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Summary

While mobile nodes (MNs) undergo handovers across inter-wireless access networks, their security contexts must
be propagated for secure re-establishment of on-going application sessions, such as those in secure mobile internet
protocol (IP), authentication, authorization, and accounting (AAA) services. Routing security contexts via an IP
network either on-demand or based on MNs’ mobility prediction, imposes new challenging requirements of secure
cross-handover services and security context management. In this paper, we present a context router (CXR) that
manages security contexts in an all-IP network, providing seamless and secure handover services for the mobile
users that carry multimedia-access devices. A CXR is responsible for (1) monitoring of MNs’ cross-handover, (2)
analysis of MNs’ movement patterns, and (3) routing of security contexts ahead of MNs’ arrival at relevant access
points. The predictive routing reduces the delay in the underlying security association that would otherwise fetch an
involved security context from a remote server. The predictive routing of security contexts is performed based on
statistical learning of MNs’ movement pattern, gauging (dis)similarities between the patterns obtained via distance
measurements. The CXR has been evaluated with a prototypical implementation based on an MN mobility model
on a grid. Our evaluation results support the predictive routing mechanism’s improvement in seamless and secure
cross-handover services by a factor of 2.5. Also, the prediction mechanism is shown to outperform the Kalman
filter-based method [13] as a Kalman Fiter-based mechanism up to 1.5 and 3.6 times regarding prediction accuracy
and computation performance, respectively. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction to carry multimedia-access devices that operate across
heterogeneous networks, without disrupting on-going
Inter-wireless technologies, ranging from IEEE 802 sessions. Meanwhile, the IEEE 802.21 Standard

networks such as Wi-Fi, WiMax, and personal area net- [2] puts into practice the ability of vertical and
works, to non-802 networks such as cellular networks, horizontal handovers between domains with different
are rapidly converging. This trend has led mobile users management policies, referred to as cross-handovers.
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Furthermore, mobile applications impose new chal-
lenging requirements of reducing additional delays [3],
e.g., fast key establishment between the involved enti-
ties for secure network accesses. A ‘security context’
that contains such information is essential to the fast
and secure re-establishment of the involved security
protocol flows as mobile nodes (MNs) cross domain
boundaries. In particular, an MN’s security context is
routed to a target point of attachment (e.g., an access
point (AP)) ahead of its arrival, thereby avoiding the
disruption of on-going sessions. Security contexts of
this kind vary with the corresponding applications,
ultimately requiring an effective, integrated, and
scalable way of managing security contexts.

1.1. Related Work

A network-layer-based protocol, called context trans-
fer protocol (CXTP) [4], is specified for the purpose
of routing (security) contexts. CXTP provides an
option for coping with seamless handovers of MNs
that are equipped with inter-wireless technologies, in
conjunction with the IEEE 802.21 Standard. At the
same time, maintaining on-going application sessions
without disruption requires a ‘map’ via which to
make the corresponding security contexts available to
a target AP before the MN’s arrival at that AP. The
map can be represented by a neighbor graph [5] that
exhibits the APs’ logical connectivity, based on MNs’
paths. Also, Chou and Shin [6] proposed a packet
buffering-and-forwarding mechanism for smooth
handovers. Additionally, Song efal. [7] presented
a case study that quantifies the possible gains with
mobility prediction in a voice over internet protocol
(VoIP) application. Similarly, various techniques for
the accurate prediction of the MN’s future location
have been studied. For instance, user mobility profile
[8,9], road topology knowledge [10], and MNs’
positioning information [11] have been instrumental
in the mobility prediction for service provisioning and
bandwidth reservation in cellular networks. Despite
this extensive research, there is still a gap to fill
between the prediction and the efficient routing mech-
anisms, especially for managing security contexts
independently of inter-wireless access networks to
enable seamless secure, handover services.

1.2. Challenges

There are two main challenges in developing an inte-
grated framework that enables real-time applications to
run without any disruption even when the users undergo
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handovers. First, such a framework should be able to
route security contexts to the corresponding ‘receivers’,
e.g., routers, ahead of the MN’s arrival, while keeping
the overhead of the routing to a minimum. An effec-
tive prediction mechanism can track an MN and then
estimate its future direction. To this end, the correct
extraction of features from the MN’s movements is of
utmost importance for prediction. Second, a framework
should be easy to deploy. In other words, its deployment
should not require any new infrastructure. One way
to do so is to build the framework upon the standard
technologies.

1.3. Contributions

The contributions of this paper are 4-fold as follows:

® We present a comprehensive framework, the context
router (CXR) that monitors, detects, and analyzes
the MN’s movement and cross-handover. A CXR
consists of monitoring, analysis, and routing com-
ponents. The monitoring component observes and
detects the likelihood of the MN'’s cross-handover,
and then tracks directional changes in the MN’s
movement, yieding the pattern of the association
with APs. The analysis component gauges the
(dis)similarity between an observed pattern and
a priori established patterns bound to a distribution
of CXR candidates. The analysis ultimately narrows
the candidates down to a few. The MN’s security
context is routed to the selected candidates.

® The abstraction of the MN’s movement at the AP
level provides a tradeoff between the accuracy in pre-
diction and tracking and the computation overhead.
The CXR logs directional changes in association
with APs during the MN’s movement, generating a
time-history vector of angles (TVAs). The TVA is an
abstraction of the MN’s movement pattern where we
focus on the MN’s association with APs rather than
its location.

¢ Anoverlay formed by multiple CXRs is independent
of the underlying access networks. The overlay grad-
ually learns its topology and, hence, facilitates the
deployment of CXRs. The deployment of even only
a few CXRs demonstrates the efficacy of predictive
routing, achieving scalability and manageability.

¢ The prototype implementation results in the execu-
tion of mobility monitoring, analysis, and filtering.
We simulate the MN’s movement on a grid, accord-
ing to a specified mobility model, and then gauge
(dis)similarity of the MNs’ movement patterns
against a database of movement patterns, using the
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Xz—distance or edit distance [12]. The accuracy of the
CXR’s prediction mechanismis evaluated, compared
with a Kalman filter-based estimation [13].

1.4. Organization

The rest of this paper is organized as follows. Section 2
provides the background of a context-transfer protocol,
the concept of security contexts and applications using
them, along with motivations. Section 3 describes a
mobility model describing the MN’s movement. Sec-
tion 4 describes the design of the CXR that consists
of the monitoring of the MNs’ movement patterns and
cross-handovers, the analysis of movement patterns,
and two routing methods, i.e., predictive and reactive
routings. Also, implementation issues are discussed.
Section 5 evaluates the accuracy of our prediction
mechanisms. We conclude the paper in Section 6.

2. Background and Motivation

This section provides an overview of an existing
context transfer (CT) protocol, and describes security
contexts, applications thereof, motivation behind this
work.

2.1. Context Transfer Protocol

CXTP [4] is a protocol in which security contexts
are sent and received with the aim of quickly
re-establishing security CT-candidate services, such as
those of authentication, authorization, and accounting
(AAA) registration keys for mobile IP [14,15], IP
header compression [16,17], and AAA message
exchange for the IEEE 802.1X [18,19], without
requiring an MN to explicitly perform all protocol
flows for these services from scratch. CXTP deals
with two distinct scenarios.

In the first scenario, a previous access router (pAR)
receives a CT trigger from the MN with the help of
the IEEE 802.21 Standard that is responsible for han-
dover negotiation and layer-2 connectivity, and then
proactively routes a context-transfer data (CTD) mes-
sage containing an involved security context to a next
access router (nAR), referred to as ‘predictive routing’.
However, how to select the target nAR in a predictive
manner is beyond the scope of the specification of
CXTP—filling this gap is part of goals of this work.

In the second scenario, when the predictive routing
in the first scenario fails, the nAR receives a CT trig-
ger from the MN and then sends a context transfer
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request (CT-Req) message to the pAR. In response to
the CT-Req message, the pAR routes a CTD message
to the nAR. The nAR then replies with a CTD-reply
(CTDR) message. The second scenario is referred to
as ‘on-demand routing’. We will elaborate on these
two routing methods when presenting the design of
our framework.

2.2. Security Contexts and Applications

Transfer-candidate services determine types of security
contexts that they use. Although the concept of security
contexts is not restricted, for the clarity purposes, two
types of security contexts are specified in this paper.
First, security contexts for mobile IP contain an AAA
registration key required for the secure association [15].
When an MN undergoes a handover and attaches itself
to an foreign agent (FA), it requests a registration key
from its home AAA server via the FA. Upon receiving
the registration key, the MN verifies a reply message
from the FA, creating a security association with the FA
[15]. However, the generation of the registration key
requires message exchanges through the AAA infras-
tructure [20] (e.g., a foreign AAA server contacts the
MN’s home AAA server), causing a significant delay
[17]. Such delays can be reduced greatly by routing a
security context containing the registration key to the
FA from the MN’s home agent (HA) or previous FA.

Like the registration key for mobile IP, security con-
texts for the IEEE 802.1X Standard [18] contain the
AAA key material. The IEEE 802.1X Standard pro-
vides port-based network access control for devices
that attempt to attach themselves to a LAN port. The
framework positioned behind an AP has three options
in access control: (1) no authentication in which no fil-
ter is applied, (2) wired equivalent privacy (WEP) [21]
which was originally designed to prevent wireless com-
munication from eavesdropping, but found to have seri-
ous security weaknesses, and (3) open authentication—
all packets are filtered out except for EAPOL (EAP over
LAN) [18]—in which any third-party security mecha-
nisms are applied, in conjunction with the IEEE 802.11i
[22]. In particular, the 802.11i framework is specified
jointly with the AAA infrastructure, in which the AP
serves as an AAA client (or called an authenticator in
the case of the IEEE 802.1X Standard).

Given the MN’s master key shared with its AAA
server, the MN is authenticated via the AAA client
(AP) by exchanging messages with the AAA server
(e.g., RADIUS [23] or diameter [24]), thereby result-
ing in a pairwise master key (PMK) of 256 bits for the
AAA server, AAA client, and MN. The PMK is used
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to derive a pairwise temporary key (PTK), with the
AAA client and MN communicating with each other.
The PTK is a per-AP key that is associated with each
specific AP, allowing for the protection of the wire-
less link between the AP and MN. Thus, the MN’s
re-association with another AP requires a new PTK,
most likely by interacting with the AAA server. This
interaction, however, incurs a significant delay which,
in the case of ‘roaming’ or cross-handovers, is propor-
tional to the round-trip time between the two involved
AAA servers [25]. Thus, routing a security context con-
taining the PMK(s) for authentication should reduce the
authentication latency [26-28].

2.3. Motivation

A legacy scheme that provides secure cross-handovers
for mobile users does not guarantee that the under-
lying services remain seamlessly operational, due to
the nature of the Internet via which the involved AAA
servers are connected. The delay in communications
between the AAA servers varies with their link qual-
ity, and is also proportional to the round-trip time
between the two servers. Figure 1 illustrates the pro-
cedure involved with the secure cross-handover. The
MN’s association with an AP triggers the initiation
of an authentication protocol (e.g., diameter or MAP
[28]), thereby generating a PTK via the IEEE 802.11i
Standard (which corresponds to Step 1). When the MN
crosses a domain boundary and associates with an AP
in another domain (Step 2), the AAA foreign client
(AAAFC) on the AP forwards the AAAF (AAA foreign

Domain boundary
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Fig. 1. An AAA-based legacy scheme for securing cross-

domain handovers: AAAH denotes the MN’s home AAA

server that controls an AAAC (AAA client). Likewise, AAAF

denotes a foreign AAA server that has a security association
and administrative agreement with the AAAH.
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server) a roaming security-context request, eventually
reaching the AAAH (AAA home server) (Steps 3 and
4). The AAAH responds with a newly generated PMK
to the AAAF (Step 5). As with the PTK generation
mechanism, the MN and AP in the other domain pos-
sess a PTK to secure their link (Step 6).

For the seamless handover, the overall procedure
should be completed before the link between the AAA
home client (AAAHC) and MN is able to be discon-
nected, or the disconnection remains only within an
acceptable threshold, e.g., 50 ms for VoIP [29]. The link
between the AAAH and AAAF is the most dominat-
ing factor in causing the delay that varies with network
traffic. Nevertheless, current systems lack the capabil-
ity of ‘pushing’ the security context to the AAAF over
an IP-network.

In this paper, we cope with such a pushing mecha-
nism by which the security contexts are exchanged in
a predictive manner. By doing so, we expect to avoid
the re-establishment of involved security sessions from
scratch while the MN is on the go. On the other hand,
the decision to be made on the predictive routing of the
security contexts is highly subject to the MN’s mobil-
ity pattern. For instance, when most MNs are likely to
associate with a group of specific APs, we may have
only to route corresponding security contexts to the
group. The selective, predictive routing of the security
contexts that we want to offer will achieve secure and
seamless cross-handovers.

3. MN'’s Mobility

This section presents a simple mobility model for eval-
uation purposes, based on which we simulate the MN’s
movement on a grid. According to some probability
distribution that determines movement patterns, the
mobility model typically selects two or more elements
including speed, distance, angle, destination, or travel
time. Note that the selection of these elements is not
subject to a series of movements (of a single MN). We
thus combine some of these elements and a probabil-
ity distribution thereof, resulting in different mobility
models [30].

3.1. Mobility Model

Our model selects speed (v) and angle (6;) given time,
t. v is a random speed following a Gaussian distribu-
tion with a mean u, and variance o,, chosen from
[0, 100 mph]. 6, is also a random angle following a
Gaussian distribution with a mean 1, and variance o,
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(xi+1, yiel)

Fig. 2. Relative anchor-based directional changes.

chosen from [0, rr]. In particular, as shown in Figure 2,
0, is based on a relative anchor, a base line perpendicu-
lar to the previous direction. In this figure, we obtain 6;
by calculating 6; + 6; 1 — 5. Thus, given a monitoring
interval, At, an MN’s location is calculated as follows:

Xig1 X; n cosb; - v - At

yier )\ Vi sind; - v - At
This way, we mitigate abrupt changes in direction.
Clearly, the people’s movement with sharp turns can
appear frequently, while such turns rarely do in the

vehicles’ movement. Cast studies of this kind are also
found in References [9,31].

3.2. Assumptions Underlying Our Approach

We tend to track a sequence of the MN’s association
with APs while the MN undergoes handovers. First,
APs assume to be randomly and uniformly distributed,
covering the MN’s movement paths. Second, APs’
signal strength varies, resulting in the different size of
their coverage. Under these two assumptions, Figure
3(b) shows the MN’s association with APs, zooming
in on a portion of its trace shown in Figure 3(a). At
first, the MN keeps associated with ap, until reaching
position p; on the path. At p; where ap,’s signal
strength is greater than ap,’s, the MN associates
itself ap,. The MN, then, becomes connected to
ap, at position py for the same reason. Just before
reaching position p3, three signals from ap,., ap,, and
ap, are additionally detected, and since ap,’s signal
strength at p3 is greater than that of the others, the MN
associates itself with ap,. The cycle of disassociation
and association continues based on the signal strength,
resulting in a sequence of the MN’s associations: ap,,,
apy, ap,, ap,, ap,, and ap ;. The sequence is translated
into a time-varying sequence with the sojourn time
specified at each AP, e.g., (ap,, t4).

Copyright © 2009 John Wiley & Sons, Ltd.
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Fig. 3. An MN’s movement trace and association with APs,
with u,, o4, iy, 0, €ach set to /2, 1, 10 mph, and 1. (a) An
MN’s movement trace; (b) zoomed-in-on circle.

4. The Context Router

The CXR is responsible for monitoring the MNs’
movement, detecting the likelihood of their cross-
handover, analyzing the MN’s movement patterns,
and routing the corresponding security context to the
selected CXR(s). This section describes three key com-
ponents, i.e., monitoring, analysis, and routing.

4.1. Monitoring

Timely detection of the likelihood of an MN’s cross-
handover is of great importance to the predictive
routing of security contexts. For the detection of the
cross-handover, the MN issues a trigger message to
the CXR via the IEEE 802.21 Standard. The MN’s
trigger message, however, does not usually include
routing information on a target CXR, e.g., its iden-
tity and IP address. Thus, the target CXR needs to
identify the MN, requiring its security context. When

Security Comm. Networks. 2010; 3:4-15
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the information is not available, all relevant protocol
flows are re-established from scratch. Alternatively, the
binding CXR is aware of the cross-handover detection
whenever the MN associates itself with an AP in the
boundary. This can be realized by tracking the MN’s
movements.

The CXR tracks the MN’s association with APs via
an AP queue (APQ). The APQ is a list on which the
MNss are registered when they are bound to the CXR.
The CXR, cxr; needs to verify whether the AP (with
which the MN is associated) is on a domain boundary.
For this, a boundary neighbor register (BNR) on cxr is
defined as a triple (ap;, cxry, apy), where ap; is an AP
on the cxr;’s boundary, and ap, is an AP on the cxry’s
boundary, adjacent to ap;. The relationship between
ap j, cxr, and apy is established and registered with the
cxr;’s BNR when the MN undergoes a cross-handover
from ap j toapy, leading cxry to add (apy, cxrj, and ap j)
to its BNR. The relationship, however, does not neces-
sarily mean that cxr; and cxr; are physically adjacent
to each other; however, they are ‘logical’ neighbors to
each other (i.e., one reaches the other through an n-hop
route).

For the MN’s directional pattern, a time-varying
association sequence is represented by a TVA. The TVA
is a sequence of changes in direction which are calcu-
lated with the associated APs’ location. The TVA is
eventually encoded into a sequence of indices. The
sequence of indices represents the MN’s movement
pattern that will be used to predict its future cross-
handover. The detail of creating the index sequence
is as follows.

First, a time-varying association sequence [(ap,, 4),
(app, ), (ap,. 5), (ap,, 4), (ap,, 6), (apf, 4)], where the
second elements represent time steps as a sojourn time
at each AP indicated by the first elements, is recorded.
In particular, the association sequence can be shrunk by
adjusting the time interval at which the association is
stamped on the sequence. For instance, when the time
interval is set to three steps, the sequence appears as
[ap,, apy. ap.. ap,. apg, ap4, ap ¢ | in the case where each
AP monitors, or [ap,, apy, apy, aP., AP,» APes APy> APy
apf] in the case where the CXR monitors; the former
is more representative for changes in direction than the
latter—a similar approach is also found in Reference
[32]. Once the association sequence is provided, the
slope from a pair of ap, and ap,, i.e., 64, with their
coordinate is calculated. This way, the MN’s movement
is abstracted. Likewise, 0 is calculated with ap;,’s and
ap,’s coordinates. This calculation repeats until the last
with a pair of ap; and ap ; completes. Thus, the TVA
having [6;;, O, - - -, Omn] is generated. Next, the TVA

Copyright © 2009 John Wiley & Sons, Ltd.

is encoded by quantizing angles:
2 2
Th-1<0<T"k k<nezZ ()
n n

where 7 is the total number of quantized angles. When
n = 8, they lead in eight directions, which we will keep
in the remainder of this paper. Note, however, that this
model can be generalized with the number of directions
adjusted. As a result from the encoding, each direction
is labeled with an index of the quantized angle, k, and
then the corresponding TVA is eventually transformed
into an index sequence [, j, - - -, m], where i, j, and
m < 8.

4.2. Analysis

Anindex sequence as a new pattern is added to a pattern
data register (PDR). The PDR is a set of entities, each
of which consists of a unique pattern that is represented
by an index sequence and distribution. The distribution,
pd, is created with pairs of a neighbor CXR and degree
to which the index sequence is statistically bound to
each neighbor CXR. That is, as the MN having a spe-
cific pattern is tightly bound to a specific CXR, the
degree to the CXR is increased. pd is denoted by

pd = {(erlv dgl)? Y (ernv dgn)} (2)

Using this distribution, we select neighbor CXRs to
which the MN will be bound with a certain probability.
The selection of the CXRs involves two main steps:
matching patterns and filtering out the CXRs having a
low degree.

4.2.1. Matching Patterns

Matching patterns is to gauge (dis)similarities between
an observed TVA and each a priori pattern stored in the
PDR. We represent the similarity with the distance that
is calculated by editing one pattern to make it the same
as the other (i.e., edit distance [12]), or alternatively
applying the x2-distance [12]. The advantage of the
two methods is to provide a threshold which we adjust
for the degree of the similarity as follows:

fla,b) <dq 3)

where a and b are pattern sequences, and f'is either the
editing function, e, or x>-distance calculating function.
The smaller the value of §,4, the more fine-grained the
matching can be, and the more specific the group in
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which the TVAs are accepted as the same. The num-
ber of pattern sequences in the PDR, however, can
grow, likely increasing the computation complexity.
To contain the complexity, a multi-class support vector
machines (SVM) technique [33-35] can be applied.
In SVM, all pattern sequences are mapped into a
multi-dimentional feature space in which the pattern
sequences are transformed and then used to generate
support vectors. These support vectors form the (mul-
tiple) hyperplane(s) by which all the sequences are
classified. If this is the case, only support vectors are
stored and compared with new pattern sequences.

Function e takes two indexed TVAs: a; ---a, and
by ---by, forming an (n + 1) x (n + 1) matrix. The
matrix is set as follows: e(1,1) =0, e(1, by ---b,) =
0, and

l<i<n

1, i=
e(ar---aj, 1) =
oo,

Then, to make a the same as b, we replace or delete
a sample in a, or insert the same as a sample in b,
repeatedly, until reaching the last sample in a. Function
e is given by

e(ai—1,bj_1) if a;=0b;
e(as, b;) = . e(ai—1,bj—1) + Cp, .
min | e(a;—1,bj) + Cq, if a; #b;
e(ai, bj—1) + C;
4)

where C,, C4, and C; are replacement, deletion, and
insertion costs, respectively. They are set to 1 in our
evaluation.

Alternatively, x>-distance-based techniques are
found in diverse areas such as scene-change detec-
tion in image sequences [36,37] and anomaly detection
[38]. The calculation of the x>-distance is given by

2 (@ —b)?
xa,b) = ; T (5)

Clearly, x> = 0 if and only if all samples in ¢ match
those in b. The higher the value of x2, the less likely
the observed TVA fits the expected pattern. The -
distance function is computationally less expensive
than the editing function, which will be evaluated in
detail in Section 5.

Copyright © 2009 John Wiley & Sons, Ltd.

4.2.2. Filtering

When an observed TVA matches a pattern in the PDR,
the CXR fetches the corresponding distribution (see
Equation (2)). It then applies either of two filtering
methods to select neighbor CXRs. The first method
is a filter based on Chebyshev inequality [39]. Given a
normalized pd with a random variable X with a finite
mean p and finite standard deviation o, the Cheby-
shev inequality provides a relationship between o and
| X — w| such that

p<|x—mz¢%> <35, ©6)

The inequality relationship holds for any dropout rate
8, > 0. This relationship-based filter is effective when
pd is anormal distribution [39], reflecting a strong rela-
tionship between a given pattern and its association
with a neighbor CXR.

The second method is a cutoff-based filter using
a threshold, §,, on a scale of 0-1 by which top n%
neighbor CXRs from the normalized pd are selected.
In particular, when §, = 0, no CXRs are selected,
and hence only the on-demand routing, which will
be described shortly, remains effective. When §, = 1,
all neighbor CXRs are flooded with security contexts.
When 0 < §, < 1, security contexts are routed to the
selected neighbor CXRs.

4.3. Routing

After the filtering, (the replicas of) security contexts are
routed to the selected neighbor CXRs either in a pre-
dictive manner or on-demand. The security contexts
are stored in a context register (CR) on the correspond-
ing neighbor CXRs. If the MN is bound to one of the
selected neighbor CXRs (nCXR) in which the MN’s
security context is immediately available, then, it will
not experience any extra delay in fetching its security
context from the previous CXR (pCXR) (i.e., predic-
tive routing). By contrast, the MN may be eventually
bound to an unexpected neighbor CXR (uCXR), i.e., a
security-context miss. When the security-context miss
occurs, the CXR to which the MN is currently bound
fetches its security context from the pCXR (i.e., on-
demand routing). After the security context is routed
either in a predictive manner or on-demand, the asso-
ciation between pCXR and uCXR, and between their
APs are added to, or updated on, both pCXR’s and
uCXR’s BNRs. The same holds for the corresponding
distribution (Equation (2)) in their PDR.

Security Comm. Networks. 2010; 3:4-15
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The growth of security context replicas varies,
depending on the MNs’ location on the domain bound-
ary and their cross-handover patterns. In particular,
some MNs are likely to cross the boundary and even-
tually stay thereon or cross back while some MNs
may cross the boundary back and forth in a short time
period, i.e., a ping-pong effect. This effect causes a
rapid increase in the number of replicas on the corre-
sponding CXRs. For this reason, to limit their excessive
growth, we apply two rules. The first rule is to fix
the buffer size for replicas. When the buffer is full,
the replicas in the buffer are invalidated in the least
recently used order—the invalidation is less costly than
the deletion—by simply toggling off the validity bit.
This rule is effective against the rapid growth of repli-
cas. The second rule is to limit the time in keeping
the replicas in the CR. That is, incoming replicas are
time-stamped with a timer threshold. When the timer
expires, the replicas in the CR are scanned in com-
parison with the threshold, timeout, and time-stamped
time, eventually invalidating stale replicas. This rule
has a tradeoff between storage savings and computation
performance.

4.4, Prototypical Design

Figure 4 illustrates the software implementation of the
CXR and its interfaces with another CXR via CXTP
[4] and with MNs via the IEEE 802.21 Standard.

r
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Fig. 4. The CXR software implementation. An access net-

work is formed by APs whose location is represented by

an xy-coordinate on a grid. An individual MN moves over

the grid based on its own mobility model with the values of
system parameters changed.
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Predictive routing:
Input: dy: a probability threshald
Input: e Prob: an estimated crossover probabiliny
.2 & cuioff threshold
Inpui: pal: the probability distribution from the BNRE

Input: Context: a securily context from the CR

If e Prob = 4, then
Perform either CutOffSelection( 4., pd) or
StatProbSelection{pd), returning C X Rs
Route Context to CX Rs

end if

Fig. 5. Pseudo code: decision on the predictive routing.

The APQ on the CXR is a registration list on which
the MN currently bound to the domain is recorded along
with its sojourn time and association with APs; using
this information, the MN’s movement is tracked. Given
a time interval, the APQ is scanned to find whether any
MN is associated with APs inside the boundary in ref-
erence to the BNR. If this is the case, the detection state
is transitioned to the prediction state. In the prediction
state, the CXR performs the predictive routing of the
security context according to the cross-handover prob-
ability (e.g., 7 times of success in 10 trials of predictive
routing results in the probability of 0.7). So, if the cross-
handover probability is greater than the threshold, the
CXR applies the prediction algorithm—its pseudo code
is given in Figure 5, thus routing the security context.
The demand state, on the other hand, is initiated by a
request from other CXRs (e.g., by a CT-Req message
in CXTP), ultimately transitioning to the reaction state
in which the on-demand routing is performed.

5. Evaluation

Success in the predictive routing of security contexts
implies substantial reduction in handover delays. Such
delays, in particular, involving message exchanges by
the underlying applications, vary greatly, depending
on the round-trip time between two communication
entities. For instance, in the case where two AAA
servers are involved for secure communications, the
average delay in establishing a security association is
proportional to the round-trip time between the two
servers [25]. For this reason, our evaluation focuses on
prediction accuracy. At the same time, since many MN's
cross the domain boundary, computation performance
for the prediction mechanisms is also an important
factor in the evaluation. Thus, the metrics used to indi-
cate prediction and computation performance include
accuracy and CPU utilization. Accuracy is represented
by (TP + TN)/(TP + TN + FP 4 FN), where TP
(true positive)—the number of times the selection

Security Comm. Networks. 2010; 3:4-15
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Fig. 6. Movement path estimation with the Kalman filter.

of a neighbor CXR is correctly estimated; TN (true
negative)—an MN is estimated to stay on its current
CXR; FP (false positive)}—an MN is bound to an unpre-
dicted CXR; and FN (false negative)—an MN leaves its
current CXR although it was predicted to stay thereon.

5.1. Kalman Filter

We evaluate prediction accuracy in comparison with
the Kalman filter [13]. In applying the Kalman filer, a
state is specified by the MN’s location (x and y) and
speed (dx/dz, dy/dt), and we set values in process and
measurement noise covariances, Q and R, to 0.1 and 1,
respectively. In addition to these parameters, we set val-
ues in transition matrix A and measurement matrix H as

1 0 0 O
and .
01 0 O

Figure 6 shows the efficacy of the Kalman filter;
estimation accuracy is determined by two factors: mea-
surement and past states. At the time of initialization,
however, the past state is unknown, and hence the
Kalman filter performs in an ad hoc manner. Even with
a poor initialization, however, it quickly converges to
the true values.

In the following, we first describe the simulation of
MNs and access networks. Then, after assessing sys-
tem parameters defined in our prediction mechanisms,
prediction accuracy is evaluated with the local opti-
mal values of the obtained system parameters. Finally,
we analyze computation performance for the prediction
mechanisms.

S = O 0~
— O = O

0
1
0
0

S O O =

5.2. Simulation of MNs and Access Networks

APs are assumed to be randomly and uniformly
distributed, forming a virtual access network. We have
chosen a grid with a tradeoff between practice and

Copyright © 2009 John Wiley & Sons, Ltd.

simplicity. On a grid, each node has eight neighbors
except for the nodes positioned at the edge of the grid.
Its network size is a 20 x 20 grid, which is partitioned
into 25 domains (i.e., CXRs). The grid allows for ease
of simulating and tracking the MN traffic.

Each MN moves, according to its own mobility
model while being associated with different APs. At
a given time ¢, the CXR obtains the MN’s location and
then calculates the location of the AP closest to the MN
by applying a 2-level hash function such that APs on the
grid are filtered, based on the MN’s x coordinate. This
results in an array of APs closest to the x coordinate.
The array is again filtered based on the MN’s y coordi-
nate, thereby obtaining the location of the AP closest
to the MN. This way, the CXR calculates the loca-
tion of the MN and corresponding AP. The calculation
recurs at ¢ + At, where At is the monitoring interval.
At is given, based on the MN’s maximum speed, Viax,
i.e., At = d/Vmax, where d is the distance between the
MN’s current and previous APs. Obviously, d is smaller
than the distance (D) between the centers of the two
involved APs, assuming that the two APs’ coverage
areas (circles) overlap to the extent thatd = D/2. At is
adjusted to capture a series of the MN’s association with
APs. The smaller the value of At, the more fine-grained
the measures, but the higher the overhead thereby.

Figure 7 shows MNs’ movement traces and their
association with APs. The smaller the value of At, the
more fine-grained traces we can obtain, in comparison
with Figure 7(a) and (b). Obviously, the monitoring
frequency governs a tradeoff between the accuracy in
prediction and the overhead for the monitoring. The
monitoring frequency is bound to a certain degree
of accuracy due to the inherent uncertainty/noise and
abstraction on the traces. For instance, Figure 7(c) and
(d) each are the abstracted traces of Figure 7(a) and (b).
Figure 7(c) is coarse-grained, compared to Figure 7(d),
resulting in low accuracy in prediction. By contrast,
when the MNs’ movement pattern is considered ad
hoc, the coarse-grained abstraction can be sufficiently
effective.

5.3. Assessment of System Parameters

System parameters considered for the evaluation
include the TVA length combined with the matching
threshold 84, cutoff threshold §,, and dropout rate & .
In order to assess these parameters, we create 100 MNs
that move based on their mobility model and observe
their movement patterns; each MN undergoes handover
1000 times. First, when the TVA length increases from
6to 15 with §,; set so as to let two TVAs match more than

Security Comm. Networks. 2010; 3:4-15
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Fig. 7. MN trace and abstraction. (a) MN traces in Atz; (b) MN traces in At = At/2; (c) AP-association traces of (a); and (d)
AP-association traces of (b).

70% of times, the 9- and 13-length TVAs yield locally
highest prediction accuracy. When 4, is set to let 60%
of two TVAs match, the 11-length TVA results in the
highest prediction accuracy. Thus, both the TVA length
and its threshold must be tuned together for the best
results, based on the edit distance technique applied.
We set the TVA length and 8, to 9 and 70%, respec-
tively, throughout the evaluation. In addition to these
parameters, we set each 8, and §,, to 5 and 0.5 which
appear almost constant.

For the ping-pong effect, depending on the cross-
handover probability, the threshold is adjusted. When
the MN is unlikely to cross back immediately, the pre-
dictive routing may not be applied just after the MN’s
cross-handover. For this reason, it is important to find
an optimal cross-handover probability threshold that is
tuned to the MNs’ movement patterns. Figure 8 shows
the relationship between the threshold and false alarm
rate including the false negative and false positive rates.
To some degree, the lower the threshold, the more
aggressive and frequent the predictive routing. When
the threshold decreases below the value of 0.3, the false-
alarm rate goes up to 0.44, implying more MNs that
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Fig. 8. False alarm versus cross-handover probability
threshold.
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have crossed the boundary are likely to stay thereon
although they are predicted to cross back. When the
threshold increases above the value of 0.4, the false-
alarm rate also goes up to 0.49, implying that more
MNs are likely to cross back although they are pre-
dicted to stay thereon. Accordingly, the cross-handover
probability threshold ranging from 0.3 to 0.4 is set to
cope with the ping-pong effect.

5.4. Evaluation Results

Four prediction mechanisms have been described
in Section 4. The cutoff-based and inequality
relationship-based mechanisms are combined with the
edit-distance and x2-distance functions. Prediction
accuracy is related to not only the similarity measure-
ment techniques, but also the classification of patterns
into groups. Each group is represented by the probabil-
ity distribution pd on which the prediction mechanisms
depend. In general, the inequality-based mechanisms
are effective for pd that is normally distributed with
even a large variance, while the cutoff-based mech-
anisms operate well with various distributions. As
shown in Figure 9, prediction accuracy offered by the
inequality-based mechanisms almost equals that by the
cutoff-based ones. In which case, selecting a similarity
measurement technique determines the performance of
prediction accuracy. That is, applying the edit distance
technique achieves up to 1.4 times higher prediction
accuracy than applying x2-distance.

Since the Kalman filter yields an estimated future
location of the MN, we select the AP closest to
the estimated location and then the neighbor CXR
that controls the AP. Note that the selected AP may
not be on the domain boundary, which is not found
in the BNR. This case requires additional informa-
tion on the binding of a neighbor CXR and its
APs to be available to another CXR. Conversely,
our prediction mechanisms capture an AP association
pattern based on the MN’s movements, limiting the

Security Comm. Networks. 2010; 3:4-15
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Fig. 9. Average prediction accuracy comparison of the four

mechanisms with the Kalman filtering (KF): CF and IE stand

for cutoff and inequality, and E and X for edit and x> dis-
tances, respectively.

number of neighbor CXRs to which to route the cor-
responding security context. Thus, for the fairness
purposes, the cutoff- and inequality-based mecha-
nisms select one neighbor CXR. Also, the Kalman
filter-based estimation is deferred until the BNR is
populated, and the same holds for our mechanisms.

As shown in Figure 9, all the four predic-
tion mechanisms outperform the Kalman filter-based
approach. Particularly, applying the edit distance to
the inequality- and cutoff-based mechanisms causes
them to outperform the Kalman filter-based approach
by 54 and 49%, respectively. Similarly, applying the
x> distance to those mechanisms achieves up to 15%
higher accuracy. Meanwhile, we also measured pre-
diction accuracy of the flooding method of routing
security contexts to all neighbor CXRs (i.e., §, = 1).
The flooding method is only 6% more accurate than
the inequality-based mechanism with the edit distance
applied, which underachieves in the sense that the
other mechanisms pinpoint a single CXR. Rather, our
mechanisms impose less heavy network traffic than
the flooding method—the traffic created by the flood-
ing method is proportional to the number of neighbor
CXRs. This advantage grows as the number of MNs
likely to undergo a cross-handover increases. Con-
sidering that tens of millions MNs move round, this
advantage must be of great benefit.

Based on the accuracy data shown in Figure 9, we
can project how much benefit we can get via the pre-
dictive routing based on the best of the four, i.e., the
inequality-based mechanism having the edit distance.
Statistically speaking, the predictive routing causes the
cross-handover to be on average 2.5 times faster than
the reactive routing that is required to fetch security
contexts. This improvement linearly increases as the
delay in fetching grows.

Copyright © 2009 John Wiley & Sons, Ltd.
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Fig. 10. Average CPU utilization comparison.

When it comes to computation performance, apply-
ing the x?-distance is three times more efficient
than applying the edit-distance, since the edit-distance
requires to perform many comparison operations at
the expense of prediction accuracy, as shown in
Figure 10. Similarly, applying the y2-distance to the
inequality-based mechanism is 3.6 times more efficient
than the Kalman filtering. Accordingly, the inequality-
based mechanism with the x>-distance applied is the
best option for computation performance, while apply-
ing the edit-distance to either the cutoff- or inequality-
based mechanism is the one for prediction accuracy.

6. Conclusion

As MNs undergo cross-handovers, their security con-
texts must be effectively and efficiently transferred and
managed both on-demand and in a predictive manner.
This paper presented a CXR, an integrated framework
for security-context management in the cross-
handover, with the aim of furthering users’ mobility and
seamless secure execution of their applications on their
mobile devices. We began by characterizing the MN’s
movement patterns and then designed the CXR with
three important steps. We analyzed prediction accu-
racy in routing (the replicas of) the security contexts
ahead of the MN’s arrival. The evaluation result shows
that the predictive routing causes cross-handovers to
be 2.5 times faster than the reactive routing. In sum-
mary, we have (1) provided an integrated framework
in combination of the security context routing methods
and prediction mechanisms with the patterns extracted
from the association with APs, and (2) achieved the effi-
cacy, deployability, and scalability of security context
management. As a consequence, our CXR allows for
seamless and secure services with predictive routing of
security contexts enabled.

Security Comm. Networks. 2010; 3:4-15
DOI: 10.1002/sec



SECURITY CONTEXT ROUTER 15

References

18.

19.

20.

21.

. Kim H, Shin KG. Predictive routing of contexts in an overlay

network. In IM, IFIP/IEEE, June 2009.

. Gupta V, Das S, Cypher D. http://www.ieee802.org/21/
. Koodli R, Perkins CE. Fast handovers and context transfers in

mobile networks. SIGCOMM Computer Communication Review
2001; 31(5): 37-47.

. Loughney J, Nakhjiri M, Perkins C, Koodli R. Context transfer

protocol. RFC 4067, July 2005.

. Mishra A, Shin M, Arbaugh W. Context caching using neighbor

graphs for fast handoffs in a wireless network. In INFOCOM,
Hong Kong, IEEE, March 2004.

. Chou C-T, Shin KG. Smooth handoff with enhanced packet

buffering-and-forwarding in wireless/mobile networks. Wireless
Networks 2007; 13(3): 285-297.

. Song L, Deshpande U, Kozat U, Kotz D, Jain R. Predictability

of wlan mobility and its effects on bandwith provisioning. In
INFOCOM, Barcelona, Spain, IEEE, April 2006.

. Akyildiz I, Wang W. The predictive user mobility profile

framework for wireless multimedia networks. Transactions on
Networking 2004; 12(6): 1021-1035.

. Liu T, Bahl P, Chlamtac I. Mobility modeling, location tracking,

and trajectory prediction in wireless atm networks. Journal on
Selected Areas in Communications 1998; 16(6): 922-936.

. Soh W-S, Kim HS. Dynamic bandwidth reservation in cellu-

lar networks using road topology based mobility predictions. In
INFOCOM, Hong Kong, IEEE, March 2004.

. Liang B, Haas Z. Predictive distance-based mobility manage-

ment for pcs networks. Transactions on Networking 2003; 11(5):
718-732.

. Duda RO, Hart PE, Stork DG. Pattern Classification (2nd edn).

Wiley-Interscience: New York, 2001. ISBN 0-471-05669-3

. Welch G, Bishop G. An introduction to the kalman filter. Tech-

nical Report TR 95-041, UNC at Chapel Hill, July 2006.

. Allard F, Bonnin J-M. An application of the context transfer

protocol; ipsec in a ipv6 mobility environment. International
Journal of Communication Networks and Distributed Systems
2008; 1(1): 110-126.

. Perkins C, Calhoun P, Burmeister C, Degermark M. AAA regis-

tration keys for mobile IP. IETF Draft, work in progress, 2003.

. Bormann C, et al. Robust header compression (rohc): frame-

work and four profiles: RTP, UDP, ESP, and uncompressed.
RFC 3095, July 2001.

. Westphal C, Koodli R. IP header compression: a study of context

establishment. In WCNC, IEEE, March 2003; 1025-1031.
IEEE Computer Society LAN MAN Standards Committee.
Technical Report ANSI/IEEE Std 802.1X-2001, IEEE, 2001.
Mishra A, Shin M, Arbaugh W. Pro-active key distribution using
neighbor graphs. Wireless Communications Magazine 2004;
11(1): 26-36.

Authentication authorization and accounting IETF WG.
http://www.ietf.org/html.charters/aaa-charter.html

WEP algorithm. http://www.isaac.cs.berkeley.edu/isaac/wep-
faq.html

Copyright © 2009 John Wiley & Sons, Ltd.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Aboba B, ef al. Part 11: wireless LAN medium access control
(MAC) and physical layer (PHY) specifications: specification
for robust security. Technical Report IEEE Std 802.11i/D3.1,
IEEE, 2003.

Rigney C, Willens S, Rubens AC, Simpson WA. Remote authen-
tication dial in user service. RFC 2865, June 2000.

Calhoun PR, Loughney J, Guttman E, Zorn G, Arkko J. Diameter
base protocol. RFC 3588, September 2003.

Kim H, Afifi H. Improving mobile authentication with new AAA
protocols. In ICC, IEEE, Anchorage, USA, May 2003; 497-
501.

Georgiades M, Akhtar N, Politis C, Tafazolli R. Enhancing
mobility management protocols to minimise aaa impact on
handoff performance. Computer Communications 2007; 30(3):
608-618.

Shin M, Ma J, Mishra A, Arbaugh WA. Wireless network secu-
rity and interworking. In Proceedings of the IEEE 2006; 94(2):
455-466.

Kim H, Shin KG, Dabbous W. Improving cross-domain authenti-
cation over wireless local area networks. In SecureComm, IEEE,
Athens, Greece, September 2005; 127-138.

Shirdokar R, Kabara J, Krishnamurthy P. A QoS-based indoor
wireless data network design for VoIP. In Vehicular Technology
Conference, vol. 4. IEEE, October 2001.

YoonJ, Liu M, Noble B. Sound mobility models. In International
Conference on Mobile Computing and Networking , ACM, San
Diego, California, September 2003; 205-216.

Kim M, Kotz D, Kim S. Extracting a mobility model from real
user traces. In INFOCOM, 1EEE, Barcelona, April 2006.

Choi S, Shin KG. Predictive and adaptive bandwidth reservation
for hand-offs in QoS-sensitive cellular networks. In SIGCOMM
Computer Communication Review , ACM, Vancouver, British
Columbia, September 1998; 155-166.

Cristianini N, Shawe-Taylor J. An Introduction to Support Vector
Machines and Other Kernel-based learning Methods. Cam-
bridge University Press: New York, 2000. ISBN 0-521-78019-5
Keerth S, Lin C-J. Asymptotic behaviors of support vector
machines with Gaussian kernel. Neural Computation 2003;
15(7): 1667-1689.

Chang C, Lin C. Libsvm: a library for support vector machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

Patel NV, Sethi IK. Compressed video processing for cut
detection. Vision, Image and Signal Processing 1996; 143(5):
315-323.

Ford RM, Robson C, Temple D, Gerlach M. Metrics for scene
change detection in digital video sequences. In IEEE Interna-
tional Conference on Multimedia Computing and Systems, IEEE,
Los Alamitos, CA, USA, 1997; 610-611.

Ye N, Chen Q. An anomaly detection technique based on a chi-
square statistic for detecting intrusions into information systems.
Quality and Reliability Engineering International 2001; 17(2):
105-112.

Papoulis A, Pillai SU. Probability, Random Variables and
Stochastic Processes (4nd edn). McGraw-Hill: New York, 2002.
ISBN 0-07-366011-6

Security Comm. Networks. 2010; 3:4-15
DOI: 10.1002/sec



