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Abstract—Wireless LANs have been widely deployed as edge
access networks in home/office/commercial buildings, providing
connection to the Internet. Therefore, performance of end-to-
end connections to/from such WLANs is of great importance
to network applications and end-users. The advent of Dynamic
Spectrum Access (DSA) technology is expected to play a major
role in improving wireless communication. With DSA enabled,
WLANs opportunistically access licensed channels in order to
enhance spectrum-usage efficiency, and provide better network
performance. In this paper, we explore issues and solutions in
realizing this potential of DSA. We first identify the key issues
that impact end-to-end TCP performance when a DSA-enabled
WLAN is integrated with the wired cloud. Then, we propose
a new network management framework, called DSASync, to
eliminate or mitigate the performance issues we identified.
DSASync requires no modifications to the fixed wired network or
existing network stack, while ensuring traditional TCP semantics
to be obeyed. DSASync uses a combination of buffering and
traffic-shaping algorithms to minimize the adverse side-effects of
DSA on the TCP flows. Finally, we evaluate DSASync through
a prototype implementation and deployment in a testbed. The
results show significant improvements in TCP performance, e.g.,
a 74% increase in downlink goodput, making it a promising step
forward towards applying DSA technology in consumer WLANs.

I. INTRODUCTION

The primary function served by a majority of 802.11

WLANs (e.g., Wifi hotspots, home/office wireless/mesh net-

works) is to act as the first/last-mile access network to the

wired network cloud or the Internet, thus enabling the end

devices to avail of networking services (e.g., web-access

or VoIP) seamlessly over the wireless medium. However,

increase in wireless coverage has also led to crowding on

the ISM spectrum bands, resulting in higher interference and

poorer wireless networking performance. Further, demand for

high bandwidth and QoS-sensitive networking services is also

growing. Dynamic Spectrum Access (DSA) [1], based on

cognitive radio (CR) technology [2], [3], is emerging as a

key solution to this potential performance shortfall in existing

WLANs.

DSA is witnessing active research and standardization (e.g.,

IEEE 802.22 [4]), with FCC having already approved commer-

cial unlicensed operations in UHF spectrum [5]. With DSA

functionality, a WLAN can opportunistically communicate on

licensed spectrum bands, subject to regulatory constraints. A

WLAN with DSA capability is referred to as a DSA Network

(DSAN). We argue that effective integration of DSANs with

existing networking infrastructure is important for the success

of DSA.

Currently, there is lack of “end-to-end” insights into DSA.

In this paper, we investigate issues of integrating a DSAN with

the wired network. Such DSANs are expected to be utilized by

consumers in a similar manner as most existing WLANs are—

as first/last-mile access networks. Thus, DSANs must exceed

the end-to-end performance of traditional WLANs in order to

be commercially viable.

However, DSA entails additional operational constraints

in a rapidly-changing spectrum environment. It involves a

number of fundamental activities that can be disruptive to

ongoing network traffic. Examples include spectrum sensing,

channel switching, spectrum management & coordination, and

incumbent activity. Apart from performance degradation at the

link layer, such disruptive DSA-related phenomena can make

long-term adverse impacts on the end-to-end communication.

This is especially true for TCP streams, as DSA semantics are

unknown to it.

For example, a TCP connection between a server host

in the cloud and a client on the DSAN will experience

timeouts when the client cannot send out ACK packets in time,

because of a DSA-induced quiet period on incumbent detec-

tion. Consequently, the TCP’s congestion control mechanism

will be unnecessarily invoked leading to further performance

degradation. Such interruptions can be frequent—given the

regulatory restrictions imposed on unlicensed operations, DSA

service provider requirements, as well as, incumbent activity

on the spectrum band.

Techniques have been proposed in the past to address

performance problems arising in TCP flows due to disruptions

in the presence of high bit-error rate experienced on wireless

medium. In modern WLANs, bit-error losses are a minor issue

because of sophisticated error detection/correction schemes

used today. In the context of DSANs, delays and losses are

primarily due to side-effects of DSA-related events, which can

produce a significant adverse impact. Unlike random wireless

errors, knowledge about many of the disruptive DSA events

can be obtained beforehand or at their onset, thus making a

proactive approach feasible in masking their side-effects at

the TCP level. If any information is not directly available,

historical observations can be utilized.

In this paper, we provide a comprehensive end-to-end solu-

tion, called DSASync, to address the TCP performance issues
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when integrating a DSAN with the wired cloud. DSASync

is a network management framework for regulating TCP

connections traversing the wired-wireless boundary. DSASync

incorporates algorithms based on buffering and traffic-shaping

to minimize adverse impacts on ongoing TCP streams. There

are two important advantages of DSASync—(a) it maintains

the end-to-end semantics of the existing TCP protocol, and,

(b) it requires no changes to TCP’s existing implementations.

To the best of our knowledge, this is the first attempt to con-

sider integration issues with deployment of DSANs. DSASync

is designed to be compatible, scalable, and practical—a pro-

totype implementation is also developed and evaluated in a

testbed as part of this work.

The contributions of this paper are three-fold. First, we

identify the key challenges for the mainstream integration

of DSA-based WLANs. Second, we propose DSASync to

address the identified issues in the context of end-to-end TCP

connections. Third, DSASync is shown to better enable DSAN

integration with the Internet via a testbed-based evaluation.

The paper is organized as follows. Prior related work is

discussed in Section II. We present the background of this

work in Section III: the DSAN integration issues in Section

III-A and system model & notation in Section III-B. DSASync

details are presented in Section IV, with an implementation in

Section V. Experimental evaluation of DSASync is presented

in Section VI. The paper concludes with Section VII.

II. RELATED WORK

There have been significant research efforts into the chal-

lenges and development of DSA. Reference [1] is a general

survey about the state-of-art in this field. Cognitive radio, the

platform for DSA, has been discussed in [3], [6].

FCC has approved preliminary guidelines for DSA opera-

tions in TV bands [5]. Several DSA MAC/PHY protocols have

already been proposed in literature, especially for TV bands

[7], [8]. The IEEE 802.22 Group [4] is standardizing Wireless

Regional Area Networks (WRANs).

However, there have been very few publications on the end-

to-end impact of DSA. Adaptation to application requirements

in DSA has been proposed in [9]. However, that approach

is node-centric rather than network-centric, and does not

account for impacts on the transport layer. The authors of

[10] identified the important issues afflicting TCP in a DSAN.

They proposed a novel reliable transport protocol for DSA ad-

hoc networks, called TP-CRAHN. However, TP-CRAHN does

not address the issues when a DSA network acts as an access

network to the Internet. Another key shortcoming of this work

is its deployment incompatibility—it requires a completely

new transport protocol to be linked and loaded on the devices.

DSASync, on the other hand, integrates DSANs with the

Internet without any changes to the existing applications or

the protocol stack.

As mentioned earlier, there have been several prior efforts

on improving TCP performance in wireless environment [11]–

[13]. The key ideas proposed were: (a) splitting of wired and

wireless TCP connections, or (b) localized caching and retrans-

missions when a packet loss was identified. These efforts were

motivated by the high error-rate in wireless medium which

caused substantial performance drop in TCP connections. With

the advent of higher data-rate standards and stronger error-

correction schemes [14], such concerns have been mitigated.

However, from these works, DSASync borrows the concept

of proxy-based packet buffering.

III. ISSUES, SYSTEM MODEL AND NOTATION

A. Integration Issues

A DSAN exhibits several characteristics that adversely

impact its effectiveness in functioning as an edge access

network, especially for TCP connections across the wired-

wireless boundary (see system model in Fig. 1). The major

issues are listed below.

Sensing interruptions: Spectrum sensing is performed to

detect channel characteristics, including incumbent presence

or absence. For reliable spectrum sensing, there must be no

unlicensed traffic on the channel. Thus, every sensing event

involves scheduling of a quiet period (QP), during which

packet transmission is halted.1 Typically, the underlying DSA

MAC protocol schedules QPs [15], but they may also be

needed for accuracy and correctness in a scenario where

an external sensing infrastructure is used. Depending on the

sensing technology and the channel characteristics, a QP

typically lasts for tens of milliseconds (ms) or more and can be

scheduled as frequently as every few hundred ms.2 In general,

DSA protocols schedule sensing with a higher frequency in

order to improve sensing accuracy and hence, enhance DSA

performance [17]. For example, nodes can sense out-of-band

channels to get a better picture of spectrum conditions [18].

Channel-switch delays: Channel-switches can occur fre-

quently during unlicensed operation. Depending on the under-

lying DSA protocol, a channel-switch may be made proac-

tively to exploit a better channel, or in the event of incumbent

transmission on the current channel. Each channel-switch

can incur noticeable delay and QoS degradation [18], e.g.,

due to the interface reset or coordination between nodes.

Channel-switches also contribute to the problem of “bandwidth

fluctuation” discussed next.

Bandwidth fluctuation: During DSA operation, nodes can

experience wide variations in available bandwidth for several

reasons. Spectrum available for unlicensed usage on the cur-

rent channel depends on the incumbent utilization fraction,

which can change dynamically and substantially, depending

on the load in the incumbent network. Presence of additional

WLANs in the vicinity (on the same channel) further decreases

available bandwidth for application traffic in a DSAN. Further,

channel-switches may also contribute to bandwidth variability.

This can occur because of: (a) different channel utilization on

1Though single wireless data interface is assumed for cost/simplicity, this
problem is independent of the number of interfaces in the nodes for in-band
sensing.

2For TV bands, fine sensing takes around 25ms and incumbent detection
must be within 2s according to FCC rules [5], [16].
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Fig. 1. The system model for a DSAN.

the new channel, (b) different channel-access strategy resulting

in more/less throughput efficiency, and (c) different spectrum-

width (or raw capacity) of the new channel.

Incumbent activity: Incumbent transmissions must be

protected when a DSAN operates on a licensed channel. Thus,

when an incumbent or Primary User (PU) activity is detected

(via sensing), the DSAN nodes must not begin transmission

and stop any ongoing transmission within a very short time.

If incumbent activity on the channel is high, the DSAN’s

communication traffic will suffer greater delay, as well as, drop

in available bandwidth. Although the underlying DSA protocol

is usually designed to take corrective actions when such a

situation persists (e.g., by switching to a different channel),

an incumbent activity still results in significant disruption to

the ongoing communication.

Note that DSA operation is fundamentally disruptive, es-

pecially on a short-term scale, which cannot be completely

eliminated. Therefore, the design principle of DSASync is

to carefully manage TCP streams, in order to minimize the

impact of the aforementioned disruptive events experienced

when DSA is active on the WLAN.

B. System Model and Notation

The system under consideration is a single-hop WLAN

with wireless devices that connect to the wired cloud through

a base station, as shown in Fig. 1. The WLAN acts as the

first/last-mile/edge access network. The edge WLAN has

DSA capability and hence, is also a DSAN. Each wireless

device is equipped with a DSA-enabled wireless interface card

and necessary hardware components, together with a DSA

protocol. As is typical of edge wireless access networks, the

base station coordinates association, authentication, and traffic

to/from other nodes. Hence, it has knowledge about other

nodes’ important DSA MAC parameters (e.g., sleep/awake

cycles, or independent spectrum sensing schedules, if any).

We will use the following acronyms throughout the paper.

• Wired Network (WN): The network cloud (e.g., the Inter-

net) to which the wireless end-devices communicate to

avail of network services.

Fig. 2. Architectural overview of DSASync.

• DSA Network (DSAN): A DSA-based wireless network

that is connected to the WN.

• Spectrum-agile Host (SH): A DSA-enabled end-device in

the DSAN that communicates with a device in the WN.

• Correspondent Host (CH): An end-device in the WN that

communicates with a SH. The CH is usually a fixed host

in the Internet cloud (the WN).

• Base Station (BS): The designated device (or access

point) that connects the DSAN to the WN.

• Transmission Freeze Period (TFP): The interval during

which packet transmission is halted by one or more SHs,

or by the entire DSAN due to DSA-related events.

IV. DSASYNC

DSASync is logically a link-layer network management

protocol (similar to Snoop Agent [11]). However, DSASync

manages TCP connections—Fig. 2 shows DSASync’s archi-

tecture schema. To achieve this, DSASync sniffs the packets

in transit (at the BS), and maintains state information (e.g., last

ACK copy, sequence #s, etc) for each ongoing TCP stream it

detects.

A. DSASync: Link Layer

The DSASync LL component (DSASync_LL) is the moni-

toring unit of DSASync. It collects and maintains information

about DSA parameters required by DSASync_TCP. Such

parameters are managed by the DSA MAC/PHY protocol,

and are typically available at the link layer. The parameters

of interest are as follows.

1) fDSAN
sense (t) = the frequency of spectrum sensing by

the entire DSAN. This parameter usually corresponds

to the cooperative sensing schedule in which all nodes

participate.

2) tDSAN
sense (t) = the duration of each spectrum sensing event

scheduled by the DSAN.
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3) f i
sense(t) = the frequency of additional sensing (e.g.,

out-of-band) sensing performed by node i.
4) tisense(t) = the duration of each of the node-specific

sensing event at node i.
5) fDSAN

switch (t) = the frequency of channel switches.

6) tDSAN
switch (t) = the delay involved in each channel switch.

7) gON
PU (t) = the PU’s ON time distribution.

8) SDSAN = the Boolean parameter indicating if sensing

is currently ongoing in the DSAN.

9) SWDSAN = the Boolean parameter indicating if the

DSAN is currently performing a channel-switch.

10) Si = the Boolean parameter indicating if sensing is

currently ongoing at node i.
11) PUON = the Boolean parameter indicating if there is

currently a PU activity on the current channel.

In the rare scenario where a parameter is not directly

available from the DSA protocol, DSASync_LL uses simple

history-based estimates for each of them. Some of the param-

eters can be time-varying, as shown. In practice, knowledge

of their current values is found to be sufficient for DSASync.

B. TCP Management

The main task of the TCP management component,

DSASync_TCP, is to utilize the information collected by

DSASync_LL in managing both downlink (from CH to SH)

and uplink (from SH to CH) TCP traffic to/from the wire-

less clients in a DSAN. The objective is three-fold: (a) to

minimize packet loss, (b) to minimize time-outs and hence,

retransmissions, (c) to adjust TCP connection parameters in

response to changes in available bandwidth. In the current

design, DSASync_TCP executes only at the BS, as the BS

has all the necessary information and the incoming/outgoing

traffic must pass through it (see Section III-B).

a) DSASync_TCP_CH-SH: This module buffers the

downlink packets during TFPs. The buffered packets are

transmitted from the BS to the SH when the transmission

can be resumed. The current state of the destination wireless

node (w.r.t. its packet-reception capability) is known from

DSASync_LL. Note that the DSA MAC protocol, which

is monitored by DSASync_LL, typically features network

coordination mechanisms (e.g., via control channel [7], [19])

of information like sensing schedule, or incumbent detection

events. This ensures that nodes in the DSAN are on the same

page. Thus, onset and expiry of TFPs can be obtained in

a sufficiently timely manner without introducing any extra

overhead.

Due to limited buffer space at the BS, it is possible to run out

of space before the transmission is resumed. This can happen,

for example, if the DSAN is blocked from transmission for

a long period due to ongoing incumbent activity. In such a

situation the CH may also time out waiting for ACKs from

the SH, thus incurring unnecessary retransmission overhead.

To prevent this, DSASync_TCP proactively pauses the sender

by exploiting the built-in flow control mechanism of TCP.

Let there be N nodes in the DSAN and the allocated space

(at the BS) for buffering CH-SH packets be Balloc. Blow

Algorithm 1 Algorithm TCP CH-SH-a

Require: Bfree, Blow, hold
1: p← incoming CH-SH pkt

2: dest← destination SH of p
3: src← source CH of p
4: conn← p’s TCP connection identifier

5: TFP ← SWDSAN |SDSAN |Sdest|PUON

6: if TFP = 0 then

7: Add p to transmit queue

8: else

9: Buffer pkt

10: if hold = false then

11: if Bfree < Blow then

12: hold = true
13: for each TCP connection do

14: Advt. zero rwin to sender CH

15: end for

16: else

17: if SN conn
new = SN conn

last + rwinconn then

18: Advt. zero rwin src for conn
19: end if

20: end if

21: else

22: if p=window update request then

23: Advt. zero rwin to src for conn
24: end if

25: end if

26: end if

Algorithm 2 Algorithm TCP CH-SH-b

Require: Bfree, Bhigh, hold
1: if hold = true then

2: if Bfree > Bhigh then

3: hold← false
4: end if

5: end if

6: for i← 1 to N do

7: TFP ← SWDSAN |SDSAN |Si|PUON

8: if TFP = 0 then

9: Unbuffer any i’s pkt to transmit queue

10: else

11: Buffer any i’s pkt from transmit queue

12: end if

13: end for

& Bhigh are the configuration parameters for buffer space

thresholds (Balloc > Bhigh > Blow). Bfree is the current

free buffer space. For the TCP connection j, SN j
last is the

latest sequence # acknowledged by the SH, SN j
new specifies

the sequence # of the latest data packet (coming from CH)

buffered at BS, and rwinj is the latest advertised receive

window.

The BS uses the procedure outlined in Algorithms 1 and

2—both executed in parallel—in order to manage CH-SH
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TCP traffic. Algorithm 1 is executed when a TCP packet is

received from the CH and destined for a node in the DSAN,

i.e., for each TCP packet about to be added to the outgoing

queue at the BS’s wireless interface. Algorithm 2 is executed

periodically, based on a sufficiently frequent timer like the

system timer. A separate process updates buffer sizes (when a

packet is added/removed) and also overwrites the rwin field to

0 in outgoing packets, if the hold parameter (see Algorithms

1 & 2) is true.

Algorithm 1 exploits the TCP flow control mechanism to

avoid buffer overflow (and hence dropped packets) at the BS.

The BS advertises a 0-size receive window on behalf of the

SH, when the buffer threshold is reached. The same strategy is

used to prevent retransmissions (due to timeouts at the sender

CH), when the receive window becomes full while still in

TFP. The algorithm does not address non-DSA factors, such

as congestion in the network. However, an older packet is

replaced with a newly-arrived packet with the same sequence

#, i.e., when a duplicate packet arrives.

It is also possible to manage CH-SH TCP traffic by sending

out ACKs to the CH on behalf of the SH, or even splitting

TCP connections at the BS. However, DSASync does not take

these approaches for two reasons. First, it will violate end-to-

end semantics of TCP data flow, e.g., a successful reception of

ACK at CH (the source) will no longer imply that the packet

has successfully reached SH (the destination). Second, sending

ACKs will likely result in receiving more packets during the

TFP, which may lead to buffer space getting filled up earlier.

Further, the resource overhead will be higher.

b) DSASync_TCP_SH-CH: TCP performance will also

degrade due to irregular behavior in the opposite direction.

For example, there will be timeouts and retransmissions when

a TFP sets in, as the CH may not receive ACKs in time

according to its RTT estimate—which would be quite low as

it was based on continuous packet reception during the past

non-TFP period. Further, a “start-and-stop” type of data packet

reception would also contribute to other QoS issues, such as

increased application jitter.

Thus, for the uplink TCP stream, i.e., from SH to CH, the

BS attempts to “smooth” the flow. The key idea is to spread the

packets transmitted from the SH to CH over the TFPs, so that

the CH sees a relatively steady stream of packets despite the

disruption at the source SH. Thus, the temporal discontinuities

in packet reception are masked. This is accomplished as

follows.

Given the information available from DSASync_LL, the

average fraction of TFPs for node i can be estimated. Consider

a time-interval, say [T − 4T, T ]. The total TFP for node i
during this4T time window is the sum of delays (on average)

Algorithm 3 Algorithm TCP SH-CH

Require: αmin, ∀i ∈ N , Di, αi, Ti, dequeuei

1: while SH-CH queue is non-empty do

2: p← 1st TCP pkt in queue

3: done← false
4: count← 1
5: while done = false and count ≤ N do

6: src← source of p
7: if dequeuesrc = false then

8: βsrc ← max(αsrc, αmin)

9: Tsrc ← timestamp of src’s last pkt. dequeue

10: Tcurr ← current timestamp

11: elapsed← Tcurr − Tsrc

12: if {size(p)/(elapsed) < βsrcDsrc} then

13: dequeuesrc ← true
14: done← true
15: end if

16: end if

17: count← count + 1
18: p← next TCP pkt in queue

19: end while

20: end while

due to sensing, switching and PU activity interruptions.

TFP avg
i = E[fDSAN

sense (t).tDSAN
sense (t).t]t=T

t=T−4T

+ E[f i
sense(t).t

i
sense(t).t]

t=T
t=T−4T

+ E[fDSAN
switch (t).tDSAN

switch (t).t]t=T
t=T−4T

+ E[gPU,ON (t).t]t=T
t=T−4T

Therefore, the fraction of non-TFP period for node i during

[T −4T, T ] is given by

αi = 1−
TFP avg

i

4T
. (1)

Historical information on TFP durations during a moving time-

window of size 4T can be utilized to compute αi.

Let αmin be the configuration parameter to limit the extent

of traffic shaping. In order to manage SH-CH TCP traffic the

BS executes Algorithm 3. Algorithm 3 outlines the dequeueing

process for the outgoing queue at the BS’s wired interface. The

algorithm modifies the rate of a wireless node src’s uplink

TCP packets as:

Deff,src = βsrc.Dsrc (2)

where βsrc = max(αsrc, αmin), and Dsrc is the actual data-

rate at which src’s outgoing TCP packets are received at the

BS. Thus, linear traffic-shaping is applied to the SH-CH TCP

traffic. The αmin parameter provides control over (a) excessive

delays (and hence very high response-times for applications),

and (b) buffer space run-out.

Dsrc is easily estimated by monitoring the rate at which

node src’s TCP data packets enter the BS’s outgoing queue (at

its wired interface) in the moving time-window4T . Similarly,
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Algorithm 4 Algorithm TCP SH-CH-OPT

Require: αdsan, Ddsan, Tdsan, dequeuedsan

1: while SH-CH queue is non-empty do

2: if dequeuedsan = true then

3: Wait for dequeue to complete

4: end if

5: p← 1st TCP pkt in queue

6: βdsan ← max(αdsan, αmin)

7: Tdsan ← timestamp of last pkt dequeue

8: Tcurr ← current timestamp

9: elapsed← Tcurr − Tdsan

10: if {size(p)/(elapsed) < βdsanDdsan} then

11: dequeuedsan ← true
12: else

13: Wait {(size(p)/βdsanDdsan)− (elapsed) interval

14: end if

15: end while

Tsrc and dequeuesrc data structures (used in Algorithm 3)

are updated by monitoring the dequeue events. Note that the

packets enter the queue in the temporal order they are received,

as before. The local variables done and count ensure that the

number of iterations is bounded while searching for a packet

to be dequeued.

In practice, the node-specific sensing duration will not vary

significantly for different nodes. This is because the sensing

technology across devices is expected to be similar, and the

spectrum environment is also similar across the single-hop

DSAN. Thus, each αi, ∀i ∈ N can be closely approximated by

the average of αi values, say αdsan. Further, since the packets

from nodes are queued on a first-come-first-serve basis, the

individual data rates can now also be replaced by the overall

incoming data-rate Ddsan.

Hence, Algorithm 3 can be further optimized to yield Al-

gorithm 4. The revised algorithm has a lower implementation

and run-time overhead, because it has to maintain fewer

state variables. The most significant gain, however, is due to

reverting back to traditional queue semantics (which has an

O(1) dequeueing process, albeit at the “traffic-shaped” rate)

for the SH-CH queue.

c) DSASync_TCP_CAP: TCP’s flow and congestion

control mechanisms allow its adaptation to gradual capacity

changes in the network. Thus, small capacity fluctuations,

typically encountered on the same channel, do not warrant

any special handling. However, during channel-switches—

where substantial and sudden capacity decrease may occur—

this adaptation can be prolonged. When there is a significant

loss of capacity, there can be substantial packet losses and

retransmissions in the process. 3

For CH-SH downlink traffic, the procedure outlined in Al-

gorithm 5 is executed when a channel-switch event is indicated

(through DSASync_LL component). In this algorithm, C

3When the channel capacity increases, the TCP performance gradually
improves by itself.

Algorithm 5 Algorithm TCP CAP

Require: C, e, Din
i ,∀i ∈ N

1: for i← 1 to N do

2: if Din
i > eC then

3: Send 3 duplicate ACKs to i’s CHs

4: end if

5: end for

is the raw physical-layer bandwidth on the new channel, while

e is the data transfer efficiency for TCP when paired with

the MAC/PHY protocol to be used in the new channel. Din
i

denotes the incoming (or downlink) data-rate for node i. Note

that Din
i can be calculated at the BS by a simple sliding

time-window based historical average of the received packets

destined for node i. Algorithm 5, again, uses the built-in

congestion control of TCP to trigger fast retransmit/recovery

by sending at least 3 duplicate ACKs to the CH, if the current

downlink data-rate for a node cannot be sustained on the new

channel. The objective is to prevent slow recovery where cwnd
is reduced to 1, instead of half of the current value as in

fast recovery. Thus, the sender will automatically reduce its

sending data-rate with less severe impact than would otherwise

occur. Note that we avoided the TCP window scale option to

manage such capacity changes, as they are optional—many

network routers and firewalls do not implement this feature.

DSASync does not take any action for SH-CH uplink traffic

when capacity decreases on a channel-switch, as the uplink

data-rate from the source SH is automatically curtailed (due

to change in raw network capacity) to reflect the change.

V. IMPLEMENTATION

We evaluate DSASync by implementing it as a Linux kernel

module. The MadWifi device driver (madwifi-0.9.4) [20] is

augmented to emulate DSA protocol features (e.g., spectrum

sensing and channel-switches) over 802.11 MAC. Incumbent

transmissions are also emulated through a modified MadWifi-

based 802.11 MAC but with backoff features disabled (e.g.,

TXOP backoff is 0).

Since the DSAN is a single homogeneous wireless cell

(see Section III-B) with nodes operating on the same DSA

MAC/PHY protocol, both DSASync_LL and DSASync_TCP

need to execute only at the BS. There are two contributing

factors. First, as mentioned earlier, the required parameters are

easily accessible from the link-layer module. Second, the BS,

in its role as the “manager” of the DSAN, has full knowledge

about the network state (including the required parameters of

other nodes).4

VI. EVALUATION

A. Testbed Setup

A testbed is built according to our system model (see Fig. 1),

and consists of a WLAN cell with 6 client laptops (the SHs),

4In the case where all the required information is unavailable at BS, the
DSASync_LL component may need to be deployed at the wireless nodes.
Control packets can then be used to transmit information to the BS.
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each equipped with an Atheros-based Linksys WPC 55AG

wireless card. Another laptop acts as the AP (the BS) which

interfaces with the wired LAN of our University. The CH

is deployed on the wired segment of the University LAN.

Thought both SH and CH are part of the same local network,

resulting in lower end-to-end latencies than what is typically

experienced on the Internet, this setup is adequate for testing

DSASync. An additional laptop, acting as the incumbent

transmitter, is placed in the vicinity of the WLAN. To further

ensure correct incumbent operation, we establish transmission

range asymmetry between the WLAN and the incumbent—

WLAN nodes can hear incumbent node’s transmissions but

not vice-versa. The incumbent produces ON/OFF patterns of

random durations according to an exponential distribution. The

average of ON/OFF duration for the distribution is varied to

change the incumbent channel utilization.

Iperf is used to generate TCP traffic. Tcpdump is also used

to observe the TCP traffic and record statistics. The default

PHY data-rate is 24Mbps, while the buffer capacity at the

AP is kept at 500MB. The default average incumbent channel

utilization is 20%, and the average sensing overhead for each

SH is 5% of the runtime. The initial TCP send and receive

window size is 256KB and each experiment run lasts 20s.

Other default values are: αmin = 0.5, Bhigh = 500MB, and

Blow = 400MB.

B. Performance Metrics

Application-layer throughput is the main performance met-

ric used to evaluate DSASync. End-to-end delay, as observed

from the receiver’s perspective, is also used for analysis.

For each of the experiments, we compare the performance

metrics for two cases: (a) DSA operating with DSASync

(“DSASync”), (b) DSA operating without DSASync (“Regu-

lar”).

C. Results and Discussion

1) Overhead characterization: To analyze DSASync’s run-

time overhead, we compare the goodput achieved using un-

modified 802.11a with the scenario where DSASync agent is

active at the BS. On the basis of 100 experimental runs, the

extra overhead with DSASync is found to result in an average

of 1.9% reduction in goodput compared to the best case, i.e.,

the goodput when there is zero DSA overhead. The overhead

on end-to-end delay is found to be very minor (≈1.1ms).

However, we observe that gains from using DSASync when

DSA is employed (which are discussed next in Section VI-C2)

far outweighs its overhead impact. Thus, DSASync must be

activated only when the edge WLAN is actively employing

DSA.

2) Microbenchmarks: To establish the basic performance

trends with DSASync, we first evaluate it using a single

wireless client in the WLAN cell operating on a single channel

(i.e., no switching overhead). Fig. 3 shows the average goodput

variation in the time-window of 0-20s.

It is seen that DSASync results in better goodput as

compared to regular DSA, especially in downlink CH-SH
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direction. For this scenario, the average goodput improvement

is 74% over regular DSA (see Fig. 4). This is a result of

DSASync’s ability to effectively mask the TFPs (which is

25% of the total runtime) by buffering the incoming packets

at the BS and proactively signaling the sender to cease

transmission, when necessary (see Algorithms 1 and 2). Thus,

unnecessary reduction in the send window at CH is avoided

and there is negligible packet loss. Consequently, there is very

little retransmission overhead (≈0.018Mbps), contributing to

a much improved goodput. Through a packet-level analysis in

tcpdump, we notice that the downlink data stream (CH-SH)

also benefits from the traffic shaping in the reverse direction

(SH-CH). This is because the ACKs are sent to the CH at

a lower but steady rate, even during TFPs, which allows CH

to continue sending the data packets by advancing its send

window.

On the other hand, in absence of DSASync, packets get

dropped at the BS during the TFPs. This results in reduction

of send window (the sender perceives losses as congestion)

and significant retransmission overhead (3.1Mbps). Thus, the
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goodput is much lower.

As seen in Fig. 4, the gains associated with DSASync

for downlink SH-CH data stream is lower as compared to

the uplink direction. Here, the goodput improves by 10% on

average. This is because during the TFPs, the data packets

originating from the SH side are severely delayed (and even

dropped) at the SH itself. Thus, the packets don’t reach the BS

during interruptions to prevent TCP connection degradation.

However, there is still some improvement because the BS

shapes the uplink traffic (see Algorithm 4), and also buffers

the inbound ACKs for SH.

An interesting trend is seen with the delay variation from

the receiver’s viewpoint, which is shown in Fig. 5. Variation in

delay at the receiver’s end is a direct indicator of application

jitter. Despite not producing substantial improvement in good-

put, usage of DSASync results in a significant reduction in the

average delay variation at the CH for the uplink traffic. This

is a result of managing the uplink traffic at the BS. The delay

variation for CH-SH downlink data stream remains higher,

despite substantial improvement in corresponding goodput.

This is expected, because the SH cannot receive any data

packet during TFPs, even though the BS buffers them for it.

These observations suggest that deploying a local DSASync

agent at each WLAN node would help in reducing the CH-SH

delay variation while also improving SH-CH goodput. This is

a part of our future work. However, a DSASync agent at the

BS will still be required.

Fig. 6 shows the goodput variation with changes in the

magnitude of DSA-related interruptions. The DSA impact is

represented by “utilization,” which includes sensing overhead

and incumbent activity. As expected, the goodput decreases

when the DSA behavior becomes more aggressive. However,

with DSASync, CH-SH goodput improvement is even better at

higher utilizations. The goodput drops significantly only when

the utilization factor is greater than 0.5. Note that DSA is not

suitable for channels that exhibit very high incumbent utiliza-

tion. Thus, a good DSA MAC protocol would not select such

channels anyway (or would switch away from such channels).
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DSASync leads to marginally better performance (≈ 10%)

for the SH-CH data stream. However, the performance drops

quickly with increase in utilization, which again suggests the

need for a local DSASync agent at each WLAN node.

Fig. 7 shows the effect of reducing the network capacity,

which can occur when the DSAN changes channels. Here the

PHY-layer capacity is reduced to 12Mbps from 24Mbps at 5s.

As seen in the plot, without DSASync, the CH-SH goodput

reduces by almost 70% (the capacity reduction is 50%) and

takes some time (6-7s) to recover. However, with DSASync

there is no perceptible extra reduction in throughput beyond

the expected decrease. This is attributed to proactive sender

notification through Algorithm 5.

3) Macrobenchmarks: To check the scalability of

DSASync, 4 TCP connections are started on each of the 6

clients—thus, there are 24 parallel TCP data streams. The

spectrum consists of 4 channels, each with time-varying

incumbent activity. Fig. 8 shows the average performance of

the TCP connections in terms of goodput and retransmission

rate. The trends are similar to those noted in Fig. 4. DSASync

is found to perform even better in a larger-scale situation,
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especially in the downlink CH-SH direction where goodput

improves by 102%. Similar results, as those noted for

microbenchmarks, are observed for other corresponding

experiments.

4) Remarks: Many other results have been omitted due

to lack of space. From the experiments, we conclude that

the buffer size at the BS must be established based on the

expected amount of DSA overhead on a channel. A simple

dynamic buffer allocation scheme seems well-suited for this

task. Further, as noted from the results, there is a good case

for deploying local DSASync agents, in addition to the proxy-

type DSASync agent at the BS. In conclusion, DSASync,

though simple and non-intrusive, promises to be an effective

network management tool to improve TCP performance in

edge DSANs.

VII. CONCLUDING REMARKS

We identified the important end-to-end communication per-

formance issues when an edge WLAN features DSA ca-

pability. In this context, we analyzed the impact of DSA-

related disruptions on TCP flows to and from the wired cloud.

To address the identified problems, we proposed a novel

network management framework called DSASync. DSASync

primarily comprises an agent on the wired-wireless interface

node (e.g., the base station) of the WLAN, which executes

algorithms based on buffering and traffic-shaping to minimize

the adverse effect on ongoing TCP streams. Consequently,

DSASync requires no changes to the TCP protocol or its

existing implementation, and maintains the end-to-end seman-

tics necessary for TCP fidelity. We evaluated DSASync in

a testbed based on our prototype implementation for Linux

kernel. The evaluation results indicate that DSASync makes a

significant improvement in goodput and jitter for TCP streams.

Further, DSASync shows resilience in maintaining good TCP

performance with increase in DSA-related disruptions.

Future work includes development of a distributed

DSASync architecture with a local DSASync agent on each

wireless node. Our results indicate that even better perfor-

mance may be achieved in some cases (especially for uplink

TCP streams) with such a model. Further, we are looking into

extension of DSASync to manage UDP traffic, which forms a

significant and growing fraction of Internet traffic, especially

multimedia data.
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