Spatio-Temporal Fusion for Small-scale Primary
Detection in Cognitive Radio Networks

Alexander W. Min, Xinyu Zhang, and Kang G. Shin

Real-Time Computing Laboratory, Dept. of EECS
The University of Michigan, Ann Arbor, Ml 48109-2121
{alexmin, xyzhang, kgshi@eecs.umich.edu

Abstract—In cognitive radio networks (CRNSs), detecting small- WM usage in real time. More importantly, this unpredicteépil

scale primary devices—such as wireless microphones (WMs)—makes it hard for the BS to select sensors for cooperative

is a challenging, but very important, problem that has not sensing

yet been addressed well. We identify the data-fusion range - o )

as a key factor that enables effective cooperative sensingrf Third, despite its small footprint, a WM must be detected

detection of small-scale primary devices. In particular, ve derive  according to the strict sensitivity requirement imposed by

f‘h‘glc’S?Q'erm cte%(press,lon fo(rj thet' opn(rjn?l d?Nta-fusllon rbange the FCC. For example, the 802.22 standard draft specifies
at minimizes the average detection delay. We also observe ;

that the sensing performance is sensitive to the accuracy in that sensors must be able to detec_t as weak WM §|gnals

estimating the primary’s location and transmit-power. Based on @S —107dBm over a200KHz band within 2 seconds with

these observations, we propose an efficient sensing framenkp both false-alarm and mis-detection probabilities lessntha

called DeLCC, that iteratively performs location/transmit-power  (.1. However, a recent measurement study [9] indicates that

estimation and dynamic sensor selection for cooperative B8ing.  gangors suffer from a high false-alarm rate when detectihg W

Our extensive simulation results in a realistic CRN enviromment . . .

show that DeLOC achieves near-optimal detection performance, §|gnals due to their weak ,S'Q”a' strengths [J'O]' Thereth_m,e

while meeting the detection requirements specified in the IEE IS an urgent need for devising robust sensing mechanisrhs tha

802.22 standard draft. meet the strict detection requirements of small-scale aiies,

while minimizing the sensing overhead and detection delay.

N _ Despite its practical importance, however, little has been

Cognitive radio networks (CRNs) have recently been regpne for the detection of small-scale primary signals. % th
ognized as an attractive means to mitigate the spectrufst of our knowledge, the disabling beacon protocol, rien
scarcity problem that is expected to occur due to the rapidlyoposed by the 802.22 Task Group 1 (TG 1) [11], [12], is
growing wireless services and user population. In CRNfhe only known solution. The disabling beacon protocol aims
unlicensed (secondary) devices can opportunisticallye$€c o enhance WM detection by transmitting a specially-design
temporarily available licensed spectrum bands, i.e.,tspec signal before starting the WM devices. It is suitable forgar
bands unoccupied by the primary users. Among the numerqy§ additional information, such as the signature/autieation
challenges that CR technology faces for its successfuizeeal gn(g geo-location of WMs, which helps improve spectrum
tion, spectrum sensing, as the key enabling technology, haficiency via better spatial [6], [13] and frequency [14]
been studied extensively. reuse. However, the beacon protocol still has the following

While most of the previous research on spectrum sensifgitations. First, we do not expect that all WM users will
has focused on various aspects of detectarge-scale pri-  pe equipped with a separate beacon device in the near future
mary signals (e.g., TV signals) [1]-[4], detection of smallconsidering the fact that most users have not even registere
scale primary devices, such as WMs, still remains to betigeir WMs. Second, the transmit power of the beacon message
difficult, open problem for the following reasons. First,ileh s |imited to the same level as the WM's (i.250mW in
a TV signal has a large transmission range (upl30km), UHF band), and thus, beacons cannot compensate for the low
the WM signal has a small spatial footprint. The transmissigensor density in 802.22 [11]. Lastly, the beacon protocol
range of a WM is100-150m due to its weak transmit powerincurs a significant sensing-time overhead (5e100 ms) [11]
(typically 10-50mW) [5]. As a result, the 802.22 needs gompared to the simple energy detection.

separate dense sensor network for WM detection [6], or MO\ 1otivated by these practical needs, we propose an efficient
preferably, an efficient cooperative sensing mechanidoréai ' y P > Propos X
sensing framework fowsmall-scale primary detection using

to WM detection, which is the main focus of this paper. ; : : \ .
Second, the ON-OFF patterns of WMs have high spatial aﬁaoperatlvel sensing. We f|r§t assume that the WM'’s location
’ d transmit-power are available to the secondary usets, an

temporal variations [7]. WMs can be turned on at any Iocatioa‘P

and at any time without prior notification to secondary user erive the Op“‘.“‘?" _fusmn-range W'thm Wh'(_:h the sensors
gooperate to minimize the detection delay, i.e., the number

of sensing rounds needed for detecting a primary. Based on
gpr analytical findings, we then design a practical framéwor
called DeLOC, which performs joint cooperative sensing and

The work described in this paper was supported in part by t88 Nnder Iocatjon/power es.timat_iqn,.ir.\ order to me.et the deteatgbil
Grant CNS-0721529. requirements, while minimizing the detection delay.

I. INTRODUCTION

They are usually mobile and used for short periods of tim
Therefore, it is practically infeasible to maintain a datsé for
WNMs [8] or profile all the possible locations and schedules



Il. PRELIMINARIES IIl. DETECTION OFSMALL -SCALE PRIMARY VIA

In this section, we introduce the network model, the WM SPATIO-TEMPORAL DATA-FUSION

sensing model, and the wireless signal-propagation model. In this section, we first formulate the small-scale primary
detection problem as a sequential hypothesis testing @mabl
A. Network Model We then derive the optimal data-fusion range that minimizes

We consider a CRN consisting of primary and secondaff}e average detection delay.
users in the same geographical area. While the techniqu@%ypothmmmg
that we proposehcan :)e appflled to otl_her small-llslc?le primary . 0, =T T |]T denote the vector of test statistics
transmitters, without loss of generality, we will focus on. yeeesd|s, .
WM detection in IEEE 802.22 WRANs. WMs use a wea%"e" RSSs) measured at the sensing stagg a setS; of

X . ooperating sensors. A sensor is selected by the BS if it is
::ggzm:;ggwig%gu@dg{ﬁég ;A(;’O(r)r: kﬁl?z\rq [|55]nEllJ?:]h g&iﬂtesr within the fusion rangeR; from the WM transmitter. The
than the typical 802.22 cell radius Gi3km. We assume fusion range, and hence the set of cooperating sensors, can

secondary users (called CPEs) have been deployed in an differ in each sensing stage according to the WM’s estimated

fcltion and transmit-power level. Let = [67 oL "

; . ! . . 1,...,0n

4, i.e., an IEEE 802.22 WRAN cell, fpllowmg a point POISSO'?JIenote theM x 1 vector of test statistics measured at sensors
process with density, i.e.,na ~ Poi(n; p|A[). Such CPEs ver N sensing stages, wherd — ZN A

are stationary and their locations are known to the BS. v ' t=11t 1

assume a low sensor densinas the tvpical density of CPES Our detection problem is then a binary Gaussian classifi-
: ; has yp y 5y cation problem where the observed test statigtlmelongs to
(i.e., households) in rural areas is very low (arourith /km?)

[15] one of two classesH, or H1, where:

) Ho : 0 ~ N(uo x1,%0) (no primary signal)
B. WM Sensing Model Hi:0~N(u1 x1,51) (primary signal exists)

_Wel (rjnake the ;ollowing assumptions regarding the W here ), ands, are the mean vector and covariance matrix
signal detection: Sensors _ . of the test statistics undéf(;, k € {0,1}. The average test
Al) use the energy detection for PHY-layer sensing, andstatistics under each hypothesis are= N, andy; = Pr+N,,
A2) sense an entiré MHz-wide TV channel. where N, and Py are the average noise power and received
Regarding Al, the feature detection cannot be applied féfimary signal power at sensors, respectively.
WM detection because, unlike the TV signals, there is Sensing Scheduling via SPRT
standard modulation specified by the FCC R&O for WVO?' 9 g Vi . .
signals [16]. The test statistic of the energy detector is an/n DeLCC, the BS s_chedules the Sensing penods (stz?\ges)
estimate of average received signal strength (RSS) imgudi!Ntil it obtains a sufficient amount of information for magin
the noise power. It can be approximated as Gaussian using #inal decision. We adopt WaldSequential Probability Ratio

Central Limit Theorem (CLT) as in [17]: Test (SPRT) [19] to process the statistics and determine when
, to stop sensing. SPRT is optimal in the sense of minimizing
N (No &) Ho (no primary signal) the average number of observations, given bounded fadseial
T ~ e 2 ( (1) probabilit Qra and mis-detection probabilitg
N (P4 No, Lte)) 4, (primary signal exists) P Y&rA p MD-

With SPRT, a decision is made based on the observed

where P, is the power of a received primary signal at sens@equence of test statistic§}; }¥ ;, using the following rules:

n, N, the noise power, i.e595.2dBm for a TV channel with

6 MHz bandwidth [18], and\/, the number of signal samples, ) .

e.g.,6 x 103/ms for 6 MHz TV band at the Nyquist rate. Ay <A = accepto (no primary signal)
Regarding A2, WMs use a relatively narrow frequency band, 4 <A~ < B = take another observation

i.e., 200KHz, compared to a&MHz TV band. Therefore, whereA and B (0 < A < B < o) are the detection thresholds
sensing the entire TV channel simplifies the sensing desigiat depend on the desired values@f4 and Qyp. The

at the cost of decreased measured signal-to-noise rati®XSNecision statisticA v is the log-likelihood ratio derived from
due to the increased noise level ove6 MHz-wide channel. 3 sequence of test statistiés, . .., 0y as follows:

An > B = acceptH; (primary signal exists)

C. Sgnal-Propagation Model An 2 X(61,...,0n) =In 7?221’ — "ZN;, ®3)
. . . olW1,...,OUN
ca\rqv?):lishl;T;:ttQﬁ;:g%SOEée;z)?llz)/\?v?npnnr]gr)z/;\Slﬁir:)?: frtli)e dng_thwhere fx(61,...,60x) is the joint p.d.f. of the sequence of test
y g propag " statistics (i.e., measured RSSs) under the hypothiésigk €
du @ Xn Yn {0 1}
P, =P,(=2 Watt), 2 ) _ .
(dn) e (Wt @) Recall that{6,}Y , are Gaussian, and assuming they are

whereP, is the transmission power of the primary transmitter,i.d., Eq. (3) becomes:
« the path-loss exponent, the reference distance (e.gm), N Noon0) & |t | F(To)
andd,, the distance from the primary transmitter to sensor An = Z)\t = Zln Fo(00) = Z Z In 7 (Tn)’ 4)
Shadg)/w fading and multi-path fading are accounted farin t=1 =1 OV i JOUR
n I 2
and ¢™, respectively, whereX,, ~ N(0,0%) ¥n. The log- 1Since the BS does not have the exact distribution of the vedgbrimary

normal Shadow fading iS.Often. characterized by its dB'Eqbre%ignal strengths, the BS can s, to —107 dBm, which is the detectability
oqp, Which has the relationship=0.11n(10)o45. requirement in 802.22 [11].




where the test statistic can be approximated as Gaussiag u$d. Approximation of the Sum of Test Statistics

the Central Limit Theorem (CLT) a8, ~ N (ux,0;) under | gt Ts(p.r,) denote the sum of the test statistics measured

Hg, as shown in Eq. (1). ) o at the sensors within the fusion radiug; from the WM
We now consider th@ormalized test statistics (i.e., RSSS)transmitter, in the network of sensor density Then, under
to simplify the derivation of the average number of sensing, it can be approximated as:

rounds. Lett, = T,,- ;' denote the normalized test statistic,

€., topy, ~ N(6x, 1) Wheregy = £, Vk. Then, we have: E[Ts(o.rp)] = ]E[ > Tnml]
S0 o) EX pe nes )
)\t:ZIH ho(t ) :(¢1_¢0)Z t7L+§Z(¢O_¢1)7 (5) :E|: ZN(Pn+NO’Gn):|
n=1 n n=1 n=1 neSt
wherehy(-) is the p.d.f. oft, s, . ~ ]E[ Z Pn] +IE[ Z No], (11)
Based on Egs. (4) and (5), the decision statidtic can be nesy nes,
expressed as: where P, is the received primary signal strength at sensor
N5 N_ |5t andS; = S(p, Ry) for brevity. The approximation in Eq. (11)
1 t Py Ly Yy pp q
Av=(¢1—0) Y > tnt 5 > (66— 1) is made based on the fact that the measurement errors of the
t;jl n=1 t=1n=1 energy detector is relatively smaller than the averagevede
B M, 5 primary signal strength, i.es? < P, + N,.
= (¢1 — ¢o) th” + 7(% — %), ©) Based on Eg. (11), we now focus on approximation of the

sum of received primary signal strengths, which can be tewri

where M = S°7,[S;| is the total number of test statisticsten asE[S" . P 1= PoBIY  nesp,ry) 9(dn)e”m e ] where

. nesy TN
collected by the BS through’ sensing stages. P, is the primary’s transmit powey(d,) is the sensom’s

C. Minimization of the Average Detection Delay channel gain due to path-loss, i.¢(d,) = (d,/d,)®, ande*~
Recall that Lis to minimize th ber of _ande¥ are the channel gains from shadowing and multi-path
ecall that our goal 1S {o minimize the number o Sens'”%g;ng, respectively. We approximate the sum of channeigjai

rounds that the BS has to schedule to meet the desir
X . to path-loss, denoted I8} (p, Rf) =) es( g(dn),
2\l neS(p,Ry) n
detection performance requirements, e@p.4, Qpp < 0.01. as a log-normal random variable. s

Thus, we first derive a closed-form expression for the averag , _ 2
number of sensing rounds required until a decision is mageDe”OtegE(PaRf) ~ Log-N(uc,0¢). Then, the p.d.f. of

(i.e., either boundanA or B is reached). x(p. Biy) is given as:

The average number of sensing rounds required for making _ 1 ( _ (nz— MG)Q) 12

a decision (denoted b§[N]) can be computed as [19]: Po(e.ry) (%) zoav2r ¥ 202, NG
E[N] = E[A|Hx] " x E[An], (7) Where theui ando? have the following relationships [20]:

which we discuss next. mi(p, Ry) = etc 296 13
First, using Eq. (5), the average value of the log-likelitoo ma(p, Ry) = ezuc+oé(ecé —1). (13)

ratio A under hypothesi${; can be derived as:
Heremy(p, Ry) is the k™ cumulant ofG, r;), given as:

fr or
2 2 k
o ) = el = &) [ e

|St] |St]

BIAI ) = (6~ 0)E| 3t | + 3E| 365 0D ®

n=1
Next, the expectation of\y in Eg. (7) can be found as 2pm d=e 1 1
follows. SupposeH; holds, thenA y will reach the decision D) (e;mfg - Rka72)’ (14)
boundary A with the desired mis-detection probability; _ ) Fo o
otherwise, it will reachB. Thus, according to [19]: where do is the reference _dlstance amﬁs the minimum
. 1_ b separation between the primary transmitter and the sensors
E[Ay |Hi] =b" In =t (1—b") In — (9) which is set toe = 75m in our simulatior?

From Egs. (13) and (14), the log-normal random variable

Based on Eq_s. (7), (8) and (9), we can_d_erive the_z average(p, Ry) ~ Log-N(uc,o%) can be approximated as:
number of sensing rounds needed for decision-making as:

b* In " 1—b*) In 1= HG = lln <m7‘11) and o0& =In (1 + @) (15)
E[N |Hi] = n?ﬂ — b)) In , 27 \mi+me ¢ mi )’
(61 — S0)E[ IS b, ] + 202 — ﬁ)EUStQm

Therefore, from Eqgs. (11) and (15), and by incorporating
the effects of shadowing and multi-path fading assuming the
fading is i.i.d. for each sensor, the sum of received primary
%?Wer at the cooperating sensdfscan be expressed as:

Similarly, the average number of sensing rounds urfdgr
i.e., E[N | Ho], can be derived.

Egs. (8), (9), and (10) indicate that the average number
sensing round&[N] depends on: (i) the average number of E[ Z Pn} =P, -E[G=(p, Ry)] - E[e¥]-E[e¥],  (16)
sensors within the fusion range, which can be easily caledla nes,
asE|[|S;|] = prR%, under the assumption of the point Poisson

distribution of sensors, i-elet| ~ Poi(n; pr?), and (ii) the 2This i_s r_easonable because the proba_bility_ that thereseaisJeast one
4, sensor withine="75m from the WM transmitter id — Poi(0; pre?) ~0.02

sum of their reported test statistics, i. B[y b - given sensor density gi=1.25 x 10~6/m?.



where E[eX] = €319 o = 0.11n(10)o4p, E[e¥] = 1, and Algorithm 1 DeLOC: ALGORITHM FOR JOINT DETECTION
E[Gs(p, Rf)]zechr%aé. AND ESTIMATION OF .SMALL.-SCALE PRIMARY USERS.

Then, from Egs. (11) and (16), the sum of normalized testAt the end of a sensing period, the BS does the following
statistics, i.e.t, = T, - 0, can be expressed as: L. for Each triggering evendo

2:  t« 1// Initialization
|St] ) 3:  while ¢ < MaxNumlter do
E[Ztnml} :E[Ts(pﬂf)a; } 4 t—t+1 . .
— 5: 0: — Receive se(n)slng results from cooperating sen§ers
1,2 2\ 1 6: As — Aeeq + 2@ 1 Update the decision statistic
= (Poe™ElGn(p, Ry)) + NopnR} ) o' (@7) 50 gt et P
. - . 8: A primary exists and hence returns the estimated loca-
Finally, based on Egs. (8) and (17), the f|rst_ term in tion and transmit-power level
Eq. (7) for calculating the average number of sensing rounds else if A, < A then
E[N | H;] can be derived as: 10: A primary does not exist (i.e., the event is triggered by
1, 4 ) ) a ghost primary) and hence terminates the iteration
EHa] = 5(¢0 — 1) prRy + (91 — o) 11: else.
L o ) ) 12: (041, Po,t+1) < Estimate the location and transmit
x (P,e2” E[Gs(p, Rf)] + NopnR}) 0y, (18) power of the primary transmitter
) 13: R} ;.1 « Calculate the optimal fusion range
whereg, = &= and¢, = Y=tz are the average normalized14: Si41 «— Select a set of sensors located withi
test statistics under both hyﬁotheses. from the estimated primary transmitter location
The average number of sensing rourfsV | H;] can be 15: Schedule another sensing round and wait for the obser-
. N ! vation

derived by substituting Eqgs. (9) and (18) into Eq. (7). 16: end if
E. Optimal Data-Fusion Range 17 end while

. . 18 return No primary signal exists
Based on the analyses above, we now derive an optimgl ong for

data-fusion range that minimizes the average detecticaydel
i.e., the number of sensing rounds needed to meet the detecti
performance requirements.

2) Estimation of Transmit Power: In DeLCC, the BS esti-
Proposition 1 (Optimal Fusion Range) Let J(R;)2E[X|H1] mates the WM'’s transmit power based on its estimated latatio
in Eq. (18). Then, the optimal fusion range that minimizes the  and the reported RSSs using the method proposed in [22]. Note

average number of sensing rounds E[N] is given as. that the test statics of the energy detector include botkenoi
. power and primary signal power [17]. Therefore, the reative
R} = arg max J(Ry) = Brlosny primary signal strengtt?, needs to be estimated from the test
. oRs statistic by subtracting the average noise power level fitwen
ar(a—2)\ = measurements.
- (T) ’ (19)
where ? B. The Proposed Data-Fusion Rule
1 s We propose a new data-fusion rule fioeL OC, a weighted
ay = 21— d0)Poe2” prdy (20) Sequential probability ratio test (WSPRT), to prevent the BS
on(2 - a) ’ from making biased decisions in early stages. The idea is
0 — }(¢2 Iy y— (¢1 — ¢o) Nopm 1) to assign smaller weights to the decision statistics inyearl
A O on ' stages, and gradually increase the weights as the locatin a

Proof. We first prove the concavity off(R;) and then transmit-power estimates become more accurate. Spelgifical
solve the optimization problem to obtain the optinfgl. The We use the following rule to update the decision statistic:
detailed proof is omitted due to space constraint. Ai= Ay + MO where f(t)= — teN, (22

&
IV. DeLCC: THE ITERATIVE APPROACH where we use the sigmoid functigift) such that the exponent

We now introduceDelL OC, an iterative algorithm that ex- of test statistics increases froil5 to 1 as ¢ increases.
pedites the detection of small-scale primary signals viat jo Consequently, the test statistics in later stages coune rimor
data-fusion and location/transmit-power estimation. Wet fi decision-makingAlgorithm 1 detailsDeLCC.
describe the estimation techniques, and then the propeased d

fusion rule and the iteration method employed sl OC. V. PERFORMANCEEVALUATION

In this section, we demonstrate the performanc®aif OC

A. Estimation Techniques in comparison with other testing schemes.

1) Estimation of WM Location: In DeLOC, the BS esti- ]

mates and updates the WM's location based on the RSSsSmulation Setup

reported by the sensors. In particular, the BS employs aln the simulation, we consider a realistic 802.22 environ-
weighted centroid method proposed in [21], which estimatesment where sensors are randomly distributed ov&re80 km

the WM’s location via a weighted average of the sensoratea. The average sensor density is setl®s/km?, as
locations, where the weight equals the corresponding sensaypically used in 802.22 WRANs [6]. We assume a WM
report. The BS further refines the estimation via an expoakentrandomly located in the area with effective transmit-power
moving average over multiple sensing stages. below25mW, as indicated by the measurement study in [11].



[l Oracle
[_1DeLOC with WSPRT

VI. CONCLUSION

s
§ [ DeLOC 08 . . . . .
2 g peLoc wo caizton The detection of small-scale primary signals is an impdrtan
g ' Oe“ and challenging problem in realizing opportunistic spattr
8 04 B Oracke access in CRNs. To solve this problem, we proposed a novel
5 02 mmoeioc o | spatio-temporal fusion scheme that exploits (i) spatiabudiity
2 []DeLOC w/o localization . . . . . ..
£ , IID=LOC wio power est. by cooperative sensing with an optimal fusion range, and (ii
*® wansmission power (P (mw) "~ *wansrmission power () (mw) " temporal diversity by scheduling a series of sensing stages

with an optimal stopping time. We (a) modeled the detection
problem as a hypothesis test, (b) approximated the sum of
Fig. 1. Performance of DeLOC: DeL.OC (a) requires only a small number Sensor readings as a log-normal random variable, and then (c
of sensing rounds for WM detection, and (b) achieves a higactlen rate  solved a convex optimization problem, to obtain the optimal
even for a very weak signal power, €.g% =1 mw. fusion range that minimizes the average detection delay. We
also proposed a new sensing algorithm calbed OC that iter-
The maximum number of sensing rounds scheduled withites between cooperative sensing and location/transwiép
the 2-seconctchannel detection period (CDT) is limited to estimation to further improve the sensing performance unde
MaxNumlter = 100.3 The time duration for a single sensingrealistic settings. Our evaluation results show tBet.OC
period isTs = 1 ms. The path-loss exponent éis= 4 and reduces the detection delay significantly while meeting the
the shadow fading dB-spread is;5 = 5.5dB (typically detection requirements.
assumed for rural areas). The triggering threshol@ah OC

(a) Average detection delay (b) Achieved detection probability
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