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ABSTRACT
In cognitive radio networks (CRNs), spectrum sensing is key
to opportunistic spectrum access while preventing any un-
acceptable interference to primary users’ communications.
Although cognitive radios function as spectrum sensors and
move around, most, if not all, of existing approaches as-
sume stationary spectrum sensors, thus providing inaccu-
rate sensing results. As part of our effort to solve/alleviate
this problem, we consider the impact of sensor mobility on
spectrum sensing performance in a joint optimization frame-
work for sensor cooperation and sensing scheduling. We
show that sensor mobility increases spatio-temporal diver-
sity in received primary signal strengths, and thus, improves
the sensing performance. This is intuitively plausible, but
have not been tested previously. Based on this observation,
we propose a sensing strategy that minimizes the sensing
overhead by finding an optimal combination of the number
of sensors to cooperate and the number of times spectrum
sensing must be scheduled. This result provides a useful in-
sight to understand the spectrum sensing and its coupling
with sensor mobility.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Algorithms, Performance, Theory

Keywords
Cognitive radios, Sensor mobility, Spectrum sensing

1. INTRODUCTION
In cognitive radio networks (CRNs), spectrum sensing

must meet the strict detectability requirements set by the
FCC to protect primary users’ communications from exces-
sive interference caused by secondary CR devices. To meet
these requirements, cooperative sensing [12,19] and sensing
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scheduling [8,11] have been studied as efficient means to im-
prove the sensing performance by exploiting spatio-temporal
diversity in received signal strengths (RSSs). In [11], we pro-
posed a sensing framework that minimizes the sensing-time
while meeting the detection requirements by jointly optimiz-
ing sensor selection and sensing scheduling. An interesting
observation made there is that when sensors are stationary
as in 802.22 WRANs, the measured RSSs at each sensor
are pseudo time-invariant, depending on their geographical
location, thus limiting the performance gain from sensing
scheduling.

Mobility is one of the most important factors in wireless
systems because it affects numerous network characteris-
tics, such as network capacity [6], connectivity [14], cov-
erage [9], routing [10], etc. It is also an inherent feature to
support various types of wireless services in CRNs. While
the 802.22 Working Group considered only stationary sen-
sors (i.e., CPEs) in the initial standard draft, recently, they
adopted an amendment for the operation of portable de-
vices [18]. Despite its importance, however, mobility is still
largely unexplored in the context of dynamic spectrum ac-
cess. Allowing sensor mobility in CRNs will introduce nu-
merous challenges, making it necessary to revisit current
system design and protocols, such as mechanisms for spec-
trum sensing, interference management and routing.

As a first step to understand the impact of mobility in
CRNs, we study the performance of spectrum sensing with
mobile sensors via a theoretical study. In particular, we
show that, when sensing is scheduled multiple times, sen-
sor mobility can yield a significant performance gain by ex-
ploiting spatio-temporal diversity in received primary signal
strengths. This is in sharp contrast to the case of stationary
sensors where the benefit to be gained from scheduling sens-
ing is marginal. Our theoretical analysis indicates that the
contribution of sensing scheduling to the performance im-
provement increases as the speed of mobile sensor increases,
which raises an interesting question: how to establish a bal-
ance between the number of sensors to use and the number
of times to sense? To address this question, we derive an
optimal combination of these two design parameters that
minimizes the overall sensing overhead. To our best knowl-
edge, this is the first study to examine the impact of sensor
mobility on the performance of spectrum sensing.

2. RELATED WORK
Distributed sensing has been recognized as a viable means

to improve the sensing performance while meeting the strin-
gent incumbent detection requirements set by the FCC. Its
performance has been studied extensively, including trade-
offs in spectrum sensing [8], detectability in fading environ-
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Figure 1: An example of the 802.22 WRAN with a
large-scale primary user, i.e., TV transmitter, and
static and mobile sensors.

ments [12], and impact on transport layers [3]. However,
the sensor cooperation gain has been reported to degrade as
the shadow fading correlation among collaborating sensors
increases [12]. For example, Ghasemi and Sousa [5] derived
an asymptotic bound of detection performance in a corre-
lated log-normal shadowing environment. They showed that
the performance improvement by having an infinite num-
ber of correlated sensors is bounded depending on the de-
gree of correlation. Along the same line as in [5], Visot-
sky et al. [19] proved that by increasing the number of sen-
sors with i.i.d. shadow fading, both false-alarm and miss-
detection probabilities can be made arbitrarily small. To
mitigate this adverse impact of shadow correlation, Selén et
al. [15] proposed heuristic sensor selection algorithms to find
independent sensors for distributed sensing.

While cooperative sensing aims to exploit sensor location
diversity (in space domain), sensing scheduling has recently
been studied as an alternative means to improve the sens-
ing performance (in time domain) [2,11]. However, Min and
Shin [11] demonstrated that sensing scheduling with static
sensors does not make a considerable performance gain be-
cause of limited diversity in RSSs due to their fixed geo-
graphical location. In this paper, as a generalization of the
previously-proposed joint optimization framework for dis-
tributed sensing [11], we consider mobile sensors and study
the impact of sensor mobility on the performance of spec-
trum sensing and corresponding design tradeoffs between
cooperation and scheduling.

3. SYSTEM MODEL
A CRN consists of a large-scale primary (i.e., TV) trans-

mitter and an infrastructure-based secondary network with
static and mobile sensors, as shown in Fig. 1. In an IEEE
802.22 WRAN, a base station coordinates distributed spec-
trum sensing within a cell by directing a set of static and/or
mobile sensors to sense a target channel. We assume that
the mobile sensors move independently of each other within
the cell, and thus, there is no correlation among the sen-
sors.1 The sensors will lose their connectivity to the base
station as they move outside the cell boundary; otherwise,
they might cause an excessive interference to the primary
receivers.

1This is a reasonable assumption because decorrelation dis-
tance is in the range of 120− 200 (m) in suburban areas [1],
whereas the typical cell radius is 33 km [4].

To detect the existence of a primary signal, a simple en-
ergy detector is used to focus on characterization of the
achievable performance gain using mobile sensors. The out-
put of the energy detector, denoted by the test statistic T ,
is basically an estimate of the received primary signal plus
noise power. The test statistic at sensor n can be approx-
imated as a Gaussian distribution using the Central Limit
Theorem (CLT) [16]:

Tn ∼
{

N
(

No,
N2

o
Ms

)

under H0 (white space)

N
(

Pn + No, (Pn+No)2

Ms

)

under H1 (occupied),

where Pn is the received primary signal strength, No the
noise power, and Ms the number of signal samples during
the sensing period TS (e.g., 1ms). We assume that the signal
is sampled at the Nyquist rate, i.e., 6MHz, so it takes 1ms
to obtain Ms =6 × 103 samples.

The received primary signal strength at sensor n can be
expressed as:

Pn = PR · eYn , (1)

where PR is the average received signal strength within a
cell,2 and eYn , where Y ∼ N (0, σ2), is the channel gain
between the primary transmitter and sensor n due to log-
normal shadowing. The log-normal shadow fading is often
characterized by the dB-spread σdB , which has the follow-
ing relationship σ=0.1 loge(10) σdB. Note that the effect of
multi-path fading is negligible in a DTV channel because of
its wide bandwidth [16].

4. SPECTRUM SENSING WITH MOBILE
SENSORS

In this section, we first characterize the temporal cor-
relation in test statistics from a single mobile sensor. We
then formulate the primary signal detection as a hypothe-
sis testing problem with multiple mobile sensors, each sens-
ing/sampling the spectrum multiple times.

4.1 Correlated Measurements from a Single
Mobile Sensor

Let’s first consider the results from a single mobile sen-
sor. Let xn = [Tn1, . . . , TnM ]T denote the test statistics
(i.e., energy detector output) measured at a mobile sensor
n, as a result of sensing M times at a discrete time interval
∆t. Since the test statistics T is Gaussian-distributed, the
measurement vector xn is M -variate Gaussian under both
hypotheses:

xn ∼
{

N (µ0 × 1,Σn) under H0
N (µ1 × 1,Σn) under H1,

(2)

where µ0 =(PR,0 + No) × 1 and µ1 =(PR,1 + No) × 1. PR,0
and PR,1 are the average received primary signal strengths in
the cell under H0 and H1, respectively, and 1 = [1, . . . , 1]T .
Without loss of generality, we can assume PR,0 6= 0 � PR,1
to have a common covariance matrix Σn under both hy-
potheses.3

The sequence of measured RSSs (i.e., xn) from a mobile
sensor will be correlated corresponding to their geographical
separation between the sensing events due to the correlated
2We assume that the path-loss effect is approximately same
within the cell because the distance to the primary trans-
mitter is relatively large compared to the cell radius.
3With uncommon covariance matrices, there is no closed-
form expression for the detection probabilities [13].
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Figure 2: Example time-sequences of energy detec-
tor outputs (T) under shadow fading (with σdB =
5.5 dB) with static (the upper figure) and mobile
(the lower figure) sensors. The parameters used are
PR,1 = −116 dBm, No = −95.2 dBm, and TS = 1 ms, as
typically assumed in IEEE 802.22.

shadowing (i.e., eYn in Eq. (1)). The temporal correlation
in xn can be captured by analyzing the covariance matrix
Σn in Eq. (2). First, the measurement error of the energy
detector (i.e., variance of the test statistic T ) can be approx-
imated as (Pn+No)2

Ms
≈ N2

o
Ms

+ 2NoPn
Ms

∀n. This is based on the
fact that in a very low SNR environment such as −20 dB,
the received primary signal strength Pn may be significantly
lower than the noise power, i.e., Pn � No [11]. Then, as-
suming the Gudmundson’s exponential decaying model [7],
the covariance matrix Σn is a symmetric Toeplitz matrix as:

Σn ,
N2

o

Ms
I +

2NoPR

Ms











1 ρn · · · ρM−1
n

ρn 1 · · · ρM−2
n

...
...

. . .
...

ρM−1
n ρM−2

n · · · 1











(3)

where

ρn = e−∆dn/dcorr ≈ e−vn∆t/dcorr , (4)

where dcorr is the decorrelation distance of shadow fading,
and ∆dn is the geographical separation (i.e., Euclidean dis-
tance) between consecutive sensing events. The approxima-
tion in Eq. (4) is based on the assumption that the mobile
nodes do not change their direction in the middle of consec-
utive sensing events; this is a reasonable assumption due to
short sensing intervals, e.g., ∆t<1 s, in practice. We assume
that the sensor speed is fixed at vn m/s, and thus, the sensor
travels the same distance during every sensing interval.

Fig. 2 compares the time-sequences of test statistics T of a
static sensor (the upper figure) and of a mobile sensor, which
traverses a straight line within a cell area with v = 20m/s
(the lower figure). Note that a static sensor experiences
(pseudo) time-invariant RSSs (except for measurement er-
rors) due to lack of mobility, and the average RSS depends
on its geographical location [11]. By contrast, the lower fig-
ure clearly shows that the mobile sensor exhibits temporal
variations in T due to spatially-correlated shadow fading.

4.2 Hypothesis Testing
We now formulate the primary signal detection with mul-

tiple mobile sensors as a hypothesis testing problem. Let
x = [xT

1 , . . . ,xT
N ]T denote the N × M RSS measurement

matrix collected from N mobile sensors, where each sensor

senses the spectrum M times. Then, the primary signal de-
tection problem can be cast into the following hypothesis
testing problem:

{

H0 : x ∼ N (µ0,Σ) (white space)
H1 : x ∼ N (µ1,Σ) (occupied), (5)

where the common covariance matrix Σ is given as:

Σ ,











Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣN











NM×NM

. (6)

Recall that sensors move independently within a large cell
area (e.g., of radius up to 100 km), and thus it is reasonable
to assume that the correlation between samples collected
from different sensors is negligible, i.e., Σi,j ≈ 0 ∀i, j s.t.
b(i − 1)/Mc 6= b(j − 1)/Mc in Eq. (6).

5. THEORETICAL ANALYSIS
We now analyze the theoretical sensing performance with

mobile sensors. In order to quantify the achievable perfor-
mance gain from sensor mobility, we consider an optimal
data-fusion rule (i.e., a likelihood ratio test) for primary sig-
nal detection.

5.1 Spatio-Temporal Spectrum Sensing
We study the sensing performance in joint sensor coopera-

tion and sensing scheduling. Assuming complete knowledge
of fading channels, the likelihood ratio can be expressed as:

λ(x) ,
f(x |H1)
f(x |H0)

= exp
[

(µ1 − µ0)T Σ−1x +
1
2
(µ0 − µ1)T Σ−1(µ0 − µ1)

]

,

where x is the N × M matrix consists of sensing samples
collected at the base station, Σ is the common covariance
matrix in Eq. (6). The average received primary signal
strengths and their pdfs under both hypotheses are denoted
by µi and f(· |Hi), i ∈ {0, 1}, respectively.

The optimal data-fusion is a log-likelihood ratio test (LRT)
[13] with the following threshold-based decision rule:4

Λ(x) , log λ(x) = wT (x − x0)
H1≷
H0

η, (7)

where w , Σ−1(µ1 − µ0) and x0 , 1
2 (µ1 + µ0).

Then, the probability of false alarm with the decision
threshold η ∈ R is given as:

PF A , Prob(Λ(x) > η |H0)

= Q
(η − 1

2w
T Σw√

wT Σw

)

, (8)

where Q(x)= 1√
2π

∫∞
x e−t2/2dt. Using Eq. (8), the decision

threshold η subject to the desired PF A can be derived as:

η =
√

wT Σw · Q−1(PF A) − 1
2
wT Σw. (9)

4In practice, equal gain combining (EGC) achieves near-
optimal performance without estimating channel gains [17].
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Figure 3: Performance of spatio-temporal sensing with mobile sensors. The figures show that sensor mobility
(a) reduces the miss-detection probability, (b) increases sensing scheduling gain, and (c) better detects weak
primary signals. The parameters used are N = 1, M = 20, PR =−116 dBm, No =−95.2 dBm, TS = 1 ms, ∆t = 1 s,
dcorr =150 m, and PF A =0.001, unless specified otherwise.

Based on Eqs. (8) and (9), the probability of miss detec-
tion, PMD, is given as:

PMD , Prob(Λ(x) < η |H1)

= 1 − Q
(

Q−1(PF A) − (µ1 − µ0)
2

√
1T Σ−11

)

, (10)

where Σ−1 = diag{Σ−1
1 , . . . ,Σ−1

N }, and each element Σ−1
n

can be derived as a sum of identity and tri-diagonal matrices:

Σ−1
n =

Ms

N2
o

I+

Ms

2NoPR (1 − ρ2
n)















1 −ρn 0 · · · 0
−ρn 1 + ρ2

n −ρn · · · 0
...

. . .
. . .

. . .
...

0 · · · −ρn 1 + ρ2
n −ρn

0 · · · 0 −ρn 1















.

We examine the behavior of PMD with PF A fixed. Eq. (10)
indicates that the achievable PMD is determined by the co-
variance matrix Σ with the other parameters predefined.
The term that includes Σ in Eq. (10), can be expressed as:

√
1T Σ−11 =

√

∑

n

1T Σ−1
n 1

=

√

NM
σ2

n
+

Ms

2NoPR

∑

n

(1 − ρn)M + 2 ρn

1 + ρn
, (11)

where σ2
n is the variance of the test statistic, i.e., σ2

n = N2
o

Ms
.

In particular, we would like to express PMD in terms of
sensor speed, i.e., vn. For this, we approximate the term
including ρn in Eq. (11) by first substituting e−vn∆t/dcorr

into ρn and then using Taylor series expansion:

∑

n

(1 − ρn)M + 2 ρn

1 + ρn
≈ N +

∑

n

(1 − e−vn∆t/dcorr ) M
2

.

(12)
Then, by substituting Eq. (12) into Eq. (10), we get PMD

in terms of sensor speeds as:

PMD = 1 − Q

(

Q−1(PF A) − (µ1 − µ0)
2

×
√

NM
σ2

n
+

Ms

2NoPR

(

N +
∑

n

(1 − e−vn∆t/dcorr ) M
2

)

)

.

(13)

Eq. (13) indicates that PMD depends on the number of
sensors (N), number of sensings (M), and more importantly,
sensor speeds ({vn}N

n=1). The impact of sensor mobility on
sensing performance will be detailed in Section 5.3.

Proposition 1. PMD can be made arbitrarily small given
an arbitrary PF A by increasing the number of times to sense.

Proof. From Eqs. (10) and (11), we have:

∀vn ∈ R lim
M→∞

PMD = 0 as lim
M→∞

√
1T Σ−11 = ∞.

Therefore, the proposition follows.

Remark: The authors of [5] have shown that the miss de-
tection performance under cooperative sensing with spatially-
correlated sensors does not converge to 0. By contrast,
Proposition 1 states that the miss detection performance
of even a single mobile sensor converges to 0. The insight
behind this is that, with multiple co-located static sensors,
their spatial RSS diversities are limited to their geographical
area, whereas a single mobile sensor can fully exploit spatio-
temporal RSS diversity as it keeps moving around the entire
cell, the area of which is much larger than the correlation
distance.

5.2 Numerical Results
Here we present numerical results of spectrum sensing per-

formance in various wireless environments. Our on-going
work includes a simulation-based study to corroborate our
numerical findings.

Fig. 3(a) shows the impact of sensor speed on sensing per-
formance. The figure indicates that as the sensor speed
increases, PMD decreases thanks to the increased spatio-
temporal diversity in measured RSSs. At a fixed speed,
sensor mobility yields a better performance in urban en-
vironments due to the short decorrelation distance.
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Fig. 3(b) indicates that PMD decreases as the number of
times to sense increases regardless of the sensor speed. In-
terestingly, as the sensor speed increases, the benefit from
sensing scheduling increases because the correlation between
consecutive measurements diminishes. This implies that,
with slowly moving sensors, increasing the number of coop-
erating sensors might be more efficient than sensing multiple
times, and vice versa (see Section 6 for details).

Fig. 3(c) plots PMD for various average received primary
signal strengths (i.e., PR,1). As expected, PMD suffers from
low average RSSs regardless of the sensor speed. However,
sensor mobility lowers the operation range of the energy de-
tector for the same number of measurements by better ex-
ploiting the spatio-temporal diversity in RSSs.

5.3 Performance of Sensing Scheduling with
Mobile Sensors

We now quantify the performance gain (in terms of PMD
for a fixed PF A) of sensing scheduling with mobile sensors.

Proposition 2. (Sensing Scheduling Gain) The perfor-
mance of spectrum sensing with a mobile sensor of speed v
sense a channel M times at a discrete time interval ∆t is
equivalent to having the following number of i.i.d. sensors
each making a single measurement:

Gschedule =
2PRM + No

(1−ρn) M+2ρn

1+ρn

2PR + No
, (14)

where ρn = e−vn∆t/dcorr .

Proof. Eq. (11) indicates that, with N stationary sen-
sors with a single measurement (i.e., vn =0 ∀n and M =1),
ρn = 0 ∀n, thus 1T Σ1 = N

σ2
n

+ NMs
2NoPR

. On the other hand,
with a single sensor moving at speed vn > 0, it becomes
1T Σ1 = M

σ2
n

+ Ms
2NoPR

(1−ρn)M+2ρn

1+ρn
. Therefore, by compar-

ing the two cases, the proposition follows.

Remark: Proposition 2 implies that the scheduling gain
increases as the sensor speed (v) increases. Interestingly, in
an extreme case where v → ∞, ρn → 0, thus the schedul-
ing gain approaches M , i.e., scheduling sensing M times is
equivalent to having M sensors with i.i.d. measurements.
This is because when the geographical separation between
consecutive sensings is greater than the decorrelation dis-
tance, the sensor will have independent measurements. Fig. 4
shows that the normalized scheduling gain converges to 1 as
sensor speed increases, and at fixed sensor speed, a higher
gain is achievable with a smaller number of sensings.

6. SPECTRUM SENSING OPTIMIZATION
In this section, we first study the tradeoff between sen-

sor cooperation and sensing scheduling. On the basis of our
findings, we then derive an optimal sensing strategy to min-
imize the sensing overhead.

6.1 Cooperation vs. Scheduling
Although both sensor cooperation and sensing schedul-

ing are viable means to improve the sensing performance,
they provide different performance gains at different sensing
costs. The optimal combinations of (N, M) to achieve the re-
quired detection performance can be derived from Eqs. (10)
and (11) in Section 5.1.

Fig. 5 plots such possible combinations of (N, M) that
achieve the desired detection performance of PF A =PMD =
0.001 with mobile sensors at v = 5 (m/s). The figure shows
that the number of sensors needed decreases as the number
of times to sense increases, thus demonstrating the tradeoff
between cooperative sensing and sensing scheduling.

6.2 Minimization of Sensing Overhead
As mentioned previously, sensor cooperation and sensing

scheduling improve the sensing performance at different lev-
els of degradation. Thus, our objective is to minimize the
sensing overhead while meeting the detection requirements.
For example, the larger the number of sensors to be used,
the greater the sensing reporting time at the end of each
sensing (quiet) period. This can result in a reduced time
duration for data transmission, thus degrading the quality-
of-service (QoS) of secondary networks. On the other hand,
the more times each sensor is scheduled, the longer the de-
lay in making a final decision on the existence of a primary
signal.5 For mobile sensors, energy-efficiency is also critical
to the network performance. Therefore, it is important to
strike a balance between these design parameters in devising
the best sensing strategy.

We consider the following sensing overheads:

• Reporting time (tr): Sensors need to report their sens-
ing results to the base station at the end of each sensing
period. Thus, they must suspend data transmission
during this reporting period.

• Detection delay (td): Prompt detection of a primary
signal is important for the protection of primary com-
munications. The detection delay will increase propor-
tionally to the number of times to sense.

5Sensing must be scheduled to meet the 2-second detection
delay requirement (i.e., CDT) in IEEE 802.22 WRANs.



• Energy consumption (ε): Energy consumption is also
an important metric, especially with battery-powered
mobile sensors. The total energy consumption is pro-
portional to the total number of times to sense at co-
operating sensors.

For a given set of N sensors, with M sensings scheduled
for each sensor, the sensing overhead can be expressed as:

O(N, M, tr, td, ε) = N tr + M td + M N ε. (15)

Recall that our objective is to find an optimal combina-
tion of (N, M) that minimizes the sensing overhead while
meeting the detection requirements. It can be found as:

(N∗, M∗) = arg min
N,M∈N

O(N, M, tr, td, ε). (16)

The solution of Eq. (16) can be found by taking a derivative
with respect to M (or N) and setting it equal to 0.

Fig. 6 plots the total sensing overhead (O) in terms of
the number of times to sense (M) to achieve the detection
performance PMD =PF A =0.001 with sensor speed fixed at
v=5 (m/s). Note that the corresponding optimal number of
sensors (N) is shown in Fig. 5. For illustrative purposes, we
set the parameters as tr = 0.1 and ε = 0.1, and tried three
different values for the delay cost, i.e., td ∈ {0.1, 0.3, 0.5}.
The figure indicates that as the sensing delay cost td in-
creases, the number of sensings M should be reduced while
increasing the number of collaborating sensors N in order
to minimize the total sensing overhead.

7. CONCLUDING REMARKS
Numerous cooperative sensing algorithms in CRNs have

been proposed, but none of them exploits the advantages
of mobile sensors. In this paper, we study the impact of
sensor mobility on the performance of spectrum sensing in a
joint sensor cooperation and sensing scheduling framework.
Our theoretical analysis confirms the intuition that sensor
mobility increases spatio-temporal diversity in RSSs, thus
improving the sensing performance. The analytical results
indicate that the sensing scheduling gain increases with fast
moving sensors, leading to an interesting tradeoff between
sensor cooperation and sensing scheduling. We exploit this
tradeoff to find the optimal combination of the number of
sensors for cooperation and the number of times to sense so
as to minimize the sensing overhead.

The work presented in this paper is an important step to-
ward consideration of sensor mobility in CRNs, and opens up
an interesting new approach to spectrum sensing in CRNs.
In future, we will investigate how to leverage sensor mobil-
ity for detection of small-scale primary users, e.g., wireless
microphones. It would also be interesting to study how to
use a hybrid of static and mobile sensors to maximize the
sensing performance.
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