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Abstract—This paper considers the global IP-usage patterns
exhibited by different types of malicious and benign domains,
with a focus on single and double fast-flux domains. We have
developed and deployed a lightweight DNS probing engine, called
DIGGER, on 240 PlanetLab nodes spanning 4 continents. Col-
lecting DNS data for over 3.5 months on a plethora of domains,
our global vantage points enabled us to identify distinguishing
behavioral features between them based on their DNS-query
results. To help us analyze the enormous amount of data, we
have quantified these features and designed an effective classifier
capable of accurately discriminating between different types of
domains. Applying the classifier on the 3.5-month DNS data
allows us to reveal the relative prevalence of different fast-flux
domains and conduct detailed studies on them separately. These
results provide insight into the current global state of fast-flux
botnets and their range in implementation, revealing potential
trends for botnet-based services. We also uncover previously-
unseen domains whose name servers alone demonstrate fast-flux
behavior and a new, cautious IP management strategy currently
employed by criminals to evade detection.

I. INTRODUCTION

A botnet is a vast collection of compromised computers

under the control of a botmaster utilizing a Command-and-

Control (C&C) infrastructure. Among the numerous criminal

uses of botnets, one of the more advantageous is the botnet-

based hosting service, which proxies or redirects unsuspecting

users to illegal or nefarious content. Used as a misdirection

mechanism for evading detection, botnet-based hosting ser-

vices often come in tandem with a variety of other criminal

scams, constituting an essential portion of botnets’ overall

operation. For example, spam/phishing campaigns often utilize

botnets for misdirection. Once victims click the URL links

in the spam email, they connect to the bots, which then

redirect them to—or serve as proxies for—the host of the

nefarious content. This strategy grants criminals a high level of

anonymity while enabling easy and centralized management of

the malicious content. However, because botnets are composed

primarily of compromised home computers with unreliable

connectivity, it is not uncommon for them to unpredictably go

offline (e.g., the computer is turned off or the installed malware

is discovered and removed). Botnet-based hosting services,

therefore, must be protected against the failure or disruption

of individual bots, ensuring the availability and stability of

the hosted service/content. As a result, they adopt fast-flux

(FF) DNS techniques, which frequently change the domain-

name mappings to different bots’ IP addresses. Using this FF
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TABLE I: Global distribution of DIGGER nodes by continent

technique, botmasters effectively turned their botnets into a

global Content Delivery Network (CDN), providing highly

available and reliable content-hosting services despite frequent

node failures/disconnectivity. This extends the lifetime of

illegal activities the botnets provide, complicating disruption

efforts by introducing an additional layer of misdirection.

Previous research mostly focused on understanding the

malicious use of FF botnets in phishing scams [8] and devising

effective detection systems for them [5], [9], [10]. However,

little has been reported on botnets’ IP-usage behavior from

a global perspective. Because botnets are formed with myr-

iad compromised hosts dispersed around the world, accurate

characterization of how botmasters manage this vast number

of IPs can only be achieved by collecting and analyzing data

from a distributed and global perspective. In this paper, we

attempt to achieve this goal by measuring FF botnet behavior

from vantage points distributed around the world. This unique

global perspective enables us to gain insight into various

global IP-usage patterns of FF botnets that are inherent to

their operation. The contribution of our work is three-fold.

First, we build a global query engine called DIGGER that

monitors—for an extended period of time—complete DNS

behavior from 240 geographically-dispersed vantage points

spanning four continents. Second, we conduct comprehensive

studies on IP-usage patterns of different types of domains

and propose effective methods to characterize and quantify

unique features of FF botnet domains. This allows us to

uncover several previously-unknown features of FF botnets

and discover new, discreet IP-management strategies currently

employed by criminals to evade detection. Third, to help

us better analyze the current state of FF botnets and their

relative prevalence, we design and implement a multi-level

classifier capable of separating different types of malicious and

benign domains based on their IP usage behavior. Applying

the classifier on more than three months’ worth of data allows

us to spot potential trends of FF botnets and demonstrate the

wide spectrum of their implementations.

The remainder of this paper is organized as follows. Sec-

tion II presents the global IP-usage patterns for domain types.

Section III describes our multi-level classifier and key findings

on 3.5-month global DNS data. Section IV discusses related

work and finally, Section V concludes the paper.



II. MEASURING AND ANALYZING GLOBAL IP-USAGE

PATTERNS OF DOMAINS

In this section, we explore the DNS IP-usage patterns of dif-

ferent malicious and benign domains. First, we describe how

we set up a globally-distributed monitoring system and give

an overview of the different domain types we have observed in

the gathered data. Then, we discuss various interesting features

we’ve identified that are useful in understanding the inherent

operations of the different domains types.

A. System Architecture

We created a distributed DNS-query engine called DIG-

GER, deployed on 240 geographically disparate nodes in the

PlanetLab testbed [11]. The nodes were chosen based on the

location of the DNS servers they queried, such that DIGGER

would issue queries to DNS servers in different geographic

locations around the world. Table. I shows the distribution of

DIGGER nodes, which is reflective of the overall distribution

of available PlanetLab nodes.

TABLE II: Domains’ DNS record data gathered by DIGGER

On each node, DIGGER performs DNS queries for a set of

domains to gather the information shown in Table II. Based

on a domain’s most recently returned DNS results, DIGGER

continues to dig active domains periodically based on their

observed TTL, ensuring fresh DNS-query results. Domains

determined to be offline are intermittently dug every 24 hours,

so that DIGGER can discover if they come back online. The

set of suspicious domains monitored by DIGGER is compiled

from multiple sources, including online repositories of phish-

ing [2] and malware [1] websites, and URL links embedded in

the spam emails collected from a spam relay trap and recent

additions to online repositories [4]. As a result, the domains

probed by DIGGER tend to be malicious in nature, which is

desirable for our purpose of studying malicious FF domains.

DIGGER has been deployed and gathering global DNS-usage

patterns for over 3.5 months in early 2009 on 5,169 active

domains. Analysis of this data has revealed several distinct

types of IP-usage patterns employed by malicious and benign

domains. Next, we will describe these domain types whose

differentiating features will be explored throughout this paper.

B. Domain Types

Before delving into the details of different domain features,

we present the reader the following high-level overview of

the domain-type nomenclature. To provide an intuitive view of

these domain types, we have plotted the global IP usage—as

seen from the DNS queries—for some representative domains

in Fig. 1. In this figure, the Time axis represents the time

since DIGGER started monitoring the domain; Node Index

represents the DIGGER node that the IP was observed on, with

positive values indicating an A rec IP and negative values an

NA rec IP; IP Index is a unique index incrementally assigned

to each newly-observed IP.

FF domains (Fig. 1 (a)-(c)) are malicious domains utilizing

a fast-flux (FF) DNS-advertisement strategy, typically built

atop botnets. Because bots may unexpectedly go offline, FF

domains advertise numerous IPs in their DNS-query results,

helping ensure some of the IPs belong to a functional bot. The

TTL of the IPs used by FF domains tend to be relatively short;

this permits the botmasters a finer level of control in replacing

IPs advertised to the DNS servers, increasing the availability

of an online bot and access to the malicious payload. It is

this excessive number of constantly-changing IP addresses that

qualifies a domain as “fluxy”, and the domain is considered a

FF domain. Domains exhibiting FF behavior in only a single

record type (i.e., A rec or NA rec) are considered FFx1

domains (single fast flux). More specifically, FFx1 domains

that are fluxy in their A recs (i.e., content servers) are termed

FFx1 Arec domains (Fig. 1 (a)), while those that are fluxy

in their NA recs (i.e., name servers) are termed FFx1 NArec

domains (Fig. 1 (b)); FFx1 NArec domains are able to evade

current detection strategies that focus on A recs by migrating

their fluxy behavior to their NA recs, where it is less likely

to be noticed. When FF domains are fluxy in both their A

and NA recs, they are considered double fast flux, or FFx2

domains (Fig. 1 (c)).

CDN domains (Fig. 1 (d)) are valid, benign domains that

uses a Content Delivery Network, such as Akamai, to improve

the delivery of their content. CDNs—consisting of a system

of computers networked together for the purposes of improv-

ing the performance and scalability of content distribution—

produce DNS-query results resembling those of malicious FF

domains: numerous, changing IPs per query with short TTL

values. This affinity is a consequence of their similar goal to

provide reliable content delivery despite node failure, as well

as their shared assumption that any node can temporarily or

permanently fail at any time. However, CDN domains demon-

strate geographic awareness (i.e., IPs geographically close to

a DNS server will be advertised with higher probability at

that server) and load balancing (i.e., techniques improving

performance and scalability not observed in FF domains).

Non-CDN domains (Fig. 1 (e)) are valid, benign domains

that don’t use a CDN for delivery of their content. Typically,

non-CDN domains use a few stable content servers and name

servers (NSes) during the entire monitored period.

MAL domains (Fig. 1 (f)) are domains that aren’t fluxy

enough to be considered FF domains, nor benign enough

to be considered non-CDN domains. Their DNS behavior

demonstrates potentially suspicious behavior often attributed

with malicious domains. They tend to recruit more IPs than

a non-CDN, but not nearly as many as a FF domain. For

example, during a monitoring period of a few months, a FF

domain typically advertises thousands of different IPs. A MAL



Fig. 1: Global IP-usage patterns (in DNS query results) for

some examples of the domain types

domain, on the other hand, will advertise perhaps a total of

20-30 IPs—roughly one or two new IPs every few days. MAL

domains will tend to slowly add more IPs because they will

slowly lose some as their malicious activities are detected and

their IPs are blocked1. The IPs used by MAL domains may

consist of bots or valid servers being used for malicious means.

Having introduced the nomenclature we adopted to describe

different domain types, we now present several interesting

features of their IP usage patterns we discovered through the

analysis of the globally collected data.

C. Number of Unique IP Addresses per Node

The first feature we examine is the number of unique IPs

seen across the DIGGER nodes over time. Fig. 2 and 3 show

the CDFs of the number of unique A and NA rec IPs observed

by our 240 DIGGER nodes during the ≈3.5 month monitoring

period. MAL domains have been omitted in the plots due

to their similarity to non-CDN domains. Our empirical data

reveals that non-CDN and FFx1 NArec domains (whose A

recs behave like a non-CDN) use a small set of stable content

servers. For example, in Fig. 2, neither the non-CDN nor the

FFx1 NArec domains contain more than 18 unique A rec IPs

per node. CDN domains are sometimes found to demonstrate

a larger number of unique A rec IPs on some nodes, though

1Notice, websites hosted on home computers with dynamic IP addresses
could be considered MAL domains by our definition. However, we consider
this acceptable since most valid websites are not hosted on home computers,
causing those that are to be inherently suspicious.

the number of nodes is considerably fewer than observed for

FF domains. For example, for the CDN in Fig. 2, ≈2% of

the DIGGER nodes observed more than 100 unique A rec

IPs. On the other hand, FFx1 Arec and FFx2 domains clearly

possess a much greater number of unique A rec IPs on a

larger percentage of nodes —a direct consequence of the bots’

unreliable connectivity. For the FFx1 Arec domain in Fig. 2,

more than 35% of nodes detected over 200, and a few observed

over 700. The numbers observed for the FFx2 domain are even

higher, with over ≈63% of the nodes observing over 200,

≈43% more than 500, and several with more than 2,500.

While the number of unique A rec IPs per node appears

a promising distinguishing feature, our data implies that this

is not the case for the average number of unique NA rec

IPs. From Fig. 3 it is apparent that CDN and FFx2 domains

possess many more unique NA rec IPs per node than the other

domain types. On average, FFx2 and CDN domains advertise

999 and 727 IPs on a single node respectively. It seems that,

over time, CDNs can advertise numerous name server (NS)

IPs. This behavior might arise from the CDN trying to ensure

the availability of its NSes, affording it better control when

performing load balancing. In any case, we found the behavior

of the FF and CDN domains to be too similar, causing the

number of unique NA rec IPs to be an indistinctive feature.
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rec IPs per DIGGER node

D. Overlap between IPs of A and NA Records

While analyzing our data, it quickly became apparent that

FF domains tend to exhibit some IP overlap. We were seeing

IPs advertised for a domain’s A rec reappearing in the same

domain’s NA rec. Table III shows the total number of A

rec, NA rec, and overlap IPs for some representative domains

from each domain type . This overlap phenomenon was much

more prevalent in FFx2 domains than either type of FFx1;

we never observed it in valid domains. The FFx1 domains

almost entirely use valid IPs for one record type and the IPs of

compromised computers for the other. While the representative

MAL domains have a small number of total unique IPs (like

a non-CDN domain), their IP overlap is exceptionally high,

with almost all of their A rec IPs also used for their NA recs,

thus setting them apart from valid domains. The IP overlap

we empirically observed demonstrates that valid domains

use separate machines for their content and name servers to

prevent a single point of failure. FF and MAL domains, on the

other hand, attempt to make the most of their limited resources,

reusing IPs for both the A and NA records. Clearly, IP overlap



is a useful feature for differentiating between malicious and

benign domains, especially FFx2 and MAL domains.

Domain Type Domain A rec NA rec Overlap

FFx1 Arec drugsn.com 932 33 0
www.couldchoose.com 486 37 5

FFx1 NArec icausmyox.com 16 370 1

FFx2 old-and-girl.com 5,227 3,047 879
mountainready.com 4,060 2,219 2,144

MAL duelready.com 16 32 15
tsqfsny.jukutuxef.cn 23 42 20

CDN www.msnbc.msn.com 1,160 5,412 0

non-CDN hostingprod.com 18 32 0

TABLE III: Total A, NA, & overlap IPs for diff domain types

Table III also shows that, because non-CDN and MAL

domains advertise only a few stable content and name servers,

their total number of unique A and NA rec IPs is meager

when compared to CDN and FF domains making it a useful

distinguishing feature.

E. Continental Distribution of IPs

Next, we examine how the various domain types differ

in their IP distribution (i.e., where the IPs returned in DNS

queries are geographically located). We examine the IP lo-

cation based on continent rather than country, because the

close proximity of European countries made a country-based

resolution too finely-grained. In particular, we examined two

features: 1) percentage of IPs from the wrong continent, i.e.,

what percentage of IPs returned in DNS queries are located

in a different continent than the queried DNS server; 2)

continental IP distribution, i.e., from the perspective of each

continent containing queried DNS servers, what percentage of

IPs returned are located in each continent.

Domain % wrong continent Domain % wrong continent

Type A rec NA rec Type A rec NA rec

FFx1 Arec 83.04% 45.43% MAL 90.38% 89.04%

FFx1 NArec 93.21% 84.54% CDN 23.24% 17.56%

FFx2 68.17% 63.99% non-CDN 53.77% 61.11%

TABLE IV: Percentage of IPs from the wrong continent

Table. IV shows the percentage of A and NA rec IPs from

the wrong continent for some representative domains. From

the table, it is evident that the CDN domain has a considerably

smaller proportion of IPs from the wrong continent than

the other domain types. The few CDN IPs from the wrong

continent are due to load balancing. For example, to distribute

load when traffic volume is high in Asia, CDNs may advertise

some European IPs to Asian DNS servers, resulting in a small

percentage of IPs from the wrong continent.

Insight into continental IP distribution can be found in

Fig. 4. For brevity, we have not plotted any FFx1 domains,

since their results are a subset of the FFx2 domain type;

likewise, we have omitted plots for a MAL domain (since

their distribution is functionally similar to non-CDN domains)

and for the NA recs’ distribution (since the results are similar

to those for the A recs). In Fig. 4, the bars represent the

continental IP distribution from different perspectives. In each

domain’s plot, the first bar represents the continental IP

distribution from a global perspective, while the other bars

are from the perspective of the different continents where we

deployed DIGGER nodes. For example, the bar labeled “Asia”

under old-and-girl.com indicates the percentage of IPs located

in each continent base on queries to Asian DNS servers.

From Fig. 4, we can see that the continental IP distribution

for CDN domains varies greatly across the different continents,

clearly revealing the location-aware DNS advertisement em-

ployed by CDNs. The DNS query results for CDN domains

often contain a majority of IPs located near the query issuer,

providing fast, reliable services and quicker content delivery to

end users by reducing the data’s travel distance. Consequently,

CDNs demonstrate a smaller percentage of IPs from the wrong

continent and a larger variance in continental IP distribution

than other domain types. On the other hand, we found that

MAL and non-CDN domains operate in a similar manner.

They indiscriminately advertise their small pool of a few stable

server IPs around the world nearly simultaneously. This causes

the continental IP distribution at each continent to be the

same, and the percentage of IPs from the wrong continent will

reflect the global distribution of our DIGGER nodes. Finally,

our analysis suggests that FF domains adopt an advertisement

strategy dictated by the unstable nature of their constituent

bots, which we term necessity-based DNS advertisement.

Since bots can go offline at any time, FF domains must

rely on whichever bots are currently available and advertise

available IPs to DNS servers around the globe as necessity

dictates, regardless of geographic location. This results in a

large percentage of IPs from the wrong continent and a fairly

consistent continental IP distribution across continents.

These findings indicate that the percentage of IPs from the

wrong continent and the variance of the continental IP dis-

tribution are useful features for distinguishing CDN domains

from the other domain types.

F. IP Recruiting

In this subsection, we study the distinct strategies employed

by FF, CDN, and non-CDN domains, when they advertise IPs

to DNS servers. For a given domain, we assigned a unique

IP index to each newly-seen IP in the DNS query results

across all DIGGER nodes. This IP index is plotted against

time for example FFx2, CDN, non-CDN, and MAL domains2

in Figs. 5–8. The points in the graphs represent when a new IP

was returned in a DNS query on a global scale. Therefore, the

slope of each curve demonstrates the rate, or speed, with which

a domain seems to globally “recruit” more IPs. Notice, when

we discuss recruitment, we mean the apparent recruitment of

IPs based on the DNS query results, not the actual recruitment

of bots via compromising computers.

Recruitment Speed: refers to the speed (or rate) at

which one observes new, unique IPs for a given domain when

monitoring that domain’s DNS queries over time.

Fig. 5 shows how a FFx2 domain slowly and nearly contin-

uously accrues unique IPs over its entire online lifetime, with

2FFx1 Arec and FFx1 NArec are essentially specific subsets of FFx2
domains, so their plots are not included for brevity.



Fig. 4: Percentage of total A rec IPs seen from each continent by DIGGER nodes globally and in each continent

Fig. 5: Global IP usage for example FFx2 domain

Fig. 6: Global IP usage for example CDN domain

short, intermittent periods of stability. These results indicated

that FF domains must continually add new IPs to help ensure

reliable delivery of their nefarious content. In addition, the bots

used by FF domains may obtain dynamic IP addresses from

their Internet Service Provider. Consequently, a bot may be

assigned different IPs over time, causing our DIGGER nodes

to observe the apparent recruitment of new IPs; this effect,

called DHCP churn, is not present for valid domains using

stable servers with static IPs.

Meanwhile, when viewed globally, we have discovered that

CDN domains (Fig. 6) achieve a much faster recruitment

speed, indicating that they advertise IPs from a large pool of

stable IP addresses, which they rotate quickly and efficiently

for performance purposes, such as load balancing. Since CDNs

advertise their IPs in a geographically-conscious manner (e.g.,

a DNS query in Asia will often result in a different set of

IPs than in Europe), DIGGER’s global perspective observes

most of the CDN’s IPs in a short period of time. In contrast,

FF domains use necessity-based DNS advertisement, advertis-

ing the same pool of IPs irrespective of the DNS servers’

geographic location. Thus, while FF domains may change

their advertised IPs as quickly as a CDN, DIGGER’s global

perspective doesn’t allow it to observe many more IPs than at

any given local vantage point, resulting in the comparatively

Fig. 7: Global IP usage for example non-CDN domain

Fig. 8: Global IP usage for example MAL domain

slower IP recruitment rate.

Non-CDN domains (Fig. 7), on the other hand, hardly

recruit any additional IPs over time. Rather, their IP pools

consist of a small number of stable servers that are almost

simultaneously advertised to DNS servers around the world.

MAL domain (Fig. 8) often demonstrates the slow and

somewhat steady recruitment of IPs. This behavior is likely the

result of the MAL domains’ malicious activities being detected

and their IPs blocked, requiring them to register fresh IPs

with DNS to maintain content availability. Unlike FF domains

which recruit thousands of IPs, MAL domains recruit only tens

of IPs over 3.5 months. This drastic difference should prove

beneficial in distinguishing MAL domains from non-CDN and

FF domains.

Recruitment Period: represents the amount of time

during which new IPs are seen for a given domain when moni-

toring that domain’s DNS queries over time. Our data indicates

that non-CDN domains (Fig. 7) have almost no recruitment

period; a small pool of very stable IPs are advertised initially

and used throughout the lifetime of the domain. On the other

hand,the fast recruitment speed of CDN domains causes DIG-

GER to quickly observe most of their available IPs, resulting in

a short recruitment period at the onset of monitoring followed

by a longer, stable period consisting mainly of previously-



seen IPs. From Fig. 6, we can see that the CDN’s recruitment

period is smaller than its total online period. After its initial

recruitment period, the CDN domain stabilizes and advertises

a much smaller set of IPs before a quick advertisement spike

followed by another stable period; the stable period looks like

a gap in the graph, but closer examination reveals a small

set of IPs with low IP indices (i.e., the earliest seen IPs). We

have also discovered, as shown in Fig. 5, that the fluxy records

for FF domains recruit new IPs for nearly the entire duration

of the domains’ online period, with only short, intermittent

periods of stability. This constant IP recruitment is a result of

the unreliable nature of the compromised computers serving

as bots. The varying recruitment periods we have discovered

for the different domain types should provide a useful metric

for distinguishing between them.

G. Other Features

We also examined several other potential features such as

TTL, reverse DNS lookup, average IP online time, etc. We

found them less effective when designing the classifier for

differentiating domain types. Due to space constraints, we

have omitted their results and refer the interested reader to

our technical report for further discussion.

III. ANALYSIS OF CURRENT FF BOTNET THREAT

After introducing different types of domains and their distin-

guishing features, in this section we will analyze the current

status of FF botnets. To aid us in analyzing the landscape

of this global threat, we develop a multi-leveled classifier

that uses the differentiating features identified in Section II

to automatically determine the domain type distribution from

the collected data. Note that the classifier is not designed to

be a real time detector for FF botnets. The main purpose

of building such a classifier is to help us separate different

types of FF domains and expose emerging trends in their DNS

management.

A. Classification Feature Quantification

Table V shows 7 features, F1-F7, that were calculated for

each monitored domain over the total ≈3.5 month duration and

then analyzed by the classifier to determine the domain type.

The calculation is straightforward for all features except F4

(IP distribution). As discussed in Section II-E, CDNs, due to

their location-aware DNS strategy, tend to have a significantly

larger variance in continental IP distribution than other domain

types. To quantify this effect, for each of the 4 continents

with DIGGER nodes deployed, we create a vector with 8

elements, each of which represents the number of IPs observed

from one particular continent3. Then we calculate the cosine

similarity between every pair of the vectors and take the

average, producing the value for F4. The closer this value is

to 1, the more similar the continental IP distributions appear

on each continent, and the less likely the domain is a CDN

domain. The 3rd column in Table V shows how each feature

3N. America, S. America, Europe, Asia, Africa, Oceania, Antarctic and
“unknown”

will likely group the different domain types, represented by

square brackets.

TABLE V: Features to classify domain types into diff groups

B. SVM (Support Vector Machine) Classifier

Fig. 9 shows the design of our multi-leveled classifier

and the results of our separate training and test sets (test

sets are all DIGGER collected DNS data minus the training

set). The classifier is based on a particular machine learning

approach called SVM [6], which has been successfully applied

to a large number of practical problems and has the nice

properties of minimizing the empirical classification error and

maximizing the geometric margin. In our work, we build one

linear SVM classifier4 at each level that classifies a domain

type from the test set. The classifier progressively reduces the

number of unknown domains and thus simplifies subsequent

classification. In Fig. 9, each oval represents a classified

domain type, while each rectangle represents the remaining

unknown. The values for “Train” show how many examples

of a given domain type (or group of domain types) were

used when training that level of the classifier. The values for

“Test” indicate the number of domains that were classified

(or remained to be classified) when we applied each tier of

the classifier. We manually identified about 10 representative

domains of each type to be used in training of SVM at each

level. More difficult to detect by hand, we were only able to

manually identify one FFx1 NArec domain.

4We choose a linear SVM because it is simple and effective. Previous
work [5] has demonstrated its efficacy in detecting FF botnets from a single
vantage point, and in our experiments, it produced results of comparable
accuracy to other SVM kernels and decision trees.



Fig. 9: SVM flowchart

TABLE VI: Linear SVM equations. ((A + NA) means combined IP pool of the A and NA recs)

Table VI shows the bias and feature weights for each level of

trained classifier. Those features not used at a particular level

are shaded black. For each SVM, the Result is calculated as the

bias term plus the product of each feature and its weight. The

“Result > 0” column indicates how a domain with a positive

Result will be classified. The exception is FFx1 NArec do-

mains, which are classified when SVM-5’s Result is negative.

Additionally, the magnitude of Result signifies the confidence

in classification choice.

Due to the similarities some domain types share between

certain features, the order we apply the classifiers and which

features we use at each level becomes important. Using

Table V as a guide, we experimented with the features used at

each level of our classifier, finding an optimal order for those

levels that exploits the strong differentiating features between

certain domain types. For example, SVM-1 uses F3 and F4

as strong indicators of CDN domains. This is because only

CDN domains, practicing a location-aware DNS advertisement

strategy, will obtain a positive Result. Other domains, with a

large percentage of IPs from the wrong continent (F3) and

similar IP distributions (F4) will generate a negative Result.

Since CDN domains can behave similarly to FF domains in

other respects (e.g., large number of IPs), removing them

first will improve successive classification. Because valid non-

CDN domains do not possess the recruitment and IP overlap

behavior common to MAL and FF domains, SVM-2 relies on

F5, F6, and F2 on the combined (A + NA) recs to separate

non-CDN domains. Notice Table VI shows that F6 is the domi-

nating feature, i.e., if the domain demonstrates any significant

recruitment period, it is unlikely to be a non-CDN domain.

When reaching SVM-3, the test set was entirely composed of

malicious domains (i.e., FF and MAL). It is logical to classify

MAL domains next. Because of their faster IP recruitment

rate, FF domains quickly outpace MAL domains. This allows

SVM-3 to use number of IPs (F7) and recruitment features

(F5 and F6) to accurately identify MAL. After three stages

of the classifier, only FF domains remained in the test set.

By definition, the only thing distinguishing between FFx2,

FFx1 Arec, FFx1 NArec domains is which record (A, NA or

both) type demonstrates fluxiness. Thus SVM-4 uses features

related to fluxy behavior, i.e., F1, F2, F5, F6 and F7, on the

individual A and NA recs to discern FFx2 from FFx1. Except

F2, The same set of features are used in SVM-5 to discriminate

between FFx1 Arec and FFx1 NArec domains. F2 is ignored

at this stage because the FFx1 domains experience comparable,

modest-to-no IP overlap.

Applying this multi-level classifier on all ≈3.5 months of

DNS data identified 17 CDNs (which we manually verified by

visiting each domain) and 179 FF domains (which were also

manually verified based on several heuristics, such as reverse

DNS names indicating compromised computers, aggressive

IP usage, etc). Additionally, the classifier identified 279 non-

CDNs and 4694 MAL domains. We manually analyzed over

50 border cases from both types with Results closest to 0 and

found them to be satisfactorily classified. The detailed analysis

of these domains will be presented in the next section.

(a) 3D plot of A and NA rec (b) 2D plot of A rec

Fig. 10: Cautious MAL domain
C. Results

1) Cautious MAL domains: While manually validating

SVM-3’s results, we discovered 4 borderline MAL domains

exhibiting atypical IP behavior, one of which is shown in

Fig. 10. Recruiting less than 50 A rec IPs over ≈2.5 months5,

it is not fluxy enough to be considered a FFx1 Arec domain.

However, its uncannily regular IP recruitment distinguishes it

from other MAL domains. The domains advertise only a single

5The domain was DNS-parked afterwards. DNS parking is a technique used
to block malicious domains by ’parking’ the malicious domain name to an
innocent IP address often controlled by the registrar.



A rec IP per query, with a max TTL of one minute. Despite

this fine level of control, the domains only replace the IP about

once a day, adhering to a meticulously precise schedule. Addi-

tionally, we can see from Fig. 10, that once changed, the A rec

IPs are not reused. In this sense, they appear to be a type of

cautious MAL domain, regularly and preemptively replacing

their A rec IPs before they can be detected and blocked. When

required, the short TTL permits rapid response. Although only

4 instances are observed, this strategy is interesting and may

gain popularity among malicious domain owners trying to

evade current detection technologies.

Fig. 11: Classified FFx2 domain

Fig. 12: Classified FFx1 NArec domain

2) FF domain Classification: An interesting aspect of our

classifier is how it distinguishes between the FFx2, FFx1 Arec

and FFx1 NA domains. Recall from Table VI that F1 is the

dominant feature for SVM-4, with the NA rec being 4x as

influential as the A rec. The consequence of this asymmetric

weighting of fluxiness can be witnessed for the domains in

Fig. 11 and Fig. 12. Both domains demonstrate definite fluxy

behavior in one of their record types, i.e., A rec for Fig. 11

and NA rec for Fig. 12. With less than 30 IPs, the recruitment

behavior of A rec in Fig. 12 resembles that of a MAL domain

and the IP overlap is less than 4%. Thus, the classifier has

performed correctly: a domain with FF behavior in its NA

rec and MAL behavior in its A rec should be considered a

FFx1 NArec domain. However, it isn’t immediately obvious

why Fig. 11 is considered fluxy in its NA rec, which appears

relatively stable. Further analysis revealed that the domain has

an IP overlap of ≈26%. That is, the fluxy A rec contributes

over 1
4

of the NA rec IPs, the less stringent fluxiness demands

for the NA rec are met, and the domain is classified as FFx2.

3) Domain Type Distribution: Table VII shows the num-

ber and distribution for each domain type identified by our

classifier. We find that the benign domains constitute less

than 6% of the test set (i.e., 17 CDN and 279 non-CDN

domains). Of the 4,873 nefarious domains, ≈96% were MAL

TABLE VII: Relative distributions of the various domain types

domains and 179 were FF domains. Because we generated

the domain list from suspicious sources, extracting this low

number of benign domains and large number of MAL domains

are justified. Particularly, this plethora of MAL domains results

from their ease of management as the traditional and most

popular mechanism employed by malicious websites (e.g.,

hosting nefarious content on less reputable web hosts and

switching to a new server if detected). While out of this

paper’s scope, further research and analysis into the makeup

and classification of MAL domains is warranted.

The additional level of misdirection and the nearly limitless

supply of IPs provided by botnets make FF domains appealing.

Thus far, it has been primarily FFx1 Arec domains observed in

the wild, and their popularity is supported with our findings:

≈49% of the FF domains are FFx1 Arec. This is because

FFx1 Arec domains provide the greatest return on their invest-

ment, affording botmasters an additional layer of misdirection

without the hassle of maintaining volatile botnet NSes (name

servers). With stable NSes, botmasters can easily replace

offline IPs to avoid an interruption of service. Unfortunately

for botmasters, security professionals have become aware of

the FFx1 Arec botnet technique, devising clever detection

strategies. While botnets provide a steady source of fresh A

rec IPs, the NSes can still be blocked, crippling the botmaster’s

control until new NSes can be acquired. In an apparent attempt

by botmasters to overcome this limitation, we witnessed a

considerable presence of FFx2 domains, composing ≈21% of

the FF domains. FFx2 domains provide further misdirection

and protection for the botmaster, guarding the NSes against

simple countermeasures such as IP blocking at the expense of

a more diligent management effort.

Among FFx2 domains, we noticed a definite trend to use

their more stable bots for the NA recs, often concurrently

using them for the A recs as well. Interestingly, analysis of the

identified FFx2 domains revealed a spectrum in the amount of

NA rec fluxiness incorporated by botmasters. Obviously, we

observed domains that were incredibly fluxy in both record

types, as demonstrated by old-and-girl.com (Fig. 5). While

it’s interesting to observe these aggressive FFx2 domains in

the wild, it was the FFx2 domains at the other end of the

spectrum that proved more insightful. As an example, recall

the more modest FFx2 domain ehuytyt.cn (Fig. 11). With

over 2,500 unique A rec IPs, ehuytyt.cn is considerably more

fluxy in its A rec than its NA rec. By using bot IPs from

its A rec for roughly 1
4

of its NA rec IPs, FFx2 domains



like ehuytyt.cn benefit from the increased control and stability

provided by traditional NSes, while—for a minimal increase

in management—simultaneously enhancing the domain’s re-

silience to subversion.

Another interesting discovery is the apparent popularity

of FFx1 NArec domains, accounting for ≈30% of the total

FF domains observed. It seems that botmasters have become

aware of security professionals analyzing domains’ A recs

for FF behavior. Consequently, they have migrated the fluxy

behavior to the NA rec, where it is less likely to be noticed

since most existing approaches only monitor A recs. Fig. 12

is a typical example of the FFx1 NArec domains identified

by our classifier. It demonstrates a MAL domain strategy for

its A rec IPs and a FF strategy for its NA rec IPs. This

results in the domain appearing more benign when its A

recs are analyzed, while providing the botmaster with a fine

level of control over the NSes. Should the domain’s malicious

activity be detected and the A rec IPs blocked, the botmaster,

having retained control over the NSes, can replace the IPs

with minimal service interruption. Additionally, by controlling

the NSes through the use of bots, botmasters can potentially

determine when detectors perform DNS probing, allowing

them to take appropriate countermeasures. The implication

of this discovered behavior is straightforward: both record

types must be monitored for fluxy behavior in order to quickly

identify FF domains and their botnets.

IV. RELATED WORK

The increasing popularity of FF domains has resulted in

a number of proposed detection approaches [5], [9], [10]

They all begin by gathering suspicious domains from various

sources, actively/passively monitoring domains’ DNS-query

results, and extracting a set of unique features. A linear

decision function [5], a naı̈ve Bayesian classifier [9], or

a decision tree [10] are then applied on these features to

determine whether a domain is a FF domain. Nazario and

Holz [8] later applied a similar approach to track the use

of FF domains, demonstrating that continuous data mining

of DNS records can yield insights into the operations of FF

botnets. Caglayan et al.[3] analyzed several behavioral features

of FF networks including their lifespan and network size.

They showed that different FF networks share common life

cycle characteristics. More recently, Konte et al.[7] studied the

dynamics of FF networks from the perspective of online scam

hosting infrastructures for different spam campaigns. Their

results suggested that some persistent features may be useful

in the detection of FF botnets.

This paper differs from previous work in the following

ways. First, our goal is not to propose a deployable FF

detector6. Instead, our classifier is developed as an analytical

tool to automatically analyze the massive amount of data from

a previously unattempted global perspective and provide fine-

grained classification of FF domains. Second, previous work

6Incidentally, it has yielded insight into a deployable detector, and we
are currently exploring the most efficient use of global vantage points and
a detection window for an accurate, real-time detection system.

collected data from a single vantage point, and hence, may

fail to capture useful features only discoverable with a global

view. By contrast, we deployed a large number of sensors

around the world, providing a global perspective for different

types of FF domains. Finally, in this paper, we conduct a

comparative analysis of the different IP-management schemes

used by FF and CDN domains. Because of the shared goal of

providing reliable content delivery despite node failure, FF and

CDN domains demonstrate similar behavior (i.e., numerous,

frequently changing IPs), which might cause misclassification

for detectors.To solve the problem, we propose effective fea-

tures based on location awareness for separating CDN domains

from other domain types, which could potentially be leveraged

to improve the current detectors.

V. CONCLUSION

In this paper, we examined the global IP-usage patterns

exhibited by different types of malicious and benign domains.

We have deployed a lightweight probing engine on 240 Planet-

Lab nodes spanning 4 continents. Collecting DNS data for over

3.5 months on a plethora of domains enabled us to measure

their IP-usage patterns from a global perspective and identify

various behavioral traits shared among certain domains, re-

sulting in the classification of several common domain types

based on distinguishing DNS features. By applying a multi-

level classifier on the data set, we have shown the relative

popularity of the domain types in the malware/phishing/spam

landscape. This provided valuable insight into the current state

of FF domains, including the increased presence and versatile

implementation range of FFx2 domains as well as an apparent

trend towards using FFx1 NArec domains, which were pre-

viously unseen in the wild. We hope these new insights will

foster improvements to existing defensive systems, allowing

them to identify more sophisticated FF domains.
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