
Spatio-Temporal Fusion for Small-scale Primary
Detection in Cognitive Radio Networks

Alexander W. Min, Xinyu Zhang, and Kang G. Shin

Real-Time Computing Laboratory, Dept. of EECS
The University of Michigan, Ann Arbor, MI 48109-2121

{alexmin, xyzhang, kgshin}@eecs.umich.edu

Abstract—In cognitive radio networks (CRNs), detecting small-
scale primary devices—such as wireless microphones (WMs)—
is a challenging, but very important, problem that has not
yet been addressed well. We identify the data-fusion range
as a key factor that enables effective cooperative sensing for
detection of small-scale primary devices. In particular, we derive
a closed-form expression for the optimal data-fusion range
that minimizes the average detection delay. We also observe
that the sensing performance is sensitive to the accuracy in
estimating the primary’s location and transmit-power. Based on
these observations, we propose an efficient sensing framework,
called DeLOC, that iteratively performs location/transmit-power
estimation and dynamic sensor selection for cooperative sensing.
Our extensive simulation results in a realistic CRN environment
show that DeLOC achieves near-optimal detection performance,
while meeting the detection requirements specified in the IEEE
802.22 standard draft.

I. I NTRODUCTION

Cognitive radio networks (CRNs) have recently been rec-
ognized as an attractive means to mitigate the spectrum-
scarcity problem that is expected to occur due to the rapidly
growing wireless services and user population. In CRNs,
unlicensed (secondary) devices can opportunistically access
temporarily available licensed spectrum bands, i.e., spectrum
bands unoccupied by the primary users. Among the numerous
challenges that CR technology faces for its successful realiza-
tion, spectrum sensing, as the key enabling technology, has
been studied extensively.

While most of the previous research on spectrum sensing
has focused on various aspects of detectinglarge-scale pri-
mary signals (e.g., TV signals) [1]–[4], detection of small-
scale primary devices, such as WMs, still remains to be a
difficult, open problem for the following reasons. First, while
a TV signal has a large transmission range (up to150 km),
the WM signal has a small spatial footprint. The transmission
range of a WM is100-150m due to its weak transmit power
(typically 10-50mW) [5]. As a result, the 802.22 needs a
separate dense sensor network for WM detection [6], or more
preferably, an efficient cooperative sensing mechanism tailored
to WM detection, which is the main focus of this paper.

Second, the ON-OFF patterns of WMs have high spatial and
temporal variations [7]. WMs can be turned on at any location
and at any time without prior notification to secondary users.
They are usually mobile and used for short periods of time.
Therefore, it is practically infeasible to maintain a database for
WMs [8] or profile all the possible locations and schedules of
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WM usage in real time. More importantly, this unpredictability
makes it hard for the BS to select sensors for cooperative
sensing.

Third, despite its small footprint, a WM must be detected
according to the strict sensitivity requirement imposed by
the FCC. For example, the 802.22 standard draft specifies
that sensors must be able to detect as weak WM signals
as −107dBm over a200 KHz band within 2 seconds with
both false-alarm and mis-detection probabilities less than
0.1. However, a recent measurement study [9] indicates that
sensors suffer from a high false-alarm rate when detecting WM
signals due to their weak signal strengths [10]. Therefore,there
is an urgent need for devising robust sensing mechanisms that
meet the strict detection requirements of small-scale primaries,
while minimizing the sensing overhead and detection delay.

Despite its practical importance, however, little has been
done for the detection of small-scale primary signals. To the
best of our knowledge, the disabling beacon protocol, recently
proposed by the 802.22 Task Group 1 (TG 1) [11], [12], is
the only known solution. The disabling beacon protocol aims
to enhance WM detection by transmitting a specially-designed
signal before starting the WM devices. It is suitable for carry-
ing additional information, such as the signature/authentication
and geo-location of WMs, which helps improve spectrum
efficiency via better spatial [6], [13] and frequency [14]
reuse. However, the beacon protocol still has the following
limitations. First, we do not expect that all WM users will
be equipped with a separate beacon device in the near future
considering the fact that most users have not even registered
their WMs. Second, the transmit power of the beacon message
is limited to the same level as the WM’s (i.e.,250mW in
UHF band), and thus, beacons cannot compensate for the low
sensor density in 802.22 [11]. Lastly, the beacon protocol
incurs a significant sensing-time overhead (i.e.,5-100ms) [11]
compared to the simple energy detection.

Motivated by these practical needs, we propose an efficient
sensing framework forsmall-scale primary detection using
cooperative sensing. We first assume that the WM’s location
and transmit-power are available to the secondary users, and
derive the optimal fusion-range within which the sensors
cooperate to minimize the detection delay, i.e., the number
of sensing rounds needed for detecting a primary. Based on
our analytical findings, we then design a practical framework,
calledDeLOC, which performs joint cooperative sensing and
location/power estimation, in order to meet the detectability
requirements, while minimizing the detection delay.



II. PRELIMINARIES

In this section, we introduce the network model, the WM
sensing model, and the wireless signal-propagation model.

A. Network Model

We consider a CRN consisting of primary and secondary
users in the same geographical area. While the techniques
that we propose can be applied to other small-scale primary
transmitters, without loss of generality, we will focus on
WM detection in IEEE 802.22 WRANs. WMs use a weak
transmit power around10-50mW, or below [5], [13], and its
transmission range is only150-200m, which is much smaller
than the typical 802.22 cell radius of33 km. We assume
secondary users (called CPEs) have been deployed in an area
A, i.e., an IEEE 802.22 WRAN cell, following a point Poisson
process with densityρ, i.e., nA ∼ Poi(n; ρ|A|). Such CPEs
are stationary and their locations are known to the BS. We
assume a low sensor densityρ as the typical density of CPEs
(i.e., households) in rural areas is very low (around1.25/km2)
[15].

B. WM Sensing Model

We make the following assumptions regarding the WM
signal detection: Sensors

A1) use the energy detection for PHY-layer sensing, and
A2) sense an entire6 MHz-wide TV channel.

Regarding A1, the feature detection cannot be applied for
WM detection because, unlike the TV signals, there is no
standard modulation specified by the FCC R&O for WM
signals [16]. The test statistic of the energy detector is an
estimate of average received signal strength (RSS) including
the noise power. It can be approximated as Gaussian using the
Central Limit Theorem (CLT) as in [17]:

Tn ∼
(
N

`
No,

N2
o

Ms

´
H0 (no primary signal)

N
`
Pn+No,

(Pn+No)2

Ms

´
H1 (primary signal exists),

(1)

wherePn is the power of a received primary signal at sensor
n, No the noise power, i.e.,−95.2dBm for a TV channel with
6 MHz bandwidth [18], andMs the number of signal samples,
e.g.,6 × 103/ms for 6 MHz TV band at the Nyquist rate.

Regarding A2, WMs use a relatively narrow frequency band,
i.e., 200KHz, compared to a6 MHz TV band. Therefore,
sensing the entire TV channel simplifies the sensing design
at the cost of decreased measured signal-to-noise ratio (SNR)
due to the increased noise level over a6 MHz-wide channel.

C. Signal-Propagation Model

We assume that sensorn’s received primary signal strength
can be characterized by the following propagation model:

Pn = Po

“ do

dn

”α

e
Xne

Yn (Watt), (2)

wherePo is the transmission power of the primary transmitter,
α the path-loss exponent,do the reference distance (e.g.,1 m),
anddn the distance from the primary transmitter to sensorn.
Shadow fading and multi-path fading are accounted for ineXn

and eYn , respectively, whereXn ∼ N (0, σ2) ∀n. The log-
normal shadow fading is often characterized by its dB-spread,
σdB, which has the relationshipσ=0.1 ln(10)σdB.

III. D ETECTION OFSMALL -SCALE PRIMARY VIA
SPATIO-TEMPORAL DATA -FUSION

In this section, we first formulate the small-scale primary
detection problem as a sequential hypothesis testing problem.
We then derive the optimal data-fusion range that minimizes
the average detection delay.

A. Hypothesis Testing

Let θt =[T1, . . . , T|St|]
T denote the vector of test statistics

(i.e., RSSs) measured at the sensing staget by a setSt of
cooperating sensors. A sensor is selected by the BS if it is
within the fusion rangeRf from the WM transmitter. The
fusion range, and hence the set of cooperating sensors, can
differ in each sensing stage according to the WM’s estimated
location and transmit-power level. Letθ = [θT

1 , . . . , θT
N ]T

denote theM × 1 vector of test statistics measured at sensors
over N sensing stages, whereM =

∑N
t=1|St|.

Our detection problem is then a binary Gaussian classifi-
cation problem where the observed test statisticθ belongs to
one of two classes,H0 or H1, where:

H0 : θ ∼ N (µ0 × 1, Σ0) (no primary signal)
H1 : θ ∼ N (µ1 × 1, Σ1) (primary signal exists),

whereµk andΣk are the mean vector and covariance matrix
of the test statistics underHk, k ∈ {0, 1}. The average test
statistics under each hypothesis areµ0 =No andµ1 =PR+No,
whereNo and PR are the average noise power and received
primary signal power at sensors, respectively.1

B. Sensing Scheduling via SPRT

In DeLOC, the BS schedules the sensing periods (stages)
until it obtains a sufficient amount of information for making
a final decision. We adopt Wald’sSequential Probability Ratio
Test (SPRT) [19] to process the statistics and determine when
to stop sensing. SPRT is optimal in the sense of minimizing
the average number of observations, given bounded false-alarm
probabilityQFA and mis-detection probabilityQMD.

With SPRT, a decision is made based on the observed
sequence of test statistics,{θt}N

t=1, using the following rules:

ΛN ≥ B ⇒ acceptH1 (primary signal exists)
ΛN < A ⇒ acceptH0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

whereA andB (0<A< B <∞) are the detection thresholds
that depend on the desired values ofQFA and QMD. The
decision statisticΛN is the log-likelihood ratio derived from
a sequence of test statisticsθ1, . . . , θN as follows:

ΛN , λ(θ1, . . . , θN ) = ln
f1(θ1, . . . , θN )

f0(θ1, . . . , θN )
, (3)

wherefk(θ1, . . . , θN ) is the joint p.d.f. of the sequence of test
statistics (i.e., measured RSSs) under the hypothesisHk ∀k ∈
{0, 1}.

Recall that{θt}N
t=1 are Gaussian, and assuming they are

i.i.d., Eq. (3) becomes:

ΛN =
NX

t=1

λt =
NX

t=1

ln
f1(θt)

f0(θt)
=

NX

t=1

|St|X

n=1

ln
f1(Tn)

f0(Tn)
, (4)

1Since the BS does not have the exact distribution of the received primary
signal strengths, the BS can setPR to −107 dBm, which is the detectability
requirement in 802.22 [11].



where the test statistic can be approximated as Gaussian using
the Central Limit Theorem (CLT) asTn ∼ N (µk, σ2

n) under
Hk, as shown in Eq. (1).

We now consider thenormalized test statistics (i.e., RSSs)
to simplify the derivation of the average number of sensing
rounds. Lettn , Tn ·σ−1

n denote the normalized test statistic,
i.e., tn|Hk

∼ N (φk, 1) whereφk = µk

σn
, ∀k. Then, we have:

λt =

|St|X

n=1

ln
h1(tn)

h0(tn)
= (φ1 − φ0)

|St|X

n=1

tn +
1

2

|St|X

n=1

(φ2
0 − φ

2
1), (5)

wherehk(·) is the p.d.f. oftn|Hk
.

Based on Eqs. (4) and (5), the decision statisticΛN can be
expressed as:

ΛN = (φ1 − φ0)
NX

t=1

|St|X

n=1

tn +
1

2

NX

t=1

|St|X

n=1

(φ2
0 − φ

2
1)

= (φ1 − φ0)

MX

n=1

tn +
M

2
(φ2

0 − φ
2
1), (6)

where M =
∑N

t=1|St| is the total number of test statistics
collected by the BS throughN sensing stages.

C. Minimization of the Average Detection Delay

Recall that our goal is to minimize the number of sensing
rounds that the BS has to schedule to meet the desired
detection performance requirements, e.g.,QFA, QMD ≤ 0.01.
Thus, we first derive a closed-form expression for the average
number of sensing rounds required until a decision is made
(i.e., either boundaryA or B is reached).

The average number of sensing rounds required for making
a decision (denoted byE[N ]) can be computed as [19]:

E[N ] = E[λ |Hk]−1 × E[ΛN ], (7)

which we discuss next.
First, using Eq. (5), the average value of the log-likelihood

ratio λ under hypothesisHk can be derived as:

E[λ | Hk] = (φ1 − φ0) E

» |St|X

n=1

tn|Hk

–
+

1

2
E

» |St|X

n=1

(φ2
0 − φ

2
1)

–
. (8)

Next, the expectation ofΛN in Eq. (7) can be found as
follows. SupposeH1 holds, thenΛN will reach the decision
boundaryA with the desired mis-detection probabilityb∗;
otherwise, it will reachB. Thus, according to [19]:

E[ΛN |H1] = b
∗ ln

b∗

1− a∗
+ (1− b

∗) ln
1− b∗

a∗
. (9)

Based on Eqs. (7), (8) and (9), we can derive the average
number of sensing rounds needed for decision-making as:

E[N |H1] =
b∗ ln b∗

1−a∗
+ (1− b∗) ln 1−b∗

a∗

(φ1 − φ0)E
ˆ P|St|

n=1 tn|H1

˜
+ 1

2
(φ2

0 − φ2
1)E

ˆ
|St|

˜ .

(10)

Similarly, the average number of sensing rounds underH0,
i.e., E[N |H0], can be derived.

Eqs. (8), (9), and (10) indicate that the average number of
sensing roundsE[N ] depends on: (i) the average number of
sensors within the fusion range, which can be easily calculated
asE[|St|] = ρπR2

f , under the assumption of the point Poisson
distribution of sensors, i.e.,|St| ∼ Poi(n; ρπR2

f ), and (ii) the

sum of their reported test statistics, i.e.,E[
∑|St|

n=1 tn|Hk
].

D. Approximation of the Sum of Test Statistics

Let TS(ρ,Rf ) denote the sum of the test statistics measured
at the sensors within the fusion radiusRf from the WM
transmitter, in the network of sensor densityρ. Then, under
H1, it can be approximated as:

E
ˆ
TS(ρ,Rf )

˜
= E

h X

n∈St

Tn|H1

i

= E

h X

n∈St

N (Pn + No, σ
2
n)

i

≈ E

h X

n∈St

Pn

i
+ E

h X

n∈St

No

i
, (11)

wherePn is the received primary signal strength at sensorn
andSt ≡ S(ρ, Rf) for brevity. The approximation in Eq. (11)
is made based on the fact that the measurement errors of the
energy detector is relatively smaller than the average received
primary signal strength, i.e.,σ2

n ≪ Pn + No.
Based on Eq. (11), we now focus on approximation of the

sum of received primary signal strengths, which can be rewrit-
ten asE[

∑
n∈St

Pn]=Po E[
∑

n∈S(ρ,Rf ) g(dn)eXneYn ] where
Po is the primary’s transmit power,g(dn) is the sensorn’s
channel gain due to path-loss, i.e.,g(dn)=(do/dn)α, andeXn

andeYn are the channel gains from shadowing and multi-path
fading, respectively. We approximate the sum of channel gains
due to path-loss, denoted byGΣ(ρ, Rf )=

∑
n∈S(ρ,Rf ) g(dn),

as a log-normal random variable.
DenoteGΣ(ρ, Rf ) ∼ Log-N (µG, σ2

G). Then, the p.d.f. of
GΣ(ρ, Rf ) is given as:

pG(ρ,Rf )(x) =
1

xσG

√
2π

exp

„
− (lnx− µG)2

2σ2
G

«
, (12)

where theµG andσ2
G have the following relationships [20]:(

m1(ρ, Rf ) = eµG+ 1
2

σ2
G

m2(ρ, Rf ) = e2µG+σ2
G(eσ2

G − 1).
(13)

Heremk(ρ, Rf ) is thekth cumulant ofG(ρ,Rf ), given as:

mk(ρ, Rf ) = ρπ(R2
f − ǫ

2)

Z Rf

ǫ

2r

(R2
f − ǫ2)

g(r)kdr

=
2ρπ dkα

o

(kα− 2)

„
1

ǫkα−2
− 1

Rkα−2
f

«
, (14)

where do is the reference distance andǫ is the minimum
separation between the primary transmitter and the sensors,
which is set toǫ = 75m in our simulation.2

From Eqs. (13) and (14), the log-normal random variable
GΣ(ρ, Rf ) ∼ Log-N (µG, σ2

G) can be approximated as:

µG =
1

2
ln

„
m4

1

m2
1 + m2

«
and σ

2
G = ln

„
1 +

m2

m2
1

«
. (15)

Therefore, from Eqs. (11) and (15), and by incorporating
the effects of shadowing and multi-path fading assuming the
fading is i.i.d. for each sensor, the sum of received primary
power at the cooperating sensorsSt can be expressed as:

E

h X

n∈St

Pn

i
= Po · E[GΣ(ρ,Rf )] · E[eX ] · E[eY ], (16)

2This is reasonable because the probability that there exists at least one
sensor withinǫ=75m from the WM transmitter is1−Poi(0; ρπǫ2)≈0.02
given sensor density ofρ=1.25 × 10−6/m2.



where E[eX ] = e
1
2
σ2

, σ = 0.1 ln(10)σdB, E[eY ] = 1, and
E[GΣ(ρ, Rf )]=eµG+ 1

2σ2
G .

Then, from Eqs. (11) and (16), the sum of normalized test
statistics, i.e.,tn , Tn · σ−1

n , can be expressed as:

E

h |St|X

n=1

tn|H1

i
= E

h
TS(ρ,Rf ) σ

−1
n

i

=
“
Po e

1
2

σ2

E[GΣ(ρ,Rf )] + NoρπR
2
f

”
σ
−1
n . (17)

Finally, based on Eqs. (8) and (17), the first term in
Eq. (7) for calculating the average number of sensing rounds
E[N |H1] can be derived as:

E[λ |H1] =
1

2
(φ2

0 − φ
2
1) ρπR

2
f + (φ1 − φ0)

×
`
Po e

1
2

σ2

E[GΣ(ρ,Rf )] + NoρπR
2
f

´
σ
−1
n , (18)

whereφ0 = No

σn
andφ1 = No+PR

σn
are the average normalized

test statistics under both hypotheses.
The average number of sensing roundsE[N |H1] can be

derived by substituting Eqs. (9) and (18) into Eq. (7).

E. Optimal Data-Fusion Range

Based on the analyses above, we now derive an optimal
data-fusion range that minimizes the average detection delay,
i.e., the number of sensing rounds needed to meet the detection
performance requirements.

Proposition 1 (Optimal Fusion Range) Let J(Rf ),E[λ |H1]
in Eq. (18). Then, the optimal fusion range that minimizes the
average number of sensing rounds E[N ] is given as:

R
∗
f = arg max

Rf

J(Rf ) = Rf

˛̨
˛ ∂J(Rf )

∂Rf
=0

=

„
a1(α− 2)

2a2

« 1
α

, (19)

where

a1 =
2(φ1 − φ0)Po e

1
2

σ2

ρπdα
o

σn(2− α)
, (20)

a2 =
1

2
(φ2

0 − φ
2
1)ρπ +

(φ1 − φ0)Noρπ

σn

. (21)

Proof. We first prove the concavity ofJ(Rf ) and then
solve the optimization problem to obtain the optimalRf . The
detailed proof is omitted due to space constraint.

IV. DeLOC: THE ITERATIVE APPROACH

We now introduceDeLOC, an iterative algorithm that ex-
pedites the detection of small-scale primary signals via joint
data-fusion and location/transmit-power estimation. We first
describe the estimation techniques, and then the proposed data-
fusion rule and the iteration method employed byDeLOC.

A. Estimation Techniques

1) Estimation of WM Location: In DeLOC, the BS esti-
mates and updates the WM’s location based on the RSSs
reported by the sensors. In particular, the BS employs a
weighted centroid method proposed in [21], which estimates
the WM’s location via a weighted average of the sensors’
locations, where the weight equals the corresponding sensor’s
report. The BS further refines the estimation via an exponential
moving average over multiple sensing stages.

Algorithm 1 DeLOC: ALGORITHM FOR JOINT DETECTION
AND ESTIMATION OF SMALL -SCALE PRIMARY USERS

At the end of a sensing period, the BS does the following
1: for Each triggering eventdo
2: t← 1 // Initialization
3: while t ≤ MaxNumIter do
4: t← t + 1
5: θt ← Receive sensing results from cooperating sensorsSt

6: Λt ← Λt−1 + λ
f(t)
t // Update the decision statistic

7: if Λt ≥ B then
8: A primary exists and hence returns the estimated loca-

tion and transmit-power level
9: else if Λt < A then

10: A primary does not exist (i.e., the event is triggered by
a ghost primary) and hence terminates the iteration

11: else
12: (bϑt+1, bPo,t+1) ← Estimate the location and transmit

power of the primary transmitter
13: R∗

f,t+1 ← Calculate the optimal fusion range
14: St+1 ← Select a set of sensors located withinR∗

f,t+1
from the estimated primary transmitter location

15: Schedule another sensing round and wait for the obser-
vation

16: end if
17: end while
18: return No primary signal exists
19: end for

2) Estimation of Transmit Power: In DeLOC, the BS esti-
mates the WM’s transmit power based on its estimated location
and the reported RSSs using the method proposed in [22]. Note
that the test statics of the energy detector include both noise
power and primary signal power [17]. Therefore, the received
primary signal strengthPn needs to be estimated from the test
statistic by subtracting the average noise power level fromthe
measurements.

B. The Proposed Data-Fusion Rule

We propose a new data-fusion rule forDeLOC, a weighted
sequential probability ratio test (WSPRT), to prevent the BS
from making biased decisions in early stages. The idea is
to assign smaller weights to the decision statistics in early
stages, and gradually increase the weights as the location and
transmit-power estimates become more accurate. Specifically,
we use the following rule to update the decision statistic:

Λt = Λt−1 + λ
f(t)
t where f(t)=

1

1 + e1−t
t ∈ N, (22)

where we use the sigmoid functionf(t) such that the exponent
of test statistics increases from0.5 to 1 as t increases.
Consequently, the test statistics in later stages count more in
decision-making.Algorithm 1 detailsDeLOC.

V. PERFORMANCEEVALUATION

In this section, we demonstrate the performance ofDeLOC
in comparison with other testing schemes.

A. Simulation Setup

In the simulation, we consider a realistic 802.22 environ-
ment where sensors are randomly distributed over a30×30km
area. The average sensor density is set to1.25/km2, as
typically used in 802.22 WRANs [6]. We assume a WM
randomly located in the area with effective transmit-power
below25mW, as indicated by the measurement study in [11].
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Fig. 1. Performance of DeLOC: DeLOC (a) requires only a small number
of sensing rounds for WM detection, and (b) achieves a high detection rate
even for a very weak signal power, e.g.,Po =1 mW.

The maximum number of sensing rounds scheduled within
the 2-secondchannel detection period (CDT) is limited to
MaxNumIter = 100.3 The time duration for a single sensing
period is TS = 1 ms. The path-loss exponent isα = 4 and
the shadow fading dB-spread isσdB = 5.5dB (typically
assumed for rural areas). The triggering threshold inDeLOC
is configured asξ = No + 3.5 σn to avoid frequent false-
triggering. The simulation results are obtained from5×103

randomly-generated topologies.

B. Performance of DeLOC

To demonstrate the efficacy ofDeLOC, we compare its
performance with the other four testing schemes under the
detection constraintsQFA, QMD ≤0.01. As shown in Fig. 1,
when the WM’s transmit-power increases, the detection per-
formance (with respect to delay and detection rate) increases
for all testing schemes. We make three additional observations.

First, Fig. 1(a) shows that the average number of sensing
rounds for decision-making is below10, which may take only
100ms as the BS can schedule sensing periods as frequently as
every10 ms, i.e., one MAC frame size in 802.22. In addition,
the detection probability ofDeLOC with WSPRT meets the
detection requirement of 802.22, i.e.,QMD ≤ 0.1, even for a
very weak transmit-power of1 mW, as indicated in Fig. 1(b).

Second, Fig. 1(b) shows thatDeLOC with weighted SPRT
(WSPRT) performs close to Oracle (which assumes known
location and transmit power) in terms of detection rate, and
outperforms all other schemes that use regular SPRT. As
mentioned earlier, the SPRT inDeLOC often makes a wrong
decision (mis-detection of a WM) in early detection stages
based on many noisy reports due to the inaccurate location and
power estimates.DeLOC with WSPRT mitigates this problem
by discounting the decision statistics in early stages.

Third, Fig. 1(b) shows thatDeLOC without localization
outperforms the one without transmit-power estimation. This
is because the power estimation plays an important role in
finding the optimal fusion range, and therefore, the error in
power estimation results in significant performance degrada-
tion. On the other hand, the location-estimation error is small
compared with the typical fusion range, and thus it does not
cause significant performance degradation.

These simulation results clearly demonstrate that the joint
design of data-fusion and location & power estimation max-
imizes the benefits of spatial-temporal sensing for detecting
small-scale primaries, such as WMs in 802.22.

3This is reasonable since the BS can schedule sensing as frequently as once
every10 ms, i.e., one MAC frame size in 802.22.

VI. CONCLUSION

The detection of small-scale primary signals is an important
and challenging problem in realizing opportunistic spectrum
access in CRNs. To solve this problem, we proposed a novel
spatio-temporal fusion scheme that exploits (i) spatial diversity
by cooperative sensing with an optimal fusion range, and (ii)
temporal diversity by scheduling a series of sensing stages
with an optimal stopping time. We (a) modeled the detection
problem as a hypothesis test, (b) approximated the sum of
sensor readings as a log-normal random variable, and then (c)
solved a convex optimization problem, to obtain the optimal
fusion range that minimizes the average detection delay. We
also proposed a new sensing algorithm calledDeLOC that iter-
ates between cooperative sensing and location/transmit-power
estimation to further improve the sensing performance under
realistic settings. Our evaluation results show thatDeLOC
reduces the detection delay significantly while meeting the
detection requirements.
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