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Abstract—Cooperative sensing, a key enabling technology for
dynamic spectrum access, is vulnerable to various sensing-
targeted attacks, such as the primary user emulation or spectrum
sensing data falsification. These attacks can easily disrupt the
primary signal detection process, thus crippling the operation of
dynamic spectrum access. While such sensing-targeted attacks
can be easily launched by an attacker, it is very challenging
to design a robust cooperative spectrum sensing scheme due
mainly to the practical constraints inherent in spectrum sensing,
particularly the shared/open nature of the wireless medium and
the unpredictability of signal propagation. In this paper, we
develop an efficient, yet simple attack detection framework, called
IRIS (robust cooperatIve sensing via iteRatIve State estimation),
that safeguards the incumbent detection process by checking the
consistency among sensing reports via the estimation of system
states, namely, the primary user’s transmit-power and path-
loss exponent. The key insight behind the design of IRIS is
that the sensing results are governed by the network topology
and the law of signal propagation, which cannot be easily
compromised by an attacker. Consequently, the sensing reports
must demonstrate consistency among themselves in estimating
system states. Our analytical and simulation results show that,
by performing consistency-checks, IRIS provides high attack-
detection capability, and preserves satisfactory performance in
estimating the system states even under very challenging attack
scenarios. Based on these observations, we propose a new
incumbent detection rule that can further improve the spectrum
efficiency. IRIS can be readily deployed in infrastructure-based
cognitive radio networks, such as IEEE 802.22 WRANs, with
manageable processing and communication overheads.

I. INTRODUCTION

Solving the expected spectrum scarcity problem becomes
increasingly important to accommodate emerging wireless
services and ever-increasing wireless spectrum demands [1],
[2]. Cognitive radio (CR) is a key technology to mitigate the
overcrowding of spectrum space, e.g., cellular and ISM bands,
by enabling unlicensed users to opportunistically communicate
over the licensed spectrum bands left idle by the incumbents
[3]. Among the various challenges in realizing this new
concept of opportunistic spectrum access, spectrum sensing—
the detection of primary signals and spectrum whitespaces—
has been considered the key enabler [4], [5].

While cooperative sensing has proven to be a viable means
to improve the primary detection performance to meet the
stringent detectability requirements imposed by the regulatory
body (e.g., FCC) [4]–[7], it is vulnerable to various critical
security attacks. In the absence of attack, cooperative sensing
can significantly improve the incumbent detection performance
by carefully choosing a suitable set of cooperative sensors
[5], [8], [9]. However, sensors are often deployed in open

hostile environments, and can be compromised by an at-
tacker or exposed to external interferences that can distort the
measurement results. Therefore, their sensing reports cannot
be fully trusted. Moreover, the vulnerability to attacks is
exacerbated further by several unique features in opportunistic
spectrum access, such as spatial and temporal variations of
primary signal characteristics, and easy accessibility and high
reconfigurability of the low-layer protocol stacks in software-
defined radio-based CRs (e.g., USRP [10] or Sora [11]). To
cripple the operation of cooperative sensing, an attacker can (i)
create an illusion of a primary signal by simply broadcasting a
falsified primary signal, i.e., the primary user emulation attack
(PUEA) [12], [13], or (ii) physically compromise the sensor
and manipulate its sensing reports, i.e., the spectrum sens-
ing data falsification (SSDF) attack [14]–[16]. Accordingly,
these attacks can significantly impair the incumbent detection
process, resulting in either excessive interference to primary
communications or waste of spectrum opportunities, denying
the basic premise of opportunistic spectrum access.

The design of robust cooperative spectrum sensing is, how-
ever, a challenging problem, and existing approaches have
their own limitations. It is intrinsically difficult to detect
manipulated sensing reports due mainly to the absence of
“ground truth” in sensing reports. That is, there is no conve-
nient way to determine whether the sensing reports are the
true estimates of a primary signal strength or distorted by
attackers (directly in the case of SSDF or indirectly in the
case of PUEA). Moreover, most existing approaches share
two key shortcomings. First, attack detection and filtering
schemes are designed heuristically without any rigid attack-
detection criterion. As a result, they may not work properly
against various network and attack scenarios [13], [14], [16].
Second, the design of most existing schemes is tailored to a
specific attack type, e.g., PUEA [13] or SSDF [15], and thus
may be unable to cope with general types of attack. These
shortcomings limit the applicability of existing schemes in real
network environments under unpredictable attacks. Therefore,
there is a clear need for developing a robust cooperative
sensing framework that can preserve high incumbent detection
performance even under challenging attack scenarios.

In this paper, we propose a robust cooperative spectrum
sensing framework, called IRIS (robust cooperatIve sens-
ing via iteRatIve State estimation), that withstands sensing-
targeted attacks by weeding out any abnormal sensing reports
regardless of the actual cause (or attack type) of such devia-
tions. The design of IRIS is motivated by the observation
that the measured primary signal strengths at sensors are



governed by the topology of the network and the law of
signal propagation at the PHY-layer, which cannot be easily
compromised by attackers. IRIS estimates the system states—
i.e., the transmit-power of the primary transmitter and the path-
loss exponent—based on the sensing reports, and monitors the
measurement residual, which indicates how close the sensing
reports are to the normal value of the received signal strengths.
Thus, any sensing report with a large deviation (or attack
strength) will result in a large measurement residual. Once
IRIS detects the existence of an abnormal sensing report(s),
it can accurately pinpoint the manipulated sensing reports and
remove them from the incumbent detection process. To evade
such detection, attackers must lower their attack strengths, and
thus, the lowered attack strength makes a negligible impact on
primary detection accuracy.

A. Contributions

The main contributions can be summarized as follows.

• Introduction of joint cooperative sensing and system state
estimation for robust incumbent detection. This is very
different from most previous sensing schemes that focus
only on the detection of a primary signal [5]. The state
estimation introduced in IRIS provides a useful criterion
for detecting the existence of attacks and further pinpoint-
ing and removing the manipulated sensing reports.

• Analysis of the attack-tolerance of IRIS. In particular,
we show that it is infeasible for an attacker to completely
evade the detection rule in IRIS, unless the attacker
compromises all but one cooperating sensor, and simul-
taneously controls the sensing reports, demonstrating its
high attack-tolerance.

• In-depth evaluation of the performance of IRIS under
various attack scenarios. Our evaluation results show that
IRIS successfully detects and removes the manipulated
sensing reports by checking the consistency among sens-
ing reports through the measurement residual. We also
study the interesting tradeoff in the selection of attack
detection threshold.

• Proposal of a new approach to incumbent detection based
on the estimated transmit-power level. We show that
IRIS accurately estimates primary users’ transmit-power
level even under very challenging attack scenarios where
the majority of sensors are compromised, making this
approach highly attractive.

B. Organization

The remainder of this paper is organized as follows. Section
II reviews the existing approaches to robust cooperative sens-
ing in cognitive radio networks (CRNs). Section III introduces
the network and attack models and assumptions that we will
use throughout the paper. Section IV describes the IRIS

framework and formulates the attack detection problem as
a hypothesis testing. Section V proposes methods for attack
detection and identification, analyzes their attack detection
capability, and describes the IRIS algorithm. Section VI
evaluates the performance of IRIS under various types of
attacks in realistic wireless environments, and Section VII
concludes the paper.

II. RELATED WORK

The design of robust cooperative sensing has recently re-
ceived considerable attention. For example, statistics-based
anomaly detection has been proposed [12], [14], [17], [18].
Chen et al. [12] proposed a sensor reputation management
framework that assigns different weights to sensing reports
based on their reputation achieved from a previous sensing
history. Kaligineedi et al. [14] proposed a simple method to
filter out any outliers among the sensing reports. However,
this method is agnostic of the existence or type of attack,
and its attack detection rule is not adaptive to different attack
scenarios.

An effort has also been made to design robust cooperative
sensing schemes by exploiting various aspects of primary
users’ characteristics [13], [15], [16], [19]–[21]. Chen et al.
[13] proposed to exploit the primary user’s location informa-
tion to verify the identity of the signal source in order to
defeat the primary emulation attack. However, their scheme,
called LocDef, requires a separate dense sensor network for
localization. Moreover, it is designed only to defeat PUEA. In
contrast, IRIS targets robust detection of primary signals in
the presence of any type of attacks that can potentially affect
the sensing resorts. Recently, Min and Shin [15] proposed to
exploit shadow fading correlation in the received primary sig-
nal to detect and remove abnormal sensing reports. However,
their scheme, called ADSP, assumes the existence of sensor
clusters, which might not always hold in practice.

Recently, primary signal propagation characteristics at the
PHY-layer have been exploited to detect abnormality in CRNs
[19], [20]. Liu et al. [19] proposed an anomaly detection
framework, called ALDO, that monitors the path-loss exponent
in signal propagation to detect selfish secondary users vio-
lating spectrum etiquette, i.e., using spectrum bands without
authorization. Lie et al. [20] exploited the location-dependent
link signature (i.e., multipath fading profile) along with con-
ventional cryptographic authentication to detect a falsified
primary signal. Unlike the above approaches, we propose to
exploit the consistency among sensing reports in regard to
physical characteristics, such as network topology and signal
propagation, to detect and remove any manipulated sensing
reports.

In a broader context, our paper is related to secure data
aggregation [22], [23], insider attack detection [24], and se-
cure localization and target tracking [25] in wireless sensor
networks. However, the problem considered in this paper
differs from them since (i) it focuses on a unique case
in CRNs where attackers manipulate the sensor reports to
disrupt the cooperative sensing process, and (ii) in CRNs, no
modification should be required to the primary system, and
thus, the measured received primary signal strengths obtained
via spectrum sensing is the only available information to the
secondary system.

In summary, IRIS differs from most previous work in three
key aspects. First, IRIS exploits network topology and signal
propagation characteristics to validate the integrity of sensing
reports. Second, IRIS accurately identifies those sensing
reports affected by attackers (either directly or indirectly)
since the detection focuses on the consistency among sensing
reports, which must always be maintained in the absence of
attacks. Third, IRIS detects an incumbent signal by estimat-



ing the transmit-power based on sensing reports. This is very
different from most existing fusion schemes, such as k-out-of-
N rule and equal gain combining, which rely solely on sensing
reports.

III. SYSTEM AND ATTACK MODELS

In this section, we first describe the network, coopera-
tive sensing, signal propagation, and system state estimation
model, and assumptions that we will use throughout the paper.
We then describe the attack model.

A. Network and Cooperative Spectrum-Sensing Model

We consider a CRN where both primary and secondary
users coexist in the same geographical area, as shown in Fig. 1.
We assume an infrastructure-based secondary network, e.g.,
802.22 WRANs, where each cell consists of a single base
station (BS) and multiple secondary users (sensors).1 Since
the BS is maintained by an expert, we assume that BSes
are trusted. Each BS coordinates the opportunistic spectrum
access of secondary users in its cell by directing a (sub)set
N of sensors to perform spectrum sensing periodically for
primary signal detection. At the end of each sensing period,
cooperative sensors report their measurement results (i.e.,
sensing output) to the BS to make a final decision on the
presence or absence of a primary signal. Finally, the BS
broadcasts the final decision to the secondary users within the
cell. The sensing reports and final decisions are communicated
through a reliable, dedicated control channel. We assume that
the BS knows the location of the primary transmitter and
sensors.2

For spectrum sensing, the energy detector [28] is used as
the physical-layer sensing technology mainly because of its
simple design and low overhead. Cooperative sensors simply
measure the primary signal power on a target frequency band
using the energy detector and reports the sensing results to
the BS for the detection of a primary signal. We assume that
sensors do not move together in close proximity, and thus,
they produce independent measurement results.

B. Signal Propagation Model

The received primary signal strength at a cooperative sensor
i∈N can be expressed as [6]:

PR,i = Po + α10 log10(do/di) + wi, (dB) (1)

where Po is the received power at the reference distance do,
α the path-loss exponent, which typically ranges from 2 to
5; α depends on a network environment and we assume that
it is not known a priori to the secondary system, di the
distance between the primary transmitter and sensor i, and
wi the measurement error, which accounts for the errors in
the energy detector, multi-path fading, and shadow fading. We
use this signal propagation model as the “ground truth”. Note
that, although we use a simple signal propagation model, our
proposed attack-detection method is generic, and does not rely
on any specific choice of model.

1We use the terms secondary users and sensors interchangeably as we focus
on spectrum sensing functionality of secondary users.

2It is relatively easy for the BS to obtain the location of large-scale primary
transmitter, e.g., TV transmitters, via geo-location database [3], [26], [27].
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Fig. 1. A CRN model with primary-secondary coexistence: During each
sensing period, cooperative sensors perform energy detection to measure the
received primary signal strength, and report the sensing results to the BS to
determine the presence/absence of a primary signal as well as to estimate
its states, e.g., transmit-power. Sensing reports could be contaminated by, for
example, attacks or hardware/software faults, and IRIS at the BS detects
such abnormal sensing reports via iterative state estimation.

We assume that multi-path fading can be ignored when
sensors perform spectrum sensing on a wide channel band-
width for a long period of time, e.g., coherence time [29]. For
example, in 802.22 WRANs, the impact of multi-path fading
can be ignored when sensing the entire 6 MHz TV channel
[30]. The shadow fading gain is location-dependent and it can
thus be estimated at each sensor location. So, the fading gain
for each sensor can be considered as a specific realization of
a normal random variable [5].

C. System State Estimation Model

We define the problem of state estimation as that of esti-
mating the primary transmitter’s power Po and the path-loss
exponent α, i.e.,

x , [Po α]T . (2)

Let PR =[P1, . . . , PN ]T denote the vector of the primary’s
signal strength received at N cooperative sensors. Then, the
primary signal power (i.e., the energy detector output) received
at cooperative sensors can be expressed as:

PR = Hx + w, (dB) (3)

where H is the channel gain matrix between the primary
transmitter and the cooperating sensors, i.e.,

H ,






1 10 log
10

(do) − 10 log
10

(d1)
...

...
1 10 log10(do) − 10 log10(dN )






N×2

, (4)

where N is the number of cooperating sensors. Note that H is
determined by the network topology, i.e., {di}N

i=1
. We assume

that noise w = [w1, . . . , wN ]T at cooperating sensors can be
approximated as Gaussian distribution, i.e., wi∼N (0, σ2

w,i).
Given that the noise w follows a Gaussian distribution, the

maximum likelihood estimator (MLE) of the state variables
can be expressed as [31]:3

x̂ = (HT
ΣwH)−1

H
T
ΣwPR, (5)

3The estimate in Eq. (5) is also the solution to the weighted least-square
criterion and the minimum variance criterion.
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Fig. 2. The IRIS framework: IRIS resides at the BS and safeguards the cooperative sensing by filtering out abnormal sensing reports via iterative
estimation of the system state parameters (i.e., the transmit-power Po and the path-loss exponent α). The estimated state parameters will be used for the
detection of a primary signal and spectrum reuse planning.

where Σw is a diagonal matrix whose elements are reciprocals
of the variances of the measurement errors:

Σw ,








σ−2

w,1

σ−2

w,2

. . .

σ−2

w,N








, (6)

where σ2

w,i is the variance of the cooperative sensor i. For
the ease of presentation, we assume that σdB,i = σdB and
σm,i =σm ∀i.

Then, the state vector x=[Po α]T can be expressed as:

x̂ =

[

P̂o

α̂

]

= (HT
ΣwH)−1

H
T
ΣwPR

= (HT
ΣwH)−1

H
T
Σw(Hx + w)

= x + (HT
ΣwH)−1

H
T
Σww. (7)

The estimated state vector x̂ will be used for calculating
the measurement residual (in Eq. (10)), based on which IRIS
detects and filters out abnormal sensing reports. We will
elaborate on the design of the attack detector in Section IV.

We define the estimation error of the state vector x as:

φ , ‖Po − P̂o‖2 + ‖α − α̂‖2, (8)

where ‖ • ‖2 represents the L2 norm. We will henceforth omit
the subscript for brevity. The estimation error will be used to
evaluate the estimation performance of IRIS in Section VI.

D. Attack Model

1) Attack Scenarios: We consider the following scenarios.

• The sensors may be compromised by the attackers, and
their sensing reports are manipulated by the attackers,

• The sensors may be exposed to a falsified primary signal
emitted by an attacker, and their measurements are biased,

• The sensors may be faulty, thus sending erroneous sens-
ing reports with a non-zero offset.

A common consequence of the above attack/fault scenarios
is that the sensing results, i.e., measured received signal
strengths (RSSs), reported to the BS will be distorted some-
what, thus affecting the final state estimation results. So,
we focus on the first two attack scenarios, which are more

challenging. In particular, we consider the following attack
scenarios: Attackers

• can compromise multiple (e.g., up to k) sensors, and craft
their sensing reports simultaneously, and

• are intelligent enough to know the presence of a primary
signal and attack detection rule of the fusion center.

2) Attacker’s Goal: The goal of an attacker is to mislead the
BS to make a wrong decision on the primary users’ channel
usage activity. For example, when no primary signal exists,
the attacker may inject positive offsets to the sensing reports
to create an illusion of a primary signal, causing unnecessary
channel vacation of secondary users, and vice versa. These
attacks will ultimately result in either excessive interference to
primary communications or waste of spectrum opportunities.
To achieve this goal, the attacker must be able to incur a
significant error in the state estimation, e.g., transmit-power

P̂o, while not being detected by the fusion center. We study
the feasibility of bypassing the attack detector via analysis in
Section V-B and via simulations in Section VI.

3) Final Sensing Reports: The final sensing reports from
the cooperative sensors can be expressed as follows:

P
a

R = PR + a, (9)

where PR is the received primary signal strength vector in
Eq. (3) and a=[a1, . . . , aN ]T is an attack vector where ai∈R

is an attack strength. Let M⊆N denote the set of sensors
whose sensing reports affected by attackers either directly (i.e.,
spectrum-sensing data falsification) or indirectly (i.e., primary
emulation). If sensor i’s report is neither affected by the attack,
i.e., i /∈M, nor faulty, then ai =0; otherwise, the attacker can
introduce an arbitrary attack strength.

IV. THE PROPOSED APPROACH

In this section, we overview the IRIS framework, discuss
the design rationale of the IRIS’s attack detector, and formu-
late the attack detection problem as a hypothesis testing.

A. IRIS Framework

The IRIS framework, residing at the BS, consists of the
following three functional building blocks, as shown in Fig. 2,
which closely interact with each other:



• State estimator that estimates the system states based on
the collected sensing reports at the BS,

• Attack detector that detects the existence of abnormal
sensing reports, and then pinpoints and filters them out,
and

• Decision-maker that makes a final decision on the pres-
ence of a primary signal based on the estimated transmit-
power of the primary transmitter.

First, the state estimator and the attack detector constitute
the core of the IRIS framework. These two components offer
three main benefits. They enable the BS to:

• accurately and promptly detect and filter out abnormal
sensing reports without requiring any information about
attack types or strategies,

• greatly reduce computational overhead since they require
the BS to check only a single parameter, i.e., the measure-
ment residual, instead of validating every sensing report
as in [14], [15], and

• efficiently coexist with primary users by providing accu-
rate estimation of the transmit-power level of the primary
transmitter.

Next, the decision-maker in IRIS adopts the threshold-
based spectrum access decision rule, as shown in Fig. 3.

For example, if the estimated transmit-power P̂o is above
the upper threshold THupper, all of the secondary users in
the system must vacate the channel; if the transmit-power is
below the lower threshold THlower (≤ THupper), then the
secondary users can fully utilize the channel without any
limit. Otherwise, they can utilize the channel with reduced
transmit-power to meet the interference constraints to the
primary communications. In Section VI, we demonstrate the
feasibility of this approach by showing that IRIS accurately
estimates the transmit-power even under challenging attack
scenarios. The detection thresholds must be carefully chosen
by the system designer so as to maximize incumbent detection
performance.

Note that IRIS is designed to stop filtering sensing reports
either when the measurement residual (in Eq. (10)) drops
below a predefined threshold or when the number of remaining
sensing reports becomes less than or equal to Nmin, whichever
comes first. This prevents over-filtering of sensing reports in
the case where the measurement residual becomes large due
to the smaller set of sensing samples.

B. Design Rationale of the Attack Detector

Here we elaborate on the design principle of the attack
detector in IRIS. The key insight behind the attack detection
is that the sensing reports must demonstrate consistency among
themselves since the received primary signal strengths are
governed by the physical aspects of the network environments.
In particular, we show that the measurement residual in state
estimation follows the χ2-distribution in the absence of attacks
(in Section IV-C). To exploit this relationship, IRIS monitors
the measurement residual as a criterion for consistency-check
among sensing reports. A measurement residual residing out-
side the expected range will be interpreted as an indication of
the existence of abnormal sensing reports. Consequently, any
sensing report with a large deviation, regardless of the attack
type, will be easily detected by the attack detector and will
be filtered out in the state estimation process. Therefore, an
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Fig. 3. The proposed incumbent detection rule: IRIS makes a final de-

cision based on the estimated transmit-power (P̂o) of the primary transmitter.

attacker must lower the attack strength to evade the detection,
thereby being able to make only a negligible impact on the
primary detection process. One important feature of IRIS is
that it focuses on inconsistency among sensing reports, and
thus the attack type, e.g., PUEA or SSDF, makes no difference.
The detailed description of the proposed attack detection rule
in IRIS that demonstrates this feature will be discussed in
Section V.

C. Problem Formulation

We first formulate the attack detection problem as a binary
hypothesis testing, and then characterize the distribution of the
measurement residual, which will form the basis of our attack
detector.

1) Hypothesis Testing: The estimation of measurement
residual, i.e., the difference between the measured RSSs and
the estimated RSSs, denoted as ê, can be expressed as:

ê = PR − Hx̂

= Hx + w − H(x + (HT
ΣwH

−1)HT
Σww)

= w − H(HT
ΣwH)−1

H
T
Σww

= (I − H(HT
ΣwH)−1

H
T
Σw)w. (10)

The measurement residual evaluates the closeness of the
measurements to the truth. Eq. (10) indicates that the measure-
ment residual ê depends on the uncertainty in RSSs induced
by the measurement noise, i.e., w, and thus attacker-injected
deviations in sensing reports will increase the variance of the
error.

Given that the noise power w in Eq. (3) follows a Gaussian
distribution, i.e., w ∼ N (0,Σw) where Σw is defined in
Eq. (6), the measurement residual vector ê in Eq. (10) follows
a multivariate Gaussian distribution, i.e.,

ê ∼ N (0,Σe), (11)

where Σe =ΠΣ
−1

w Π, and Π=I− H(HT
ΣwH)−1

H
T
Σw.

Then, the attack detection problem can be cast into a binary
hypothesis testing problem where the observed measurement
residual ê belongs to one of two classes, H0 or H1, where:

H0 : ê ∼ N (0,Σe) (attack does not exist)

H1 : ê ≁ N (0,Σe) (attack exists).

The above hypothesis testing indicates that IRIS in the
BS will assume the existence of abnormal sensing report(s)
if the measurement residual does not belong to the expected
distribution under H0, which can be approximated as χ2-
distribution as we discuss next.
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2) Characterization of the Measurement Residual: Let

‖ẽ‖ =
√

êTΣwê denote the normalized L2 norm of the
measurement residual. Then, ‖ẽ‖2 follows χ2-distribution with
k = N − M degrees of freedom where N is the number of
cooperative sensors and M is the number of state variables
(i.e., M = 2) [32]. Thus, the cumulative distribution function
(c.d.f.) of the normalized L2 norm of the measurement residual
‖ẽ‖2 is given as:

Fχ2(x; k) =
γ(k/2, x/2)

Γ(k/2)
, (12)

where Γ(•) is the Gamma function, and γ(•, •) is the lower
incomplete Gamma function.

Fig. 4 compares the empirical c.d.f. of the normalized
measurement residual (dotted line) and that of the approx-
imated χ2-distribution (solid line). The figure shows that
the simulation results closely match the analytical results.
Although it is not shown in the figure, we observed that the
approximation is very accurate even with a smaller number of
sensors (i.e., N <40).

V. ATTACK DETECTION

In this section, we design a rule for detecting attacks and
a method for pinpointing abnormal sensing reports. We then
analyze the possibility of evading the detection rule, and finally
present algorithms for state estimation and attacker detection.

A. Design of Attack-Detection Rule

Based on Eq. (12), IRIS checks the consistency among
the sensing reports by comparing the measurement residual
with a predefined threshold value. Specifically, IRIS uses the
following rule for attack detection:

δL2
=

{
1, ‖ẽ‖ > η H0

0, otherwise, H1

(13)

where the attack-detection threshold η is chosen to meet a
desired level of false-alarm (i.e., triggering attack detection
and filtering process) probability P ∗

FA.

The probability of attack false-alarm with the decision
threshold η ∈ R is given as:

P a
FA , Pr(‖ẽ‖ > η |H0)

= 1 − Fχ2(η2; k), (14)

where Fχ2(·) is the c.d.f. of the measurement residual defined
in Eq. (12).

In the absence of attack, the probability that the attack
detector filters out n∈N legitimate sensing reports is (P a

FA)n.
For example, when P a

FA =0.1, the probability that IRIS will
mistakenly filters out 5 legitimate sensing reports is 10−5.

Based on Eq. (14), the decision threshold η to achieve a
desired level of false-alarm rate P ∗

FA is given as:

η=
√

F
−1

χ2 (1 − P ∗
FA; k). (15)

Based on Eqs. (14) and (15), the attack mis-detection
probability (i.e., no triggering of the attack detection even in
the presence of manipulated sensing reports) can be expressed
as:

P a
MD , Pr(‖ẽ‖ < η |H1,a 6= 0). (16)

The above attack-detection rule in Eq. (13) offers two main
benefits as follows.

• Its detection performance depends only on the number
of cooperative sensors, N , and thus, it works well under
both hypotheses, H0 and H1.

• It is lightweight, requiring the BS to check only a
single parameter, i.e., the measurement residual, instead
of validating each sensing report as in [14], [15].

These advantageous features make the attack-detection rule
in Eq. (13) suitable for various network environments and
attack scenarios with minimal processing overheads.

Remark: A key problem is the choice of attack-detection
threshold η, by which IRIS can strike a balance between
attack false-alarm (P a

FA) and mis-detection rate (P a
MD). How-

ever, our simulation study indicated that the threshold η set
based on the desired level of false-alarm rate may work well
only for the case of a small number of compromised sensors.
When multiple sensing reports are compromised, η needs to
be set aggressively to achieve accurate estimation results. The
impact of η on the performance of IRIS will be detailed in
Section VI-C.

B. An Attack Strategy to Evade the Detector

We study the attack-detection performance by analyzing the
conditions under which the attack detection rule in Eq. (13)
can be evaded. In particular, we consider the worst-case
scenarios where an attacker compromises a set M ∈ N of
sensors and controls their sensing reports simultaneously in
order to maximize the chance to evade the detection rule. Note
that this is much stealthier than PUEA since the attacker has
a much finer-grained control over sensing reports.

We assume that the attack vector, introduced in Eq. (9),
is a 6= 0 and let x̂a = x̂ + c denote the vector of estimated
state variables, i.e., P̂o and α̂, where c is the vector of state
estimation errors induced by the attack vector a. Therefore, if



a 6=0, then c 6=0. The measurement residual in the presence
of a non-zero attack vector a can be expressed as:

‖ẽa‖ = σ−1

w ‖Pa

R − Hx̂a‖

= σ−1

w ‖PR + a − H(x̂ + c)‖

= σ−1

w ‖PR − Hx̂ + a − Hc‖

≤ σ−1

w ‖PR − Hx̂‖ + σ−1

w ‖a− Hc‖. (17)

Recall that the goal of an attacker is to keep the measure-
ment residual below the detection threshold, i.e., ‖ẽa‖<η, to
evade detection, while affecting the estimation results.

Lemma 1 Attacks will not be detected by the attack-detector
in Eq. (13) when the attack vector is set to a=Hc.

Proof: Assume that the original measurement PR can
evade the attack detector, i.e., ‖ẽ‖ = σ−1

w ‖PR − Hx̂‖ ≤ η.
If the attack vector satisfies the condition a=Hc, then from
Eq. (17), we have:

‖ẽa‖ ≤ σ−1

w ‖PR − Hx̂‖ + σ−1

w ‖a − Hc‖
︸ ︷︷ ︸

0

≤ η. (18)

Thus, the lemma follows.

The lemma indicates that the attacker must be able to find
an attack vector a such that a = Hc, i.e., the attack vector
a must be a linear combination of column vectors of H, to
ensure it will evade the attack detector. Here we examine the
feasibility of constructing such an attack vector a s.t. a=Hc.

The attacker can find an attack vector satisfying the con-
dition a = Hc as follows. First, let us define the projection
matrix of H as P=H(HT

ΣwH)−1
ΣwH

T and B=P − I.
Then, we can obtain an equivalent representation of a = Hc

as [32]:

a = Hc ⇔ Pa = PHc ⇔ Pa = Hc ⇔ Pa = a

⇔ Pa − a = 0 ⇔ (P − I)a = 0

⇔ Ba = 0. (19)

Let us consider the case where an attacker compro-
mises k specific sensors. Then, the attack vector is a =
(0, . . . , 0, a1, 0, . . . , 0, ai, 0, . . . , 0, ak, 0, . . . , 0)T where ai 6=0
if i ∈ M. Let a

′ = [a′
1
, . . . , a′

k]T where a′
j is the j-th

non-zero element in the original attack vector a and let
B

′ = (b′
1
, . . . ,b′

k) the columns of B corresponding to the
non-zero elements of a. Then, we can simplify the condition
a=Hc as:

Ba = 0 ⇔ B
′
a
′ = 0. (20)

The following proposition derives the sufficient condition
on the minimum number of sensors that an attacker must
compromise to find an attack vector s.t. a=Hc.

Proposition 1 Assuming a full-rank matrix H, an attacker
must compromise at least k specific sensors, where k ≥
N −M +1, to find attack vectors a=Hc such that a 6=0 and
ai =0 for i /∈M.

Proof: Based on Eq. (19), a = Hc ⇔ Ba = 0 where
B = P − I = H(HT

ΣwH)−1
ΣwH

T − I. The channel gain
matrix H (defined in Eq. (4)) is an N×2 matrix, and thus its
rank is rank(H) = 2. P is the projection matrix of H, and
its rank is rank(P) = rank(H) = 2. Since B = P − I, its

rank is rank(B) = N − 2, and rank(B′) ≤ N − 2. When
k ≥ N − M + 1, rank(B′) ≤ N − 2 ≤ k − 1, and thus,
rank(B′)<k. This indicates that B′ is a rank-deficient matrix
when k≥N −M +1, and thus, there exist an infinite number
of non-zero solutions for a

′ that satisfies the relation B
′
a
′ =

0. Therefore, an attacker can always find an attack vector a

that can evade the detection rule by compromising at least
N − M + 1 sensors.

Proposition 1 indicates that it is possible for an attacker
to launch a powerful attack that can completely evade the
detection, while affecting the estimation results of the system
states. However, launching such a stealthy attack requires
the attacker to physically capture and compromise all but
one cooperative sensor, i.e., N − 1, since M = 2 in our
case, which is infeasible even for a capable attacker as the
sensors are likely to be distributed in a large geographical area.
For example, in 802.22 WRANs, the cell radius is typically
33 km (up to 100 km) [8]. We can thus conclude that the L2-
norm detector in IRIS can reliably detect the existence of
attacks even in challenging attack scenarios where a significant
fraction of the sensing reports are manipulated.

The assumption of a full-rank of matrix H in Proposition 1
is reasonable, since sensors are highly likely to be located
at different distances from the primary transmitter, i.e., di 6=
dj ∀i 6= j ∈ M in Eq. (4). If some of the sensors are co-
located in close proximity and are thus of about same distance
to the primary transmitter, then the rank of H may be reduced,
making it easier to find an attack vector that satisfies a=Hc.

C. Pinpointing Abnormal Sensing Reports

Once IRIS detects the existence of manipulated sensing
reports using the detection rule in Eq. (13), it proceeds
to identify the most suspicious sensing report and filters it
out. IRIS repeats this process until the remaining sensing
reports pass the detection rule. To accurately pinpoint the
manipulated sensing reports without incurring extra overhead,
IRIS excludes the sensing report with the largest normalized
residual, i.e., IRIS filters out the sensor i∗’s report such
that i∗ = maxi∈S{|ei|}. This is also known as the largest
normalized residual criterion [33].

D. IRIS Algorithm

Algorithm 1 describes the three-step approach of IRIS.

S1. Once the BS collects the sensing reports, IRIS estimates

the state variables, i.e., P̂o and α̂, and calculates the
normalized measurement residual, i.e., ‖ẽ‖. Then, IRIS
compares the measurement residual with the attack detec-
tion threshold η set to achieve a desired attack false-alarm
rate.

S2. If the measurement residual exceeds the threshold, IRIS
assumes that there exists at least one abnormal sensing
report, and pinpoints the sensing report that contributes
to the measurement residual most, as described in Algo-
rithm 2. IRIS repeats this detection and filtering process
until the measurement residual drops below the threshold
η or the number of remaining sensing reports hits the
lower threshold, i.e., min num sensor.

S3. After the attack detection and filtering process, IRIS de-
termines the presence/absence of a primary signal based
on the estimated transmit-power level, as we discussed



Algorithm 1 ALGORITHM FOR COOPERATIVE SENSING

WITH ITERATIVE STATE ESTIMATION

At the end of each sensing period, IRIS performs the following

steps

1: S ← Cooperative sensor set
2: num_sensor ← |S|
3: min_num_sensor ← fa×num_sensor

// fa∈ [0, 1]: fraction of compromised sensing reports
4: η ← Set the attack detection threshold

// Step 1. Perform state estimation

5: x̂ = (P̂o, α̂)← Update the state estimates based on the sensing
reports reported by the sensors in S

6: ‖ẽ‖ ← Compute the normalized L2 norm of the measurement
residual using Eq. (10)

// Step 2. Perform attack detection
7: while (‖ẽ‖ > η) and (num_sensor ≥ min_num_sensor)

do
8: i∗ ← IRISdet(S , ẽ) // Pinoint the compromised sensor
9: S ← S \ {i∗} // Filter out the sensor

10: num_sensor ← num_sensor −1
11: x̂ ← Update the state estimates with the updated sensor set

S
12: ‖ẽ‖ ← Calculate the L2 norm based on the updated x̂

13: end while

// Step 3. Perform incumbent detection

14: if P̂o > THupper then
15: Primary user exists and vacate the channel

16: else if P̂o < THlower then
17: Primary does not exist
18: else
19: Primary user exists and use the channel with reduced transmit-

power level

20: end if

Algorithm 2 ALGORITHM FOR PINPOINTING THE AT-
TACKER

Procedure IRISdet(S , ẽ)
1: i∗ ← arg maxi∈S{|ẽi|} // Pinpoint the compromised sensor

2: return i∗

in Section IV-A. Finally, IRIS makes a decision on
spectrum access based on the estimated transmit-power
level.

In essence, IRIS successfully tolerates attacks by accu-
rately detecting the existence of abnormal sensing reports, and
pinpointing the compromised sensing reports. The estimated
transmit-power level is not only used to detect the incumbent
signal, but also to enable more efficient coexistence between
primary and secondary systems.

VI. PERFORMANCE EVALUATION

We now evaluate the performance of IRIS via MATLAB-
based simulations. We first describe the simulation setting,
and then demonstrate IRIS’s attack-tolerance under various
network environments and attack scenarios.

A. Simulation Setup

We consider a CRN where primary and secondary users
coexist and the radius of the secondary cell is 1 km and the
primary transmitter is located 5 km away from the secondary
BS. The power of the primary transmitter is set to Po =4 kW.
The number of cooperative sensors is N =40 and Nmin =5,

TABLE I
THE SYSTEM PARAMETERS IN SIMULATIONS

Parameter Value Comments

Dp 5 km Distance between primary and secondary BS

Rs 1 km Radius of secondary network

do 5 m Reference distance

Po 4 kW Transmission power

α 4 Path-loss exponent

σw 0.3 dB Noise power variance

N 40 Number of cooperative sensors

Nmin 5 Minimum number of cooperative sensors

unless otherwise specified. Table I lists the system parameters
used in our simulation.

To demonstrate the attack-tolerance of IRIS, we consider
two representative attack scenarios as follows.

• Spectrum Sensing Data Falsification Attack: An attacker
compromises a specific set of sensors, and manipulates
the measurement results by injecting arbitrary values to
sensing reports.

• Primary User Emulation Attack: An attacker broadcasts
a falsified primary signal, which affects the neighboring
sensors’ measurements.

The following two performance metrics are used in our
evaluation of IRIS.

• Estimation error (φ): we measure the state estimation
error defined in Eq. (8). The accuracy of the estimated
transmit-power can be translated to the incumbent detec-
tion performance.

• Attack false-alarm (P a
FA) and mis-detection (P a

MD) rate:
we evaluate the probabilities of falsely-triggering and
mis-triggering the attack detection defined in Eqs. (14)
and (16).

Each simulation is run 104 times and their average values
are taken as the performance measures.

B. Estimation Performance of IRIS

Before delving into the attack scenarios, we first character-
ize the estimation error performance of IRIS in the absence
of attacks for various network parameters. In particular, we
identify the following three key factors that can affect the
estimation performance:

• Number of cooperative sensors (N ),
• Measurement error in spectrum sensing (σw), and
• Transmit-power of the primary user (Po).

We study how these network parameters affect the perfor-
mance of state estimation, which is crucial in the proposed
estimated transmit-power-based incumbent detection.

First, a simple way to improve the estimation performance
is to increase the number of cooperative sensors. Fig. 5
plots the empirical probability distribution function (p.d.f.) of

the estimated parameters, i.e., P̂o and α̂. As expected, the
estimation becomes more accurate as the number of cooper-
ative sensors increases. While this will allow the secondary
users to efficiently reuse the spectrum based on the estimated
primary’s transmit-power level, a larger number of cooperative
sensors will incur sensing overhead, e.g. time and energy.
Therefore, the number of cooperative sensors must be carefully
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chosen to strike a balance between the sensing overhead, and
the spectrum efficiency that can be gained from improved
incumbent detection performance [5], [29].

Second, the variance of the measurement in spectrum sens-
ing is also an important factor that can affect the estimation
accuracy. The measurement variance depends mainly on (i)
shadow and multi-path fading and (ii) inaccuracy of the
energy detector. Fig. 6(a) shows that the average estimation
error φ grows almost linearly as the measurement error (in
terms of σw) increases. This implies that minimization of the
measurement variance is the key to enhance the estimation
performance. Fortunately, in stationary sensor environments
where sensors do not move, e.g., sensors (also called as
CPEs) in IEEE 802.22 WRANs, the shadow fading gains
between the primary transmitter and sensors can be estimated
via the measurement at the time of sensor deployment [5].
Moreover, the measurement error of the energy detector can be
controlled by enlarging the spectrum sensing time [29]. Thus,
we assume that the standard deviation of the measurement
error is σw =0.3 dB throughout the simulation.

Third, one might think that the estimation performance
would be better with a higher transmit-power. However,
Fig. 6(b) shows that the average estimation error remains very
small (i.e., φ<1), and does not vary much with the transmit-
power level. In fact, this confirms our observation that the
estimation error is independent of the transmit-power level, as
shown in Eq. (10) in Section III. Thus, the proposed attack
detection scheme can be used in a wide range of network
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For the mis-detection rate, we assume a single compromised sensor Na =1

and attack strengths in ∆∈{1, 3, 5} dB.

environments, regardless of the transmit-power of the primary
user or network topology, i.e., relative distances between the
primary transmitter and sensors. More importantly, this implies
the plausibility of our proposed incumbent detection based
on estimated transmit-power. In Section VI-D, we further
demonstrate IRIS’s high accuracy in estimating the transmit-
power even when a significant fraction of sensing reports are
compromised.

C. Attack Detection Performance

As discussed in Section IV, a key problem in the design
of IRIS is the choice of the attack-detection threshold η. We
first investigate the tradeoff between attack false-alarm and
mis-detection rates for various attack-detection thresholds. We
then study the attack-detection performance in the presence of
single and multiple manipulated sensing reports.

1) Tradeoff in Selecting Attack Detection Threshold: Here
we study the impact of attack detection threshold η on attack
detection performance. η must be chosen carefully to strike
a balance between the attack false-alarm and mis-detection
rates. Fig. 7 plots the attack detection performance, i.e., P a

FA

and P a
MD , for various attack-detection threshold values in the

range η ∈ [0, 28]. Fig. 7(a) indicates that, when the threshold
is too low, IRIS becomes too aggressive in attack detection,
thus suffering from high attack false-alarm rate. The figure also
shows that the simulation results closely match the analytical
results obtained from Eq. (14) in Section IV.

Fig. 7(b) represents attack mis-detection rate given an
assumption that there is a single manipulated sensing report
(i.e., Na =1) with different attack strengths at ∆∈{1, 3, 5} dB.
Unlike the false-alarm rate, the attack mis-detection rate
increases as η increases. Although the mis-detection rate is
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relatively high for weak attack strengths, i.e., ∆=1 dB, such
a small deviation in sensing reports makes only a negligible
impact on state estimation, and can thus be ignored. The
figure also shows that IRIS suffers lesser mis-detection with
stronger attack strengths.

2) Case I (A Single Compromised Sensing Report): We
now demonstrate IRIS’s effectiveness in pinpointing the
attacker. In the simulations, we assume a single manipulated
sensing report with various attack strengths ranging from 0
to 5 dB. Here we assume a fixed attack detection threshold at
η = 7.04, which corresponds to the attack false-alarm rate of
P a

FA =0.1 (see Eq. (15) in Section V).

Fig. 8(a) depicts the attack mis-detection and attack mis-
identification rates. The attack mis-detection rate is defined as
the probability that the measurement residual remains below
the detection threshold η, and thus the attack detection process
is not triggered even in the presence of manipulated sensing
report(s). The attack mis-identification rate is defined as the
average fraction of instances that IRIS mistakenly identifies
and filters out a legitimate sensing report. The figure shows
that IRIS accurately detects and pinpoints the manipulated
sensing report with as weak a attack strength as 2 dB. When
the attack strength is lower than 2 dB, the measurement
residual will remain below the threshold, as shown in Fig. 8(c),

and thus the attack detection will not be triggered. As the
attack strength increases, however, the measurement residual
is highly likely to exceed the attack-detection threshold, and
thus the mis-detection rate is close to 0.

Fig. 8(b) plots the average as well as ±0.25 σ of the
error in the estimation of transmit-power. It shows that IRIS
maintains a small error under various attack strengths. The
estimation error is maximized when the attack strength is
around 1 dB at which the measurement residual hits the attack-
detection threshold η, as shown in Fig. 8(c). When the attack
strength is weak (i.e., < 1 dB), the impact of the attack is
negligible even though manipulated sensing reports can evade
the attack detector. On the other hand, IRIS can easily detect
the sensing reports with large deviations (i.e., > 1 dB), and
thus, the estimation error remains low.

Fig. 8(c) shows that the measurement residual has a pattern
similar to that of estimation error, as shown in Fig. 8(b).
Moreover, the measurement residual is always below the
detection threshold η =7.04 (the dashed line), which was set
to achieve a desired attack false-alarm rate of P a

FA =0.1.

3) Case II (Multiple Compromised Sensing Reports):
Next, we examine IRIS’s attack-detection performance when
multiple sensing reports are manipulated (e.g., due to PUEA
or SSDF attacks). Specifically, we study the impact of attack-



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

number of compromised sensing reports (N
a
)

e
s
ti
m

a
ti
o

n
 e

rr
o

r 
in

 t
ra

n
s
m

it
−

p
o

w
e

r 
(d

B
)

 

 

∆
max

 = 1dB

∆
max

 = 3dB

∆
max

 = 5dB

∆
max

 = 7dB

(a) Attack mis-detection rate

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

number of compromised sensing reports (N
a
)

a
tt
a
c
k
 m

is
−

d
e
te

c
ti
o
n
 r

a
te

 

 

∆
max

 = 1dB

∆
max

 = 3dB

∆
max

 = 5dB

∆
max

 = 7dB

(b) Estimation error in transmit-power

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

number of compromised sensing reports (N
a
)

n
u
m

b
e
r 

o
f 
v
a
lid

 s
e
n
s
in

g
 r

e
p
o
rt

s

 

 

∆
max

 = 1dB

∆
max

 = 3dB

∆
max

 = 5dB

∆
max

 = 7dB

(c) Number of valid sensing samples

Fig. 10. Impact of number of manipulated sensing reports on estimation performance: (a) The attack mis-detection rate decreases as the number
of manipulated sensing reports increases and (b) the number of valid sensing reports that passed the detector also decreases. (c) The estimation error in
transmit-power is maintained small regardless of the attack strengths, until an almost half of the sensing reports are contaminated.

detection threshold η on the attack-detection and estimation
error performance. In the simulations, we assume that attack
strength is fixed at ∆=5 dB. Fig. 9(a) shows the tradeoff in
the design of the detection threshold, i.e., when the detection
threshold is set too low (i.e., η < 2), IRIS tends to over-
filter sensing reports; otherwise, it tends to under-filter sensing
reports. Fig. 9(b) shows that such over- or under-filtering
degrades estimation error performance due to either the lack of
enough samples or the presence of manipulated sensing reports
in the state estimation. The figure shows that the optimal
detection threshold that minimizes the average estimation error
is η∗≈2. Fig. 9(c) shows the sharp increase in measurement
residual as the attack-detection threshold exceeds 2 where
IRIS starts to over-filtering the sensing reports.

Although we found the optimal attack detection threshold η∗

for the specific case of Na =5, the optimal threshold may vary
with the attack scenario, such as the number of compromised
sensing reports or attack strengths. We observed, however, that
the attack detection performance does not critically depend on
the above factors, and η=2 works reasonably well in various
attack scenarios, as we will observe in the next subsection.
Henceforth we set η=2.

D. Impact of Attack Population

We now consider IRIS’s attack-tolerance by studying the
impact of number of compromised sensors on state estimation
performance. We assume that the BS employs N = 80
cooperative sensors, and the number of manipulated sens-
ing reports ranges from 1 to 79. Each compromised sensor
launches attacks with the strength uniformly distributed in
[0, ∆max] dB, i.e., ai = rand() · ∆max ∀i ∈ M, where
∆max∈{1, 3, 5, 7} (dB). We set the attack-detection threshold
at η=2, based on the observation made in Fig. 9.

Fig. 10(a) plots the average as well as ±0.25 σ of the
estimation error in transmit-power. It shows that the error is
kept small, i.e., less than 5 dB, until almost half of the sensing
reports are manipulated, regardless of the attack strength.
When the number of manipulated sensing reports exceeds
50 % of the entire set of sensing samples, the estimation error
behaves differently according to the attack strength, indicating
that the attack is effective only when the majority of the
sensors are compromised.

Fig. 10(b) shows that IRIS suffers from a large attack mis-
detection rate under weak attacks, i.e., ∆max =1 dB. However,
as shown in Fig. 10(a), such a weak attack fails to cause a
significant estimation error. On the other hand, as the attack
becomes stronger, the attack mis-detection rate decreases
drastically as the number of compromised sensors increases.
For example, when ∆max = 5 dB, the attack mis-detection
rate drops below 10 % as the number of compromised sensing
reports exceeds Na = 4, i.e., 4/80= 5 % of the total sensing
reports.

Fig. 10(c) plots the average number of sensing reports that
passed the detector. It decreases initially as the number of
manipulated sensing reports increases, but it starts to increase
when a significant fraction of the sensing reports are com-
promised, because identifying contaminated sensing reports,
which constitutes the majority, becomes very difficult.

E. Performance Comparison

Fig. 11 compares the error in estimating transmit-power
among three schemes: (i) IRIS with the attack detector, (ii)
IRIS without the attack detector, and (iii) statistics-based
heuristic method in [14] (denoted as Outlier in Fig. 11).
In Outlier, the BS filters out the sensing reports that fall
outside the range [e1 − δ · eiqr, e3 + δ · eiqr] where e1 (e3)
represents the first (third) quartile of the sensing reports, and
eiqr =e3−e1 is the interquartile range. δ is a control knob that
adjusts the aggressiveness of the detector, which is a design
parameter. In the simulations, we assume N = 80, Na = 40
and the attack strength is in the range of ∆max∈ [1, 20] (dB).
In the absence of the attack detector, the estimation error
almost linearly increases with the attack strength. On the
other hand, the performance of Outlier depends critically
on δ. For example, when δ = 0.5, the performance suffers
from large estimation error due to the over-filtering of sensing
reports. When δ = 1, the error decreases, but the estimation
performs worse than IRIS without the attack detector. This
is because the Outlier method mistakenly filters out too
many legitimate sensing reports since its design does not take
into account the inherent heterogeneity in sensing reports due
to their geographical locations. By contrast, IRIS with the
attack detector maintains small estimation error, thanks to its
ability to accurately detect abnormal sensing reports based on
the consistency check we introduced in Section V.
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Fig. 11. Comparison of transmit-power estimation performance: IRIS
with the attack detector maintains a small transmit-power estimation error,
outperforming the other detection schemes, i.e., IRIS without the attack
detector and method Outlier.

In summary, we can conclude that IRIS is (i) highly robust
even when a significant fraction of the sensors are compro-
mised, and (ii) highly accurate in estimating system states even
in challenging attack scenarios. These two characteristics make
the incumbent detection rule based on estimated transmit-
power very attractive.

VII. CONCLUSION

In this paper, we proposed a robust spectrum sensing frame-
work, called IRIS, to enable efficient opportunistic spectrum
access in cognitive radio networks. The key insight behind
IRIS is that the received primary signal strengths are mainly
governed by the network topology as well as the PHY signal-
propagation property that attackers cannot easily compromise.
IRIS checks the consistency among the sensing reports with
estimated transmit-power and path-loss exponent to safeguard
the cooperative sensing. By checking the consistency among
the sensing reports, IRIS accurately detects the presence of
abnormal sensing reports, and then pinpoints and removes
them. As a result, IRIS greatly reduces the impact of attacks
on the effectiveness of cooperative sensing. Using in-depth
analysis and simulation, we demonstrated IRIS’s high attack-
tolerance even under very challenging scenarios, such as when
a significant fraction of sensors are compromised. IRIS can
be readily implemented and deployed in infrastructure-based
CRNs, such as IEEE 802.22 WRANs, while incurring only
small computation and communication overheads.
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