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Abstract—Achieving secure time-synchronization in wireless
sensor networks (WSNs) is a challenging, but very important
problem that has not yet been addressed effectively. This pa-
per proposes an Attack-tolerant Time-Synchronization Protocol
(ATSP) in which sensor nodes cooperate to safeguard the time-
synchronization service against malicious attacks. ATSP exploits
the high temporal correlation existing among adjacent nodes
in a WSN to achieve (1) adaptive management of the profile
of each sensor’s normal behavior, (2) distributed, cooperative
detection of falsified clock values advertised by attackers or
compromised nodes, and (3) significant improvement of syn-
chronization accuracy and stability by effectively compensating
the clock drifts with the calibrated clock. To reduce the risk of
losing time-synchronization due to attacks on the reference node,
ATSP utilizes distributed, mutual synchronization and confines the
impact of attacks to a local area (where attacks took place).
Furthermore, by maintaining an accurate profile of sensors’
normal synchronization behaviors, ATSP detects various critical
attacks while incurring only reasonable communication and
computation overheads, making ATSP attack-tolerant and ideal
for resource-constrained WSNs.

I. INTRODUCTION

Recently, wireless sensor networks (WSNs) have been at-
tracting considerable attention due mainly to the increasing
number of their applications in military, environmental, med-
ical, and industrial domains. A WSN usually consists of a
large number of densely-deployed, small, low-cost and battery-
powered sensor devices. Sensor nodes are often required
to be time-synchronized for various applications, such as
trajectory estimation of moving objects, public infrastructure
surveillance, and data fusion. Without a common time base
among sensors, data with inaccurate timestamps would be
collected and aggregated, causing large estimation errors and
incorrect scheduling of events/actions. To overcome these
problems, many time-synchronization algorithms and proto-
types have been proposed for WSNs [1–5]. Despite their high
synchronization accuracy, they did not address the problem of
protecting the time-synchronization service from node failures
and malicious attacks, because they all assume a benign
environment in which every sensor node behaves normally and
follows the underlying protocol faithfully. However, WSNs,
often deployed in an inaccessible, hostile environment, are
characterized by their large-scale and unattended nature that
is likely to invite many critical security attacks. Therefore,
security has been identified as a major challenge for WSNs in
general, and for the time-synchronization service in particular.

Many existing secure time-synchronization protocols re-
quire one or more centralized reference nodes and identify
possible attacks with a heuristic threshold of propagation delay
[6] or clock offset [7]. However, the reliance on reference
nodes often implies susceptibility to single points of failure
and violates the distributed nature of WSNs, because the
failures of the reference nodes will disrupt the synchronization
service in a large portion, if not the entirety, of a WSN.

In this paper, we take a distributed and mutual syn-
chronization approach to building an Attack-tolerant Time-
Synchronization Protocol (ATSP) for WSNs under which
sensors cooperatively execute and safeguard the time-
synchronization service. The rationale behind this is that a
sensor network inherently relies on collective assurance among
clusters of sensors to execute complex applications even in
the presence of attacks. ATSP is essentially a cooperative
intrusion-detection system (IDS) where sensors achieve a high
level of attack-tolerance by adaptively building and track-
ing the normal profile of synchronization behaviors of their
neighbor nodes. Any information that deviates noticeably from
the normal profile is rejected, thereby forcing the attacker to
weaken the attack strength so as not to be caught. However,
due to the use of distributed synchronization where each sensor
adjusts its own clock based on multiple neighbors’ clock val-
ues, the small perturbation by the attacker(s) (that is below the
detection threshold) will be smoothed out, thus causing much
smaller synchronization errors than those in the centralized
model. To compensate the clock drift in-between adjacent
synchronization points, ATSP utilizes “calibrated clock” by
which each sensor uses its neighbors’ normal profiles to
estimate their clock drift without additional communication.
Our security analysis and simulation results demonstrate the
effectiveness and robustness of ATSP in defeating critical
attacks with reasonable processing and communication over-
heads for resource-constrained WSNs.

The rest of the paper is organized as follows. Section
II discuses related work while Section III describes system
models. Section IV presents our proposed approach while
Section V analyzes ATSP’s attack detection. Section VI details
the ATSP protocol and our evaluation results are presented in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

Time-synchronization has been studied extensively in dis-
tributed systems and wired networks [8]. However, they ei-
ther assume unlimited computing resources or require expen-
sive devices and thus are unsuitable for resource-constrained
WSNs. Recently, there have been many time-synchronization
protocols tailored to WSNs. The Reference Broadcast Syn-
chronization (RBS) [1] intended for pair-wise and multi-
domain clock synchronization seeks to reduce the unpre-
dictable latency by exploiting the broadcast nature of the wire-
less communication and shortening the critical path. Palchaud-
huri et al. [9] extended RBS and applied probabilistic clock
synchronization to guarantee an upper bound on the accuracy.
Ganeriwal et al. [2] proposed a network-wide synchronization
scheme called TPSN which uses MAC-layer timestamping
to reduce the non-deterministic message delay. The protocol
achieves a global timescale by establishing a hierarchical
structure and having each sensor node synchronize with its
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root. The Flooding Time-Synchronization Protocol (FTSP) [3]
extended the MAC-layer timestamping to further eliminate
the uncertainties in message transmission so that one single
broadcast message is sufficient to synchronize the sender and
the receiver. More recently, Su and Akyildiz [4] proposed the
Time Diffusion Protocol (TDP) which achieves a network-
wide equilibrium time based on the diffusion of messages,
thereby involving all the nodes in the synchronization process.
Li and Rus [10] also proposed a fully localized diffusion
based method to achieve global time synchronization. Other
algorithms (e.g., [5]) have also been proposed to reduce
computation and storage complexities.

However, the above protocols all assume benign environ-
ments and cannot survive malicious attacks [11]. To meet the
security requirements, several secure synchronization schemes
[6, 7, 12, 13] have also been proposed. [6] secures pairwise
and group time-synchronization by checking if the end-to-end
delays exceed a pre-defined threshold and aborting the service
upon detection of an attack, which can potentially be exploited
by DoS attacks. Algorithms proposed in [7] detect and ac-
commodate message-delay attacks via outlier- and threshold-
based technique. [13] presents a fault-tolerant scheme that is
proven to guarantee an upper bound of clock skew between
non-faulty nodes in the network. Although these protocols
provide high security guarantee against various attacks, many
of them are based on the reference-based model and the
hierarchical structure and thus suffer from a single point of
failure. Therefore, an inherent distributed time-synchronization
protocol—where the failure of any node affects nodes only in
its proximity—is more desirable for WSNs.

ATSP differs from previous work in several ways. First, it
safeguards the time-synchronization service by adopting an
anomaly-detection approach, in which sensors monitor each
other’s behavior, and cooperatively achieve accurate detection
of attacks. Second, ATSP takes a distributed approach where
each sensor independently makes decisions based only on
the information collected from multiple adjacent nodes, thus
achieving a high level of resistence to various attacks.

III. SYSTEM MODELS

A. Network Model

The WSN under consideration is a dense network consisting
of a large number of resource-constrained sensor nodes with
neither reference nodes nor a root node. This is a realistic de-
ployment scenario in that a WSN is inherently infrastructure-
less where many sensors autonomously organize themselves
into a connected structure. Thus, it is often desirable to mini-
mize the dependency of time-synchronization on infrastructure
nodes. In addition, each node maintains a sufficient number
of neighbors to accelerate the synchronization process. The
number of neighbors can be easily adjusted by changing the
transmission power when the synchronization information is
broadcast. Note the bidirectional neighbor relationship is not
needed in ATSP. For further reduction of the synchronization
overhead, each node piggybacks the synchronization informa-
tion on beacon messages that are periodically broadcast to
refresh each node’s neighbor list. In the current work, we
assume there exist some reliable broadcast technique such as
the method proposed in [14].

B. Attack Model

Since WSNs usually operate in an unattended environment,
they are subjected to a variety of attacks, such as (1) physical
attacks, e.g., destroying, replacing and/or cloning sensors;
(2) data attacks, e.g., capturing, replaying and spoofing of
packets; (3) resource-consumption and DoS attacks; and (4)
sybil attacks. This paper focuses on attacks targeting the time-
synchronization service, including:

• Node compromises: an attacker compromises and abuses
a sensor node to mislead its neighbors with incorrect tim-
ing information. For example, since TPSN [2] constructs
a spanning tree to propagate the synchronization service,
compromising one sensor node suffices to mislead all the
sensor nodes in the subtree below the node.

• Message manipulation: includes dropping, modifying
and faking synchronization messages. For example, an
attacker may fabricate messages from the reference node
and/or replay an old synchronization message, causing
other nodes to adjust to a wrong time.

• Message delay: an attacker can disrupt the time-
synchronization by simply delaying messages. A remote
node’s clock is often inferred by exchanging messages.
The message-delivery delay has been considered negligi-
ble (e.g., in FTSP) or the same for all receiving nodes
(e.g., in RBS and TPSN). However, this condition can
easily be broken by intercepting the message and replay-
ing it after a unpredictable delay. This extra delay will be
incorporated into the clock offsets between sensor nodes,
effectively skewing the clock values between nodes.

C. Clock Model

Each sensor node has its own physical clock, calculated
by counting pulses of its hardware oscillator running at a
particular frequency. In practice, sensors’ oscillators run at
slightly different frequencies and the frequency varies unpre-
dictably, depending on ambient factors such as temperature
and humidity. Hence, sensors’ clocks are always subject to a
divergence or clock skew. According to [15], for a relatively
extended period of time (minutes to hours), the clock can be
approximated with good accuracy by an oscillator of fixed
frequency. The local clock of a sensor node i can thus be
approximated [16] as Ci(t) = αit+βi, where t is the physical
time, αi is the drift rate of i, and βi is the offset between the
local clock and the physical time.

IV. THE PROPOSED APPROACH

Since it is practically impossible to completely prevent all
possible attacks in a WSN, we would like to make the network
attack-tolerant so that the impact of malicious attacks and node
failures could be tolerated and confined within the local area.
Next, we will detail the ATSP architecture, the underlying
synchronization and profile-building algorithms.

A. Motivation

To maximize attack-tolerance and time-synchronization ac-
curacy, ATSP exploits the temporal correlation among neigh-
boring sensors’ clocks and takes an anomaly-detection ap-
proach to detect misbehaving sensors in synchronization
process. Essentially, every node maintains and dynamically
updates a normal profile for each of its neighbors based
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Fig. 1. The ATSP architecture in which a sensor node s processes the time
announcements from its neighbor i

on their past behavior. Upon receiving a neighbor’s time
announcement, each sensor compares the announcement with
the neighbor’s expected normal behavior estimated from the
profile. This way, a noticeable deviation from the normal
profile will make the node suspected of having been com-
promised, thanks to the strong temporal correlation existing
between neighbor nodes Hence, the adversary has to lower
its attack strength so as not to be caught. However, because
ATSP is a distributed protocol where each sensor adjusts its
own clock based on inputs from a number of neighbors, false
time announcements with small perturbations could easily be
smoothed out, if a majority of the sensors are well-behaving. In
other words, in ATSP well-behaving sensors can cooperatively
identify and remove/blacklist the misbehaving sensors.

B. ATSP Architecture

ATSP consists of the following three modules (Fig. 1):

• Clock model manager establishes and maintains the
relative clock models between a sensor node and each
of its neighbors. The clock models are used to build an
accurate profile of a neighbor’s behavior.

• Profile manager constructs and maintains a compact
profile of normal time-synchronization behavior.

• Attack detector identifies suspicious time announce-
ments and feeds the results back to the other two modules
to update the normal profiles at run-time.

These three modules closely interact with each other and
cooperatively form an intrusion detection system with which
sensor nodes check the validity of time announcements based
on their normal profile. Instead of centralized reference nodes,
ATSP uses peer sensor nodes as active information sources
for updating and validating clock values, thus achieving high
synchronization accuracy and the attack-detection capability.

C. The Synchronization Algorithm

ATSP is based on the Interactive Convergence Time Syn-
chronization (ICTS) algorithm similar to the one in [17]. In
ICTS, the network-wide synchronization is achieved by having
each node first derive the time offsets between itself and all
of its neighbors by exchanging messages. Each node then
computes the average of the measured clock skews and uses
it to adjust its own clock. As long as less than one third (half)
of neighbor nodes are mis-behaving with Byzantine (non-
Byzantine) faults, all the sensor nodes in the neighborhood
will establish a common equilibrium time.

1) Calculation of Time Offsets: ATSP adopts the single
message broadcast method used in FTSP [3] to compute
the offset between two nodes. FTSP successfully eliminates
major sources of uncertainties in the packet transmission
(i.e., transmission time, access time, reception time, jitter of
interrupt-handling and encoding/decoding time) by performing
MAC-layer timestamping multiple times for every message at
each byte boundary and embeds a final error-corrected and
averaged timestamp into the message. The only uncertainty is
the propagation time (for packets to traverse the wireless link)
which is often very small and can be safely ignored. According
to [3], using only 6 timestamps per message, FTSP achieves
the timestamping accuracy of 1.4 µs on the Mica2 platform.
Thus, one radio broadcast is sufficient for all the neighbors
to accurately calculate the time offsets between their clocks
and sender’s clocks, each of which is simply the difference
between transmission and reception timestamps. .

2) Details of ICTS: Let s be the sensor node performing
time-synchronization and ns is the number of s’s neighbors.
Ti and Ts represent the send and receive timestamps. Node s
can then calculate the time offset between itself and node i
as ∆s,i = Ts − Ti. After obtaining the time offsets ∆s,i for
i = 1, · · · , ns from all of its neighbors, s computes its new
clock value at time t or C ′

s(t) as:

C ′
s(t) = Cs(t) +

1
ns + 1

ns∑
i=1

∆s,i. (1)

The denominator ns + 1 comes from the fact that node s’s
own clock is also considered for the computation of a new
clock value.

Sensors terminate the initial synchronization when the local
clock gets stabilized (i.e., |C ′

s(t) − Cs(t)| < ε, ε is a pre-
defined parameter determining the synchronization accuracy).
However, synchronization at a single point is insufficient, as
the discrepancies in the clock drift rates of different sensors
will cause nodes to go out of synchronization after a short
period of time. To maintain an acceptable accuracy, it is
necessary to periodically execute ICTS for resynchronization.
The appropriate resynchronization interval can be determined
by the bound of the time skew and the maximum relative drift
rate among sensor nodes [18].

D. Relative Clock Models

Under ATSP, every node maintains and continuously up-
dates the relative clock model for each of its neighbors. Main-
taining relative clock models facilitates: (1) construction of the
normal profile of a neighbor’s behavior and (2) compensation
for the clock drift in-between adjacent synchronization points.

The relative drift rate between the local clocks of nodes
s and i is defined as αs,i = αi/αs. Since there is no
reference to the physical time, a node’s drift rate (e.g., αi

or αs) cannot be directly measured. ATSP derives the relative
drift rate indirectly as follows. Assume each sensor performs

Sensor i

Sensor s

Ti (k)

Ts (k)

Ti (k+1)

Ts (k+1)

k th synchronization k+1 th synchronization

 t

sT 0 (k+1)

T 0 (k+1)i

Fig. 2. Estimation of the relative drift rate between sensor nodes s and i
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synchronization periodically. In Fig. 2, Ts(k) and Ti(k) are the
MAC-layer timestamps that record the send and the receive
times of the synchronization message at the k-th iteration
where k = 1, 2, · · ·. Let ts(k) and ti(k) denote the physical
times corresponding to Ts(k) and Ti(k). Assuming that s
finishes its k-th synchronization at physical time t0s(k + 1).
T 0

s (k + 1) and T 0
i (k + 1) represent the readings of local

clocks of node s and i for physical time t0s(k + 1), after
they complete the k-th synchronization. t is the time between
s’s completion of the k-th iteration and s’s reception of the
synchronization message from i at the (k + 1)-th iteration.
Clearly, t = ts(k +1)− t0s(k +1). We have two observations:

1) T 0
i (k+1) � T 0

s (k+1), since T 0
i (k+1) and T 0

s (k+1) are
s’s and i’s local clock for the same physical time t0s(t+
1), when they are synchronized at the k-th iteration.

2) ts(k + 1) � ti(k + 1), because ti(k + 1) is the physical
time when node i sends a message, ts(k +1) represents
the time when node s receives it and the propagation
delay can be ignored. However, their corresponding local
times, Ts(k +1) and Ti(k +1), are different (i.e., s and
i are out of synchronization).

We can then derive αs,i(k). First, if expressed in terms of
s’s local clock, the time interval t is:

Ts(k + 1) − T 0
s (k + 1)

= αsts(k + 1) + βs(k + 1) − αst
0
s(k + 1) − βs(k + 1)

= αs(ts(k + 1) − t0s(k + 1)) = αst.
Likewise, if t is expressed in terms of i’s local clock, the
following equation holds:

Ti(k + 1) − T 0
i (k + 1)

= αiti(k + 1) + βi(k + 1) − αit
0
s(k + 1) − βi(k + 1)

= αi(ti(k+1)−t0s(k+1)) � αi(ts(k+1)−t0s(k+1)) = αit.
Then, the relative drift rate αs,i can be calculated without
knowing the physical time interval t:

αs,i(k) =
αi

αs
=

αit

αst
=

Ti(k + 1) − T 0
i (k + 1)

Ts(k + 1) − T 0
s (k + 1)

. (2)

Since Ti(k+1) = ∆s,i+Ts(k+1) and T 0
i (k+1) � T 0

s (k+
1) (Observation 1), the above equation can be simplified as:

αs,i(k) � ∆s,i + Ts(k + 1) − T 0
s (k + 1)

Ts(k + 1) − T 0
s (k + 1)

= 1 +
∆s,i

Ts(k + 1) − T 0
s (k + 1)

. (3)

E. Construction of Normal Profiles

Since the clock drift is an inherent characteristic of a
sensor’s clock with good short-term stability [3], node s’s
observation of a neighbor node i’s synchronization behavior
can be fully captured by the relative drift rates collected at each
iteration using Eq. (3). Thus, we define the Profile Element
(PE) of node s’s profile for its neighbor i at iteration k to be:

cs,i(k) =
∆s,i

Ts(k + 1) − T 0
s (k + 1)

. (4)

At the k-th iteration, s has processed k PEs for node i, i.e.,
{cs,i(k)}k

t=1. Since only recent values are useful, we define
m× 1 profile vector consisting of m most recent PE records:
cs,i(k;m) = [ cs,i(k), · · · , cs,i(k−m+1) ]T where 1 ≤ i ≤ ns

and 1 ≤ m ≤ k. cs,i(k)’s exhibit a strong temporal correlation,
as they represent the quality of neighbors’ clocks and are

updated at each iteration. Hence, a compact description of
the normal profile can be derived to accurately reflect node
s’s expectation of its neighbors’ behaviors. If the observed
behaviors deviate significantly from the expectation, s should
suspect the existence of some anomalies, such as node failure
or malicious attacks.

F. Problem Formulation

Our problem is cast into the design of a bank of ns adaptive
transversal filters [19] for node s, each with M taps that
bookkeep the synchronization history for all s’s neighbors
for the past M iterations. Then, for each of ns neighbors,
the M history data are used to predict the output value at
the current iteration. First, we formulate the least squares
prediction problem as follows:

ĉs,1(t) = hT
s,1(k) cs,1(t − 1;M)

· · ·
ĉs,ns

(t) = hT
s,ns

(k) cs,ns
(t − 1;M)

M + 1 ≤ t ≤ k (5)

where hs,i(k) = [h1
s,i(k), h2

s,i(k), · · · , hM
s,i(k) ]T is the M ×1

filter-weight vector for neighbor i at iteration k and cs,i(t −
1;M) is the M × 1 past profile vector for i: cs,i(t− 1;M) =
[ cs,i(t−1), · · · , cs,i(t−M) ]T . which are used to estimate the
current PE value. Hence, we want to find estimators (filter-
weight vectors) {hs,i(k)}ns

i=1 at iteration k that minimize the
sum of squared errors (SSE):

SSEs,i(k) =
k∑

t=M+1

λk−t| cs,i(t) − hT
s,i(k)cs,i(t − 1;M) |2

(6)
where λ (≤ 1) is an exponential forgetting factor that limits
the number of input samples.

G. The Recursive Update Algorithm

We apply the recursive least squares (RLS) [19] to de-
velop an algorithm that updates the filter-weight vectors
{hs,i(k)}ns

i=1 upon receiving a new synchronization message
at the (k + 1)-th iteration. The purpose is to find the filter-
weight vector that produces the RLS of the prediction errors.
Given {hs,i(k−1)}ns

i=1 where k ≥ M +1, the RLS algorithm
first calculates, for each i, a priori prediction error, es,i(k),
based on the previous estimator vector at iteration k:

es,i(k) = cs,i(k) − hT
s,i(k − 1)cs,i(k − 1;M). (7)

The filter-weight vector is updated as:

ĥs,i(k) = hs,i(k − 1) + es,i(k)gs,i(k) (8)

where hs,i(M) = 0 and gs,i(k) is an M × 1 gain vector:

gs,i(k) =
Ps,i(k − 1)cs,i(k − 1;M)

λ + cT
s,i(k − 1;M)Ps,i(k − 1)cs,i(k − 1;M)

(9)
Ps,i(k) is an M ×M inverse correlation matrix, initialized to
Ps,i(M) = ρ−1I with a small positive ρ, and updated by

Ps,i(k) = λ−1Ps,i(k − 1)
− λ−1gs,i(k)cT

s,i(k − 1;M)Ps,i(k − 1). (10)

RLS achieves the optimum fit between the estimation and
real measurements by recursively updating the filter-weight
vectors to minimize the sum of squares of prediction errors
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[19]. The benefits of using the RLS algorithm is that it doesn’t
require inversion of large matrices, hence being very efficient
and reducing the computational requirement.

H. Profile Manger

Fig. 1 shows the architecture of the profile manager con-
structed based on the RLS algorithm. At the k-th iteration, the
profile manager of s includes ns RLS filters, each storing M
past profile elements, i.e., cs,i(k;M) and M filter-weights,
hs,i(k), that are adaptively and recursively updated using
Eqs. (7)–(10) starting from k = M +1. With this architecture,
the entire synchronization history of node s up to the k-th
iteration is fully captured in ns M × 1 vectors, that constitute
a normal profile for all of s’s neighbors at iteration k. The
computational cost at each iteration is O(ns · M2) and the
storage requirement is O(ns · M). To determine an optimal
value of M , one may use the Akaike Information Criterion
(AIC) or the minimum description length criterion [19]. In
ATSP, our simulation results (Section VII) show that a small
value of M (4 or 5) suffices to achieve high prediction
accuracy, thanks to the high temporal correlation between
neighboring nodes.

V. ATTACK DETECTION

We now describe the design of an attack detector and then
qualitatively analyze its accuracy.

A. Detection Algorithm

A compromised node i may attempt to have a falsified
clock value accepted by another node s so that ∆s,i can
be boosted to a large value. This may, in turn, cause the
clock adjustment to have a large deviation from its desired
value (Eq. (1)), making it impossible, or at least take a very
long time, for all sensor nodes’ clocks to converge. Hence,
each node must verify the trustworthiness of synchronization
messages it receives from its neighbors before using them
to adjust its own clock values. We, therefore, propose an
incremental detection scheme activated at iteration M + 1
(first M iterations are used for establishing normal profiles), at
which every node compares the new time announcements with
the expected value estimated from the normal profile during
the previous iteration. Clearly, the prediction error (Eq. (7))
es,i(k), 1 ≤ i ≤ ns quantifies the deviation of node i’s new
announcement from the value predicted from the most-recent
profiles and hence, s should suspect i to be compromised or
misbehaving, if es,i(k) exceeds a certain threshold. Accord-
ingly, for each node i, node s decides the time announcement
to be disruptive to the time-synchronization service if

|es,i(k)| ≥ max {ηt · cs,i(k), emin} (11)

where ηt (≤ 1) is a network-wide propositional threshold for
detecting anomalies. emin is the minimum error threshold,
below which the prediction error is negligible.

Possible attacks during the first M iterations of the synchro-
nization process can be detected easily, The profile manager
of s initially keeps populating its buffer with PE values and
then activates the prediction mechanism at the (M + 1)-th
iteration when the buffer is filled. This means the malicious
neighbor i cannot arbitrarily falsify its announcements (from
iteration M + 1 on) because, the announced timestamp must
be consistent with ĉs,i(M + 1). Consequently, if i made false

announcements during the first M iterations, it has to keep
misbehaving (i.e., announcing false timestamps deliberately
chosen to evade Eq. (11)) after this initial period, but doing
so will get caught because its PE value will soon become con-
spicuous among s’s neighbors. Thus, the malicious neighbors
won’t be able to confuse/disrupt the synchronization process
by attacking the initial M iterations.

Fig. 1 shows how ATSP’s attack detector interacts with
the profile and clock-model managers. At each iteration, the
attack-detector module determines if there exist anomalies in
his neighborhood by computing es,i(k) with Eqs. (7) and (11)
based on the information provided by the clock-model and
profile managers. If s determines the presence of anomalies
that meet Eq. (11), it will establish and update reputation
records for the neighbors that are suspected to have been
compromised. Node s may blacklist and/or reject announce-
ments from a neighbor if it behaved anomalously more than
NB times out of N0 iterations. The ratio NB/N0(≤ 1) is a
predefined parameter reflecting how aggressively node s reacts
to anomalies. The the choice of NB/N0 close to 1 indicates the
lenience against anomalies and vice versa. This information
will then be fed back to the profile and clock-module managers
to reject announcements from those neighbors.

B. Accuracy of Attack Detection

ATSP achieves high detection capability and accuracy by
amplifying the prediction errors caused by false clock an-
nouncements for M consecutive iterations (each presenting
multiple chances to be caught). In other words, a false an-
nouncement from node i will cause ATSP to continuously pro-
duce high es,i(·) values over M consecutive iterations leading
to the high probability of detecting the misbehaving node i,
unless it’s too weak to pose any threat to the synchronization.

Let us consider the case where a malicious node i mounted
an attack to node s causing s to compute cs,i(k) that differs
from the expected c∗s,i(k) by ∆, i.e., cs,i(k) = c∗s,i(k) + ∆
(∆ can be viewed as the attack strength). This will also
increase the prediction error es,i(k) by ∆, namely, es,i(k) =
e∗s,i(k) + ∆ from Eq. (7). Furthermore, the prediction error
will get amplified rapidly over the subsequent iterations for
the following reason. From Eq. (8), the filter-weight vectors
are updated as ĥs,i(k) = ĥ∗

s,i(k)+∆·gs,i(k). Then, es,i(k+1)
can be rewritten as a function of ∆:

es,i(k + 1) = e∗s,i(k + 1) − ∆2 · gs,i,1(k) −
∆ ·

[
ĥs,i,1(k) + gT

s,i(k)fs,i(k;M)
]

(12)

where gs,i,1(k) is the first element of gs,i(k). Therefore, the
perturbation ∆ introduced at iteration k results in a very large
prediction error at the next iteration. Moreover, this ampli-
fication of prediction error will persist over M consecutive
iterations, during which the abnormal cs,i(k) remains cached
inside the profile manager, thus making it very difficult for the
attacker to evade ATSP. This explains the high level of ATSP’s
attack-detection capability. Thanks to the attack-amplification
property of ATSP that boosts es,i(k) to a high value, the choice
of ηt is not critical.

C. Security Analysis

In Section III-B, we classified possible attacks against time-
synchronization into 3 types. The goal of attackers is to
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influence and cause a significant bias in the synchronization
process by providing false clock information. All of the 3
attack types are equivalent to modifying the send or receive
timestamps in the synchronization messages, so that the accep-
tance of these falsified timestamps by victim nodes will lead to
incorrect adjustment of their local clocks. Specifically, node-
compromise or message-manipulation attack is to change the
send timestamps and the message-delay attack is equivalent
to modifying the receive timestamps. ATSP is resilient to
these attacks, because in ATSP every node keeps refining its
estimation of neighbors’ clocks with the most recent history of
behaviors, so that the time announcements from its neighbors
should conform to their expected behavior profiles. Under
the accurate prediction framework provided by the adaptive
transversal filter and the RLS algorithm, any clock announce-
ment that deviates considerably from the corresponding pre-
diction will be judged to be suspicious. This places great stress
on the attackers and forces them to weaken the attack strength
in order to evade the attack-amplification property of ATSP.
However, as long as malicious nodes do not form a majority
within the local region of interest, such low-strength attacks
cannot disrupt the time-synchronization service, because any
attempt by a malicious node i to modify the clock value of
its neighbor s makes only one ns-th contribution to s’s clock
value thanks to the distributed synchronization protocol used
in ATSP. (Notice that the slow poisoning attack that attempts
to gradually speed up/slow down the clocks is not a problem,
because our goal is to achieve the equilibrium time among
sensors rather than the synchronization to the absolute time.)
This creates a dilemma for the attacker that either he must risk
being caught when falsifying the time too much, or he will not
do any harm if staying below the detection threshold. Thus,
the only effective way to evade detection of ATSP locally is
to compromise a majority of nodes within the local region.
However, this attack only disrupts nodes inside or near the
affected region and the rest of the network can still compute a
correct clock value. This demonstrates the cooperative nature
of ATSP and evading such detection is very difficult even for
determined attackers.

Another serious attack against ATSP is the sybil attack
[20], where a single malicious node illegitimately presents
multiple identities in the network to control a substantial
fraction of the ID space, thus invalidating the fundamental
assumption of ATSP that a majority of nodes in the network
are well-behaving. Many solutions have been proposed to
counter sybil attacks. First, the resource-verification method
detects a sybil attack by checking if each claimed identity
has as much resources as the real physical device, assuming
that each physical entity has limited storage, computation
[20], and radio channels [21]. Second, if a secure localization
service is available, the position-based verification is also an
effective countermeasure, as sybil nodes will appear to be at
the same position. In addition, the random key distribution
[22, 23] is also a promising measure against sybil attacks,
where each node compute a unique pairwise key it shares with
each neighbor based on the preloaded key-related information.
Thus, an attacker cannot fabricated the identity of a sensor
node unless he compromises the sensor and reads the key-
related information. Any of these techniques can be adopted
into ATSP to defeat the Sybil attack. We consider the random

Initial values:
1. Init Phase = TRUE
2. k = 0
3. hs,i(M) = 0
4. Ps,i(M) = ρ−1I
Iteration:
5. while (1)
6. k = k + 1 // Start the k-th iteration
7. broadcast the Sync message
8. receive Ti from every neighbor i
9. for i = 1 to ns

10. compute ∆s,i and cs,i(k) using Eq. (4)
11. if k ≥ M + 1 // Activate detection at M + 1
12. for i = 1 to ns

13. compute es,i(k) using Eq. (7)
14. if |es,i(k)| ≥ max {ηt · cs,i(k), emin}
15. cs,i(k) = hT

s,i(k)cs,i(k − 1; M)
16. ∆s,i = cs,i(k) × (Ts(k) − T 0

s (k))
17. if ++ blacklist count(i) ≥ NB

18. blacklist i
19. if i is blacklisted
20. deactivate hs,i(k)
21. else
22. update hs,i(k), gs,i(k) and Ps,i(k)

// Update the clock value
23. Cold(t) = Cs(t)
24. Cs(t) = Cs(t) + 1

m+1

∑m

i=1
∆s,i

// Determine if Init Phase is done
25. if Init Phase = TRUE and |Cs(t) − Cold(t)| < ε
26. Init Phase = FALSE
27. if Init Phase = TRUE
28. sleep(Init Interval)
29. else
30. sleep(Resync Interval)

Fig. 3. Pseudocode for ATSP at sensor node s

key predistribution technique such as the Blundo scheme [23]
used in [24] as an appropriate choice because it not only
incurs a relatively small overhead but also provides additional
security for the radio communication already required by many
other services and applications.

VI. PROTOCOL DESCRIPTION

Fig. 3 provides the pseudocode of ATSP executed at node s
(N0 is set to be unbounded in the pseudocode for simplicity).
It integrates the operations for the attack detector, the profile
manager and the ICTS algorithm.

A. Two-Phase Execution of ATSP

ATSP is executed in two phases: Initialization Phase and
Resynchronization Phase, because the discrepancies of clock
drift rates necessitate the periodic resynchronization after the
initial synchronization process. ATSP at node s starts with
initialization of the profile manager (lines 3–4). s broadcasts
the Sync message and collects Sync messages from all of
its neighbors. Then, s executes up to M iterations with the
detection module disabled (to establish the initial normal
profile), turns it on at iteration M + 1, and performs the
anomaly detection described in Section V throughout the
remainder of time-synchronization. Upon detecting suspicious
clock announcements (line 14), ATSP takes the following
two measures. First, the anomalous clock values at iteration
k must be excluded from (i) the recursion for the profile
manager by letting cs,i(k) = hT

s,i(k)cs,i(k − 1;M), and
(ii) the computation of s’s clock value by setting ∆s,i =
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cs,i(k) × (Ts(k) − T 0
s (k)), Second, the malicious neighbor

i must be removed from the future synchronization process
(i.e., by deactivating hs,i(k)) if caught more than NB times.

B. Clock Types

Since different sensors’ clocks run at different frequencies,
the offsets among sensors’ clocks will monotonically increase
and reach the maximum before the next resynchronization
point. Normally, to prevent this degradation of accuracy, sensor
nodes must be re-synchronized frequently, thus incurring a
significant overhead in terms of bandwidth and computation.
ATSP alleviates this problem by maintaining a Calibrated
Clock in addition to the Local Clock (the system clock driven
by the crystal oscillator in each sensor node) and Global
Clock (a logic clock synchronized at each synchronization
point). Calibrated Clock utilizes the normal profiles (or the
relative drift rate models) to estimate the neighbors’ clocks
(Eqs. (3) and (4)). By assuming that sensors’ clocks drift in
a linear fashion (i.e., Ci(t) = αit + βi) and the drift rate αi

has good short-term stability [3], each node can accurately
predict its neighbors’ clock values at any time and use them
to resynchronize with each other with no extra overhead. The
calibrated time is thus a logic clock calculated by this on-
demand resynchronization using the estimated clocks. It works
as follows.

Assume at node s’s global time Ts, s needs to calculate its
calibrated time CTs. Let T 0

s denote the global time when s fin-
ishes the last resynchronization, and α̂s,i(k), i = 1, 2, . . . , ns

indicate the estimated relative drift rate for each of s’s neigh-
bors during the current (k-th) iteration. Based on Eqs. (3) and
(4), we have: αs,i(k) = 1 + ∆s,i/(Ts(k + 1)− T 0

s (k + 1)) =
1+cs,i(k). The PE value for the k-th iteration (ĉs,i(k)) can be
estimated as: ĉs,i(k) = hT

s,i(k)cs,i(k−1;M). Thus the relative
drift rate between s and i is: α̂s,i(k) = 1 + hT

s,i(k)cs,i(k −
1;M). Based on the definition of relative drift rate, the
estimated remote clock T̂i at neighbor i can be computed as:
T̂i = T 0

s + α̂s,i(k)(Ts − T 0
s ). The estimated offsets between i

and s are then: ∆̂s,i = Ts − T̂i = (1 − α̂s,i)(Ts − T0). Now,
the calibrated time can be easily computed using Eq. (1) with
estimated offsets: CTs = Ts + 1

ns+1

∑ns

i=1 ∆̂s,i.

VII. EVALUATION

We evaluate ATSP via simulation with NESLsim [2, 25]
which is a PARSEC [26] based simulation platform for sensor
networks. Our simulation environment consists of 150 sensor
nodes randomly deployed in a circular area of diameter 100m.
The maximum communication range is set to 35m. Each
sensor has a clock drift rate randomly chosen between 0 and
30 µs per second and the coefficient of variation is set to 0.1.
The maximum initial offset among sensors is chosen to be
2 × 108µs (200 s). The default resynchronization interval is
fixed at 60 s and the threshold of synchronization accuracy is
350µs. Throughout the simulation, ATSP uses the following
default parameter values: λ = 0.95, ρ = 0.1 and M = 5. All
results are averaged over 50 simulation runs.

A. Accuracy of Time-Synchronization

Although The distributed and mutual synchronization pro-
tocol like ATSP has the advantage of high resilience to a
number of attacks, it inherently incurs more overhead since
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Fig. 4. Sync errors in the initial phase
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Fig. 5. Sync errors in two phases

a sensor node cannot trust any single neighbor. It has to
consult multiple nodes and requires multiple iterations for the
clock value to converge. To evaluate the tradeoff, we execute
ATSP in an attack-free environment and plot the tradeoff
(Fig. 4) between the number of iterations and the resulting
synchronization accuracy during the initialization phase. In
the figure, the network synchronization error is the maximum
difference between the clocks of a pair of sensor nodes in
the network, and the neighbor synchronization error is the
maximum difference between the clocks of a pair of neigh-
boring nodes. ATSP is shown to be able to achieve accurate
synchronization within a moderate number of iterations; it
suppresses both the network and neighbor synchronization
errors from the initial 2× 108µs to less than 10 µs within 50
iterations. Considering that only a single broadcast message
is needed per node for each iteration, ATSP achieves, at the
expense of reasonable overhead, accurate synchronization.

After the initialization phase, the network performs periodic
resynchronization to compensate for the different drift rates
that cause nodes to lose synchronization. Fig. 5 shows the
synchronization accuracy for both initialization and resynchro-
nization phases. The transition from initialization to resyn-
chronization phase occurs at iteration 31. The initialization
phase reduces the synchronization errors from 2 × 108µs to
about 300 µs while the resynchronization phase maintains this
accuracy. The resynchronization interval represents a trade-

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

Resyncronization Interval (second)

R
es

yn
cr

on
iz

at
io

n 
E

rr
or

 (
m

ic
ro

 s
ec

on
d)

 

 

Maximum Network Sync Error
Maximum Neighbor Sync Error

Fig. 6. Resync interval and accuracy

0 10 20 30 40 50 60 70 80 90 100110120
0

300

600

900

1200

1500

1800

2100

2400

2700

3000

Time (s)

S
yn

ch
ro

ni
za

tio
n 

E
rr

or
 (

us
)

Network Error (Calibrated Clock)
Neighbor Error (Calibrated Clock)
Network Error (Global Clock)
Neighbor Error (Global Clock)

Fig. 7. Calibrated vs global clocks

off between the synchronization accuracy and the resulting
overhead. Intuitively, better accuracy can be achieved with a
smaller resynchronization interval at a higher communication
overhead. Fig. 6 plots the relationship between the resynchro-
nization interval and the corresponding accuracy. Clearly, the
frequency of resynchronization is proportional to the accuracy
of ATSP. Hence, an appropriate choice of resynchronization
interval is very important in balancing the cost and accuracy,
and could be determined from Fig. 6.

Next, we evaluate the effectiveness of calibrated clocks in
compensating for the clock drift in-between synchronization
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points. As mentioned before, the clock drift will monotonically
increase between the two synchronization points and reaches
its maximum value just before the next synchronization. This
is illustrated by the upper two curves in Fig. 7 which depict
errors of global clocks during two consecutive synchronization
iterations, the interval of which is 60 seconds. The figure
shows that even though the global clock is synchronized at
time 0 and 60 seconds, the error keeps increasing and reaches
the peak (around 2000µs) just before the next synchronization
is triggered. On the other hand, using the calibrated clocks (the
lower two curves in Fig. 7) is found to stabilize and preserve
the synchronization accuracy almost at the same level as that
achieved by the real synchronization with no extra overhead.

B. Performance of Profile Manager

We evaluate the performance of the profile manager in terms
of its prediction accuracy in an attack-free environment. The
metric used to quantify the accuracy is the normalized pre-
diction error (NPE) defined as: NPEs,i(k) = |es,i(k)|

max{cs,i,cmin} ,
i = 1 · · ·ns and k ≥ M + 1. That is, NPEs,i(k) is the
absolute prediction error for neighbor i’s clock announcement
at iteration k, normalized by the real PE value cs,i(k). We
collect NPE values of all nodes from 50 independent simu-
lation runs and plot the average NPEs, i(k) over all sensor
nodes as a function of k in the first graph of Fig. 8. From the
figure, the NPE value is found to decrease very quickly and
stay constantly around 0.05 after collecting enough data, i.e.,
after iteration M +1 (= 6). This demonstrates that each sensor
node could construct a ready-to-use profile very fast with high
accuracy. Moreover, the profile manager incurs relatively small
processing overhead because of the small value of M used in
the filter. Therefore, the proposed profile management based
on adaptive filtering captures the synchronization behavior in
a compact and efficient form.

C. Performance of Attack Detector

To evaluate the attack-detection capability, we construct
attack scenarios in which a malicious node injects false clock
values at iteration 40 that differ from its real clock by 0.5,
1 and 2 ms, respectively. We use NPE as the evaluation
metric because it effectively quantifies the attack strength and
identifies the source of false information. Fig. 8 plots the
NPE values under these attack scenarios. From the figure, we
observe that the attack mounted at the 40-th iteration increases
NPEs,i(40) in proportion to the attack strength. Moreover,
the NPE values of subsequent M (= 5) iterations continue
to exhibit unusually high values that differ from the normal
values by orders-of-magnitude. This means that an adversarial
impact resides in the profile for M consecutive iterations,
during which it continuously produces abnormal prediction
errors. These results clearly agree with the analysis in Section
V. For this reason, any attack that yields even small deviations
of clock value is likely to be detected by ATSP, thanks to its
error-amplification property.

D. Attack-Tolerance

We now evaluate ATSP’s attack-tolerance to show that the
synchronization service is disrupted by neither “weak” nor
“strong” attacks (of strength just below, or well above, the
detection threshold). We first ran simulation with the attack-
detector turned off to find the range of attack strengths that our

synchronization can withstand. We then turned on the attack
detector for the subsequent simulation to quantify the gain with
our attack detector in terms of withstanding stronger attacks.

1) ATSP without Attack Detector: Fig. 9 plots the synchro-
nization errors in the presence of attacks of varying strengths
represented by the clock announcements that differ from the
true values by 0.5, 1, 5 and 10 ms, respectively. Clearly, the
attack of 0.5ms strength is completely canceled out. Even for
an attack of 1ms strength, no noticeable increase exists in
the neighbor synchronization error. By contrast, according to
Fig. 8, even the 0.5ms attack produces highly unusual NPE
values and will easily be detected. Therefore, attackers have
to lower their attack strength below 0.5ms to evade ATSP’s
detection, but doing so will not harm the synchronization, as
demonstrated in Fig. 9. The remaining two plots in Fig. 9
show the cases of noticeable surges in synchronization errors,
simply because the attack strengths exceed the tolerance bound
of distributed protocol. However, it is important to note that the
impact of attacks is still reduced by orders-of-magnitude. This
demonstrates ATSP’s capability of mitigating the impact of
attacks. However, it also calls for an attack-detection module
to identify and exclude notable attacks that may defeat ICTS.

2) ATSP with Attack Detector: Finally, we ran simulation
with the attack-detector module enabled to evaluate the overall
attack-tolerance of ATSP. Sensor nodes evaluate Eq. (11) to
locate and exclude false clock announcements from clock
synchronization and updating of normal profiles. Fig. 10 shows
the simulation results when nodes experience the same degree
of attacks as that in Fig. 9 Unlike previous results, there
are no synchronization-error spikes even under severe attacks,
indicating that strong attacks that cannot be tolerated by ICTS
are eliminated by our attack-detector module.

In summary, the attack-detector module and the ICTS algo-
rithm effectively complement each other. ATSP uses the attack
detector to block strong attacks before they reach and defeat
ICTS, while ICTS will smooth out the weak attacks missed
by the attack detector. Therefore, the attack detector and ICTS
form a cooperative multiple-layer defense mechanism; the
attack detector serves as the first line of defense that detects
and counters attacks in new time-advertisements received,
while ICTS is the second line of defense that reduces or
eliminates the impact of attacks evaded the attack detector.

VIII. CONCLUSION

We proposed an attack-tolerant time-synchronization pro-
tocol (ATSP) for WSNs by exploiting temporal correlations
among adjacent sensor nodes to build compact profiles of
normal synchronization behaviors. ATSP is a distributed,
mutual synchronization scheme which provides a high level
of attack-tolerance at a reasonable cost. ATSP, as a coop-
erative intrusion/anomaly detection system, compares a new
time announcement with an adaptively-managed profile and
identifies time announcements that deviate significantly from
the expected normal behavior. ATSP compensates for the clock
drift in-between the synchronization points by evaluating cali-
brated clock which utilizes relative drift rate models to perform
resynchronization with the neighbors’ estimated clocks. Using
a recursively-refined relative drift model, the calibrated clock
significantly improves both accuracy and stability during each
resynchronization interval while incurring no extra overhead.
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Fig. 8. NPE in the presence of attacks of strengths 0(no attack), 0.5, 1 and 2 ms
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Fig. 9. Synchronization errors with the attack-detector disabled in the presence of attacks of different strengths
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Fig. 10. Synchronization errors with the attack-detector module enabled in the presence of attacks of different strengths

The analysis and evaluation of ATSP demonstrate its high
attack-tolerance and feasibility for resource-limited WSNs.
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