assumed to be
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priority-based and preemptive, as commonly adopted in
commercial off-the-shelf RTOSes. We also assume that no
priority inversion occurs at run-time, implying an appro-
priate design of the application run-time model to prevent
priority inversions, or the RTOS’s support of dynamic pri-
ority assignment to handle the priority inversion problem
[3]. The IPC (inter-process communication) service, imple-
mented with such primitives as mailboxes and semaphores,
is assumed to support both blocking and non-blocking com-
munications. We also assume that the interrupt service sup-
ports nesting to handle prioritized external interrupts, and
the timing service has fine-granularity.

2.3. Applications

Each control process—a sequence of sensing, process-
ing, and actuating—in a system is referred to as a frans-
action in our system model, and consists of software com-
ponents, their interactions and non-functional requirements.
The application software as a whole can then be represented
as a set of concurrent transactions, as shown in Fig. 4a,
and captured in a directed acyclic graph where each node
represents a software component and each link represents a
data exchange or precedence constraint between two com-
ponents.

We assume that every component is associated with a
worst-case execution time (WCET) as its computation re-
source demand, and the maximum memory usage as its
memory resource demand for its code and the temporary
data required during its execution. Each input component
is specified by an invocation rate and release offset, and
is triggered by a timer if a fixed invocation rate has been
assigned, or by an event—which may be generated by the
output of a component in another transaction or by data ar-
riving at an external communication device—whereas each
output component is specified by an end-to-end deadline.
The input component and the subsequent components in a
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transaction are connected by links, either synchronous or
asynchronous.
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Figure 4: An example of an application run-time model

To support the run-time analysis shown in Fig. 1, the ap-
plication structure with non-functional requirements is re-
fined as a set of run-time tasks 7; [19], corresponding to a
thread or process, which is a well-known abstraction of con-
currently executing applications. As shown in Fig. 4b, each
software component is allocated to one (FP;) of the proces-
sors, and iteratively merged and ordered into tasks so that
the sequence will run to completion (e.g., C; — Cy —
Cy9 — (5 in 1p): no task is allowed to contain any idle
time, which may lead to unintended context switches by the
RTOS. Run-time properties, such as release offset and pri-
ority, are then assigned to each task and the system-level
end-to-end timing deadlines are similarly decomposed into
a timing constraint for each task, while ensuring that the
resource constraints are not violated.

During the construction of run-time tasks, the communi-
cation links between tasks are transformed to a set of syn-
chronization or asynchronous data-transfer messages my.
A message between two tasks corresponding to a syn-
chronized communication between the components in these
tasks carries a firing token, and the receiver task becomes
ready to execute only after the arrival of the message. The
execution of a task receiving only a message corresponding
to an unsynchronized communication, on the other hand,
depends on the scheduling decision made by the local sup-
porting system, such as an operating system. Similar to the
task formation, multiple messages can be merged to form a
single message if they meet a set of defined criteria, such



as the same invocation rate and at most one of them with
a firing token. The timing properties of messages, includ-
ing their release offsets, invocation rates, and relative dead-
lines, are derived from those of their generator tasks. The
resource consumption of a message is determined by the
transmission delays of all its contained signals on a network
link, which can be abstractly represented using the total size
(bytes or bits of data) of all its signals.

3. Integration of Application Run-Time Model
with Execution Platform

The system-level verification of non-functional require-
ments that depend solely on the static information captured
by the application run-time model (described in Section 2.3)
cannot describe the dynamic run-time behavior of an ex-
ecution platform. The execution platform is only charac-
terized by its computation and communication resources,
expressed as the parameters of the analytical model which
is used to confirm the system-level end-to-end timing con-
straints. Temporal uncertainties caused by the platform are,
therefore, ignored.

Small glitches in a large-scale distributed real-time sys-
tem can often lead to system failure if they breach timing
or resource constraints, so these constraints must be thor-
oughly verified by accounting for both the static and the
dynamic run-time behaviors of a system. As mentioned in
Section 1, prototyping a complete system can address this
problem, but it is inefficient in time and cost and is often
infeasible at an early design phase. To remedy these prob-
lems, we have developed a framework that integrates the ap-
plication run-time model with a virtual execution platform,
as shown in Fig. 5.

3.1. Construction of a Virtual Execution
Platform

We now show how an in-depth analysis of system per-
formance with full-scale system simulation—that can run
an application together with its RTOS—can be achieved be-
fore building a hardware prototype.

We use a cycle-accurate hardware simulator to con-
struct a simulated hardware system for a controller unit
described in Section 2.1. We generate executable soft-
ware from an application run-time model with an RTOS
on the simulated hardware system. This arrangement al-
lows us to capture accurate run-time behavior and thus ob-
tain accurate performance data on each individual controller
unit. We then validate the system-level non-functional re-
quirements. Although register transfer-level (RTL) and
transaction-level simulators are commonly used as analy-
sis tools in early stages of system design, they often turn
out to be too slow [6]. We therefore use a cycle-accurate
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and highly-configurable system simulator (from the VaST
systems [18]) to construct a virtual hardware system. This
simulator is known to require only a moderate amount of
simulation time, thus making it suitable for large-scale dis-
tributed real-time systems. Not only can the simulator
mimic various CPU cores but it can also model different
types of memory and a range of cache architectures and ex-
ternal peripherals that can be customized.

The simulated hardware system we constructed contains
ARMO926EJS and SH-2A CPU cores, and uses existing vir-
tual hardware models for the CPU, memory and bus. How-
ever, we have built our own models of peripherals, such as
interrupt controller, timer, and communication devices, so
that we may customize their run-time behaviors and insert
probes to obtain their timing and resource characteristics.

The run-time behavior and performance of an RTOS are
highly dependent on its implementation and on the underly-
ing hardware. Thus, it is inappropriate to use static analysis
techniques when we need to account for accurate run-time
behavior and performance data for the underlying execu-
tion platform. Therefore, instead of using an abstract RTOS
model [7], we ported a real RTOS to the simulated hard-
ware system and captured accurate run-time behavior and
performance data. The limitation of this approach is that
only a set of selected RTOSes can be used in the develop-
ment process. However, RTOSes often provide common
APIs (e.g., POSIX) so as to facilitate the development of
multiple software components which have to be integrated
within a large-scale embedded software system. Note that
any RTOS that meets the requirements of our system model
in Section 2.2 can be used in the integrated framework.

Here we have chosen a well-verified lightweight RTOS,
uC/OS [12], which satisfies all of the above requirements.
We have ported this RTOS to ARM926EJS and SH-2A
cores by building board support packages (BSPs). We have
also developed device drivers for peripherals—interrupt
controller, timer, and communication devices—in the simu-
lated hardware system.

3.2. Automatic Mapping of Run-Time
Tasks to RTOS Glue Code

At this stage, we have a set of application run-time tasks
with the non-functional requirements derived from the ap-
plication run-time model, together with a virtual execution
platform including the RTOS and hardware. Although the
application run-time model possesses all the properties nec-
essary for constructing run-time tasks which correspond to
processes or threads in the RTOS, one-to-one mapping from
a run-time property in the application run-time model to a
corresponding RTOS service is not possible because that
would involve the integration of two models of very differ-
ent forms; one is an abstract model represented by a graph
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Figure 5: A framework for integrating the application run-time model and the execution platform

and the other already contains implementation details.

A programmer may write code to implement the abstract
model for each run-time task, but it is highly desirable to au-
tomatically map the run-time tasks to the target RTOS glue
code for software productivity and accuracy. To meet this
need, we have developed a method for automatic generation
of glue code that integrates the run-time model with the un-
derlying execution platform at each of the levels shown in
Fig. 5. Our method deals with software components and
schedulable run-time tasks, and triggers input to compo-
nents of the run-time tasks.

3.2.1. Software Components of a Run-Time
Task

During the construction of run-time tasks, the process
of sequencing components explicitly converts precedence
constraints to a sequence of function calls to each compo-
nent. This conversion is achieved by traversing the graph
that represents an application run-time model, and by iden-
tifying the run-time task 7; allocated to processor P; that we
are considering. The component sequencing for 7; is imple-
mented as a linked list, allowing us to call a function for
any software component C. Fig. 6 shows an example task
body—which we call a task context—of the run-time task
74 which consists of two components Cy and C5. There are
precedence constraints between components, C4y — Cs, but
there is no data transfer from Cy to C5. We will assume that
data or messages from other run-time tasks are passed as an
array of pointers args in Fig. 6. The data required to exe-
cute each component in 74 is assumed to be stored in local
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variables or in the stack.

void Task4Ctx

{

(void x*args)

Comp4 (args [0]) ;
Comp5 () ;

Figure 6: An example task context: run-time task 74

However, if data or messages need to be transferred
within a run-time task, then extra memory space must be al-
located to the context, because a component cannot directly
access the data assigned to local variables in another com-
ponent. We, therefore, declare a local variable for each data
transfer, not in the component that requires the data, but in
the task context, and the data is passed as an argument of
the function call. The amount of memory required for 7;
is )., sizeof(d;), where j is a data connection within a
run-time task ¢ as shown in Fig. 4.

In an embedded system, the memory requirement must
usually be kept as small as possible. During code gener-
ation, the memory requirement of a run-time task can be
reduced by sharing space for local variables since each lo-
cal variable is only required during a single data transfer.
Table 1 shows how the minimum memory space require-
ment is calculated for each run-time task. In this exam-
ple, the task consists of four components with the sequence
C1 — Cy — C3 — (4. The arrows in the figure represent
precedence constraints, while d; : 3 is a data connection
from C' to Cy of size 3, and so on, for ds and ds. The total
memory requirement is max y  _ sizeof(d; s), where s is a



sequence number and d;  is the corresponding active data.
In this case, the space required is reduced from 9 to 7.

Table 1: An example of calculating minimum memory
space within a run-time task

C1 Co Cs Cy
di:3|3— | 3—
do:4 | 4— | 4— | 4—
ds : 2 2— | 2—
Total 7 7 6 2

3.2.2. Synchronization and Asynchronous
Data Transfer between two Compo-
nents

A run-time task is implemented as a process or a thread
in the RTOS. To synchronize two tasks or to transfer data
between two tasks, an OS trap is required by the primitives
providing the corresponding RTOS service, as summarized
in Table 2. We must ensure that all the run-time tasks and
messages, except for asynchronous data transfers, are syn-
chronized and that the order of execution follows the appli-
cation structure and meets the non-functional requirements.

Table 2: Inter-process primitives for each connection type
when the source and destination components are allocated
to the same processor

Connection type Data IPC primitives
Synchronization Yes Blocking mailbox
No Binary semaphore

Asynchronous
data transfer

Yes (link is ignored
if there is no data)

Non-blocking mailbox

To achieve this, the first step is to ensure that the run-
time tasks execute sequentially or concurrently, as specified
by the model. As shown in Fig. 7, each run-time task is
divided into three phases to support the concurrency control
mechanism as follows.

e Growing phase: when a task is about to be invoked,
it reserves locks for all synchronous inputs. If asyn-
chronously transferred data is already available, it is
accepted from a buffer using the non-blocking IPC
primitives shown in Table 2. If it cannot immediately
acquire all the required inputs, it waits until it can (us-
ing blocking IPC primitives).

e Task execution phase: software components are exe-
cuted in the context of the run-time task, as defined in
Section 3.2.1.

e Shrinking phase: when the execution of a task context
is complete, it releases all of its locks and sends all data
to its output connections.
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Note that the priority ceiling protocol (PCP) is used, if nec-
essary, to combine synchronization with the concurrency
control mechanism to prevent deadline overruns.

By traversing the graph that represents an application
run-time model, synchronization and asynchronous data-
transfer requirements are identified for both the input and
the output of each run-time task. Because global variables
are required to initialize and use the IPC primitives, we
maintain a table of global variables, which are numerically
indexed, with names such as Sem 0 and DataMbox_ 0.
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Figure 7: An example concurrency-control mechanism for
run-time tasks

If the source and destination of a link are not assigned
locally to the same processor, time- and event-triggers will
be required, and additional steps may be needed to generate
the necessary code. When a time-trigger is activated by a
specified time clock, the RTOS must determine which run-
time task is to be triggered. Each instance of a time-trigger
in the timer interrupt handler (ISR) generates a global vari-
able such as Timer TaskO, and uses the IPC primitives
for synchronization during the growing phase of a run-time
task which does not involve any data transfer.

An external message cannot use a global variable in this
way because it is not valid outside the sending proces-
sor. Each external message is therefore uniquely indexed
throughout the entire system. This approach has already
been used in some existing communication devices. For
example, the controller area network (CAN) device iden-
tifies the messages that it receives, using the message ID
field [17]. This type of communication can be easily imple-
mented by adding a message index to the network header or
to the message content, and then routing each message by
passing its index to the interrupt handler of the communica-
tion device.

In the shrinking phase, sending data and messages
through an external communication device is no longer han-
dled by the IPC primitives. Instead, an API for the device
driver of the communication device is used to send mes-
sages to the destination processor as soon as the external
message index and the data content become ready.

If virtual memory management is used in a processor
with a memory management unit (MMU) [15], the address
space for each process is usually isolated from others and is
invisible to other processes. This implies that direct refer-
ences to local variables stored in the stack of another run-
time task are not possible. Run-time links between two



tasks must therefore be handled very differently from links
within a task. In Section 3.2.1, we allocated local variables
for the links that transfer data within a task. A similar re-
quirement applies to links between different tasks, but lo-
cal variables are now useless because they cannot be ac-
cessed by both the source and the destination components,
or shared between a component and the device driver API
that is used to send data. We therefore allocate variables in
a globally-accessible memory area, or heap, via real-time
dynamic storage allocation (DSA) [5].

3.2.3. Time- and Event-Triggers for Run-
Time Tasks

Our system model contains a mixture of event- and time-
triggered components to reflect the increasing use of exter-
nal devices with a high degree of temporal uncertainty in
distributed real-time systems [14].

As described in Section 2.3, each run-time task is trig-
gered by a timer, if a fixed invocation rate is assigned, by an
event which is generated by an output component in another
transaction, or by the arrival of data at an external commu-
nication device. Nevertheless, we remain to assume that our
target RTOS is based on conventional preemptive priority-
based scheduling, like most existing systems.

We implement each time-trigger with a release offset and
an invocation rate, using a fine-granularity periodic timer.
This can be a dedicated hardware timer or a hook for the OS
tick timer. During each time period, an interrupt handler for
the timer is activated and looks for expired time-triggers. If
any, the handler uses a pre-defined timer table to notify the
corresponding run-time tasks.

Each event-to-task link in the application run-time model
is abstracted to be an external message which is defined
by its message index (as described in Section 3.2.2) and
its timing characteristics, namely, release offset and invo-
cation rate, both of which are inherited from the output of
the component that generates the message. In our system,
a communication device is modeled as a peripheral which
generates an external message with its message index at a
specified time clock, using the timing characteristics pro-
vided by the application run-time model. To avoid any loss
of data, each software component must pre-allocate enough
memory for a buffer to which the interrupt handler in the
RTOS can copy data received from the communication de-
vice before dealing with it.

3.3. System Monitor

Our framework, which is integrated with the existing
AIRES toolkit, provides a more accurate and more efficient
way of supporting high-level decisions for design and verifi-
cation of distributed real-time systems. As shown in Fig. 5,

an application run-time model is composed of an applica-
tion structure model and computation and communication
resource information, and is automatically converted to a
form that is executable on the virtual execution platform,
by automatic generation of glue code. We have also devel-
oped a timing and resource monitor to collect and analyze
run-time performance data. This provides functions, such
as the ability to trace the time at the entry to and exit from
software components, to generate and receive messages be-
tween run-time tasks, and to monitor, as well as other events
as shown in Fig. 9. This enables us to refine the whole sys-
tem model, comprising hardware, RTOS, and the applica-
tion, efficiently at successive design levels.

On the other hand, by appending an exception handler
to the end of the growing phase or to the beginning of the
shrinking phase in each run-time task, we can capture the
events of deadline misses in time-driven transactions. When
a deadline miss occurs, a user-defined error-handling func-
tion is invoked to take an appropriate action, such as shut-
ting down the system for safety.

The memory allocated by real-time DSA for data trans-
fer among run-time tasks is freed explicitly in the destina-
tion component or in the device driver after the data has
been used. This means that the memory requirement varies
with the number of external links, and the system monitor
must check for memory overflow, using an exception han-
dler integrated into the memory allocator.

4. Evaluation

Our integrated framework is applied to a simple automo-
tive control system illustrated in Fig. 8. The hardware sys-
tem composed of two processors, Procl and Proc2, which
are connected by a single CAN bus. The timer resolution
is set to 0.1ms. The run-time properties and the timing
constraints of the application run-time model are summa-
rized in Table 3. In the application run-time model, all the
links are synchronous except for the link between func31
and func42, which is a non-blocking data transfer using
DataMbox_1 as a global variable.

Table 3: Run-time properties of a simple control system

Run- Release WCET Deadline Period Priority Allocated Software
time task offset processor components
Taskl1 0.594 0.024 1.000 1.0 4 Procl func4l
Task2 0.478 0.026 1.000 1.0 6 Procl func42
Task3 0.000 0.024 0.478 10.0 8 Procl func31l
Task4 6.034 0.025 10.000 10.0 2 Procl funci12
Task5 0.000 0.038 6.034 10.0 3 Procl funcll
Task6 0.000 0.025 1.000 1.0 5 Proc2 func22
Task7 0.000 0.028 0.461 1.0 7 Proc2 func21
Task8 6.034 0.024 10.0 10.0 1 Proc2 func23

We collected the run-time behavior and performance
data of Procl using the system monitor described in Section
3.3, which runs a simple control system application to cap-
ture the timing characteristics. As shown in Fig. 9, the sys-
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Figure 8: Software structure of a simple control system

tem monitor displays the states and interactions at the hard-
ware, RTOS, and application levels. The timing information
for each run-time task is further decomposed into the grow-
ing phase, the task context, and the shrinking phase, so that
we can trace each synchronization and asynchronous data-
transfer primitives which are described in Section 3.2.2.

To verify the system-level end-to-end timing constraints
on the control system application, we traced the time at
which the shrinking phase is finished for each run-time task
to obtain the worst-case response time (WCRT). The val-
ues of WCRT measured on the virtual execution platform
and listed in Table 4, together with the deadline defined
in the application’s non-functional requirements in Table
3, demonstrate that the run-time tasks that our system has
constructed, do not violate their deadlines. Nevertheless,
we observe that the values of WCRT obtained by real-time
analysis do not correspond to those measured on the virtual
execution platform. This may be due to additional over-
heads incurred by the RTOS kernel and interrupt service
routines, which are not fully considered in the real-time
analysis techniques.

It is well-known that reducing the granularity of the
timer increases the overhead for timer interrupt handler
while the interval jitter of each timer is highly dependent on
the timer clock resolution. So, we performed more simula-
tion while varying the timer resolution, to see how it affects
the response time of a run-time task. For this purpose, we
selected the WCRT of Taskl on Procl as an example, and
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measured its value while changing the timer resolution from
0.5ms to 0.011ms. As shown in Fig. 10, the CPU utilization
increases linearly from 17.6% to 96.3%. Note that changes
to a parameter, the timer resolution in the experiments, can
make significant impact on the overall system performance.

Regarding the system-level end-to-end timing con-
straints, the timer resolution must be in the range of
0.333ms to 0.013ms, so that the response time of Taskl
does not violate the system-level deadline. To accommo-
date software components for the run-time tasks allocated to
Procl, 5.8% of the CPU time on Proc1 (calculated by a real-
time analysis) is reserved. However, as shown in Fig. 10, at
least 12.8% more CPU time will be consumed by the RTOS
to meet all the non-functional timing constraints on a virtual
execution platform.

Table 4: Comparison of worst-case response time (Proc1)

Run-time task | RT-analysis | Simulated execution platform
WCRT WCRT Average RT
Task5 0.118 0.245 0.232
Task4 6.133 6.215 6.215
Task3 0.023 0.146 0.134
Task2 0.503 0.627 0.625
Taskl 0.667 0.724 0.723

To apply the integrated framework effectively for the de-
velopment of large-scale distributed real-time systems, a
virtual execution platform must be generated fast enough to
support frequent modifications, such as changes to tuning
parameters, while dozens of distributed processors might
be used to verify the system-level non-functional require-
ments. Also, the time needed to simulate the system must
not be too large. We, therefore, measured the time needed to
generate a virtual execution platform for the simple control
application mentioned above, as well as for an automotive
application, GenericVSC [11], which has a larger number
of software components and links. The experimental re-
sults are summarized in Table 5. The generation time for
one software component is less than 22ms for the simple
control application. It appears that most of the time is taken
by initialization, compared to between 3 and Sms for Gener-
icVSC. The virtual hardware simulator runs for 100s on top
of a window-based PC to simulate 9.410s in real time while
it executes 423974308 instructions of the executable binary
for the control application. This suggests that the integrated
virtual execution platform is fast enough to support the de-
sign and verification of large-scale systems.

5. Related Work

Several recent projects dealt with RTOS modeling for
embedded system design. Most of this research [7, 8, 13]
involved the use of transactional modeling tools intended
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Figure 9: An example of run-time behavior and performance data for a simple control system on the virtual execution

platform (Procl)

Table 5: Time required to generate the virtual execution
platform for two applications

Application Simple control | GenericVSC
Num. of software components 8 56
Num. of links 15 1280
Generation time Procl 171 188
(ms) Proc2 172 234

for design of hardware systems, such as SystemC [16], to
model the behavior of the RTOS and the time delays that it
incurs, as well as to simulate task scheduling. Either a ded-
icated RTOS is generated, or glue code is used, to assemble
a system which has one common description language for
both hardware and software. Compared to traditional hard-
ware design techniques, this approach simplifies the design
and verification of systems that run application software in
the form of concurrent tasks that require synchronization.

However, hardware description languages have a limited
ability to model the dynamic behavior of real-time systems,
and moreover, some procedures must be coded manually.
Hessel et al. [9] extended the SystemC syntax to support
dynamic behavior, and applied their abstract RTOS model
to refine the real-time scheduling of tasks.
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Figure 10: The dependency of WCRT and CPU utilization
on the timer resolution (Task1)

Research on hardware description languages has largely
focused on accurate and fast co-simulation of software and
hardware by modeling the RTOS, which is the underlying
support software, rather than on validating non-functional
constraints, such as the end-to-end timing delay and re-
source capacity. To develop modeling tools useful in real-
time systems, non-functional constraints must be included



in the model, using techniques such as scheduling refine-
ment, while satisfying timing constraints [9] and perform-
ing schedule monitoring and stack safety analysis [2].

Henriksson et al. developed the TrueTime [4] toolkit
to monitor the temporal uncertainty that occurs when dis-
tributed control loops are implemented as tasks in a real-
time kernel and communicate with other processors over a
network. Our approach is similar to TrueTime in that it fo-
cuses on support of high-level design decisions with empha-
sis on non-functional constraints. However, we construct a
more detailed and more accurate model that describes a sys-
tem from bottom to top, including the application, RTOS
and hardware, whereas TrueTime uses an abstract RTOS
and network model.

6. Conclusion

In the development of large-scale distributed real-time
systems, non-functional constraint problems have been ad-
dressed piece-by-piece: for example, by code-level op-
timization of the software on a running system. In the
component-based software development, the need to satisfy
multiple constraints becomes a high-level decision problem
within the system composition process. To make good high-
level decisions of this sort economically requires a devel-
opment toolkit that is capable of obtaining and analyzing
accurate run-time behavior and performance data.

To achieve this, we have developed a framework for gen-
erating a virtual execution platform on which the system can
be run so as to obtain accurate run-time performance data.
This framework has been implemented and integrated with
the existing AIRES toolkit. Our preliminary evaluation has
shown that changes to a few parameters in the system design
may make significant impact on the overall performance.
By running the entire system we were able to collect repre-
sentative information for quantitative analysis of the target
system. This integration of the application run-time model
with the execution platform will help the system designer
understand the performance of a system in a more holistic
fashion, and permit systems to be developed in a more con-
venient and efficient way.
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