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ABSTRACT

Network worms pose a serious threat to the Internet infrastructure
as well as end-users. Various techniques have been proposed for de-
tection of, and response against worms. A frequently-used and au-
tomated response mechanism is to rate-limit outbound worm traffic
while maintaining the operation of legitimate applications, offering
a gentler alternative to the usual detect-and-block approach. How-
ever, most rate-limiting schemes to date only focus on host-level
network activities and impose a single threshold on the entire host,
failing to (i) accommodate network-intensive applications and (ii)
effectively contain network worms at the same time. To allevi-
ate these limitations, we propose a per-process-based containment
framework in each host that monitors the fine-grained runtime be-
havior of each process and accordingly assigns the process a sus-
picion level generated by a machine-learning algorithm. We have
also developed a heuristic to optimally map each suspicion level to
the rate-limiting threshold. The framework is shown to be effective
in containing network worms and allowing the traffic of legitimate
programs, achieving lower false-alarm rates.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; D.4.6 [Operating Systems]: Security and Pro-
tection—Invasive software

General Terms

Design, Security
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1. INTRODUCTION
In recent years, there has been an exponential surge in both the

number of network worms and the severity of damage they have
inflicted [1]. Fast-spreading worms, such as Blaster (2003), My-
Doom (2004), Zotob (2005), propagate at an unprecedented rate
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and can affect most vulnerable systems within tens of minutes. The
intent of a worm has evolved from simply replicating itself to in-
stalling spyware or backdoors in the victim systems for collecting
confidential information and perpetrating other attacks. For exam-
ple, worms are ideal tools for recruiting compromised machines
and constructing large botnets among them, which are then used
for mounting other serious attacks, such as spamming and DDoS.
Hence, there is a pressing need for efficient mitigation of worm
spreading.

To combat fast-spreading worms, numerous solutions have been
proposed to detect and automatically respond to worm outbreaks. A
widely-used approach is the signature-based detection, which looks
for specific signatures (usually raw byte sequences) in the applica-
tion executables. The disadvantage of this scheme is that it can
only detect previously-known worms and can be evaded even with
simple variations thereof. Behavior-based detection has recently
received considerable attention due to its capability of identifying
new attacks [2, 3, 4, 5, 6, 7]. Most of prior work requires direct
analysis of the binaries [2, 3] or system call sequences [4, 5, 6].
Also, the purpose of behavior-based detection is to classify each
application as malicious or benign, which may result in high false-
alarm rates due to the ambiguity of behavior-matching.

For fast and effective containment of worms, an automatic re-
sponse is of particular interest because any method that requires
human intervention is much slower than the spreading speed of cur-
rent worms. The detect-and-block approaches could eliminate the
human intervention in the loop, but they either fail to respond to
unknown worms or suffer a high false-positive rate. Rate-limiting
is a gentler alternative to the above approaches, and its main idea is
to block the propagation of worms while allowing legitimate traf-
fic to go through, by differentiating traffic patterns between legiti-
mate applications and network worms. Rate-limiting cannot com-
pletely block worms, but can significantly slow down the propaga-
tion of (especially new) worms, allowing for other countermeasures
to kick in.

A key to worm containment is the selection of a metric based
on which the traffic is rate-limited. Previous research results [8,
9, 10] suggest several metrics derived from host-level network ac-
tivities, such as distinct IP connection ratio, failed connection ra-
tio, the number of connections without DNS queries, etc. How-
ever, they rely solely on host-level network activities and hence are
likely to suffer from high false-positive and false-negative rates.
False-positives stem from the coarse-grained rate-limiting policies
applied indiscriminately to both normal and malicious processes.
Legitimate traffic will therefore be affected significantly during a
worm outbreak. False-negatives may result from the evasion of de-
tection by worms that have traffic pattern similar to that of normal
applications. This prompted us to seek more comprehensive in-



formation than just network activities at a fine-grained level, i.e.,
per-process behavior. Another key aspect of rate-limiting is the use
of a threshold beyond which the outgoing traffic is blocked. Most
existing containment schemes impose a single threshold rate on the
entire host, such as several distinct IP connections per second, re-
gardless of the application demands, thus affecting the performance
of legitimate applications. Sekar et al. [11] proposed use of differ-
ent detection thresholds during different time windows, but they
still applied these thresholds without differentiating processes on
the host.

We propose a per-process-based containment framework. We
define behavior at a higher level than others: a sequence of events
rather than that of system calls or API calls. Moreover, the behav-
ior profiles of both worms and normal programs are characterized
to utilize the notion of anomaly as well as misuse analysis. Our
framework considers not only network activities but also a variety
of notable behaviors common to network worms, such as creat-
ing AutoRun Registry key, overwriting system directories, etc. To
compensate for the inaccuracy of behavior analysis and make the
best of behavioral information, we use a machine-learning algo-
rithm, instead of making a clear-cut (binary) decision of malice or
innocence, to assign a suspicion level to each process based on the
comprehensive analysis of its behavior. The suspicion level is then
transformed into a threshold to rate-limit the process. Since the
generation of a suspicion level incorporates many more process-
related properties than network activities alone, the containment
scheme can make an accurate and flexible decision on how to rate-
limit a process, thus lowering false-positive and false-negative rates.

Our contributions are three-fold. First, we propose a frame-
work incorporating both behavior analysis and containment for au-
tomatic defense against fast-spreading network worms. Our frame-
work differs from others in that, instead of per-host rate-limiting
based solely on network activities, it incorporates a comprehen-
sive analysis of processes’ behavior and performs customized rate-
limiting on each process. This fine-grained monitoring and analy-
sis significantly improve the effectiveness of rate-limiting. Second,
we apply a machine-learning classification algorithm to generate
a suspicion level for each process and develop a heuristic to find
an optimal function that maps each suspicion level to a threshold
for rate-limiting. Third, we conduct in-depth analysis and simula-
tion using the traces of real-world worm samples plus their vari-
ants and normal programs. Our evaluation results show that the
proposed scheme can easily accommodate legitimate applications
while effectively containing the propagation of network worms.
Our fine-grained per-process thresholding can achieve much lower
false-positive and false-negative rates than per-host approach.

The remainder of the paper is organized as follows. Section 2
discusses the related work. Section 3 provides an overview of our
system architecture. Section 4 details the process-level behavior
analysis. Section 5 presents the principles of containment. Imple-
mentation and evaluation results are presented in Section 6. Section
7 discusses the limitations of our work and their solutions. The pa-
per concludes with Section 8.

2. RELATED WORK
The most relevant to our work is behavior-based detection and

rate-limiting. There have been a number of behavior-based ap-
proaches, but most of them aim to provide a clear-cut, binary de-
tection result. By contrast, our goal is not to detect and block with
binary decisions since false alarms are inevitable in this case. In-
stead, we first derive a suspicion level or malice probability for
each process based on its behavior analysis, and then respond with
a process-specific containment scheme.
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Figure 1: System architecture

Some of previous behavior-analysis approaches rely on examina-
tion of executables, such as [2] and [3]. Semantics-aware detection
[2] tries to characterize different variations of worms by looking for
semantically equivalent instructions in malware variants. In [3], a
static analysis is used to identify particular system calls or Inter-
net Explorer API calls that are predefined as malicious. In terms
of constructing behavior features, observing system call sequences
to identify anomalies is a common approach. Early behavior-based
approaches [4, 5, 6] focus on profiling the normal behavior by sys-
tem call sequences. Our approach differs from them in that behav-
ior is defined at a higher level (i.e., sequence of events rather than
sequence of instructions or system calls), and our analysis is con-
ducted at runtime. Moreover, we constructed behavior profiles for
both normal and malicious processes.

Most intrusion detection schemes focus on the characteristics of
network traffic, such as those in [12, 13]. NetSpy [7] is a tool to
automatically discover possibly malicious network activities gener-
ated by spyware instances and to generate network-level signatures
for them. It collects traffic from an altered machine and then com-
pares it against reference network statistics from clean machines
using differential analysis. Our approach differs from [7, 12, 13]
in that we consider not only network activities but also file and
registry behavior at a process level, rather than on an entire host
basis. Our work is similar to behavior-based classification [14] that
proposes an automated classification method based on a distance
measure. However, the latter focuses on clustering malware into
different families, while we are only interested in differentiating
normal from malicious programs. Moreover, we use the support
vector machine (SVM), a supervised learning approach, in mak-
ing the best of existing normal and malicious program information,
while clustering is a common unsupervised learning procedure.

Several rate-limiting techniques have also been proposed in the
literature. The authors of [15] provide a detailed comparison be-
tween different methods. Williamson [8] proposes an IP-throttling
scheme that restricts the host-level contact rates to unique IPs. Chen
et al. [9] and Schechter [10] both use the rate of failed connection
attempts as the criterion to rate-limit a host. Schechter’s approach
improves the efficiency by exclusively rate-limiting first-contact
connections. Whyte et al. [16] utilize the DNS statistics to rate-
limit outgoing connections without prior DNS translation. All of
these schemes are per-host containment and most of them impose
a single threshold for rate-limiting both legitimate and malicious
traffic. Our approach monitors fine-grained application behavior
and applies rate-limiting on a per-process basis. Each process has
a customized threshold so that a higher accuracy in terms of false
alarms can be achieved.

3. SYSTEM ARCHITECTURE
Our framework (Figure1) primarily consists of two building blocks:



behavior analysis and containment. The behavior analysis compo-
nent includes several system monitors and a suspicion-level gen-
erator. Runtime behavior for each process is monitored at the OS
level, such as Registry, file system and network stack. Process cor-
relation is tracked as well. The suspicion-level generator assigns a
suspicion level to each running process by applying the SVM algo-
rithm based on the analysis of its system-wide activities. The suspi-
cion level links process-level behavior to containment. For contain-
ment, the mapping function optimizer generates the most appropri-
ate function of transforming the suspicion level to a containment
threshold. Both the suspicion-levels and the mapping function are
taken as the input to the containment model which then outputs a
customized threshold for each process. In what follows, we will
detail each component.

4. BEHAVIOR ANALYSIS
The first step to combat the propagation of worms is to identify

processes conducting malicious activities in a host system. Pre-
vious containment techniques confine themselves to network ac-
tivities, such as high failure rate and the absence of DNS query,
in order to identify suspicious traffic. In this paper, we employ
behavior-based analysis that focuses on application run-time be-
havior including Registry, file system and network. By studying
contemporary worms’ behaviors, we have observed that they do
share certain behavior patterns (e.g., creating autorun registry key,
scanning random host IPs) that are different from normal applica-
tions.

4.1 Behavior Signature Specification
We define a behavior signature as the description of an applica-

tion’s activities in terms of its resource access patterns. Our goal
is to develop a simple yet efficient representation of application
behavior that maximally differentiates legitimate applications from
worms so that suspicion-level information can be generated to fa-
cilitate per-process containment. Note that a single activity—such
as network access, a file read or written during a worm’s life time—
alone may appear harmless, while the combination of these activ-
ities may reveal a malicious intent. We thus specify a behavior
signature as the aggregation of suspicious activities that can po-
tentially be exploited by network worms. To design an efficient
specification of worm activities, we need to extract the “common"
behavior of network worms, which can be understood better by
looking at a few notable examples. From real-world worms and
their variants, we found that the worm actions can be grouped into 3
categories, taking place at Registry, file system and network stack,
where our behavior monitors are deployed.

Registry : A common target of worms is the AutoRun Key
HKLM\Software \Microsoft\ Windows

\CurrentVersion\Run. Most, if not all, worms will
add an entry under this key to automatically run themselves
when Windows starts up. Examples include Zotob, Win32-
Blaster, and W32-Bozori. Some worms also create Registry
keys such as HKEY_CLASSES_ROOT\CLSID\
Random_CLSID\InprocServer32\(Default) to con-
ceal its backdoor by injecting into other processes.

File System : Once a system is infected, a worm always downloads
its payload from the network to the local file system so that
it can be activated again when the system reboots. Almost
all worms choose the system directory (e.g., C:\WINDOWS)
as an ideal place to drop themselves, because normal users
seldom inspect the system directory and the worm payload
is less noticeable among thousands of system files. Based

Table 1: Index of behavior vectors
Index Signature Description

0 Number of First-Contact Connections

1 DNS-to-Connectoin Ratio

2 Number of Suspicious Ports

3 Average Packet Length

4 Number of Packets

5 Modify Dll in System Dir

6 Modify EXE in System Dir
7 Modify other files in System Dir

8 Create Dll to System Dir

9 Create EXE to System Dir

10 Create other files to System Dir

11 Create AutoRun key in Registry

12 Set AutoRun key Value in Registry

13 Create DLL injection key in Registry

14 Set DLL injection key Value in Registry

on this observation, we closely monitor the create and write
accesses in system directories.

Network : This category of actions are taken by self-propagating
worms, whose goal is to infect as many hosts as possible.

Note that none of the above activities is inherently malicious, be-
cause they are also performed frequently by many normal applica-
tions. However, the combination and accumulation of these activi-
ties are essential to the detection of malicious intents with a high de-
gree of confidence, as very few legitimate applications will conduct
these activities altogether and intensively. We thus construct a vec-
tor of behavior features for each process. we also consider process
correlation to defend against sophisticated worms that create mul-
tiple processes upon execution, which we will describe later. Each
feature in the behavior vector represents one type of application be-
havior of interest. Table 1 summarizes these behavior features that
constitute the signature vector. In addition to the behaviors that fall
directly into the above three categories, we also take advantage of
some auxiliary network features that differentiate worm activities
from normal ones. These include DNS-to-connection ratio, sus-
picious port, and average packet length. The DNS-to-connection
ratio is of interest to us because most worms scan random IP ad-
dresses without DNS queries. The average packet length also pro-
vides a hint for suspicious behavior, as worms usually send many
identical short packets for both efficiency and fast propagation.
Number of suspicious ports records the number of connections ini-
tiated by the process to a set of potential vulnerable ports such as
135 and 445. Each behavior feature is associated with a numeric
value indicating the number of occurrences of that behavior. The
high-level behavior signature for a process is constructed as a vec-
tor of all the features, which is then used to determine the suspicion
level of the process.

4.2 Suspicion-Level Generator
To respond quickly to fast-spreading (especially previously un-

known) worms, we build our behavior analysis upon the Support

Vector Machine (SVM) [17, 18] that learns the behavior models
from both normal and malicious behavior signatures. We collect
behaviors from normal applications and worms and generate the
corresponding behavior vectors as training data. The SVM algo-
rithm maps training data into a higher-dimensional feature space
using a kernel function and determines the maximal margin hyper-
plane to best separate normal data from malicious data. The hyper-
plane corresponds to the classification rule. Given a test sample,
the SVM calculates the distance of the sample from the separating
hyperplane with a sign indicating which class (malicious or benign)
the test sample belongs to.



Previous research focused on the binary (malicious or benign)
classification and the results are likely to be inaccurate because of
the learning procedure. To make the best of the learning model,
we calibrate the distance score to a posterior classification prob-
ability, which determines how likely a test example belongs to a
certain class [19]. The posterior probability is then directly trans-
lated into the suspicion level between 0 and 1 where 0 (1) means
benign (malicious). Apparently, the higher the suspicion level, the
more likely the process is malicious, and thus, a stricter contain-
ment action should apply. The extension from binary classifica-
tion to a suspicion level facilitates customization of the contain-
ment method for each process. Worm traffic is more likely to be
strictly rate-limited while legitimate applications will experience a
minor traffic-limiting impact.

It is important to note that our suspicion-level generation is not a
one-time rating but a periodic check. It can capture all of runtime
behaviors of interest and provide a suspicion level for each process
during every time window. Thus, a worm that replaces its process
ID with a normal program or attaches itself to a normal program is
unlikely to affect our decision. For example, if the Internet Explorer
(IE) is the target of the worm, its suspicion level will be high as
long as it exhibits some bad behaviors, and its traffic will thus be
contained. Some legitimate traffic from IE may be affected, but the
process-level containment is the finest-grain one can achieve.

4.3 Process Correlation
Most worms to-date behave badly on their own, while some

sophisticated worms may have multiple processes collaboratively
conduct malicious activities. To defend against such a worm whose
single processes are not malicious enough to trigger effective rate-
limiting, we account for process correlation while building the be-
havior vectors. We track the inter-process relationships and aggre-
gate the behaviors from correlated processes. The behavior vectors
are the same for correlated processes such as a parent process and
its children. Accordingly, the whole group of correlated processes
is assigned the same suspicion level. By maintaining a white list,
we can easily exclude some normal processes with correlation such
as services and svchost. Thus, it is not difficult to identify a group
of processes behaving maliciously altogether.

4.4 Behavior Accumulation
Since the suspicion level is generated every time window, a worm

can hide itself by appearing benign for each window but malicious
overall. In other words, it may spread suspicious behavior over
different time windows or reduce the intensity of malicious activ-
ities within a single window, thus decreasing its suspicion level.
To deal with such worms, we selectively accumulate the value in
each field of the behavior vector. The behavior features worth ac-
cumulation are those seldom seen from normal programs, such as
creating an autorun key in the Registry or dropping a dll into the
system directory, etc. As for some behavior shared by both normal
and malicious programs such as outgoing connections, we do not
accumulate the value in order not to increase false-positives. The
accumulation is straightforward. For example, a worm registers an
autorun entry in the registry in window 0 and drops a backdoor in
the system directory in window 1. Suppose the behavior vector’s
first two fields are 〈autorun key, dll drop, . . .〉. The vector in
window 1 will be 〈1, 1, . . .〉 instead of 〈0, 1, . . .〉. This way, even
if a worm does only one bad thing in each time window to lower
its suspicion level, the suspicion level will finally increase as more
malicious activities are exhibited. This mechanism also works for a
worm spawning multiple processes with each exhibiting malicious
activities in different time windows.

Figure 2: Static threshold vs. per-process threshold

As we do not have such a real-world worm sample available,
to evaluate the accumulation scheme we simulated a worm in ex-
periment to illustrate the difference of suspicion level between the
original and the accumulated scheme. The results are in Section 6.

We will next present a model and an algorithm used to transform
the suspicion level to an appropriate containment threshold.

5. PER-PROCESS CONTAINMENT
The containment scheme seeks to rate-limit the propagation of

network worms while allowing for the operation of normal pro-
grams on a host. As mentioned earlier, each process’s suspicion
level is computed for a time window based on the activities ob-
served during the last time window. This suspicion-level infor-
mation is then mapped to a threshold. The threshold indicates a
connection rate value beyond which the outgoing connections will
be blocked. The threshold for each process changes as a process’s
runtime behavior differs during each time window.

5.1 The Mapping Function
The key element in our approach is how to map each suspi-

cion level to a threshold beyond which the process is rate-limited.
This mapping function can be of any form but should have a com-
mon property; the set of thresholds for processes with higher sus-
picion levels should be lower and for those with lower suspicion
levels should be higher. The rationale behind this is that when
the suspicion level for a process is high (low), we would like to
block its outgoing traffic as much (little) as possible. The map-
ping function should therefore be monotonically decreasing within
[0,1]. Any type of functions satisfying this property can be used
for our purpose. For computation and comparison convenience,
linear functions are adopted in our model. Actually, linear func-
tions are found to work well in Section 6. Specifically, we choose
t = h(l) = c + 0.5 ∗ a − a ∗ l, a, c ≥ 0, l ∈ [0, 1] as the class
of mapping functions (Figure 2), where t denotes the threshold, l

is the suspicion level, and a and c are two design parameters. The
smaller the a, the less suspicion-level information is used. When
the slope a → 0, it is equivalent to using a static threshold to all
processes, ignoring the suspicion level. Parameter c reflects the
tolerance to the false-positive rate. Given a, the larger the c, the
higher thresholds assigned to all processes. Given the form of the
mapping function, it is crucial to choose appropriate values of a

and c. The criteria for the efficacy of containment are false-positive
and false-negative rates. To calculate the false alarm rates, we de-
velop a probabilistic model by assuming certain properties of nor-
mal and malicious processes in order to obtain false-positive and
false-negative profiles in terms of a and c. Based on the false alarm



Table 2: Connection-rate statistics
Average Standard

Conn Rate Deviation
Normal 1.75 1.40

Malicious 6.08 5.00

profiles, an optimization algorithm is designed to find the appropri-
ate parameters for the mapping function. Our model and algorithm
are presented next.

5.2 Modeling False Alarms

5.2.1 Assumptions
The following assumptions are used in this model.

1. A process is either normal or malicious.

2. The suspicion level across all processes could be treated as a
random variable denoted by L0 (L1) for normal (malicious)
processes, where L0, L1 ∈ [0, 1]. L0(L1) has cdf F0(F1)
and pdf f0(f1).

3. A mapping function h is from L(L = L0 or L1) to T (thresh-
old). The threshold for normal (malicious) processes is de-
noted by T0 (T1).

4. First-contact outgoing connection (connection to an address
the sender has not recently contacted) rates denoted by R0

for normal and R1 for malicious processes follow certain dis-
tributions: Fconn0(fconn0) for normal and Fconn1(fconn1)
for malicious processes. Those connections are of interest
because malicious programs tend to reach as many hosts as
possible while normal programs have the “locality" property
in outgoing traffic.

5.2.2 Data Analysis

We estimated the distributions of first-contact outgoing connec-
tions based on real-world traces. For normal programs, we used
attack-free network traffic by tcpdump that lasts 17187 seconds,
including 585,000 frames. We have selected all new connections
initiated, and filtered out other traffic. The connection rate is de-
fined as the number of connections per second. For malicious pro-
grams, due to relatively limited access to the real-world network
worms, we collect network activities from 10 types of worms and
some of their variants. We set up 3 virtual machines connected via
a virtual network as our test-bed to collect the network activity data.
The connection rate CDFs are shown in Figure 3. We find that 60%
of the normal programs’ connection rates are around 1/s and 100%
of their rates are below 7/s. On the other hand, 50% of malicious
programs’ connection rates concentrate in the range from 5/s to 8/s.
The average and standard deviation across all normal and malicious
processes are given in Table 2. Clearly, worm’s connection rate is,
in general, higher than that of normal programs reflecting the fast
propagation of network worms.

5.2.3 False-Alarm Equations

A false-positive occurs when the connection rate of a normal pro-
cess exceeds its threshold. A false-negative occurs when the con-
nection rate of a malicious process is below its threshold. If the
threshold is static for all processes in a host, it can not effectively
contain worms and accommodate normal applications at the same
time. Our proposed rate-limiting is to assign each process with a
customized threshold, which is much finer-grained. To compare it
against static threshold approach in terms of false alarms, we derive
the false-alarm equations for both approaches. Those equations are
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Figure 3: Connection-rate CDFs

represented by the parameters defined in Section 5.2.1. In the static
threshold’s case, let c denote the constant threshold, then
False-positive: Pr(R0 ≥ c) = 1− Fconn0(dc− 1e)
False-negative: Pr(R1 < c) = Fconn1(dc− 1e)
False-positive and false-negative equations for per-process contain-
ment are calculated as follows. The threshold in this case is a ran-
dom variable, rather than a constant, since L is a random variable
and h(L) = T .
False-positive:

Pr(R0 ≥ T0) = Pr(T0 ≤ R0) =
∞

X

r=0

Pr(T0 ≤ r) Pr(R0 = r)

=
∞

X

r=0

FT0(r)fconn0(r). (1)

Note that FT0 is the CDF of T0 when the process is normal and
h(l) = t. We also know L0 has CDF F0 and pdf f0 for normal
processes. By the Change of Variables Theorem [20],

fT0(t) = f0(h
−1(t)) 1

h′(h−1(t))
, t ∈ [h(1), h(0)]

FT0(t) =

8

<

:

0 t < h(1)
R

t

h(1)
f0(h

−1(t)) 1
h′(h−1(t))

dt t ∈ [h(1), h(0)]

l t > h(0)

Similarly, false-negative:

Pr(R1 < T1) = Pr(T1 > R1) =
∞

X

r=0

Pr(T1 > r) Pr(R1 = r)

=
∞

X

r=0

(1− FT1(r))fconn1(r). (2)

FT1(t) =

8

<

:

0 t < h(1)
R

t

h(1)
f1(h

−1(t)) 1
h′(h−1(t))

dt t ∈ [h(1), h(0)]

l t > h(0)

Each pair of a and c determines a mapping function. We plug
in the connection-rate and suspicion-level distributions as well as
the mapping function into the equations (1) and (2) to calculate the
false-positive and false-negative rates. Since a pair of a and c cor-
responds to a pair of false-positive and false-negative, by varying
the values of a and c, we can plot a set of false-alarm profiles. As
shown in Figure 4, given a, as the value of c decreases from 14
to 1, the curve descends from the upper-left to lower-right direc-
tion meaning that the more restrictive the threshold (the smaller the
c), the higher the false-positive and the lower the false-negative,
showing a tradeoff between the two. Fixing the same set of c from
1 to 14, we vary a’s value and generate a curve for each a. When
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Figure 4: Static threshold vs. per-process false alarm profiles

a > 0 (we only draw a = 6.51 and a = 9 for illustration), mean-
ing that we make use of the suspicion-level information and assign
each process a customized threshold, the curves are always below
the static threshold approach (i.e., a = 0). In other words, given
a false-positive rate, the a > 0 curves can always achieve lower
false-negative rates than a = 0 curve does, indicating that us-
ing per-process suspicion-level information results in an improved
false alarm curve.

5.3 Mapping Function Optimization
To find the most appropriate mapping function for a specific host

system, we develop an optimization algorithm. The required false-
positive rate is the input to the optimization algorithm that deter-
mines a and c to obtain the lowest false-negative rate. We impose
a constraint on the false-positive rate because users are affected
most by this rate. But this configuration is tunable such that false-
negative rate could also be constrained. Since it is difficult to derive
explicit equations for a and c, we devise a heuristic algorithm based
on the observation of the numerically-obtained false alarm curves.
One property of the curve is that given a, the larger the c, the lower
the false-positive rate. Another property is that given c, there is
an optimal a that could achieve the lowest false-positive. Our al-
gorithm consists of adjustment (steps 1–3) and refinement (steps
4–6). The first phase searches for the curve to the lowest-left direc-
tion, while the second phase helps to jump out of the local optimum
facing the first phase, if any.

1. (Adjust): given the initial a and c, increase or decrease c to
achieve the target false-positive rate.

2. (Adjust): fix c at the value obtained from step 1, increase or
decrease a to reach the lowest false-positive rate.

3. (Adjust): repeat steps 1 and 2 until a cannot be changed any
further.

4. (Refine): increase or decrease a if a lower false-negative rate
can be achieved.

5. (Refine): adjust c to the target false-positive rate.

6. (Refine): repeat steps 4 and 5 until the lowest false-negative
rate is reached.

The pseudocode for this is given in Appendix.

6. IMPLEMENTATION AND EVALUATION
We have implemented four behavior monitors: Registry Activity

Monitor (RAM), File Activity Monitor (FAM), Network Activity

Monitor (NAM), and Process Correlation Monitor (PCM). These
monitors capture each process’s behavior in real time. The traces
collected by these monitors are fed to our trace-driven simulation
of the proposed framework. The traces were collected from 20
real-world worms plus some of their variants that are representa-
tive and reflect the evolution of contemporary worms and 49 nor-
mal programs. We used a C++ implementation of SVM learning al-
gorithm, called LibSVM [21], in the behavior analysis component
and derived suspicion-level distributions for normal and malicious
processes. We also tested the containment scheme’s false-positive
and false-negative rates in evaluation.

6.1 System Monitors
The architecture of RAM resembles that of SysInternal’s Reg-

mon [22]. RAM was implemented on Windows NT/XP, including
a user-level logging application and a kernel device driver which
implemented the system-call hooking technique [23]. RAM inter-
cepts registry-related system calls and stores passed parameters and
other status information in a kernel buffer which is then periodi-
cally copied to the user-level application. RAM logs complete in-
formation about every registry activity for all processes running on
a host, including timestamp, process name, process ID, request type
(create key, set key value, etc.) and path of the registry key. The im-
plementation of FAM is similar to that of RAM. It records system-
wide file-system activities in real time. NAM is implemented based
on Winpcap library, and continually monitors all incoming and out-
going packets of the host. With Winpcap’s support, NAM provides
information on active connections (e.g., source address, port, des-
tination address port, process ID, etc.) and dynamically correlates
each captured packet with the process that initiates this connection.
The data collected by NAM consists of timestamp, process name
and ID, connection type (TCP or UDP) and detailed packet header.
PCM uses a set of Windows APIs, known as Process Structure Rou-
tine, to track process creation, termination and inter-process rela-
tionships. These four monitors together characterize the detailed
behavior of all the running processes, which will be formalized
into behavior feature vectors to determine the per-process suspi-
cion level by the machine learning algorithm.

6.2 Trace Collection
To collect worm traces in real time, we set up 3 virtual machines

running Windows XP systems connected via a virtual network as
our test-bed. We also set up a DNS server at the host machine to
collect DNS statistics and configured it as the default gateway for
the virtual machines. By studying recent worm behaviors, we se-
lected 20 real-world worms and their variants. The samples include
notable worms such as Blaster, MyDoom, Storm, etc. We ran the
worm samples on our test-bed, gathering their process correlation,
file system, registry and network activities. The length of trace
for each worm is approximately 20 minutes. The normal traces
were collected from malware-free PCs in regular use. We selected
applications with network access, such as P2P, web browser, file
download, etc. The traces captured the activities of 49 normal pro-
cesses which cover most commonly-used network applications, in-
cluding eMule, IE, firefox, sshclient, utorrent, etc., and each lasted
20 minutes as well. We did not capture longer traces because most
applications show relatively stable behavior. We used part of both
normal and worm traces to train the SVM to build profiles and the
rest as our testset. We intentionally selected variants of some worm
samples into the testset and the original worms in the training set.
The accuracy of the learning algorithm with regard to suspicion-
level generation is demonstrated in Section 6.4.

6.3 Trace Formalization



Table 3: Suspicion levels with and without feature accumula-

tion

Time Behavior Original Accumulated
Window SusLevel SusLevel

win0 Write exe to sys dir 0.59 0.59
win1 Write a dll 0.36 0.68
win2 Create an autorun key 0.20 0.72
win3 Create an Inprocserver key 0.22 0.80
win4 Initiate 20 connections 0.16 0.89
win5 None 0.027 0.89
win6 Initiate 20 connections 0.16 0.89
win7 None 0.027 0.89

We extracted useful features from the file system, registry and
network activity logs, and formalized them to feature vectors in a
uniform format that can be analyzed by the learning algorithm. A
sample format is given as:
0:112 1:0 2:112 3:0 4:112 5:0 6:1 7:0 8:0 9:1 10:0 11:1 12:1 13:0
14:0 ;Bozori worm [00:17:51, 00:18:56]
A feature vector has 15 dimensions, each of which corresponds
to an atomic behavior feature represented with a tuple <feature
index:value>. For example, the first tuple 0:112 indicates that the
process has initiated 112 first-contact connections. A detailed de-
scription of the behavior feature vector is given in Section 4.1. As
described earlier, we kept track of the process relationships. The
behavior features are aggregated across correlated processes. For
example, process A registers an autorun entry in the registry and
creates process B. Process B then drops a backdoor in the sys-
tem directory within the same time window. Suppose the behavior
vector’s first two fields are 〈autorun key, dll drop, . . .〉. Then,
the vector in this window for both will be 〈1, 1, . . .〉 instead of
〈1, 0, . . .〉 and 〈0, 1, . . .〉.

In addition, we selectively accumulated some feature fields in
consideration of the worms that may spread malicious activities to
different time windows. Because we did not find such a worm in
the wild, we simulated one to show the difference in suspicion lev-
els. Without feature accumulation, the suspicion level ranges from
0.027 to 0.59, and 7 out of 8 are below 0.5 (Table 3). With feature
accumulation over 5 time windows, the suspicion level becomes
0.89. Note that the simulated worm is slowly propagated compared
to fast-scanning worms that can generate hundreds of connections
in a time window. Even so, due to its accumulated file system and
Registry activities, its suspicion level is high enough to trigger a
strict rate-limiting when it accesses the network.

For this feature accumulation, we need to determine how long
to accumulate behavior for each process. If this time window of
accumulation is static, an attacker may learn and evade it. If we
accumulate over infinitely many windows, a total number of false-
positives may become very high. So, we dynamically change the
accumulation time window. For example, we randomly select a
value between 1 and 50 min each time. By introducing this uncer-
tainty, it makes evasion of behavior monitoring harder.

6.4 Suspicion-Level Analysis
Recall that the suspicion level generated by the learning algo-

rithm is denoted by L0 for normal and L1 for malicious processes
where L0, L1 ∈ [0, 1]. L0 (L1) has CDF F0 (F1). We estimated
the suspicion-level CDFs for normal and malicious processes by
applying the pre-trained SVM to the behavior vectors generated
from the normal and malicious traces. The suspicion-level CDFs
are plotted in Figure 5. Clearly, normal applications tend to have
a lower degree of suspicion, while worms have much higher suspi-
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Figure 5: Suspicion-level CDFs for malicious/normal processes

cion levels. This demonstrates the SVM’s learning ability in deter-
mining the suspicion level of a process, and also indicates that the
thus-generated suspicion level is indeed informative.

6.5 Overhead
One may want to know the overheads incurred by the runtime

behavior capture and the periodical suspicion-level generation. We
used a common Windows benchmark PassMark Software, Perfor-
manceTest [24], to measure the overheads of the runtime system
monitors on a host machine with Intel(R) Pentium IV 1.5GHz CPU,
512MB memory, 19.5G disk, and Windows XP operating system.
We ran the corresponding benchmark program for CPU, memory
and disk, respectively, 5 rounds each. The average overhead for
CPU is 10.5%, memory 14.5% and disk 4.7%. Considering the
fact that memory of this machine is much smaller than that of a
today’s PC/laptop, all of these numbers are within an acceptable
range. As to the suspicion-level generation, since the classifier is
pre-trained (i.e., the support vectors are pre-loaded), the training
time will not incur any runtime overhead to the host. Calculation
of the suspicion level is fast. For example, the suspicion levels of
10 processes are generated within half a second.

6.6 Trace-Driven Evaluation
We simulated the running of different worms and normal pro-

cesses based on the real traces collected. To demonstrate the ef-
ficacy of our scheme, Williamson’s rate-limiting [8] was imple-
mented as a baseline in our evaluation. We specifically compared
the performance between Williamson’s and our per-process schemes
when a host was infected by the latest Storm worm. We also ap-
plied Williamson’s, static-threshold (i.e., processes have the same
threshold) and our customized per-process three approaches to all
other testset data we collected including worms, their variants and
normal programs, to show the performance differences.

6.6.1 Case Study: Storm

Storm worm (or W32.Peacomm, Nuwar, Zhelatin) spreads via
email spam and is known to be the first malware to seed a botnet in
a P2P manner without any centralized control. It first came out in
Jan 2007 and has been active until now. By late 2007, it was esti-
mated to run on around 250,000 to 1 million compromised systems
and considered to be a major risk to increase bank fraud, identity
theft, and other cyber crimes. Although Storm requires the user
to follow a URL in the spam mail to download the executable, the
bot dropped into a host system is commanded and controlled via a
P2P network. Storm evolves very quickly. The sample we obtained
was from the most recent Storm outbreak on Valentine’s Day 2008.
The trace shows that Storm first connects to the P2P network by
contacting peers in a hard-coded peer list containing more than 100
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Figure 6: False alarm profiles for Storm worm under

Williamson and our approaches

IPs. After joining the network, the bot sends out search requests to
find a specific secondary injection for spamming. We observed that
it started to behave as a SMTP server and to send spam email in 5
minutes upon execution.

In our experiment, we applied both Williamson’s rate-limiting
and our per-process schemes. Williamson’s approach applied to
the entire host. A working set of specified size (n = 4 in our case,
as commonly used by others) is maintained to keep track of all IPs
the host has contacted. When a new connection is initiated, the
destination IP is compared with those in the working set. If it is in
that set, the connection can pass through. Otherwise, it is placed in
a delay queue and will be sent out later. At periodic intervals (every
second as Williamson proposed), one connection is dequeued and
a new destination address is added to the working set. There is a
pre-determined threshold for the delay queue. Whenever this value
is exceeded, all new connections are dropped.

We mixed the normal trace including P2P, web browser applica-
tions with storm trace in the simulation of Williamson’s per-host
scheme. We varied the delay queue threshold in each round to get
a pair of false-positive and false-negative rates. In our per-process
scheme, we used the mapping function h(l) = c+0.5∗a−a∗l. The
optimal mapping is generated by the algorithm described in Section
5. We obtained several pairs of false-positives and false-negatives
via different mapping functions and then drew the false alarm pro-
files. Figure 6 compares false alarms of the two approaches, show-
ing that our scheme outperforms Williamson’s. In Williamson’s
scheme, when the delay queue threshold is set to a small value,
Storm can saturate the delay queue in tens of seconds, thus caus-
ing normal traffic to be dropped. When there are some network-
intensive normal applications, the false-positive is considerable.
Specifically in the experiment, the false-negative rate is controlled
within 10% at the expense of more than 70% false-positive rate. On
the other hand, given a generous delay queue threshold to accom-
modate normal traffic, a majority of Storm’s connections can pass
through too. The problem lies in treating all processes indiscrimi-
nately. In per-process scheme, different thresholds are assigned to
different processes according to their suspicion levels. In the nor-
mal case, the average suspicion level for all normal applications
is around 0.3 despite that some network-intensive applications are
included. On the other hand, Storm has acted maliciously at the
Registry and file system resulting in a suspicion level of 0.95 and
hence a low rate-limiting threshold. By imposing customized rate-
limiting to Storm and normal traffic, our scheme achieves lower
false-positive and false-negative rates.

6.6.2 Evaluation of Three Schemes
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Figure 8: False-negatives on worms

Note that Williamson’s use of a per-host static threshold is slightly
different from the static-threshold approach mentioned before. The
latter assigns the same threshold to all processes, while the for-
mer does not discriminate at the process level. To compare these
two and our schemes, either false-positive or false-negative rate has
to be fixed as there is always a tradeoff between the two. We
set the false-positive rate to be 5% and input the parameters to
the optimization algorithm. The resulting optimal mapping func-
tion, which can generate the lowest false-negative rate is h(l) =
7.32 + 0.5 ∗ 6.51 − 6.51 ∗ l(a = 6.51, c = 7.32). Based on
the numerically-obtained false alarm profiles introduced in Fig-
ure 4, the static threshold rate is set to 8 per second to meet the
false-positive rate requirement. Since a suspicion level is gener-
ated for each process every t minutes (t is set to 1 in our exper-
iment), the threshold value calculated by the mapping function is
also updated dynamically in the order of minutes. While apply-
ing Williamson’s scheme, we chose the well-adopted parameters
(working set length=4 and release rate of delay queue= 1 connec-
tion/s). We varied the delay queue threshold imposed to mingled
normal and worm traces to find the one that can reach a 5% false-
positive rate. The appropriate value is found to be 200.

Recall that the false-positive rate is defined as the fraction of nor-
mal connections blocked. Figure 7 plots real false-positive rates for
each normal program in the testset under Williamson’s, the static
threshold, and the customized per-process schemes. They have
some fluctuations process-wise but the average values are close to
5% (see Table 4). Figure 8 shows the false-negative curve for each
scheme. The false-negative rate is calculated as the percentage of
evaded connections of worms. Given false-positive rates shown
in Table 4, the average false-negative rate across all worms under
Williamson’s scheme is the highest, 72.12%, and the per-process
scheme 4.15%, the best. The static scheme produces 20.14%, in
the middle. Williamson’s is even worse than the static threshold
scheme for the following reason. During a worm outbreak, the per-



Table 4: Average FPs and FNs under three schemes
Avg FP Avg FN

Williamson 5.56% 72.12%
Static 4.87% 20.14%

Per-Process 3.24% 4.15%

host delay queue is mostly occupied by the worm. When the thresh-
old is set to a larger value to accommodate normal applications, the
worm benefits more, leading to a high false-negative rate. As for
the static threshold scheme, the threshold is assigned to each pro-
cess, which is relatively small (in our case, 8 versus 200) and thus
more restrictive, compared to the per-host threshold.

Although progress is made from the per-host to the static thresh-
old scheme, our customized per-process threshold can perform even
better than the static threshold scheme by using suspicion-level in-
formation. The suspicion levels for worms are relatively high and
their thresholds are accordingly low so that most of malicious con-
nections may be blocked, whereas normal applications are assigned
low suspicion levels but high rate-limiting thresholds to let most
traffic pass through. Compared to the customized threshold, the
static threshold scheme must compromise one false alarm rate for
another. Thus, the customized per-process scheme performs best
among the three.

6.6.3 Optimality of the Mapping Function

We now want to show that the performance improvement from
use of a static threshold to a customized per-process threshold is
not a coincidence and that the mapping function used is optimal in
the sense that it can achieve the lowest false-negative rate given a
false positive rate. We selected 12 pairs of a and c, i.e., 12 mapping
functions, and measured the false-positives and false-negatives on
the same data set. Figure 9 plots the false-alarm profiles for dif-
ferent a and c values based on the real-world traces. As we ex-
pected, the curves are quite similar to the numerically-computed
false-alarm profiles (Figure 4). The curve in the lower-left direc-
tion is the one with the optimal a because given a false-positive
rate, the false-negative rate on this curve is always lower than other
curves, and it is the same case when false-negative is fixed. In this
figure, a = 6.51 is obviously better than smaller or larger values
of a. This is the value our optimization algorithm yielded. In par-
ticular, on this curve, c = 7.32 is the one close to our required
false-positive rate 5%. This c value is also identical to that gener-
ated from the optimization. Moreover, when a = 0 which repre-
sents the static scheme, the false-negatives on this curve are gen-
erally higher than those on other curves. All of these observations
confirm that our empirical results obtained from real-world traces
are consistent with the numerical results obtained from false-alarm
modeling, indicating that the mapping function selected by the op-
timization algorithm is indeed optimal and the per-process scheme
performs significantly better than the static threshold scheme in
terms of false-alarm rates.

7. LIMITATIONS AND FIXES
In this section, we would like to discuss two fundamental lim-

itations of not only our scheme but all host- and behavior-based
worm defense and response mechanisms. The first limitation is the
circumvention of a pre-defined list of behaviors. Since our behav-
ior list that can best discriminate normal and malicious programs is
based on the study of existing network worms, our scheme works
effectively for malicious processes having typical “worm" behav-
ior. Even if some worms change their behaviors a little bit, such as
installing in a different directory, our scheme can still work since
we account for a set of behavior features, not just one feature. As
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Figure 9: Optimality of the mapping function

worms evolve, we can simply extend or modify our behavior list of
monitoring. However, if all of the behaviors of a worm are the same
as those of normal programs or completely different from existing
worms, we can hardly capture it. However, such a scenario will be
rare as our behavior list reflects the fundamentals of network worm
behavior.

The second limitation is the vulnerability of a host-based mech-
anism to worms’ adaptivity. There is always a tradeoff between
deploying worm defense at the network and at end-systems. A
network-based scheme is not easy to be disabled by a worm but
only gets coarser-grained information, i.e., network activities on
a host basis and can be fooled by address spoofing, resulting in
less accurate and efficient response. A host-based solution, on the
other hand, can obtain finer-grained information and achieve finer-
grained and accurate response as we have demonstrated. The way
a worm gets around our scheme is to sit below the monitoring level
and modify or subvert the information our monitor receives by us-
ing the rootkit technique for example. One countermeasure is to
search for the discrepancy between the information returned by the
Windows API or system calls and that seen in the raw scan of the
file system or Registry hive [25]. With the help of secure hardware
[26] or secure VMM [27], it is also possible to prevent or detect the
rootkit from altering the OS.

While there is a possibility that a worm could attempt to evade
our mechanism, in the evaluation section we have demonstrated
how our system successfully contains state-of-the-art worms that
we were able to collet while minimizing the impact on legitimate
traffic. Therefore, our approach at least raises the bar significantly
for contemporary network worms.

8. CONCLUSION
We have proposed a novel automatic worm defense framework

that combines per-process behavior analysis and fine-grained con-
tainment. It automatically monitors each process’s runtime behav-
ior and generates its level of suspicion by a machine learning algo-
rithm. A mapping algorithm is developed to transform the suspi-
cion level to the appropriate rate-limiting threshold on a per-process
basis. Our experimental evaluation based on real-world worm sam-
ples and normal process traces demonstrates the efficacy of per-
process rate-limiting, which produces much fewer false-positives
and false-negatives in containing network worms than previously-
known approaches.
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APPENDIX

The mapping function optimization algorithm
ADJUST_C(&a, &c, Fconn0, targetFP )
1 if FP(a, c, Fconn0) > targetFP

2 then step← EPSILON

3 else step← −EPSILON

4 while FP(a, c, Fconn0) > targetFP

5 do c← c + step or c← c− step

6 ADJUST_A(a, c, Fconn0, targetFP )

ADJUST_A(&a,&c, Fconn0, targetFP )
1 currenta← a

2 currentFP ← FP(a, c, Fconn0)
3 if FP(a + step, c, Fconn0) < currentFP

4 then step← EPSILON

5 else step← −EPSILON

6 while FP(a + step, c, Fconn0) < currentFP

7 do a← a + step

8 currentFP ← temp

9 if a− currenta < EPSILON

10 then return

11 ADJUST_C(a, c, Fconn0, targetFP )

REFINE_A(&a,&c, Fconn0, Fconn1, targetFP )
1 repeat

2 currentFN ← FN(a, c, Fconn1)
3 if FN(a + EPSILON, c, Fconn1) < currentFN

4 then a← a + EPSILON

5 if FN(a− EPSILON, c, Fconn1) < currentFN

6 then a← a− EPSILON

7 if FN(a + EPSILON, c, Fconn1) == currentFN

8 then return

9 REFINE_C(a, c, Fconn0, targetFP )
10 until FN(a, c, Fconn1) > currentFN

REFINE_C(&a, &c, Fconn0, targetFP )
1 if FP(a, c, Fconn0) > targetFP

2 then step← EPSILON

3 else step← −EPSILON

4 while FP(a, c, Fconn0) > targetFP

5 do c← c + step or c← c− step

The EPSILON is set to be 10−2 and the call sequence is:
adjust_c(a,c,Fconn0,targetFP)
refine_a(a,c,Fconn0, Fconn1,targetFP)


