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Abstract—In cognitive radios, in-band spectrum sensing is essential for the protection of legacy spectrum users, enabling secondary

users to vacate channels immediately upon detection of primary users. For in-band sensing, it is important to meet detectability

requirements, such as the maximum allowed detection latency and the probability of misdetection and false alarm. In this paper, we

propose key techniques for efficient in-band sensing. We first advocate the use of clustered sensor networks, and propose a periodic

in-band sensing algorithm that optimizes sensing period and sensing time to meet the detectability requirements while minimizing

sensing overhead. The scheme also determines the better of energy or feature detection incurring less sensing overhead at each SNR

level, and derives the threshold aRSSthreshold on the average received signal strength of a primary signal above which energy detection

is preferred to feature detection. We consider two key factors affecting aRSSthreshold: noise uncertainty and inter-CRN interference.

aRSSthreshold appears to lie between �114:6 dBm and �109:9 dBm with noise uncertainty ranging from 0.5 dB to 2 dB, and between

�112:9 dBm and �110:5 dBm with 1-6 interfering CRNs. We also investigate how strict the detection requirement must be for efficient

reuse of idle channels without incurring unnecessary channel switches due to false detection of primaries.

Index Terms—Cognitive radio, IEEE 802.22, energy and feature detection, clustered sensor network, spectrum sensing scheduling.
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1 INTRODUCTION

COGNITIVE radio (CR) is a key technology for alleviating
inefficient spectrum utilization under the current static

spectrum allocation policy [2]. In CR networks (CRNs),
unlicensed secondary users (SUs) are allowed to opportunis-
tically utilize (or reuse) spectrum bands1 assigned to
licensed primary users (PUs) as long as they do not cause
any harmful interference to the PUs. The channels reused
by the SUs are referred to as in-band channels and all others
are called out-of-band channels.

One of the major challenges in CRNs is to protect PUs
against interference from SUs for which spectrum sensing is
essential. Spectrum sensing monitors: 1) out-of-band chan-
nels to determine if they are reusable by detecting PU
signals (called out-of-band sensing), and 2) in-band channels
to detect return of the PUs so that SUs can promptly vacate
the channel in which PUs reappear (called in-band sensing).

For maximal protection of PUs, the FCC has set a strict
guideline on in-band sensing. For example, in IEEE 802.22
Wireless Regional Area Networks (WRANs), the world’s
first international CR standard, PUs should be detected
within 2 s of their appearance with the probabilities of
misdetection (PMD) and false detection (PFA) no greater
than 0.1. To meet these requirements, in-band sensing must
be run frequently enough (at least once every 2 s) and a
detection method (e.g., energy or feature detection [3]) that

yields the best performance should be selected. The impact
of spectrum sensing on SUs’ quality-of-service (QoS)
impairment should also be considered since sensing is
performed during quiet periods [3], [4], within which
communications between SUs are suspended.

In this paper, we present several techniques for efficient
in-band sensing in IEEE 802.22. We first advocate use of
clustered sensor networks and identify its unsolved research
issues. We then show how to schedule in-band sensing in
order to enhance both sensing performance and SUs’ QoS in
CRNs. Finally, we investigate how strict detection require-
ments should be, in order to avoid unnecessary channel
switches due to false detection of incumbents.

1.1 Sensor Clustering

Collaborative sensing [5] is known to be essential for
accurate detection of PUs as it exploits sensor diversity via
simultaneous sensing of a channel at multiple locations.
Presence/absence of PUs on a channel is determined by
data fusion of the simultaneous measurements, and OR-rule
[6] is the most common fusion rule under which a channel
is considered occupied by PUs if at least one sensor reports
so. Its sensing performance with N cooperative sensors has
been shown as follows:

PMDðNÞ ¼ ðPMDÞN and PFAðNÞ ¼ 1� ð1� PFAÞN; ð1Þ

under the assumption that every sensor has the same PMD

and PFA for a given signal.
Equation (1), however, does not hold in a large CRN

such as the IEEE 802.22 WRAN in which a base station (BS)
covers an area of radius ranging from 33 km (typical) to
100 km [3]. In such a case, the average received signal
strength2 (RSS) of a primary signal at two distant sensor
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locations (e.g., CPE A and CPE B in Fig. 1) may vary
greatly. Therefore, the heterogeneity of sensors’ PMD and
PFA values must be considered in analyzing the perfor-
mance of collaborative sensing, making it harder to
determine how many and which sensors are needed to
achieve the target sensing performance.

This problem can be avoided or alleviated by using a
clustered sensor network, which groups sensors in close
proximity into a cluster so that they can acquire a similar
average RSS of any primary signal and thus (1) can still
hold. Sensor clustering also mitigates the control overhead
in data fusion, because each cluster head (CH) makes a local
decision based on intracluster (i.e., local) measurements and
then reports it to the BS.

Contributions. Although there has been considerable
research into clustered CR sensor networks [8], [9], [10], two
important issues have not yet been addressed: 1) cluster
area size and 2) sensor density. Section 3 addresses these
two issues as follows: First, we will derive the maximum
radius of a cluster’s area so as to upper bound the variation
of the average RSS within a cluster by 1 dB. Second, we will
derive the maximum sensor density to guarantee near-
independent sensor observations, by suppressing the
shadow-fading correlation [11] to be below 0.3. With this
approach, one-time (collaborative) in-band sensing in a
cluster can be effectively captured by (1) with N as the
number of sensors within the cluster.

1.2 Scheduling of In-Band Sensing

IEEE 802.22 provides the two-stage sensing (TSS) mechanism
that selectively uses energy and feature detection in a quiet
period. Although energy detection requires less sensing
time (e.g., 1 ms), its susceptibility to noise uncertainty [12]
limits its usability. By contrast, feature detection is less
susceptible to noise uncertainty [13], while it requires a
larger sensing time (e.g., 24.2 ms [3]).

The current IEEE 802.22 draft standard, however, does not
specify how often to schedule sensing and which detection
method to use, and under what condition. Although there
have been several studies on the performance of energy and
feature detection [14], [15], [16], they were all based on a one-
time detection. Hence, we will study how to enhance
detection performance by scheduling sensing and investi-
gate which of energy and feature detection is preferred under
what conditions.

Contributions. In Section 4, we propose periodic sensing
scheduling that 1) minimizes sensing overhead by optimiz-
ing the sensing period (TP in Fig. 2) and the sensing time (TI

in Fig. 2), and 2) chooses the better of energy or feature
detection in a given sensing environment. Then, in Section 5,
we consider SNRwall [12], [13], the minimum SNR threshold
due to noise uncertainty below which a detector completely
fails to detect a signal regardless of the sensing time.
Although it has been believed that the SNRwall of energy
detection is an absolute barrier, we will show it is true only
with the AWGN channel while in reality the barrier becomes
obscure with the shadowing channel, making the energy
detection still a good candidate due to its small TI . Finally,
two important factors affecting the detection performance—
noise uncertainty and inter-CRN interference—will be
considered in deriving two SNR thresholds above which
energy detection becomes 1) feasible to use and 2) preferred
to feature detection. We also derive the minimum number of
collaborative sensors required for feasible energy detection.

1.3 False Detection versus Efficient Channel-Reuse

The current 802.22 draft requires the detection performance
should satisfy PMD � 0:1 and PFA � 0:1, where their
purposes on spectrum reuse are vastly different. First, the
constraint on PMD focuses on the protection of PUs by
encouraging prompt and accurate detection of the returning
PUs. On the contrary, the constraint on PFA aims to enhance
the QoS of SUs by avoiding impatient channel switching
caused by false detection of PUs.

Despite its importance, the impact of PFA has received
less attention. As PFA becomes larger, a CRN will
unnecessarily vacate an in-band channel and switch to
another channel even at PUs’ absence. Once a channel is
vacated, it is not allowed to be sensed or reused at least for
10 minutes [17], and hence, the pool of idle channels will
soon be depleted as the CRN makes such unnecessary
channel switches. This implies that PFA should be set small
enough not to impair SUs’ operation.

Contributions. In Section 6, we investigate if the current
upper bound of 0.1 on PFA is efficient in terms of the
expected reuse time of an in-band channel. For this, we
express the expected channel-reuse time as a function of
PFA, and vary the upper bound of PFA from 0.001 to 0.1 to
evaluate how much we can enhance the channel-reuse time,
and at what cost. Based on these results, we will show that
PFA needs to be set to be below 0.001, not 0.1, for practically
meaningful channel-reuse, and will also show that the new
constraint induces similar sensing overhead as in the PFA �
0:1 case when both achieving PMD � 0:1.

1.4 Related Work

There have been continuing discussions on use of clustered
networks in CRs. Chen et al. [8] proposed a mechanism to
form a cluster among neighboring nodes and then
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Fig. 1. Illustration of an IEEE 802.22 WRAN.

Fig. 2. The ON/OFF channel model and periodic sensing process with
sensing period TP and sensing time TI .



interconnect such clusters. Pawelczak et al. [10] proposed
cluster-based sensor networks to reduce the latency in
reporting sensor measurements by designating the cluster
head as a local decision maker. Sun et al. [9] enhanced
performance by clustering sensors where the benefit comes
from cluster and sensor diversities. None of these authors,
however, mentioned the importance of optimizing cluster
size and sensor density.

Despite numerous existing studies on the performance of
one-time signal detection in CRs, the optimal scheduling of
in-band sensing has not received much attention. Cordeiro
et al. [3] evaluated the performance of fast sensing in 802.22
by scheduling it (1 ms) every 40 ms, but they did not
optimize the sensing time and sensing period. Datla et al.
[18] proposed a backoff-based sensing scheduling algo-
rithm, but their scheme was not designed for detecting
returning PUs in an in-band channel. Hoang and Liang [19]
introduced an adaptive sensing scheduling method to
capture the trade-off between SUs’ data-transmission and
spectrum sensing. Their scheme, however, did not focus on
protection of in-band PUs.

This paper builds upon our preliminary work presented
at ACM MobiCom 2008 [1] by 1) considering the impact of
small-scale primaries in sensor clustering (Section 3),
2) deriving the minimum number of sensors required for
feasible energy detection (Section 5), and 3) dedicating a
new section (Section 6) to evaluation of the efficiency of the
current 802.22 detectability requirements in terms of the
expected reuse time of an idle channel.

1.5 Organization

Section 2 briefly reviews IEEE 802.22 for completeness,
followed by our channel model and a summary of spectrum
sensing. In Section 3, we first introduce the concept of
sensor clustering, and then derive the maximum radius of a
cluster as well as the maximum sensor density. Section 4
describes the proposed in-band sensing algorithm that can
be used in a cluster. Then, in Section 5, we study if simple
energy detection is feasible to meet the detection require-
ments in a very low SNR environment and under what
condition it becomes more efficient than feature detection,
considering two important factors: noise uncertainty and
inter-CRN interference. Finally, Section 6 investigates how
strict detection requirements should be for efficient reuse of
an idle channel without incurring too frequent channel
switches, and the paper concludes in Section 7.

2 PRELIMINARIES

2.1 IEEE 802.22

In this paper, we consider important issues of in-band
sensing in IEEE 802.22 WRANs. The IEEE 802.22 WRAN is
an infrastructure-based wireless network where a base
station (BS) coordinates nodes in a single-hop cell which
covers an area of radius ranging from 33 km (typical) to
100 km. End-users of an 802.22 cell are called consumer
premise equipments (CPEs) representing households in a
rural area (and hence stationary nodes).

802.22 reuses UHF/VHF bands where three types of
primary signals are present: analog TV (ATV), digital TV
(DTV), and wireless microphone (WM). Our proposed

schemes in this paper mostly consider DTV transmitters as

the major source of primary transmission, and their

extension for WMs is also discussed.3 By considering the

minimum Desired-to-Undesired (D/U) signal ratio of 23 dB

and the DTV protection contour of 134.2 km, the keep-out

radius of CPEs from the DTV transmitter is given as 150.3 km

[14]. CPEs within this keep-out radius are forced to avoid use

of the DTV channel. Fig. 1 illustrates this scenario.

2.2 Channel and Sensing Model

A channel is modeled as an ON/OFF source, where an ON

period represents the time duration during which PUs are

using their channel. Hence, SUs are allowed to utilize the OFF

periods of the channel. This model has been used successfully

in modeling PUs’ channel usage pattern in many applications

[20], [21]. Note that a TV band usually shows very long ON

and OFF periods (e.g., order of hours) by DTV users.
Spectrum sensing is akin to sampling since it measures a

channel’s state during sensing time (denoted as TI) and

detects the presence of PU signals at that moment. TI may

vary with detection methods (e.g., <1 ms for energy

detection). Fig. 2 illustrates the ON/OFF channel model

and an example periodic sensing process with sensing time

TI and sensing period TP presented.
In 802.22, sensing must be performed during a quiet

period within which no CPEs are allowed to transmit so

that any signal detected by sensors should originate from

PUs. The quiet periods have to be synchronized among

sensors in the same cell as well as between neighboring

cells, which is achieved by exchanging coexistence beacon

protocol (CBP) frames [3].

2.3 Signal Detection Methods

We briefly overview the detection methods used in IEEE

802.22, along with their theoretical performance in terms of

PMD and PFA.

2.3.1 Energy Detection

Energy detection is the most popular detection method due to

its simple design and small sensing time. Shellhammer et al.

[14] analyzed the energy detection of a DTV signal using its

discrete-time “PHY-layer” samples, where the signal is

sampled by its Nyquist rate of 6 MHz.4 The detection

threshold � to yield PFA is then

� ¼ NdB 1þQ
�1ðPFAÞffiffiffiffiffiffiffi
Ms

p
� �

; ð2Þ

and PMD with � is given as

PMD ¼ Q
ffiffiffiffiffiffiffi
Ms

p

P þNdB
ðP þNdBÞ � �½ �

� �
; ð3Þ

where Ms is the number of samples,5 Nd the noise power

spectral density (PSD), B the signal bandwidth (6 MHz), P

the signal power, and Qð�Þ the Q function.
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3. After ATV to DTV transition, ATV is no more of our interest.
4. The DTV signal ranges from �3 MHz to þ3 MHz in the baseband.
5. By “sample,” we mean a “PHY-layer” sample at the ADC, which has

nothing to do with the “MAC-layer” sample indicating “idle” or “busy.”
That is, the ADC samples a channel Ms times during TI at each sensing time.



Note that the effect of multipath fading is insignificant in
detecting a DTV signal due to frequency diversity over the
6 MHz band [13], [14]. Instead, the impact of shadow fading
must be considered in the variation of RSS at different
sensor locations. Ghasemi and Sousa [22] derived the
average performance of energy detection by numerically
integrating PMD over the fading statistics.

2.3.2 Feature Detection

Feature detection captures a specific signature of a DTV
signal, such as pilot, field sync, segment sync, or cyclosta-
tionarity [3]. Each feature detector is reviewed briefly for
completeness.

ATSC uses 8-VSB to modulate a DTV signal, and an
offset of 1.25 is added to the signal which creates a pilot
signal at a specific frequency location. The authors of [23]
introduced pilot energy detection which filters the DTV
signal with a 10 kHz narrowband filter at the pilot’s
frequency location. They showed that the pilot signal’s SNR
is 17 dB higher than the DTV signal’s SNR, making it a
strong feature to detect.

A DTV data segment starts with a data segment sync of
pattern fþ5� 5� 5þ 5g. A data field consists of 313 data
segments, and the first data segment of each data field is
called a field sync segment which contains special pseudor-
andom sequences: PN511 and PN63. Therefore, segment
sync and field sync can be used as unique features to detect.
Detectors of such features are introduced in [3], [8], [24],
where PMD and PFA are not analytically derived but
evaluated only by simulation.

Since the DTV signal is digitally modulated, it shows the
cyclostationary feature. The cyclostationary detection of
ATSC and DVB-T DTV signals has been studied in [8], [16],
[25], where its performance is investigated by simulation
because it is mathematically intractable to derive PMD and
PFA of cyclostationary detectors for complex modulation
schemes (e.g., 8-VSB) [26].

In this paper, we use the pilot energy detector
(henceforth called simply “pilot detector”) as an illustrative
example of the feature detectors to evaluate the trade-offs
between energy and feature detection. The pilot detector
has an advantage over others since its PMD and PFA have
been completely analyzed [23], but other types of feature
detectors can also be considered by evaluating their PMD

and PFA via simulation at various detection thresholds for
which the real DTV signal capture [27] and the sensing
simulation model [28] can be utilized.

In [23], PMD and PFA of the pilot detector are derived
similarly to energy detection, using a 70 kHz bandpass filter
in capturing the pilot signal to overcome uncertainty in the
pilot locations and inaccuracy in the local oscillator (LO).
Hence, we will use the sampling frequency of 70 kHz,
instead of 10 kHz, in our analysis. Unlike energy detection
in a 6 MHz bandwidth, Rayleigh fading becomes a
significant factor due to the narrow band of 70 kHz, and
we thus consider both Rayleigh and lognormal shadow
fading to derive PMD and PFA.

3 SPECTRUM SENSOR CLUSTERING

As discussed in Section 1, sensor clustering can make the
behavior of collaborative sensing more predictable and can
achieve scalability in collecting measurements for data

fusion by enabling cluster heads (CHs) to make local
decisions. The concept of the 2-tiered sensor cluster network
is illustrated in Fig. 3. In this section, we identify two
important but yet-unsolved challenges in sensor clustering:
cluster size and sensor density.

3.1 Cluster Size

We derive the maximum radius of a sensor cluster such that
the variation of the average RSS in the cluster is bounded by
1 dB, to make it possible to use (1) in modeling the
performance of a collaborative sensor network. The effect
of fading is considered by averaging PMD in (3) over the
fading statistics (Rayleigh and/or lognormal) and by
substituting it into (1).

In a cluster, the variation of the average RSS is maximized
by the two sensors located at ðR�RcÞ and at ðRþRcÞmeters
away from a primary transmitter (PT), respectively, whereR
is the distance between the PT and the center of the cluster,
and Rc is the radius of the cluster. Then, using the
polynomial power decay path loss model [29] where the
average RSS at a sensor rmeters away from the PT is given as
P1r

��12 (P1 is the PT’s transmit power and �12 is the path loss
exponent), the maximum cluster size is determined as

10�12log10
RþRc

R�Rc

� �
� 1ðdBÞ;

which gives

Rc ¼
� � 1

� þ 1
R; � ¼ 100:1=�12 : ð4Þ

For example, for a cluster at the keep-out radius (i.e.,
R ¼ 150:3 km), Rc is given as 5.76 km, using �12 ¼ 3
suggested in the Hata model [30].6

3.2 Sensor Density

We now explore the maximum sensor density to guarantee
enough distance between sensors for near-independent
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Fig. 3. An illustration of clustered sensor networks.

6. Although the Hata model is not the best fit for 802.22 since it is
designed for signal propagation up to 20 km from the transmitter, it works
better than the widely accepted Okumura model [31] which does not deal
with rural environments. Here, we consider �12 as a design parameter and
evaluate our schemes with �12 ¼ 3 as an example. Determination of �12 is
outside of the scope of this paper.



observations to use (1) for a collaborative sensor network.

The need for near-independence also comes from the fact

that a few tens of independent sensors provide as much

collaborative gain as many more correlated sensors whose

collaborative gain is limited by geographical correlation in

shadowing [32]. That is, a blind increase in sensor density

does not yield a linear increase in collaborative gain.
According to the Gudmundson’s model [11], the shadow

correlation between two locations that are d meters apart is

given as RðdÞ ¼ e�ad (a ¼ 0:002 in a suburban area) which

decays exponentially fast. Then, we want to suppress the

correlation to be, on average, less than 0.3 between any two

neighboring sensors such that RðdÞ ¼ e�0:002d � 0:3 result-

ing in d � 602 m.
Assuming the hexagonal deployment of sensors as in

Fig. 4, where the minimum distance between neighbors is d,

the density of sensors (DS) is shown to be

DS ¼
2ffiffiffi
3
p

d2
ðsensors=m2Þ;

and for d ¼ 602 m, the maximum sensor density is

Dmax
S ¼ 3:18ðsensors=km2Þ:

The minimum sensor density (Dmin
S ) is determined by the

household density, since a household represents a CPE

which plays role as both a sensor and a transceiver.

According to the WRAN reference model [33], the mini-

mum household density in a rural area is 0.6 (houses=km2),

thus giving

Dmin
S ¼ 0:6ðsensors=km2Þ:

The next question is: at Dmin
S , are there enough (e.g., at

least 10) sensors in a cluster for collaboration? Using the

above-derived Dmin
S and Dmax

S , the number of sensors in a

cluster ranges between Nmin
sensor and Nmax

sensor where

Nmin
sensor ¼ Dmin

S � �Rc
2; Nmax

sensor ¼ Dmax
S � �Rc

2:

With Rc ¼ 5:76 km, this gives 62-331 sensors per cluster

which exceeds the recommendation in [32]. Therefore, the

CH can select a subset of sensors at each quiet period such

that its area can be covered evenly.

3.3 Discussion

3.3.1 Sensor Locations

In reality, the location of CPEs may not follow the hexagonal
model since they are likely to be cluttered within small areas
(e.g., a town or a village) where the actual sensor density is
much higher than the average household density (e.g.,
0:6 houses=km2). Moreover, CPEs are rare outside the
populated areas. Therefore, we take two approaches: 1) the
CHs in a populated area should selectively choose CPEs
according to the recommended sensor density to avoid
correlated measurements, and 2) additional sensors should
be deployed in less-populated areas to achieve Dmin

S (as
shown in Fig. 3). In either case, the hexagonal model may
still be useful in selecting proper CPEs for sensing or in
deploying more sensors.

3.3.2 Subclusters

A sensor cluster may be further divided into smaller
subclusters to detect localized deep shadow fading which
is not represented well by the lognormal model. Then, more
than Nmax

sensor sensors can be elected in each cluster to utilize
their correlated measurements for identification of the
localized shadowing. Further development of subclustering
is left as our future work.

3.3.3 Sensor Clustering for Low-Power Incumbents

The typical EIRP of wireless microphones (WMs) is 50 mW
in VHF bands and 250 mW in UHF bands. Due to their use
of low power, the footprints of WMs cover a relatively small
area compared to high-power primaries, and hence, it is
very difficult to find a sufficient number of collaborative
sensors in a cluster with identical and independent
observations.

To quantify this difficulty, we consider a sensor cluster
whose center is Ru km away from the microphone such that
the sensor at its center would experience average RSS of
�107 dBm. Here, �107 dBm is chosen because it is the
incumbent detection threshold (IDT ) of WMs in IEEE 802.22,
where the IDT is the weakest primary signal power
(in decibel meter) above which sensors should be able to
detect. IDTs for three types of primary signals (in the US) [4]
are shown in Table 1. Then,

Ru ¼ 10�10:7=Pu
� ��1=�012 ;

where Pu is the transmit power of the WM (in milliwatt)
and �012 is the path loss exponent. For Pu ¼ 50 mW

Ru ¼
13:58 km; if �012 ¼ 3;
1:25 km; if �012 ¼ 4:

�
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Fig. 4. An example hexagonal sensor deployment.

TABLE 1
Incumbent Detection Threshold (IDT ) of Primary Signals



Replacing R and �12 in (4) with Ru and �012 gives

Rc ¼
0:52 km; if �012 ¼ 3;
0:036 km; if �012 ¼ 4:

�

Finally, applying the maximum sensor density Dmax
S ¼ 3:18

will result in 2.7(�012 ¼ 3) and 0.01(�012 ¼ 4) sensors per
cluster. Hence, sensor collaboration is not practical for
detecting low-power primaries due to the limited number
of available sensors. Fortunately, however, recent work has
shown that even a single sensor can meet the detection
requirement of wireless microphones by exploiting their
special features [34], [35]. So, we will focus on DTV
detection via sensor clustering in the remaining part of
the paper.

4 SCHEDULING OF IN-BAND SENSING

In this section, we propose an in-band sensing scheduling
algorithm that optimizes sensing time and sensing period to
achieve detection requirements in IEEE 802.22 with minimal
sensing overhead. We first briefly overview the sensing
requirements and the two-stage sensing (TSS) mechanism
in IEEE 802.22, and then describe the proposed sensing
scheduling algorithm with detailed analysis. As mentioned
earlier, we will focus on in-band DTV detection.

4.1 Sensing Requirements in IEEE 802.22

Channel detection time (CDT ) is given to be �2 s, within
which the returning PUs must be detected with
PMD � 0:1, regardless of the number of times sensing is
performed during CDT . Similarly, PFA � 0:1 must also be
met when the same sensing algorithm used to meet
PMD � 0:1 is run for CDT seconds during which no PUs
are present. The requirement on PMD is to guarantee
minimal interference to incumbents, whereas the require-
ment on PFA is to avoid unnecessary channel switching
due to the false detection of PUs.

Based on the above interpretation of PMD and PFA, the
two performance metrics can be expressed as

PMD ¼ Prðdetect PT within CDT jH1Þ � 0:1;

PFA ¼ Prðdetect PT within CDT jH0Þ � 0:1;
ð5Þ

where H0 and H1 are two hypotheses on the presence of
PUs in the channel:

H0 : No PU exists in the channel;

H1 : PUs exist in the channel:

Note that PMD and PFA in (5) have different meanings
from those in (1). PMD and PFA in (5) are the probabilities
measured by monitoring an in-band channel for CDT

seconds during which sensing may be scheduled multiple
times, whereas PMD and PFA in (1) are the probabilities of
one-time sensing. To avoid any confusion, we will hence-
forth replace PMD and PFA in (5) with PCDT

MD and PCDT
FA .

4.2 TSS Mechanism in IEEE 802.22

To support a sensing algorithm to meet the detectability
requirements shown in (5), IEEE 802.22 provides the two-
stage sensing (TSS) mechanism. With TSS, a sensing

algorithm schedules either fast or fine sensing in each quiet
period (QP), where fast sensing employs energy detection
while fine sensing uses feature detection.

Although the QPs can be scheduled as many as necessary,
there are some restrictions on the sensing period. For
example, the QP of fast sensing, usually less than 1 ms,
should be scheduled at the end of an 802.22 MAC frame
(10 ms) at most once in each frame. Hence, the period of fast
sensing becomes a multiple of the frame size (i.e., n � 10 ms,
n 2 N). In addition, in case fine sensing adopts a feature
detection scheme that requires sensing time longer than one
MAC frame (e.g., 24.2 ms for DTV field sync detection), its QP
should be scheduled over consecutive MAC frames.

4.3 In-Band Sensing Scheduling Algorithm

An efficient sensing algorithm must capture the trade-off
between fast and fine sensing, i.e., for one-time sensing:
1) fast sensing consumes a minimum amount of time but
its performance is more susceptible to noise uncertainty,
and 2) fine sensing usually requires much more time than
fast sensing, but its performance is better than fast
sensing. Therefore, a sensing algorithm may have to
schedule fast sensing at a high frequency, or it may
decide to schedule fine sensing at a low frequency. In
either case, the scheduling goal is to minimize the overall
time spent for sensing (called sensing overhead) while
meeting the detectability requirements.

4.3.1 Analysis of In-Band Sensing Scheduling

We consider periodic fast or fine sensing. Suppose both fast
and fine sensing consume less than 10 ms (i.e., one MAC
frame size) for one-time sensing. Then, the sensing period
TP is given as

TP ¼ n � FS; 1 � n � CDT

FS

� 	
; n 2 IN;

where FS is the MAC frame size. The upper bound of TP is
necessary since sensing must be performed at least once
every CDT seconds.

When the channel transits from OFF to ON due to the
returning PUs as shown in Fig. 5, periodic sensing will
measure the channel M times in CDT seconds, where

M ¼ CDT � �
TP

� 	
þ 1:
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Fig. 5. An example of periodic sensing when a channel transits from
OFF to ON due to the returning PUs.



Each (one-time) sensing in Fig. 5 represents collaborative
sensing with N sensors whose performance is described by
(1). The value of N lies between Nmin

sensor and Nmax
sensor which

were derived in Section 3.
We assume that �=TP is uniformly distributed in ½0; 1�

since ON/OFF periods (in the order of hours) are in general
much larger than TP (less than 2 s). Under this assumption,
the probability mass function (pmf) of M is derived as:

pðM1Þ ¼ Pr M ¼ CDT

TP

� 	� �
¼ 1� CDT

TP
þ CDT

TP

� 	
;

pðM2Þ ¼ Pr M ¼ CDT

TP

� 	
þ 1

� �
¼ CDT

TP
� CDT

TP

� 	
:

Then, PCDT
MD can be expressed as:7

PCDT
MD ¼

X
M

PrðM sensings detect no PUjH1ÞpðMÞ

¼
X
M

PMDðNÞð ÞMpðMÞ

¼
X
M

PMDð ÞNMpðMÞ � 0:1:

ð6Þ

Similarly, PCDT
FA can be expressed as:

PCDT
FA ¼ 1�

X
M

PrðM sensings detect no PUjH0ÞpðMÞ

¼ 1�
X
M

1� PFAðNÞð ÞMpðMÞ

¼ 1�
X
M

1� PFAð ÞNMpðMÞ � 0:1:

ð7Þ

In (6) and (7), PMD and PFA are detection-method-specific.
They also depend on TI and the RSS of the primary signal.
PMD and PFA of energy and pilot detectors are fully
described by (2) and (3).

4.3.2 The Proposed Sensing Scheduling Algorithm

Our objective is to find the optimal sensing period TP for
given TI and RSS that minimizes the sensing-overhead
while satisfying two conditions of (6) and (7). The sensing
overhead of a sensing algorithm is defined as the fraction of
time in which sensing is performed, i.e.,

sensing overhead ¼ TI=TP
for periodic sensing.

The problem of optimizing TP is identical to that of
maximizing n that satisfies (6) and (7). Therefore, the
proposed algorithm examines n from its upper bound
CDT=FSb c and decreases n until the one that meets the

condition is found.
Since PCDT

FA is a monotonic function8 of PFA and there is a
one-to-one mapping between PFA and PMD, we first want to
find the value of PFA that solves the equality of (7). Then,
PMD corresponding to PFA can be found from the ROC
curve between them. Finally, the feasibility of the tested n

can be checked by substituting PMD into (6). If the tested n
does not satisfy (6), then n is decreased by 1 and the above
procedure is repeated.

If there does not exist any n satisfying both equations, the
detection method considered cannot meet the detectability
requirements with given TI and RSS. On the contrary, if the
optimal sensing period is found at n ¼ nopt, its sensing
overhead is determined as: TI=ðnopt � FSÞ.

Finally, to find an optimal pair (TI , TP ) that gives the
minimal sensing overhead for given RSS, we vary TI within
a possible range of interest so that the proposed algorithm
finds the best TP for each TI . Then, among multiple pairs of
(TI , TP ), we choose an optimal pair with minimal sensing
overhead. More details on this procedure are provided in
Section 5.2.

The pseudocode of the proposed algorithm for energy
and pilot detection is given in Fig. 6.

4.3.3 Discussion

An important aspect of the proposed algorithm is that it
computes the optimal sensing periods offline, and the
optimal periods can be looked up from the database with
two inputs, TI and RSS, at runtime. A sensor can create/
store one database per detection method, and adaptively
choose the best method with optimal ðTI; TP Þ. In Section 5,
we will evaluate and compare the performance of energy
and pilot detection. The optimal sensing strategy (i.e.,
optimal detection method, sensing period, and sensing
time) with the average RSS varying from �120 dBm to
�90 dBm will also be proposed.

In practice, the dissemination of sensing results should
also be accounted for. The dissemination delay, however,
depends on the type of reporting mechanism used. For
example, the dissemination delay can be reduced signifi-
cantly if the cluster head collects “busy” samples only. Since
selecting a reporting mechanism is beyond the scope of this
paper, we focus on the detection overhead, but our scheme
can be easily extended to include the additional delay by
redefining the sensing time as the sum of detection and
dissemination times. Moreover, such an additional delay is
common to both energy and feature detection, hence
keeping unchanged the trade-off between two detection
schemes in Section 5.
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Fig. 6. The in-band sensing scheduling algorithm.

7. Here, we assume that N sensors experience the same average RSS,
thus having the same PMD, since we focus on network planning before
deploying sensors without knowledge of actual realization of shadow
fading. In case a network designer prefers to use the actual RSS, however,
one can extend our equation by introducing Ps

MD, where s is the sensor
index.

8. This can be shown by differentiating PCDT
FA with respect to PFA.



We, therefore, focus on the trade-off between energy and
feature detection, investigating energy-only and feature-
only schemes. As a possible extension, one can consider a
hybrid of the two schemes or a more complex dynamic
scheduling scheme than simple periodic sensing, which are
left as our future work.

5 FEASIBILITY OF ENERGY DETECTION

In this section, we study the feasibility of energy detection
in achieving the detectability requirements, and investigate
the condition under which energy detection is preferred to
feature detection. In addition, we derive the minimum
number of sensors necessary for feasible energy detection
when the average RSS equals IDT .

5.1 Two Important Factors in In-Band Sensing

We first briefly overview the impact of noise uncertainty
and inter-CRN interference in in-band sensing.

5.1.1 Noise Uncertainty

Below SNRwall [12], energy detection in an AWGN channel
completely fails to detect a signal regardless of the sensing
time spent. SNRwall is due to the uncertainty in the noise
power (called noise uncertainty) where their relationship is

SNRwall ¼ ð�2 � 1Þ=�;

when � ¼ 10x=10 and x is the noise uncertainty in decibel.
According to [36], noise uncertainty depends on four
factors: calibration error, thermal variation, changes in
low-noise amplifier (LNA) gain, and interference. For
example, the noise uncertainty under 20�K of temperature
variation is given as �1 dB.

Therefore, energy detection is often considered unsui-
table for CRNs which must detect a very weak signal power
(e.g., as low as �116 dBm for DTV signals). However, we
found that SNRwall can actually be overcome even when the
average SNR (modeled by aRSS) of the collaborative sensors
is below SNRwall, since the energy detection of DTV signals
will experience a lognormal shadow fading channel, and
thus at some sensor locations, instantaneous SNR may
exceed SNRwall due to the location diversity.

Fig. 7a shows the impact of shadow fading, where decibel

spread of 5.5 dB is assumed as in the ITU propagation

model of 802.22 [37]. With noise uncertainty of 1 dB,9 none

of the N sensors overcomes SNRwall of �3:33 dB under the

AWGN channel (illustrated as a vertical dotted line at

RSS ¼ �98:5 dBm) as predicted in [12]. With shadow

fading, however, some sensors under constructive fading10

may experience SNR greater than SNRwall contributing to

the performance enhancement, while other sensors under

destructive fading do not degrade the performance since

their instantaneous RSSs are already below SNRwall under

which PMD ¼ 1. In addition, Fig. 7b shows that the

performance of collaborative sensing improves as the

number of sensors N increases.

Unlike energy detection, SNRwall of feature detection

decays as the channel coherence time increases [13],

meaning that SNRwall in feature detection is insignificant,

since 802.22 CPEs and BSs are stationary devices.

5.1.2 Inter-CRN Cochannel Interference

Although the perfect synchronization of QPs between
neighboring 802.22 cells is guaranteed by the CBP
protocol, 802.22 cells more than one-hop apart may be
assigned the same channel. In such a case, they could
introduce nonnegligible interference to the CPEs. More-
over, future CRN standards other than IEEE 802.22 may
coexist in the same TV bands, which will cause additional
interference to 802.22 cells. We call this type of interference
inter-CRN cochannel interference.

We first evaluate how much interference is expected

between 802.22 cells that are m hops away from each other.

Fig. 8 shows two scenarios of cochannel interference. In

Fig. 8a, cell A’s two-hop neighbor cell B uses the same

channel 1, which will interfere with the sensor at the border of

cell A. According to [33], a BS with coverage radius of 35 km

will have a transmit EIRP of 23.5 dBW, when its antenna has a

typical height of 75 m [39]. The interference power of cell B’s

BS to the sensor11 is then found to be �96:5 dBm since

Pcell B0s BS � ð3RcellÞ�� ¼ 1023:5 � ð3 � 33	 103Þ�3W;
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Fig. 7. Performance comparison (in PMDðNÞ) of energy detection:
AWGN channel and shadow fading channel. (a) AWGN channel versus
shadow-fading channel. (b) Shadow fading channel (TI ¼ 77 �s).

9. We followed the worst-case analysis in [38] where the upper (lower)
limit of noise PSD is used to calculate PFA (PMD), when noise uncertainty is
� dB and the range of noise PSD is given as �163��(dBm/Hz).

10. Constructive fading happens under lognormal shadowing, because
the instantaneous RSS (in decibel) is modeled as “average RSS (dB) þX
(dB)” where X is a zero-mean Gaussian random variable.

11. Note that the CPEs in cell B are not significant interferers as a CPE
uses a directional antenna to communicate with its BS which minimizes its
emitted power to the outside of its cell.



which is comparable to the noise power of �95:2 dBm in the
6 MHz band [14]. In Fig. 8b, however, the three-hop
neighbor cell B’s interference power is �103 dBm which is
negligible. Hence, we only consider interference from two-
hop neighbors. Note that additional noise uncertainty due
to this inter-CRN interference can be reduced by letting
neighboring CRNs exchange the information on their
transmission power.

Fig. 9 shows the worst-case scenario of channel assign-
ment for the central 802.22 cell to have maximal inter-CRN
interference. There can be up to six two-hop interfering
neighbors of a cell. Thus, the interference power will vary
from �1 dBm (i.e., no interference) to �88:7 dBm (six times
more than �96:5 dBm) in our numerical analysis.

5.2 Optimal Sensing Time and Frequency

We evaluate energy and pilot detection to find the optimal
sensing time (TI) and sensing period (TP ) to minimize the
sensing overhead when they meet the detectability require-
ments of PCDT

MD ; PCDT
FA � 0:1.

Each detection scheme is evaluated while varying the
average RSS (of the 6 MHz DTV signal) from �120 dBm to
�90 dBm in steps of 0.1 dBm. This RSS range is chosen
because 1) the IDT of DTV signal is �116 dBm, and 2) RSS at
the keep-out radius of a DTV transmitter is�96:48 dBm [14].

Therefore, our interest lies in the range between �116 dBm
and �96:48 dBm, which is well-covered by the simulated
RSS range.

We study the impact of noise uncertainty by varying the
uncertainty to 0, 0.5, 1, or 2 dB. The effect of inter-CRN
interference is also evaluated by changing the number of
interfering 802.22 cells to 1, 2, 4, or 6 cells while fixing noise
uncertainty at 1 dB. For both tests, the number of
cooperative sensors is fixed at N ¼ 10.

5.2.1 Energy Detection

Since one data segment of a DTV signal is 77 �s, we tested
10 different sensing times for energy detection, such as
k � ð77 �sÞ, k ¼ 1; 2; . . . ; 10. During each sensing time, the
proposed sensing scheduling algorithm searches for the
optimal sensing frequency and the minimal sensing over-
head at every RSS value. After optimizing the sensing
frequency, the sensing overheads from 10 different sensing
times are compared and the best sensing time at each RSS
input is chosen.

First, we show the effects of noise uncertainty. Figs. 10a
and 10b compare energy detection under the noise
uncertainty of 0 dB versus 2 dB. For an illustrative
purpose, three sensing times (1, 3, and 10 segments) are
presented. For the 0 dB case, energy detection performs
very well at any RSS with a negligible overhead of less
than 0.3 percent. By contrast, for the 2 dB case, energy
detection becomes infeasible for RSS < �111:7 dBm. Note
that the blank between �113 dBm and �111:7 dBm
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Fig. 8. Intercell interference scenarios in 802.22. (a) 2 hops away.
(b) 3 hops away.

Fig. 9. The worst-case channel assignment to have maximal intercell
interference.

Fig. 10. Energy detection: sensing overhead and sensing frequency. Various noise uncertainties ((a) 0 dB; (b) 2 dB). Various inter-CRN
interferences ((c) 1 cell; (d) 6 cells).



implies that there is no TP satisfying the detectability
requirements. However, compared to the AWGN’s
SNRwall of �95:4 dBm, energy detection’s feasibility
region is enlarged significantly thanks to the sensor
diversity under the shadow fading. Interestingly, at the
2 dB case, the performance (in terms of sensing overhead)
does not get better as the sensing time grows, since the
impact of SNRwall becomes more dominant at a larger
noise uncertainty.

Second, we vary the number of interfering 802.22 cells to
observe the behavior of energy detection. Figs. 10c and 10d
show two extreme cases: 1 cell versus 6 cells. As expected,
an increase of interfering cells increases the noise plus
interference power which impairs performance due to
degraded SNR.

5.2.2 Feature (Pilot) Detection

Since pilot (energy) detection is based on the energy
measurement of a pilot signal, it requires a sufficient
number of samples to yield satisfactory results. Due to its
lower sampling frequency, sensing time of pilot detection is
chosen to be 85 times longer (6 MHz=70 kHz ¼ 85:7) than
that of energy detection to acquire the same number of
samples (i.e., Ms) as energy detection.12 On the other hand,

the MAC frame size of 10 ms gives an upper bound of
sensing time. Based on this observation, we vary the
sensing time of pilot detection to be 6, 7, 8, or 9 ms,
considering that 85:7	 77 �s ¼ 6:6 ms.

Figs. 11a and 11b plot the performance of pilot detection
while varying the noise uncertainty. Note that the x-axis
represents the average RSS of a 6 MHz DTV signal, not of a
pilot signal in the 70 kHz band. The power of pilot signal is
11.3 dB less than the DTV signal power. Unlike energy
detection, pilot detection is feasible at every RSS regardless
of the level of noise uncertainty, due to its higher SNR at
the pilot location.

Figs. 11c and 11d show the performance of pilot
detection while varying the number of interferers. At a
given number of interfering cells, the sensing time does not
appear to offer a large performance enhancement.

5.3 Energy Detection versus Feature Detection

Finally, we investigate the location of aRSSthreshold, below
which pilot detection is preferred to energy detection. We
also introduce aRSSenergymin , the minimum aRSS above
which energy detection becomes feasible for detection of
DTV signals.

Fig. 12a compares the minimal sensing overheads of
energy and pilot detection under various noise uncertainty
conditions. With no noise uncertainty, energy detection is
the best to use. As the noise uncertainty grows, however,
pilot detection becomes preferable at a low aRSS and
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Fig. 11. Pilot detection: sensing overhead and sensing frequency. Various noise uncertainties ((a) 0 dB; (b) 2 dB). Various inter-CRN interferences
((c) 1 cell; (d) 6 cells).

Fig. 12. Energy detection versus pilot detection: location of aRSSthreshold. (a) Various noise uncertainties. (b) Various inter-CRN interferences.

12. Since (2) and (3) are approximated performances by applying the
Central Limit Theorem [14], their accuracy degrades as Ms decreases.
Hence, we match Ms by adjusting sensing time, to compare energy and
feature detection under the same condition.



aRSSthreshold increases accordingly. The position of
aRSSthreshold is shown in Table 2 along with aRSSenergymin .
With 1 or 2 dB noise uncertainty, pilot detection becomes
feasible and preferable even at �120 dBm, but it incurs
more than 10 percent of sensing overhead.
aRSSthreshold and aRSSenergymin of various inter-CRN inter-

ferences are also presented in Fig. 12b and Table 3. With 1
or 2 dB noise uncertainty, pilot detection incurs more than
15 percent of sensing overhead at �120 dBm.

From Tables 2 and 3, one can see that the feasibility
region of energy detection is reduced just by 1.4 dB between
1 cell and 6 cells, whereas the gap is 5.5 dB between noise
uncertainty of 0.5 and 2 dB. As a result, noise uncertainty
seems to have a more significant influence on energy
detection’s performance.

5.3.1 Other Feature Detectors

From Figs. 12a and 12b, one can observe that energy
detection, above aRSSthreshold, incurs at most 0.385 percent
of sensing overhead. Here, we compare this overhead with
three other types of feature detectors than pilot energy
detection: the pilot location detection in [40], the PN511
detection in [3], and the cyclostationary detection in [15].
Since sensing times for such feature detectors are 30, 24.1,
and 19.03 ms, respectively, their sensing overheads are given
as at least 1.5, 1.2, and 0.95 percent, respectively, even when
sensing is scheduled only once every CDT seconds. There-
fore, energy detection performs better in its preferred region
(i.e., above aRSSthreshold) than the pilot energy as well as
other three types of feature detectors under consideration.

5.4 Minimum Number of Sensors for Feasible
Energy Detection at aRSS ¼ IDT

As shown in Fig. 7b, the performance of collaborative
sensing improves as N grows. Thus, as we increase N ,
aRSSenergymin also becomes smaller. This means that we can
find a minimum N , denoted by Nmin, with which energy
detection can be feasible even at aRSS ¼ IDT . Here, we
investigate such Nmin and its relationship with other
optimization parameters, such as TI and TP .

Fig. 13 illustrates the trade-off between sensing overhead
and Nmin. As we allow higher sensing overhead by introdu-
cing longer TI and smaller TP , we can achieve the same target
detection performance (i.e.,PCDT

MD ¼ 0:1 andPCDT
FA ¼ 0:1) with

smaller N , and vice versa. Therefore, to find Nmin, we allow
maximum possible overhead,TI ¼ 770 �s andTP ¼ 10 ms, in
the scenario considered in Section 5.2. Then, the correspond-
ing Nmin becomes the lower bound of all possible Ns below
which no energy detection becomes feasible at aRSS ¼ IDT .
Table 4 shows the Nmin for various noise uncertainties and
inter-CRN interferences. In both cases, the maximum Nmin

(i.e., 221 and 86) does not exceed 331 sensors, which is the
maximum number of sensors in a cluster derived in Section 3.

6 EFFECTIVE CHANNEL-REUSE TIME

In the current 802.22 draft, the detectability requirements are
specified as PCDT

MD � 0:1 andPCDT
FA � 0:1. The upper bound of

0.1 on PCDT
MD is set for the purpose of protecting PUs, i.e., SUs

can only cause limited interference to the PUs returning to
the channel currently occupied by the SUs. On the other
hand, the upper bound on PCDT

FA is set to limit unnecessary
channel switches due to false detection of incumbents.

However, the chosen upper bound of PCDT
FA , denoted by

Pmax
FA (i.e., Pmax

FA ¼ 0:1 in the current draft), has not been
evaluated for its efficiency in reusing idle channels. Here,
we measure the efficiency of Pmax

FA in terms of the expected
duration, Treuse, of reusing an idle channel until an
unnecessary channel switch takes place due to false
detection. We focus on this metric because, according to
802.22, once a channel is vacated due to the detection of
PUs in an in-band channel, SUs are not allowed to use the
channel again for the Non-Occupancy Period, which is set to
10 minutes [17]. That is, frequent unnecessary channel
switches may soon deplete reusable channels even if there
are many idle ones.

Thus, we would like to see if the requirement Pmax
FA ¼ 0:1

is strict enough by analyzing Treuse for a given Pmax
FA , and

determine a proper Pmax
FA allowing practically long-enough

reuse of idle channels. For this purpose, we consider
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Fig. 13. Number of sensors (i.e., N) versus optimal sensing overhead
(aRSS ¼ IDT , 1 dB noise uncertainty).

TABLE 4
The Minimum Number of Sensors (Nmin) Necessary for
Energy Detection to Become Feasible at aRSS ¼ IDT

TABLE 2
RSS Thresholds under Various Noise Uncertainties

TABLE 3
RSS Thresholds under Various Inter-CRN Interferences



periodic in-band sensing, as in Fig. 5, on an idle channel
during its long OFF period, where we assume that each
sensing operation is performed by N cooperating sensors
with PFA as the single-sensor’s false alarm probability.

First, we denote PFAðNÞ by PN
FA for notational simplicity,

and express (7) as a function of PN
FA, i.e., the false alarm

probability of single-time cooperative sensing as given in
(1), as follows:

PCDT
FA

�
PN
FA

�
¼ 1�

X
M

�
1� PN

FA

�M
pðMÞ: ð8Þ

Then, it is trivial to show that (8) is a monotonic increasing
function of PN

FA. Hence, having PCDT
FA upper-bounded by

Pmax
FA is the same as having PN

FA upper-bounded by P̂max
FA ,

where PCDT
FA ðP̂max

FA Þ ¼ Pmax
FA .

Next, the expected channel-reuse duration, Treuse, is
derived as

Treuse ¼ TP �
�
1� PN

FA

�
PN
FA þ 2TP �

�
1� PN

FA

�2
PN
FA þ � � �

¼
X1
i¼0

iTP �
�
1� PN

FA

�i
PN
FA ¼ TP

1� PN
FA

PN
FA

� �
:

ð9Þ

Therefore, the smaller PN
FA, the longer an idle channel can be

reused without false detection of PUs. This implies that we
need to set P̂max

FA small enough to makeTreuse reasonably large.
We now want to evaluate the efficiency of the current

detectability requirement in the 802.22 draft, i.e., Pmax
FA ¼ 0:1.

While varying Pmax
FA from 0.001 to 0.1, we compute Nmin for

each Pmax
FA value, where Nmin is defined the same as in

Section 5.4. Then, for each pair ðPmax
FA ;NminÞ, our in-band

sensing scheduling algorithm is applied to determine the
optimal sensing period TP and sensing time TI with
minimal sensing-overhead. Finally, we calculate Treuse using
the chosen Pmax

FA , the derived TP , and (9). The results are
plotted in Fig. 14.

As shown in Fig. 14a, Treuse at Pmax
FA ¼ 0:1 turns out to be

just 20 s. That is, with the currently-chosen upper bound
0.1, a WRAN can reuse an idle channel for an average of
only 20 s before making an unnecessary channel switch.
This implies that a WRAN may require at least 30 idle
channels exclusively assigned for its use to provide a
seamless service to CPEs, considering the Non-Occupancy
Period of 10 minutes. However, there are only 68 channels
in TV bands, and thus, it is unlikely to have 30 concurrently
idle channels while there are many active TV stations. In
addition, self coexistence between neighboring WRANs will

make it harder to find an enough number of idle channels
reserved for a certain WRAN.

To resolve this issue, we can impose a much more strict
upper bound on the false alarm probability by reducing
Pmax
FA significantly. Fig. 14a indicates that by using
Pmax
FA ¼ 0:001, the expected channel-reuse time is enhanced

by two orders-of-magnitude (i.e., E½Treuse� ¼ 2;000 s) which
is reasonably long for SUs to operate on an idle channel.
Although one may wonder if the new constraint on Pmax

FA

might increase Nmin and the sensing overhead significantly,
Figs. 14b and 14c show a minimal increase in Nmin (just
three more sensors) and a bounded sensing overhead
between 0.069 and 0.077 when Pmax

FA varies.
As a result, we recommend Pmax

FA ¼ 0:001 as a new
requirement on the false alarm probability. Using this new
value of Pmax

FA , combined with the proposed in-band sensing
scheduling, we can still meet the detectability requirements
with a slight increase in the number of collaborative sensors
while enhancing the channel-reuse time significantly.

7 CONCLUSION

In this paper, we discussed three important aspects of in-
band spectrum sensing in the IEEE 802.22: sensor cluster-
ing, sensing scheduling, and detectability requirements.
First, we showed the necessity of sensor clustering and
derived the maximum sensor cluster size and sensor
density. Next, we proposed an in-band sensing scheduling
algorithm that minimizes sensing overhead while meeting
the detectability requirements, and evaluated its perfor-
mance with respect to noise uncertainty and inter-CRN
interference. We also derived the SNR threshold above
which energy detection is preferred to feature detection and
the minimum number of collaborative sensors for feasible
energy detection at a given SNR. Finally, we investigated
how strict the detectability requirement must be to
guarantee efficient channel reuse without incurring un-
necessarily often channel switches.

In future, we would like to explore subclustering
techniques to extend the benefits of using clustered sensor
networks. Implementing the proposed algorithms in CR
devices should be another step of our plan.
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Fig. 14. Plots of Treuse, Nmin, and the optimal sensing overhead TI=TP with varying Pmax
FA . (a) Expected Treuse. (b) Nmin. (c) Sensing overhead TI=TP .
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