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Abstract—In this paper, we explore the escalating “arms race”
between fast-flux (FF) botnet detectors and the botmasters’
effort to subvert them, and investigate several novel mimicry-
attack techniques that allow botmasters to avoid detection. We
first analyze the state-of-art FF detectors and their effectiveness
against the current botnet threat, demonstrating how botmasters
can—with their current resources—thwart detection strategies.
Based on the realistic assumptions inferred from empirically
observed trends, we create formal models for bot decay, online
availability, DNS-advertisement strategies and performance, al-
lowing us to demonstrate the effectiveness of different mimicry
attacks and evaluate their effects on the overall online availability
and capacity of botnets.

I. INTRODUCTION

A botnet is a vast collection of compromised computers

under the control of a botmaster utilizing a Command-and-

Control (C&C) infrastructure. Among the numerous criminal

uses of botnets, one of the more advantageous is the botnet-

based hosting service, which proxies or redirects unsuspecting

users to illegal or nefarious content. This strategy grants

criminals a high level of anonymity while enabling easy and

centralized management of the malicious content. However,

because botnets are composed of thousands of disparate com-

promised systems from around the globe, all with varying

resources and network connectivity, it is not uncommon for

them to unpredictably go offline, disrupting the availability of

their nefarious service/content. As a result, botmasters adopt

fast-flux (FF) DNS techniques, which frequently change the

offline bots’ domain-name mappings to different bots’ IP

addresses. This increases the probability that the malicious

domain resolves to an online bot’s IP and provides highly

available and reliable content-hosting services despite frequent

node failures/disconnectivity.

While their tremendous success as service networks has

spurred the development of novel detection strategies, FF

botnets remain a persistent threat. The advent of fast, reliable

FF detection systems has not yet eradicated FF botnets; rather,

it coaxed them to evolve, developing more robust, efficient,

and stealthy mechanisms for subverting detection. This cycle

continues, with defenders and botmasters caught in an ever-

escalating “arms race”. Unfortunately for the good guys, bots

are free, easy to come by, capable of granting significant

amounts of coordinated processing power, and incredibly

effective sources of revenue.

† The work reported in this paper was supported in part by the Office of
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During our global monitoring of FF botnet domains, we

have observed that despite the detection mechanism or mit-

igation strategy imposed, botnets constantly evolve methods

for subverting them, growing into ever more formidable

systems—in many ways resembling enterprise-level Content

Delivery Networks (CDNs). While efficient when first intro-

duced, many FF detection systems quickly become outdated;

they are designed to detect the current advertising strategies

of FF botnets, which are all too easily and quickly adapted

to avoid detection. Thus, it is not sufficient to base FF detec-

tion on the current class of differentiating features. Instead,

improvements could be made if the botnets’ limitations were

also taken into consideration. While previous research has

focused on identifying behavioral features uniquely intrinsic to

FF botnets for detection, we have decided to take an alternate

approach; assuming the role of the enemy, we explored bot-

nets’ mimicry capabilities and limitations in evading detection.

Analyzing the resources currently available to FF botnets, we

developed models for their bot decay, online availability, DNS-

management strategies, and performance. Using these models,

we examined the potential success of novel mimicry attacks

against state-of-art FF detection systems, demonstrating that

such attacks are easily within the capacity of current botnets.

By better understanding the current arsenal botnets have at

their disposal and how it can be—and is being—applied to

defeat current detection strategies, we hope to foster improve-

ments to existing systems, as well as yield new insight into

the mimicry limitations of FF botnets.

II. BACKGROUND

In this section, we investigate the DNS IP-advertisement

patterns of current FF botnet and benign domain types. First,

we will describe how we set up a globally distributed DNS

monitoring system. Then, we will discuss different types of

domains and their unique features discovered through over

4 months of monitoring. Because most existing detection

systems rely on DNS features to detect FF botnets, our unique,

global perspective of IP advertising strategies helps us gain

insight into the current state of FF domains and their ability

to successfully evade detection via mimicry attacks.

A. Global DNS-Monitoring System

We created a distributed DNS-query engine called DIGGER,

deployed on 312 geographically disparate nodes in the Planet-

Lab testbed [10]. The nodes were chosen based on the location

of the DNS servers they queried, such that DIGGER would



TABLE I: Global distribution of DIGGER nodes by continent

issue queries to DNS servers in different geographic locations

around the world. Table I shows the continental distribution of

DIGGER nodes, which is reflective of the overall distribution

of available PlanetLab nodes.

DIGGER was deployed for over 4 months in early 2010 and

gathered global DNS-query results for domains compiled from

multiple sources, including online repositories of phishing

and malware websites as well as the top 1000 most popular

domains. On each node, for malicious and benign domains,

DIGGER performed DNS queries on their A (address) records,

NS (authoritative name server) records, NA records (A records

on name servers) and the reverse DNS (rDNS) lookup (i.e.,

PTR records) for the A and NA record IPs. DIGGER continued

to dig active domains periodically based on their observed

TTL. Domains determined to be offline1 were dug every 24

hours to discover if they came back online. For each domain,

DIGGER also collected connectivity information (used to

derive a bot online-decay model) on both A and NA record

IPs by attempting to establish TCP connections on ports 80

and 532. By applying simple heuristics on the aggregated data,

we manually identified and verified 45 FF domains by looking

for IP addresses with rDNS names indicative of compromised

computers (e.g., dynamic, dialup).

B. Domain Types

1) Fast-Flux Domains: FF domains are malicious domains

utilizing a FF DNS-advertisement strategy, typically built

atop botnets and used for scams where the potential profits

depend on the availability of the hosted services/content. To

counter the unreliable connectivity of the bots hosting the ma-

licious services/content, botmasters adopt FF DNS techniques

and advertise numerous IPs in their DNS-query results with

frequently-changing mappings between the domain name and

different bots’ IP addresses.

Figure 1-a illustrates the global IP usage—across all 312

DIGGER nodes—for an example FF domain. In the figure,

the Time axis represents the time (in seconds) since DIGGER

started monitoring the domain; Node Index represents the

DIGGER node that the IP was observed on, with positive

values indicating an A record IP and negative values an NA

record IP; IP Index is a unique index incrementally assigned

to each newly observed IP. From the figure, we can see that

the FF domain slowly and nearly continuously advertises new,

unique IPs over its entire online lifetime. Over the 4-month

monitoring period, we have observed that a typical FF domain

usually advertises thousands of unique IP addresses, with the

most aggressive botnets advertising over 35,000. As we will

demonstrate later, this huge IP pool affords the botmaster great

1a domain is offline if its DNS query returns no A record
2although DNS primarily uses UDP protocol to serve requests, DNS servers

also accept TCP connections on port 53 in order to support response data
exceeding 512 bytes or for tasks such as zone transfer [6]

flexibility and abundant resources to mimic a wide range of

benign DNS behaviors for evading detection.

2) Benign Domains: CDN domains are benign domains

that use a Content Delivery Network (CDN), such as Akamai,

to improve the delivery of their content. CDNs—consisting

of a system of computers networked together for the pur-

pose of improving the performance and scalability of content

distribution—produce DNS-query results resembling those of

malicious FF domains: numerous, changing IPs per query with

short TTL values. For instance, nfl.com, a CDN domain shown

in Fig. 1-b, has a short TTL (20 seconds) and constantly

changes its A record IPs, resulting in the accumulation of

almost 1200 IP addresses over all DIGGER nodes during our

monitoring period. This affinity between CDN and FF domains

is a consequence of their similar goal to provide reliable

content delivery despite node failures, as well as their shared

assumption that any node can temporarily or permanently fail

at any time. Consequently, it is possible for botmasters to cloak

their malicious DNS-advertisement strategy as normal, benign

CDN behavior. However, a CDN’s DNS-advertising profile

depends on whether a location-aware3 or load-balancing4

strategy dominates and, thus, can be highly dependent on the

DNS server monitored. For example, most of the servers for

nfl.com reside in N. America and Europe, with a small amount

in Asia. As a result, in N. America and Europe, location-aware

techniques dominate, with DNS queries consistently returning

a small set of IPs belonging to the nearest servers. On the other

hand, DNS queries in continents such as S. America, where

nfl.com has no servers, are influenced far less by location,

and load-balancing techniques dominate; servers from all

over N. America, Europe, and Asia are advertised based on

their current load, resulting in hundreds of IPs observed per

S. American DIGGER node over the monitoring period.

Non-CDN domains are benign domains that do not use a

CDN for delivery of their content. Typically, non-CDN do-

mains use a few stable content servers and a modest number of

name servers. Some popular non-CDN domains may advertise

more than 18 IPs in a single DNS query, using the same set

of IPs in each query and rotating the order across queries for

load-balancing purposes. This type of DNS strategy is often

referred to as round robin DNS.

III. FAST-DETECTION SYSTEMS (2 QUERIES)

Given the serious threats posed by FF botnets, researchers

have proposed various detection systems. In this section, we

first analyze early fast detection systems (“good guys”) and

then propose mimicry strategies botmasters can use for evasion

(“bad guise”). Advanced detectors and mimicry attacks against

them will be described in Section IV.

A. Good Guys

The original FF detection system proposed by Holz et al. [2]

(i.e., Holz detector) shown in Eq. (1) and RB-Seeker’s first-

3advertising IPs geographically near DNS servers to reduce transmission
overhead due to distance

4advertising the IPs of servers with lower load to increase performance



Fig. 1: Global DNS-query results for Fast-Flux and CDN domains

tier detector [3] shown in Eq. (2) are considered fast-detection

systems, as they are capable of detecting FF domains with high

accuracy from only 2 DNS queries. This is achieved through

the use of a linear decision function containing weighted terms

derived from the DNS queries and a bias term.

f (x) = 1.32 ·nA + 18.54 ·nASN −142.38 (1)

f (x) = −1.257 ·Nunique IPs −26.401 ·NASN (2)

−13.024 ·NDNS bad words + 162.851

In Eq. (1), the number of unique A records and Autonomous

System Numbers (ASNs) are represented by nA and nASN ,

respectively. In Eq. (2), Nunique IPs represents the number of

unique IPs seen in the A records, NASN the unique ASNs,

and NDNS bad words the number of rDNS lookups containing

“bad words” indicative of compromised home computers,

such as comcast, dynamic, dialup, etc. In both equations, the

magnitude of f (x) represents the degree of confidence when

classifying domain x, with positive values indicating a FF

domain for Eq. (1) and a benign domain for Eq. (2).

We implemented both detectors and applied them to our

manually verified set of 45 FF domains to determine how they

would fare against today’s FF botnet threat. They identified 6

(Holz detector) and 12 (RB-Seeker) FF domains respectively,

resulting in 86.7% and 73.3% false-negative rates and demon-

strating the extent to which botnets have evolved. Both papers

realize their weights and thresholds used for detection must

be periodically re-trained to counter future mimicry attacks.

However, doing so will increase the false-positive rate, causing

benign domains—whose DNS activity is being mimicked by

FF domains—to be misclassified as malicious.

B. Bot Guise

1) ASN-Mimicry Attack: From Eqs. (1) and (2), we can

see that the dominant factor in identifying FF domains is

the number of unique ASNs. Clearly, an effective mimicry

attack against these fast-detection systems should reduce the

number of ASNs to levels seen for benign domains. Since

DNS queries on benign domains often contain A record IPs

from 2 ASNs (e.g., www.avast.com), let us assume that a fast-

detection system adopts the following overly strict policy: over

2 DNS queries, any domain containing IPs from more than 2

ASNs will be flagged as malicious. While this policy can result

in false-positives for benign domains, such as some CDNs, if

it can be effectively subverted, so can more lenient constraints.

To discover if this is feasible with current botnet resources,

we aggregated the IPs for each FF domain globally monitored

Fig. 2: IP distribution for top 20
ASNs

Fig. 3: ASN-mimicry strategy (2
DNS queries)

by DIGGER, determined their ASNs, and then analyzed their

IP distribution across ASNs. We found that, despite the size

of the botnet, the distribution was long-tailed, with at least

one ASN containing a disproportionately large number of IPs.

This is possibly due to certain ASNs (e.g., ISP networks)

containing a large proportion of vulnerable computers, or from

botmasters targeting certain institutions. Fig. 2 plots this trend

for 3 representative FF domains of varying sizes; to keep the

graph readable, we have only plotted the distribution for the

top 20 ASNs from which the botnets have 100+ IPs.

Assuming botnets contain a suitable number of IPs from at

least a single ASN (as our data indicates), there is a simple

IP-advertisement strategy for mimicking the ASN behavior

of benign domains. This mimicry strategy is demonstrated in

Fig. 3, with each TTL (i.e., fresh DNS query) showing the

distribution of IPs from various ASNs. For example, assume

the botnet controls a large number of IPs from AS1 and

a moderate to small number of IPs from AS2. At TTL1,

the majority of advertised IPs are from AS1 with a smaller

subset from AS2. While there exists a sufficiently large pool

of online IPs from AS1, this is not the case with AS2,

eventually requiring the introduction of IPs from a different

ASN. However, because the detection window is 2 DNS

queries, the botmaster must ensure that all the IPs seen over

2 consecutive queries belong to no more than 2 ASNs. Thus,

before IPs from a new ASN can be introduced, she must first

advertise only IPs belonging to one of the ASNs present in

the previous TTL, as shown in TTL2. Then, at TTL3, she is

free to utilize IPs from the new ASN, AS3. If she happens to

control a large number of IPs in AS3, she can slowly replace

AS1 as the dominant ASN, as shown in TTL3–TTL6. In this

way, botmasters can successfully mask their use of numerous

ASNs from fast-detection systems.

2) rDNS-Mimicry Attack: From Eq. (2), we see that the

second most influential term when identifying FF domains

is NDNS bad words. However, RB-Seeker asserts that a rDNS

lookup on an IP will not always return a result, although when

it does, it can be useful. Despite its inconsistency, the term is

still an order-of-magnitude more important than the number

of unique IPs. Therefore, an effective mimicry attack should

include a mechanism for subverting this detection metric.

Let us assume the following aggressive detection policy:

over 2 DNS queries, any domain with more than 2 “bad

words” in its rDNS results will be flagged as malicious.

Certainly, this policy is overkill, as many legitimate domains

(e.g., www.comcast.com) will have rDNS results that con-

tain “bad words”. However, if botnets can defeat this harsh



limitation, more realistic thresholds can also be subverted. If

current FF botnets contain enough IPs without rDNS results

(i.e., rDNS=NONE IPs), then a mimicry strategy similar to

that proposed for ASNs in Section III-B1 could be applied.

To determine the feasibility of this approach, we aggregated

the IPs for each FF domain monitored globally by DIGGER

and determined the percentage of rDNS=NONE IPs. We

discovered that for each FF domain, at least 15% of its total

IPs lacked a rDNS result. Furthermore, for ≈24% of the

FF domains, over 50% of their IPs lacked a rDNS result.

Considering the large proportion of rDNS=NONE IPs and

the fact that rDNS results for bots that aren’t compromised

home computers will be free of “bad words,” the mimicry

strategy proposed earlier for ASNs can easily be applied: IPs

without rDNS results (or without “bad words”) can be used in

conjunction with IPs containing “bad words”, such that only

2 “bad words” are observed over 2 queries. Thus, we have

confirmed the unreliable nature of rDNS, demonstrating that

it can easily be subverted if used as a detection metric.

However, to be truly effective, we need to ensure that this

strategy can be combined with the previous ASN-mimicry

attack. Thus, for each FF domain, we analyzed the distribution

of rDNS=NONE IPs across ASNs, once again observing the

long-tailed distribution. This phenomenon is shown in Fig. 4

for 3 representative domains of varying sizes. The majority of

botnets we observed still possessed enough IP-dense ASNs to

sufficiently mount the dual mimicry attacks.

3) IP Mimicry: Having determined that current botnet

resources are capable of instigating ASN- and rDNS-mimicry

attacks, we turn our attention to the final attribute utilized

by the fast-detection systems in Eqs. (1) and (2), the number

unique IPs. It stands to reason that the more IPs a FF domain

advertises per query, the more likely some of the bots will

be online. Furthermore, because most DNS servers perform

round-robin scheduling within a given TTL, advertising more

IPs per query decreases the load imparted on each bot, thereby

increasing the botnet’s total service capacity and its revenue.

Since benign non-CDN domains may also advertise a large

number of stable IPs (e.g., hostingprod.com uses 18 IPs

per DNS query), FF domains are afforded a fair amount of

freedom in the number of bots they can advertise; this is

supported by Eqs. (1) and (2), where the number of unique IPs

is the least influential detection feature. However, non-CDN

domains advertise the same set of IPs for every TTL, causing

their total unique IPs to remain bounded and facilitating the

use of a maximum IP threshold, Nthresh, for detection.

Fig. 4: rDNS=NONE IP distribu-
tion for top 20 ASNs

Fig. 5: DNS IP-advertising strate-
gies

When performing an IP-mimicry attack, there are two basic

strategies for keeping the total number of IPs over two TTLs

below Nthresh. The first, shown in Fig. 5-a, has no IP overlap,

with the botnet advertising a completely new set of IPs every

TTL. The alternate strategy, shown in Fig. 5-b, has IP overlap,

with some of the IPs being advertised for multiple TTLs. Each

strategy has certain pros and cons. Having no IP overlap allows

for the rapid replacement of offline IPs; however, as can be

seen from Fig. 5, this reduces the number of IPs that can be

used for any given TTL, which, in turn, decreases the botnet’s

service capacity. On the other hand, with an increase in IP

overlap, more IPs can be advertised per TTL, decreasing the

load per bot (from Fig. 5, we can see that the total number of

IPs advertised per query is equal to the number of overlapped

and new IPs, i.e., N = Noverlap + Nnew); however, this reduces

the rate at which offline IPs can be replaced, resulting in a

greater proportion of dead bots and failed victim connections.

Considering bots’ unreliable connectivity, finding the optimal

IP-advertisement strategy for FF domains requires a better

understanding of the underlying bots’ online availability (i.e.,

at any given time, what is the probability of bots being online).
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4) Bot Online-Decay Model: We developed a bot online-

decay model, Ponline(t), to predict the probability a bot will

be online after time t. In building the model, we aggregated

all the bot IPs seen for FF domains globally monitored by

DIGGER, recording the time they were observed and if they

were online and reachable at that time (i.e., a connection could

be established). Notice that while each individual DIGGER

node monitors the bot IPs at the granularity of the domain’s

TTL, they are not synchronized and do so independently and

at different times due to competing PlanetLab workloads.

Furthermore, many botnets are used for multiple online scams;

thus, many of the same bot IPs will be observed in queries on

different FF domains.5 Therefore, by combining all available

data points for each bot IP—regardless of the DIGGER node’s

location or the FF domain it was observed for—we can build

a fairly complete picture of the online times of bots currently

used by FF domains. If an IP is not seen by any DIGGER

node for over 12 hours, we assume that it has gone offline

during that time. The resulting bot online-decay model has a

long-tailed distribution. In Fig. 6, which plots the first 72 hours

of this model, the y-axis represents the probability that a bot

5over 11% of all FF IPs were advertised by ≈22.2% or more of the
monitored FF domains; over 51% of all FF IPs were advertised by ≈6.7%
or more FF domains; of the less than 34% of FF IPs advertised by only a
single FF domain, over 15.7% were either only seen once or dead (i.e., never
reachable) over our entire monitoring period



is continuously online for more than some time t, represented

by the x-axis. From the plot, it is clear that the probability of

a bot being online decays exponentially with time, such that,

after a day, there is less than a 10% chance it’s still online.

These findings reassert the notion that a bot’s connectivity is

highly unreliable, resulting from the varied usage patterns of

the compromised computers’ owners.

5) Performance Model: Using our online-decay model, we

can determine the optimal IP-mimicry strategy in terms of

performance, which we evaluate based on the number of

incoming connections per unit time the botnet can handle. This

metric is chosen because the revenue of FF botnets comes from

victims visiting the hosted content, and therefore, botmasters

want to maximize the number of connections the botnet can

support. If the mimicry attack drastically reduces this amount,

then the bots will become overwhelmed, resulting in dropped

connections and decreased revenue. We assume both the inter-

arrival time of victim connections and the bots’ service time

are Poisson processes with Markovian (i.e., exponential and

memoryless) distributions with λ or µ representing the incom-

ing connection rate and average service times, respectively.

Within a given TTL, most DNS servers perform round-robin

scheduling when responding to DNS-queries. As a result, in-

coming victim connections will be evenly dispersed among the

online bots advertised for that TTL. Therefore at each TTL, FF

botnets can be modeled as Nonline parallel identical M/M/1/K

queues [1], where K is the online bots’ queue length, (i.e.,

the maximum connections each can queue before dropping

additional connections). Applying queueing theory[1] to this

model, we can calculate the connection loss probability (i.e.,

the probability that an online bot will drop connections due to

a full queue) as:

Ploss =

{

ρK−ρK+1

1−ρK+1 : ρ 6= 1
1

K+1
: ρ = 1

where ρ = λ
Nonline·µ

Because we assume that each online bot is identical, an

individual bot’s Ploss is equivalent to that of the entire botnet,

allowing us to compare the various IP-mimicry attacks’ per-

formance; a higher probability of dropped connections results

in fewer exploitable victims and decreased revenues.

6) DNS-Strategy Model: To successfully apply the perfor-

mance model, we must first establish a formal relationship

between an IP-mimicry attack’s DNS-advertisement strategy

and our online-decay model, Ponline(t), so that we can estimate

the potential number of online IPs, Nonline(t), during a given

TTL. This relationship is straightforward when there is no IP

overlap, as in Fig. 5-a. Since each TTL contains a fresh set of

IPs under this strategy (i.e., N = Nnew), they can only decay

for the time, t, that has elapsed in the current TTL; thus, for

a max TTL of Tttl seconds, Nonline(t) = N ·Ponline(t), where

0 ≤ t < Tttl .

Determining Nonline(t) becomes more complicated for a

strategy utilizing IP overlap, as in Fig. 5-b. Because IPs

are persistent for multiple TTLs, they suffer an increased

probability of going offline. For modeling purposes, we must

rely on the reasonable assumption that older IPs—being more

likely to be offline—will always be replaced before newer IPs.

Additionally, to best distribute load among their bots, we can

assume that botmasters will choose to advertise as many IPs

as possible without exceeding the detection threshold Nthresh.

These two assumptions imply an optimal replacement strategy

for botmasters, from which we can deduce the following

intrinsic properties: in any given TTL, (1) there exist a total

of Nnew IPs also present in the previous 0,1,2, . . . ,⌊ N
Nnew

⌋−1

TTLs, and (2) there exist a total of (N mod Nnew) IPs also

present in the previous ⌊ N
Nnew

⌋ TTLs. The effect of these

properties can be seen in Fig. 7 for two examples. Thus, for

any given DNS-query, we can formulate formulate Nonline(t)
in terms of Ponline(t) as:

Nonline(t) = (N mod Nnew) ·Ponline(t +⌊
N

Nnew
⌋ ·Tttl)

+

⌊ N
Nnew

⌋−1

∑
n=0

Nnew ·Ponline(t +n ·Tttl) (3)

Having defined Nonline(t) in terms of the IP-advertisement

strategy, we can use it in our definition of Ploss(t):

Ploss(t) = ρ(t)K−ρ(t)K+1

1−ρ(t)K+1 where ρ(t) =
λ

Nonline(t) ·µ
(4)

7) Evaluation of current FF botnet strategies: Before eval-

uating the performance of our mimicry strategies, we establish

a basis for current FF botnet performance. We examine the 3

FF domains shown in Table II using our online-decay model

and Eq. (4). We first compare these various strategies by

applying N and Nnew to Eq. (3), finding Nonline when the

system reaches a steady state, shown in Table II6. From the

results, botmasters appear quite adept at configuring their

DNS strategies to minimize the effect of bot decay. Through

the skillful manipulation of their Tttl , N and Noverlap, these

remarkably different strategies were all able to achieve greater

than 90% online availability (i.e.,
Nonline

N
).

TABLE II: Current FF DNS strategies and performance

Next, we examine the influence each type of strategy has on

the botnet’s overall capacity (i.e. P̂loss), which translates to the

amount of potential victims and revenue. We use the values

λ = 100, µ = 10 and K = 10 for their ease of computation

since, for comparison purposes, the actual choice for these

values is trivial, so long as we are consistent and use the

same values when evaluating each strategy. Applying Eq. (4) to

each of the 3 botnets’ DNS strategies, we determine Ploss once

the system achieves a steady state, shown in Table II. While

the varying DNS strategies offered comparable performance

in terms of
Nonline

N
, they clearly differ in the total capacity each

botnet can support. This is a direct consequence of the number

of bots available during a given TTL, with mountainready.com

having approximately twice as many as bentlycap.net and 4x

6N, Nnew and Nonline are the average values for N, Nnew and Nonline



as many as old-and-girl.net. With both a large N and Noverlap,

it seems that mountainready.com is attempting to capitalize

on the load-balancing benefits provided by a large number

of advertised IPs, while using large IP overlap to keep the

total number of unique IPs over 2 queries relatively low;

additionally, its use of a fairly small Tttl indicates a proactive

approach to countering the bot-decay phenomena, which will

be accentuated due to its large Noverlap. Conversely, old-and-

girl.net makes use of a far different strategy. With its Noverlap

constituting only a small fraction of its N, the effect of bot

decay due to IP overlap is less severe, permitting less diligent

IP replacement and allowing for a longer Tttl . Interestingly,

its decision to use a small N and Noverlap appears to be a

double-edged sword; while keeping the total unique IPs over

2 queries low, it also results in fewer IPs per TTL for load-

balancing purposes, reducing the botnet’s overall capacity.

Lastly, bentlycap.net seems to have found some middle ground

between the other techniques, with a Tttl and N almost exactly

between the those of others. However, like old-and-girl.net, it

has chosen a small ratio of
Noverlap

N
, reducing the amount of

bot decay and the need for more rapid IP replacement.

8) IP-Mimicry Attack: Now we present how our proposed

IP-mimicry attack influences the connectivity and capacity of

the aforementioned FF domains. The key idea of the attack

is to manipulate N and Noverlap such that the online time

and capacity are maximized while keeping the number of

IPs below the detection threshold. First, we retain the FF

domains’ Tttl values, assuming that they were chosen by the

botmasters in response to how diligently they were willing

to monitor and replace IPs. Second, in order to reduce false-

positives from benign, non-CDN domains advertising a large

number of stable IPs, such as hostingprod.com, we assume —

for the purposes of this mimicry attack—a detection threshold

of Nthresh = 20 IPs, resulting in the following policy: over 2

DNS-queries, any domain with more than 20 unique A record

IPs will be flagged as malicious.7
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Fig. 9: Ploss optimization

It is clear from the results in Section III-B7, that the more

online IPs available during a given TTL, the greater the

botnet’s overall capacity. Therefore, an optimal DNS strategy

will necessarily advertise the maximum IPs allowed by the

detector’s threshold, Nthresh. This reduces the problem to an

optimization problem, i.e., to determine an optimal Noverlap

that maximizes Eq. (5) or minimizes Eq. (6), subject to the

7an attack defeating the ASN and DNS-“bad word” thresholds of Sec-
tions III-B1 and III-B2 can evade detection by the Holz and RB-Seeker
detectors with as many as 79 and 66 unique IPs, respectively

constraints: 2 ·N−Noverlap = Nthresh.

Nonline =
∑

Tttl
t=1 Nonline(t)

Tttl

(5) Ploss =
∑

Tttl
t=1 Ploss(t)

Tttl

(6)

For the FF domains in Table II, Figs. 8 and 9 show

the results of Eqs. (5) and (6) across the search space

N ∈ [⌈Nthresh
2

⌉,Nthresh − 1]. From the figures, we can see that

while mountainready.com and bentlycap.net achieve optimal

performance with N = 18, for old-and-girl.net, N = 17. Ap-

parently, its longer Tttl of 600 seconds results in additional bot

decay, causing N = 17—with its 2 fewer overlapped IPs—to

provide better performance. We also find that for bentlycap.net

and old-and-girl.net, their Nonline has increased to 14.62 and

13.4, while their Ploss has decreased to 0.72% and 1.43%,

respectively. While neither of these FF domains would have

been detected by the imposed Nthresh under their original DNS

strategies, utilizing the IP-mimicry attack has kept them from

being detected while also greatly increasing their performance

and capacity. On the other hand, the mimicry attack caused

mountainready.com to suffer a reduction in Nonline, dropping

from 17.8 to 15.99. The attack also caused its Ploss to more

than double, increasing from 0.14% to 0.34%. However, moun-

tainready.com’s original DNS strategy advertised 24 unique

IPs over 2 queries, exceeding the detection threshold. Thus,

the IP-mimicry attack has allowed it to successfully evade

detection with only a minor decrease in performance—its

average probability of a connection loss remains under 1%

and its average online IPs has been reduced by less than 2.

IV. EXTENDED-WINDOW DETECTORS (MORE QUERIES)

A. Good Guys

A logical extension to the fast-detection systems of the

previous section is to increase the monitoring window to

analyze more queries. Examining multiple TTLs when mak-

ing a decision exploits a commonly known property of FF

domains: they need to continuously advertise fresh IPs to

account for their unstable constituent bots. While non-CDN

domains may advertise a large number of IPs in their queries,

they will be stable IPs and will not change over time. Thus,

FF domains will quickly become exposed once additional

queries are examined. Furthermore, while CDN domains can

demonstrate the fluxy behavior characteristically attributed to

FF botnets, for many CDNs, a longer detection window can

allow their more stable nature to emerge from the chaos.

Current detectors, such as FluXOR [8] and RB-Seeker’s

second-tier detector, make use of longer detection windows

(e.g., 1 week) to increase accuracy and support the detection

of stealthy FF domains, which use slower DNS advertisement

strategies to fool fast-detection systems. Like the Holz and

RB-Seeker detectors, FluXOR examines the number of unique

A records and ASNs. These are augmented with additional

features aimed at capturing the quickly changing and dispersed

nature of FF domains, such as TTL and the number of returned

qualified domain names, or top-level domains (TLDs). Next,

we examine how botmasters can mimic these features to evade

detection.



B. Bot Guise

1) ASN-Mimicry Attack: Regrettably, extending the detec-

tion window in time does little to weaken the ASN mimicry

attack described in Section III-B1. Because botnets seem to

invariably control a sizable number of bots from within at

least one ASN, the same essential attack can be performed

by simply repeatedly using IPs from the same ASes to

accommodate the larger detection window as shown in Fig. 10.

Fig. 10: ASN mimicry strategy
(multiple queries)

Fig. 11: IP distribution for top 20
TLDs.

2) rDNS-Mimicry Attack: While the specifics of FluXOR’s

“returned qualified domain” metric are not revealed in their

paper, we can assume it operates as any TLD metric would.

Essentially, for any rDNS results returned, the number of

unique TLDs are calculated—the insight being that FF botnets,

consisting of bots scattered across many networks, will return

numerous TLDs. However, this feature also suffers from the

inherent shortcoming of the rDNS lookup process, which

doesn’t always return a result. This allows for a sufficient

quantity of rDNS=NONE IPs (adequately distributed across

ASNs) and IPs from other TLDs to perform a similar dual-

mimicry attack. Additionally, we analyzed the distribution of

bot IPs across TLDs and found a similar distribution as across

ASNs, in that there exist some TLDs from which a large

number of bots belong. In Fig. 11, we have plotted this dis-

tribution for representative FF domains of varying sizes. Like

the ASN distribution, it is long-tailed. While rDNS=NONE

IPs dominate, there are clearly other TLDs with a sufficient

number of IPs to similarly be used in the aforementioned

mimicry attack, providing botmasters additional freedom in

DNS advertisement strategies. Thus, we find that rDNS can be

effectively mimicked based on FF botnets’ current resources.

3) Improved DNS-Strategy Model: The DNS-strategy

model developed in Section III-B6 can be extended to accom-

modate the larger detection window. First, let us assume the

detector uses a detection window of Dttl fresh DNS queries

(where T T L = Tttl seconds) and applies a threshold, Nthresh,

on the number IPs seen during this detection window. The

choice of Nthresh and Dttl creates two scenarios botnets must

overcome to avoid detection when replacing dead IPs. In the

first case, when Dttl ≤ Nthresh, they can simply replace at least

one new IP every Tttl . However, if Dttl > Nthresh, they can no

longer introduce new IPs each Tttl without exceeding Nthresh.

To keep their total IPs below the threshold, botnets must repeat

the same set of IPs over multiple Tttl before introducing any

new IPs. We term this the botnet’s repetition window and

define it as Rttl DNS queries (also of length Tttl ) for which

the botnet repeats the same set of IPs, effectively extending

Tttl . Thus, we can determine Nonline(t) by substituting Rttl ·Tttl

for Tttl in Eq. (3). The choice of Rttl determines Attl , i.e., at

most the amount of IP changes any detection window Dttl

will observe. This relationship is shown in Eq. (7) and an

example is given in Fig. 12, where we see that Attl = 2 when

Dttl = 4 and Rttl = 2. Clearly botnets can add Nnew IPs every

Rttl queries, so long as Eq. (8) is satisfied.

Attl = ⌊
Dttl −2

Rttl

⌋+ 1 (7) N +Attl ·Nnew ≤Nthresh (8)

Fig. 12: Relationship between Attl ,
Rttl and Dttl

Fig. 13: Attl when Rttl ∈
[1,Dttl] and Dttl = 4,10

4) IP-Mimicry Attack (TTL-based Detection Window): We

apply the improved DNS strategy using Rttl to our previous

performance model to determine how the IP-mimicry attack

fares against a larger detection window. For this purpose, we

examine the same real-world FF domains as in Section III-B8,

again, fixing their Tttl to the values originally used by each

domain. Modifying Eqs. (5) and (6) to incorporate the

increased detection window produces:

Nonline =
∑

Rttl ·Tttl
t=1 Nonline(t)

Rttl ·Tttl
(9)

Ploss =
∑

Rttl ·Tttl
t=1 Ploss(t)

Rttl ·Tttl
(10)

The goal for botmasters is to find the optimal values for Rttl

and N that maximize Eq. (9), or minimize Eq. (10), under the

constraints that Rttl ∈ [1,Dttl ] and N ∈ [⌈Nthresh
Attl+1

⌉,Nthresh −Attl ].
The search space for N is found from Eq. (8) and the observa-

tion that 1 ≤ Nnew ≤ N. The optimization results for Nthresh =
20 and Dttl = 4,10 are shown in Table III. Notice that all the

FF domains under their original DNS strategies (i.e., Table II)

would have been caught by the extended detection window,

with the exception of old-and-girl.net when Dttl = 4. However,

by using the proposed IP-mimicry strategy in Table III, they

not only successfully circumvent detection but also achieve

better capacity in most cases (i.e., bentlycap.net and old-and-

girl.net). While mountainready.com’s performance goes down

marginally, its Ploss is still less than 1% for Dttl = 4 and less

than 3% when Dttl = 10. These slight decreases in performance

are easily justified, considering that its original DNS strategy

would have resulted in immediate detection, with 34 unique

IPs seen for Dttl = 4 and 64 for Dttl = 10.

In Fig. 14, we show an example of the Nonline optimization

plots for mountainready.com’s Tttl = 120, marking some local

optimal points. To explain these plots, recall the relationship

between Dttl , Rttl and Attl defined in Eq. (7) and shown for

Dttl = 4,10 in Fig. 13. From the figures, we find that for values

of Rttl resulting in the same Attl , the lowest Rttl is optimal.



TABLE III: Optimization Results: IP-mimicry attack against Dttl

This is best exemplified when Dttl = 10 in Figs. 13 and 14-b,

with local maxima at Rttl = 1,2,3,5, and 9. To understand this

behavior, recall that the amount of bot decay increases with

Rttl (due to repeating the same set of IPs over an extended

duration). Since N and Nnew are maximized with respect to

Attl and Nthresh in Eq. (8), if Attl remains constant while Rttl

increases, performance will necessarily degrade, resulting in

the observed trend.
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Fig. 14: Nonline optimization: Tttl = 120 and Nthresh = 20

5) IP-Mimicry Attack (Time-based Detection Window):

Thus far, we have defined the detection window in terms

of the number of fresh DNS queries (Dttl ), showing that it

can be subverted through the use of a repetition window,

Rttl . However, a detection window can also be defined in

terms of absolute time (i.e., Dt seconds), requiring that the FF

domain adhere to the IP threshold imposed over the duration

Dt . Thus, the longer the duration, the more the FF domain’s

IPs are subjected to bot decay, decreasing performance. We

model this detection technique and evaluate its susceptibility

to IP-mimicry attacks under current botnet resources. For the

purposes of this evaluation, we adopt a Dt equal to 1 week

(as used in RB-Seeker). Certainly, requiring longer than a

week to arrive at a detection decision grants botnets sufficient

time to perpetrate their scams under a given domain. To find

a suitable IP threshold, Nweek , we analyzed the number of

unique IPs accrued by benign CDN domains over 1 week. Not

surprisingly, due to load-balancing techniques, CDN domains

can advertise a large number of unique IPs depending on the

DNS server monitored. For example, certain DIGGER nodes

observed 171 IPs used by nfl.com. The amount was even

greater for www.myspace.com, with many DIGGER nodes

witnessing over 400 unique IPs, and in one case, over 700.

We model the IP mimicry attacks against varying values

of Nweek ∈ [100,800], to see how increasing the threshold—

to reduce false-positives—will affect a botnet’s performance.

To ensure that the mimicry attack would also continue to

subvert fast-detection systems, we imposed the additional

constraint of Nthresh IPs over any 2 DNS queries as before

(i.e., N + Nnew ≤ Nthresh). Then, for each value of Nweek, we

calculate the maximum queries for which Dt can observe new

IPs without violating Nweek as A′
ttl = ⌊Nweek−N

Nnew
⌋. If we assume

IPs are changed every TTL, then we can calculate the optimal

Tttl as Topt = Tweek

A′
ttl

, where Tweek is the number of seconds in

a week. Under these constraints, the FF domain won’t exceed

the threshold of Nweek unique IPs over the detection window

Dt = 1 week. Furthermore, for any 2 queries, the number of

unique IPs will satisfy the threshold Nthresh. Finally, notice that

a repetition window, Rttl , can be applied to Topt to defeat a

Dttl detection window.

Table IV shows our optimized results for N, Noverlap, and

Topt with Nthresh = 20 under varying thresholds of Nweek. For all

values of Nweek, the optimal values are N = 19, Noverlap = 18,

and thus Nnew = 1. This is because it is necessary to provide

as many IPs per query as possible to counteract the enhanced

botnet decay resulting from the longer Topt . From the table, it

is apparent that even for the strictest threshold Nweek = 100 8,

the botnet will continue to have online IPs. Despite the high

probability of lost connections, the botnet is still reachable and

thus can continue to generate revenue. For the larger thresholds

of Nweek = 200 and above, the botnet capacity is greater than

that of old-and-girl.net under its original configuration. These

results affirm that, because benign CDN domains legitimately

advertise large amounts of unique IPs over time, current botnet

resources can sufficiently mount IP-mimicry attacks despite an

increased detection window, Dt .

TABLE IV: Optimization results:
IP-mimicry attack against Dt =
1 week (Nthresh = 20: N = 19,
Noverlap = 18)

Fig. 15: Empirical observation of
FF domain adopting certain eva-
sion techniques (Tttl = 10 seconds)

C. Empirical Observations

We discovered several FF domains in the wild adopting

some of the mimicry attacks we have presented. While the

strategies employed by FF domains in the wild aren’t as

meticulously regular as those in our models, they are close,

only deviating from their average values rarely and in small

amounts. Analysis of these domains show that many of them

were able to defeat the Holz and RB-Seeker detectors in

Section III-A. An example FF domain is shown in Fig. 15,

with each box in the plot representing a unique IP seen in its

DNS results. Observe that it adds 1 or 2 IPs every ≈1,000

seconds, replacing older IPs to keep the total number equal to

5 per query; thus, it uses an N = 5 and an Noverlap = 3,4.

Since it has a Tttl = 10, it’s essentially using a repetition

window of Rttl = 100. Under this DNS strategy, the FF domain

8a low threshold could result in many false positives since it’s well below
the number of IPs seen at individual DIGGER nodes for some CDN domains,
such as nfl.com and www.myspace.com



can defeat a fast-detection system with an Nthresh ≥ 7, as it

occasionally introduces 2 new IPs per query. Furthermore, it

will also defeat an extended detection window with Dttl ≤ 101

and Nthresh ≥ 7. By using an average Noverlap = 4 in our model,

the domain is estimated to achieve an Nonline = 3.73 (i.e., an

average of 75% of its advertised IPs being online). This clearly

shows that FF domains are beginning to incorporate advanced

mimicry techniques to subvert detection systems, requiring

novel detection methods exploiting the mimicry limitations

of botnet resources. One such technique we are exploring is

the use of multiple, cooperating, and geographically disparate

detectors to take advantage of the spatial mimicry limitations

of botnets.
V. RELATED WORK

Recently, a number of techniques have been proposed to

effectively detect FF domains [2], [8], [3], [9], [4]. They started

with collecting DNS queries for a large number of suspicious

domains through either active or passive monitoring, over time

periods ranging from 1 or 2 TTLs to weeks. From these

traces, they extracted similar sets of DNS features that can

be used to characterize FF domains, for instance, the number

of unique IPs, ASes, TLDs and spatial distribution [4] of

IPs (similar to the number of ASes, the spatial distribution

feature captures the dispersive nature of FF botnet IPs).

Classification algorithms, such as support vector machines

(SVM)[2], decision trees[8] and Bayesian network[4], were

applied to the extracted features, determining if each domain

is a FF domain. In this paper, we have demonstrated that, with

the abundant resources currently available to botmasters, most

of these features can be effectively subverted by the proposed

mimicry attacks.

The concept of a mimicry attack was first proposed for

host-based intrusion detection systems (IDSes), which typ-

ically monitor application behavior in terms of system-call

sequences. Mimicry attackers attempt to slip under the radar

by cloaking malicious system calls with innocuous-looking

system-call sequences. Wagner and Soto [11] proposed a

method that embeds nullified system-call sequences (i.e., “se-

mantic no-ops”) between malicious system calls. Kruegel et

al. [5] devised techniques that allow an attacker to regain

control after a system call by corrupting the memory and

manipulating code pointers. This allows attackers to extend

traditional mimicry attacks on more sophisticated IDSes. More

recently, Parampalli et al. [7] proposed the persistent control-

flow interposition techniques that make mimicry attacks sim-

pler, more reliable and stealthy. Similar to these previous work,

in this paper we design and evaluate several mimicry strategies

that attackers may exploit to circumvent FF detection systems.

The goal of our work is to anticipate attackers’ next moves

and better understand their capability in launching potential

mimicry attacks. We hope this will foster improvements to

existing defensive systems, allowing them to withstand future

attacks and remain effective longer.

VI. DISCUSSION AND CONCLUSION

In this paper, we have examined the current state-of-art

FF detectors, analyzing their effectiveness in detection. In

doing so, we developed accurate models for bot decay, online

availability, DNS advertisement, and performance, which we

used to evaluate novel mimicry attacks against FF detection

systems. Based on these models, empirical evidence, and

logical assumptions, we have demonstrated that current botnet

resources are sufficiently capable of subverting state-of-art

FF detection mechanisms. We have discovered evidence of

current FF domains adopting aspects of our proposed mimicry

attacks, although they aren’t managed as assiduously as our

optimal models assume. Nevertheless, as detection systems

improve and become more pervasive, we expect botmasters

will increase their diligence in IP management to extract the

most from their botnets’ resources. We have shown that the

incorporation of more advanced views—such as an extended-

detection window—serves to encumber mimicry attacks by

introducing additional, necessary parameters unknown a priori

to botmasters. However, since security by obscurity is always a

bad idea, ultimately, they are still susceptible to determined ad-

versaries; for example, trial-and-error reconnaissance missions

could derive the detection window size and type. Still, subvert-

ing the more advanced detectors requires significantly more

effort from botmasters, making a strong argument for their

adoption in augmenting the simpler, fast-detection systems.

We hope showing the mimicry potential currently attainable

by FF domains will foster improvements to existing detection

systems, as well as provide new insight into the adaptive

limitations of FF botnets. Our future work includes extending

these models to handle a spatial dimension, allowing us to

evaluate FF domains’ current ability to mimic the location-

aware advertisement strategies of CDNs. By incorporating

multiple, cooperating, and geographically disparate detectors,

we hope to impose additional constraints, straining botnet

resources beyond their ability to perform mimicry attacks.
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