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A Lightweight Passive Online Detection Method
for Pinpointing Misbehavior in WLANSs
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Abstract—Detecting misbehaving users in wireless networks is an important problem that has been drawing considerable attention.
Even though there is a plethora of work on 802.11 wireless local area networks (WLANSs), most existing schemes employ behavior-
based anomaly detection, assuming that the backoff-time information of each transmitting node is available to the monitoring node.
Unfortunately, it is practically infeasible to obtain the accurate backoff value chosen by other transmitting nodes because this MAC-layer
information is not readily available. In this paper, we propose a practical way of pinpointing the misbehaving nodes without requiring
access of hardware-level (e.g., backoff time) information in 802.11 WLANSs. In contrast to most prior work, our scheme exploits the
sequence of successfully received packets, which are readily observable at the access point. The distinct features of our scheme are
that it 1) promptly detects a misbehaving node using a sequential hypothesis test, 2) performs well in realistic erroneous channel
conditions due to its ability to accurately capture link heterogeneity, and 3) incurs negligible memory and computation overheads as it
makes detection decisions based on runtime observations. The effectiveness of the proposed scheme is evaluated via extensive
simulation as well as implementation, demonstrating its capability of accurately detecting nodess’ selfish behavior in realistic 802.11

WLAN environments.

Index Terms—Network monitoring, IEEE 802.11, WLANS, passive online detection, driver-level solution, greedy behavior.

1 INTRODUCTION

ECENT advances in radio technology, such as Software-

Defined Radios (SDRs) [1], [2], open-source drivers [3],
and reverse-engineered firmware [4], allow users to modify
their wireless interface software and change the protocol
parameters to meet their own needs. This programmability
provides flexibility to end users to best suit their perfor-
mance needs, such as connectivity and quality of service
(QoS) [5]. However, a misbehaving user can abuse this
flexibility to increase his own throughput by manipulating
the channel access functions in a selfish manner, at the cost
of other well-behaving users’ performance. This selfish
problem can pose a serious threat to network performance
and fairness. Therefore, it is important to detect such
misbehaving users and mitigate their impact on the
performance of other well-behaving users.

In IEEE 802.11 wireless local area networks (WLANS),
the selfish users commonly achieve their greed by manip-
ulating the MAC parameters associated with channel
access, such as contention window (CW) size and inter-
frame space (IFS) [6], [7], [8], [9]. In particular, a selfish user
may manipulate the MAC parameters to wait a shorter
(backoff) time for transmission than well-behaving users,
and thus increases his chance of winning the contention for
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channel access. Such misbehaving users are shown to be
able to capture most available network resources, seriously
degrading other well-behaving users’ performance [6].

While a variety of solutions have been proposed to
address the problem of detecting misbehaving users in
802.11 networks [6], [7], [8], [9], [10], [11], [12], [13], [14],
most existing approaches employ behavior-based anomaly
detection. Their key idea is to monitor a node’s commu-
nication behavior and determine whether the behavior
follows a legitimate pattern or not. For instance, a
monitoring node (e.g., access point) observes the inter-
transmission backoff time value of a target node and
verifies whether it follows the pattern predicted on the
basis of 802.11 protocol [7], [8], [9].

Although these approaches provide a useful insight in
the detection of nodes’ misbehavior, there are several
technical issues that limit their applicability. First, their
detection performance hinges on an unrealistic assumption
that the transmitter’s backoff time information is available
to the receiver (i.e.,, the monitoring node). In 802.11
WLANS, however, it is infeasible to obtain accurate backoff
values of other nodes” since the 802.11 protocol does not
provide the receiver any information on the transmitter’s
backoff values [8], [15]. Therefore, the detection scheme
needs to use an alternative metric that is practically
measurable by, or available to, the monitoring node.

Second, most existing approaches are designed only for
homogeneous network conditions in which all nodes have
the same criterion for detecting misbehavior [30]. However,
in reality, nodes are very likely to experience different
packet-error rates due to the spatial and temporal variations
in link quality. Each node should, therefore, have a different
criterion for the misbehavior detection, depending on its
own state, such as per-link transmission-error rate. A good
detection scheme must be able to accurately determine
individual decision metrics by capturing individual states
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(i.e., each link’s transmission-error probability) instead of
using the average network-wide probability.

Lastly, several statistics-based misbehavior detection
algorithms proposed recently [7], [9]. Although they
provide better detection accuracy, they require complex
calculations for constructing and comparing probability
distributions. As a result, they are not suitable for resource-
constrained monitoring nodes, such as commercial 802.11
access points (APs).

To overcome the above limitations of existing ap-
proaches, we propose an accurate, lightweight, and
practical passive-detection mechanism that operates at each
AP in 802.11 WLANSs. Unlike the existing schemes that
require inaccessible hardware-level information (e.g., back-
off time), our mechanism exploits the driver-level informa-
tion that is readily available at the off-the-shelf AP [3]. In
particular, the AP acquires all the necessary information
from successfully received packets, such as the number of
transmissions from each of its clients in between the AP’s
two consecutive transmissions, and the information in-

cluded in the MAC headers.

1.1 Contributions
The main contributions of this paper are three-fold as follows:

e Introduction of a new packet-level metric based on
the sequence of successfully received packets for the
detection of misbehaving nodes in 802.11 WLANS.
Unlike the existing backoff-time-based schemes, our
scheme requires only the packet-based information,
which is readily available at the off-the-shelf AP. We
derive a simple, yet accurate closed-form packet-
level detection criterion characterizing a legitimate
node’s behavior, which enables the monitoring node
to quickly locate the misbehaving nodes with high
accuracy. (see Section 3).

o Development of a lightweight runtime detection
algorithm using the sequential hypothesis testing
[16]. Our algorithm detects misbehaving nodes on
the basis of passive observations at runtime, i.e.,
successfully received uplink packets from client
nodes, without incurring any extra overhead. Our
scheme is also much simpler than the statistics-based
approaches [7], [9], [12], as it does not rely on the
distribution of packet arrivals (see Section 4).

e In-depth analysis and simulation of realistic hetero-
geneous link scenarios where different links experi-
ence different packet-error rates. We develop a simple
way of enabling the receiver to accurately estimate
the packet-error probability of each individual link,
using only a sequence of successfully received
packets (see Section 4.2). Our evaluation results show
that this approach achieves high detection accuracy
under realistic heterogeneous channel conditions
and even in the presence of multiple cheating nodes.

e Implementation and evaluation of a prototype of the
proposed detection scheme. We demonstrate the
practicality of our approach by implementing
the proposed detection and passive packet error
rate estimation schemes on the MadWifi driver [3].

In summary, our detection scheme is simple, accurate, and
thus, easy to implement and deploy. We demonstrate that
the proposed scheme, despite its simplicity, is highly
accurate in detecting selfish behavior.
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1.2 Related Work

Even through there is a plethora of work on the detection of
misbehaving users in CSMA networks [6], [7], [8], [9], [10],
[11], [12], [13], [14], to the best of our knowledge, this is the
first online detection method that relies only on easy-to-
obtain packet-based information. Most existing detection
schemes [6], [8], [14] in 802.11 are designed under the
assumption that the backoff-time information of each
tagged node is available at the monitoring node. However,
it is infeasible to obtain the accurate value of backoff chosen
by other stations in 802.11 WLANSs. Although there exists
alternative methods [7], [9] that calculate the sender’s
backoff value indirectly from the interarrival time based
on the measurement of the channel idle period, they assume
that the channel activities of other nodes are perfectly
observable and the clocks of nodes are synchronized.
However, current network-card drivers do not allow access
to the intermediate timing information—such as channel
busy and idle periods between two consecutive packet
arrivals—required to calculate the accurate value of idle
slots [17]. Moreover, the busy channel periods due to the
collided or corrupted transmissions are hidden from other
nodes and thus cannot be accurately measured.

Recently, an interesting result was reported in [12],
where the packet interarrival (system) time—instead of
backoff-time—is directly used to identify/detect a misbe-
having node. Their detection method is based on the
analytical characterization of packet interarrival time dis-
tribution at each node. This method overcomes the
difficulty in measuring backoff times, but still has several
practical issues to be resolved. First, the distribution of
packet interarrival time changes dynamically depending on
the number of active nodes and their transmission activities.
Usually, a variety of packet sizes and transmission rates (up
to 54 Mbps in case of 802.11g) are used and the number of
active nodes varies with time. However, the method in [12]
only considered the RTS/CTS access mechanism in which
the collision time is fixed to be the RTS duration' and
assumes that data transmission times of all nodes are fixed
and the number of active nodes is known a priori. This
implies that, unlike the analysis results in [12], the packet
interarrival time distribution is shown to be continuous,
thus exhibiting large differences in the packet interarrival
time even among well-behaving nodes. Second, the method
requires accurate network status information, such as the
collision probability, to calculate the decision criterion (i.e.,
packet interarrival time distribution) for detecting a
misbehaving node. Nevertheless, no operational online
method was provided to estimate the network condition
and instead, a static network is assumed where both the
number of nodes and the expected throughput of a well-
behaving node are given a priori. For the above reasons, it is
difficult to use the detection mechanism in [12]. By contrast,
our proposed online algorithm overcomes these problems
by 1) relying on discrete events, such as packet arrivals and
departures, decoupled with the packet length and transmis-
sion rates, and 2) capturing the dynamics of network
condition with a passive estimation technique.

1. In the 802.11 basic access mechanism without any RTS/CTS
transmission—the typical usage mode of most 802.11 WLANs—the
collision time is unpredictable since it varies with the packet length and
transmission rates of nodes.
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In order to improve detection accuracy, there have been
several recent research efforts [7], [9], [12] utilizing statistics
tools. They utilized statistical testing techniques, such as the
sequential probability ratio test (SPRT) [7], [12], [18] and
Kolmogorov-Smirnov (K-S) test [9]. For example, the
method introduced in [9] compares the empirical distribu-
tion function obtained from the data samples with a
hypothesized legitimate cumulative distribution function
(c.d.f.), and identifies misbehaving nodes. However, most of
these approaches require to construct the probability
distributions from long-term observations, which is too
complex to implement in practice. In contrast, our scheme is
much simpler than the statistics-based approaches [7], [9],
[12], since it uses only a simple closed-form detection
criterion without requiring the construction for complex
probability distributions.

1.3 Paper Organization

The remainder of the paper is organized as follows:
Section 2 describes the system model and overviews our
proposed approach. Section 3 introduces a new packet-level
legitimate metric, and describes how to collect the statistical
information required to verify the behavior of individual
nodes. Section 4 details the proposed algorithm and we
evaluate its performance via simulation in Section 5, and
experimentation in Section 6. We conclude the paper and
present our future directions in Section 7.

2 SyYSTEM MODEL AND PROPOSED APPROACH

In this section, we first present the system model and the
assumptions to be used, and then overview the proposed
misbehavior-detection approach.

2.1 System Model

We consider the common IEEE 802.11 infrastructure WLAN
consisting of an AP and a set N of client nodes that access
the Internet via the AP. The client nodes send their packets
to the AP (i.e., uplink transmissions) and the AP forwards
the packets to local destinations and/or to remote destina-
tions via the wireline Internet (i.e., downlink transmissions).
We assume that APs can be fully trusted since APs usually
are maintained by well-trained network administrators. We
focus on scenarios where selfish nodes manipulate the
channel-access function of the 802.11 protocol, e.g., using
smaller CW,in, CWines, and IFS (interframe space) than
those of well-behaving nodes. In 802.11, it is relatively easy
to manipulate the channel-access function, but their detec-
tion is not trivial. We are primarily interested in a saturated
network condition, because misbehaving nodes can other-
wise make insignificant impacts and can thus be ignored.
Although we do not consider mitigation of malicious
attacks that target to disrupt the network functionality,
our solution can be readily applied to the detection of
attacks, such as denial-of-service (DoS) attacks.

2.2 Overview of the Proposed Architecture

Fig. 1 depicts a high-level architecture of the proposed
system. The proposed detection mechanism is placed at the
driver in the AP which functions as a monitoring node. To
quantitatively characterize each node’s behavior, the AP
counts the number of incoming packets received from a
node in between its two consecutive successful outgoing

o R W Driver
'\ Internet

Misbehavior Detector

estimation

MAC Layerj

Fig. 1. The system architecture and the proposed detection framework.

transmissions, which are readily available at the network-
card driver (Section 3). The AP also estimates each node’s
packet-error probability passively based only on the received
packets, particularly using the refry information [15] in the
802.11 MAC headers (Section 4.2). Based on the estimated
error probability, the AP calculates and updates the packet-
level metric for the detection of misbehaving nodes
(Section 3). Note that the AP processes all of the down-
link/uplink traffic delivered from/to its clients in infra-
structure-based WLANSs, acquiring the data necessary for
the detection of misbehaving nodes without incurring any
extra overhead. Finally, based on the thus-obtained data, the
AP verifies the behavior of each node using a sequential
hypothesis test (Section 4.3).

3 NEew LIGHTWEIGHT DETECTION METRIC

In this section, we present a simple and practical metric,
namely, the number of intertransmissions, that charac-
terizes the legitimate behavior of 802.11 nodes. We then
derive a closed-form expression for the detection metric to
quantitatively characterize each client node’s behavior in an
802.11 WLAN. Finally, we describe how to identify
misbehaving nodes using the detection metric.

3.1 Number of Intertransmissions

The key feature of our approach is to exploit the distribu-
tion of the number of intertransmissions—the number of
packets transmitted by a target node between two consecu-
tive transmissions of a reference legitimate node—as the main
criterion for misbehavior detection. As mentioned earlier,
the number of intertransmissions is a packet-level informa-
tion readily measurable at the AP. Moreover, this simple
packet-level metric provides sufficient information to the AP
in deciding on a node’s behavior. Intuitively, in order to
achieve higher throughput, selfish nodes must have a larger
number of interpacket transmissions than well-behaving
nodes within the same time interval, thus making their
intertransmission distributions deviate from the distribu-
tion of well-behaving nodes.

We have examined the impact of the manipulation of
802.11 MAC parameters on the number of intertransmis-
sions via ns-2 simulation. As shown in Fig. 2a, the
simulation considers three different types of MAC manip-
ulation; 1) CW manipulation (cheating on CW,,;,,), 2) IFS
manipulation (cheating on DIFS), and 3) binary exponential
backoff (BEB) manipulation (cheating on CWm,m),2 by
setting the MAC parameters (CW,,,, CW,,4,, DIFS) of a

2. BEB manipulation can be easily realized by setting CW,,,, to CW,,;,,
implying that CW is not doubled even upon failure of a transmission
attempt due to the small value of CW,,,,.
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Fig. 2. The number of intertransmissions; (a) simulation scenario, and
(b) cumulative distribution function (CDF) of the number of intertrans-
missions for various types of MAC manipulation.

selfish node to 1) (15,1023, 28 us), 2)
(31,31, 28 us), respectively.

The simulation topology in Fig. 2a consists of five
legitimate nodes and one selfish node where all these nodes
are transmitting packets to a reference node, i.e., the AP.
Fig. 2b shows the c.d.f. of the number of intertransmissions.
As expected, the selfish node is shown to have higher
probabilities for larger interpacket transmissions than the
legitimate nodes, indicating that it attempts to access the
medium more frequently than the legitimate ones. In what
follows, we will detail how the AP detects selfish nodes by
using the packet-level information.

(31,1023, 10 ps), and 3)

3.2 Distribution of Intertransmissions in WLANs

To characterize the behavior of legitimate and selfish nodes,
we first derive the distribution of the number of inter-
transmissions in 802.11 WLANs.

3.2.1 Distribution of Intertransmissions between Two
Legitimate Nodes

Let us consider two well-behaving nodes v and [ (u,l € N)
following the rule of 802.11 DCF under a saturated
condition (i.e., always have packets to transmit). Without
loss of generality, we consider node [ as the reference node.

Let K,; denote the number of packets transmitted by
node u between two consecutive transmissions of the
reference node /. For example, K,,; = k indicates that node u
transmits k£ packets between two consecutive successful
transmissions of the reference node I. Our objective is to
derive the probability distribution, denoted by Pr(K,; = k).
This intertransmission distribution can be expressed as

k+1
Pr(K, =k) = Pr(ZT ) <Tiand Y T,(j >T,>

7=1
0 k
—ZPT(ZTU(])<xand (1)
=0 7=1
k1
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where 7} denotes the random variable representing the total
number of virtual slots (i.e., idle, busy, and failed slots [19])
required for a successful transmission by node I or the
interarrival time of node [ in terms of virtual slots. T,,(3)
denotes the independent and identically distributed (i.i.d.)
random variable representing the number of virtual slots
for the jth packet at node w.

In (1), the distribution of the number of virtual slots for a
successful transmission at node [, i.e., Pr(1; = x), can be
calculated based on the 802.11’s BEB mechanism [15].
However, Pr(1; = x) is the probability mass function of a
weighted sum of independent discrete uniform distribu-
tions, which belongs to the class of trapezoidal distributions.
No simple closed-form expressions are known to exist for
such distributions [20]. We overcome this difficulty by
utilizing an accurate approximation of the intertransmission
distribution as we discuss next.

3.2.2 Derivation with Decoupling Approximation

We derive the intertransmission distribution in (1) by using
the decoupling approximation introduced in [21]. To make
analysis tractable without losing key insights, we make the
following three assumptions.

Al. The backoff process of a tagged node [ is indepen-
dent of the other nodes’ aggregate transmission
attempts.

A2. The packet-transmission attempts by a tagged node !
experience a constant and independent error prob-
ablhty pi-

A3. Node [ attempts in each slot with a constant (state-
independent) probability equal to the average
attempt rate 7;.

Under these assumptions, we can show that, conditioned on
a tagged node’s transmission attempt, the number of
attempts by other nodes is binomially distributed.’

The interarrival time 7} is then geometrically distributed
with parameter 7;(1 — p;), i.e., the probability of a successful
transmission in a given slot, where 7; is the average attempt
probability. Thus, Pr(1; = x) can be computed as

{1-n(1-p)}" - n(l —p). (2)

Here, the average attempt probability 7 [21] for well-
behaving node [ with packet-error probability p; is given by

Pr(Ty=xz) =

E[R] _
E[B]

1+p+pi+--
bo +b1p1+b2p12+

+p;
o+ brp; '

= (3)
where E[R] and E[B] denote the average number of
attempts required for a packet transmission and the average
time spent b; on backoff before the ith attempt, respectively.
Here, b; is 2C”’"”' for backoff stage i and r denotes the
maximum retry counter, typically set to 4. Since the attempt
probability 7; is a function of the error probability p; as
shown in (3), it can be easily calculated for a given value of
pi; the estimation of error probability will be discussed in

3. Note that such simplification has been utilized widely in the analysis
of 802.11 WLAN performance under stochastic assumptions [19], [22], [23],
[24]. Such an approach is known to yield very good results, capturing
important performance attributes, such as throughput and delay in
saturated 802.11 networks [19], [22].
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Fig. 3. Example measurement and collection of intertransmissions at
the AP.

Section 4.2. Then, we can compute Pr(K,; = k) based on
(1) and (2) for the given values of p; and p, as

X [z
PT(KuH = k) = < >{1 _ Tu(l _ pu)}:r—k
2\ 0
< {ru(1 = p,)}* - Pr(T} = z).
The distribution P 7"(KUII = k) for the number of intertrans-

missions in (4) characterizes the legitimate behavior of
saturating 802.11 node when the node follows the rule of
802.11 protocol. That is, we can identify a misbehaving node
by checking whether the observed behavior of a node
follows this legitimate distribution or not. In the following
sections, we describe how to characterize misbehaving
nodes based on the probability distribution.

3.3 Measurement of Client’s Behavior

As a first step for detecting misbehaving nodes, the AP
monitors and measures the behavior of each individual
client node, particularly the sequence of intertransmission
number, corresponding to K,;, of the client node v € N. To
this end, it is important for the AP to select an appropriate
reference node corresponding to node [ (! € N) in (4), which
follows the 802.11 rule legitimately.

The key idea in selecting such a reference node is that the
AP wuses its outgoing transmission as the legitimate
behavior, i.e., the AP employs itself as the reference node
l, ie., l=ap. The rationale behind this approach is as
follows: The AP, i.e., the monitoring node, is also an 802.11
node contending for accessing a channel along with its
client nodes based on 802.11 DCF. The AP has backlogged
packets to transmit when the capacity of the WLAN
segment is lower than the wireline bandwidth. Moreover,
the AP can, in general, be trusted since it is more powerful
and maintained by well-trained network administrators.
Therefore, the AP is the most appropriate reference node in
a WLAN. We will henceforth regard the AP as the reference
node [ and focus on its operation, omitting the index ap for
notational simplicity, e.g., K, will denote K.

The AP can obtain the sequence of individual client
nodes’ intertransmissions by simply counting the number
of incoming (uplink) transmissions from the client nodes in
between its two consecutive successful outgoing (downlink)
transmissions. Fig. 3 illustrates an example measurement
scenario. Here, {A! }! | denotes the sequence of intertrans-
mission numbers from node u observed at the AP where the
ith element A is the number of intertransmissions between
the ¢th and (i + 1)th successful downlink transmissions.
One key feature of this method is that it is based on the
discrete events of packet arrivals/departures and thus is

decoupled from continuous communication variables such
as packet sizes and transmission rates [12]. As a result, it is
simple but accurate in obtaining the samples. Moreover, it
does not require any assistance from other protocol layers
nor modifications to the 802.11 standard.

3.4 Criterion for Deciding on Misbehavior Using a
Simple Closed-Form Detection Metric

We now present a new and practical decision criterion for

misbehavior detection by deriving a simple closed-form

detection metric.

One can identify a misbehaving node by comparing the
empirical distribution of observed sequence {A!}" , with
the legitimate distribution derived in (4) based on certain
well-known goodness-of-fit tests, such as the Kolmogorov-
Smirnov test [7], [9]. Although the distribution-based
approach is general enough to capture the various types
of selfish behavior, it is expensive due to its need for
constructing and comparing the distributions over a broad
range. Besides, it is nontrivial to compute the legitimate
probabilities for higher values of k (e.g., £ > 2) in (4).

A key distinct feature of our technique is that we rely
only on two legitimate probabilities Pr(K, =k) for k=0
and 1, i.e., Pr(K, = 0) and Pr(K, = 1), without the need for
the complex calculation of Pr(K, = k) over the wide range
of k. More importantly, this feature enables us to derive a
closed-form expression of the detection metric, which is
essential for online (runtime) detection.

3.4.1 Characterization of Misbehavior

We first show that the empirical distribution function of the
observed sequence, {A!}!, of a selfish node deviates from
the legitimate distribution in (4). In particular, we show that
a selfish node has a higher empirical probability of
Pr(A, > 1), the probability that the number of node u’s
intertransmissions in {A!}", is larger than 1, than the
legitimate probability, Pr(K, > 1).

We have the following proposition on the intertransmis-
sion counts of selfish behavior.

Proposition 1 (Intertransmission count distribution for
selfish behavior). Let GV (x) denote the probability that the
number K, of node u’s intertransmissions is larger than x, i.e.,
G%(z0) = Pr(K, > x). Let p, and p,, denote the given
measured error probabilities of node u and AP, respectively.
Then, for a given i.i.d. sequence of sample intertransmission
counts { AL}, Pr(A, > 1) > G%(1) if node u is a selfish node.

Proof. Let 7,, and 77 denote, respectively, the legitimate
attempt probabilities of the AP and node u, which are
determined by the 802.11’s BEB rule and obtained from
(3) for the given p, and p,, [21]. If node u is well-
behaving, its probability distribution of the observed
intertransmission counts follows the legitimate distribu-
tion derived in (4). Thus, the probability G%(zy = 1) can
be calculated using Pr(K, =0) and Pr(K,=1), ie.,
G%z9=1)=Pr(K,>1)=1—(Pr(K,=0)+ Pr(K,=1)),
which are obtained from (2) and (3) as follows:

7_/

Pr(K,=0)= T 75?)(1 5y (5)

ap




7—'19/7—1/11)(1 B Tz/zp)

(1—(1=7)(1—7))"

where 7, and 70" denote, respectively, the probabilities
of successful transmissions by the AP and node u, and
are given as 7, = T4y(1 — pop) and 77 = 7(1 — p,). Then,
we can obtain

) (1) Tgl(l — Tf;P) 2
Gh(1) = (1 -1-)1-7 )> . v

ap

Pr(K,=1)= (6)

If node w is selfish, then it will have a higher attempt
probability, given by 7/ =7} (>7)), where g is
referred to as Selfish Intensity, 0 < g < 1, and a larger g
implies a higher degree of selfishness. Let GY(1) denote
the probability that the selfish node’s intertransmission
count is larger than 1. Then, the probability distribution
of the selfish node’s observed behavior will follow this
probability, ie., Pr(A,>1)~GY(1). We can easily
derive GY(1) by substituting 7¢ for 7, in (7)

7(1) — (-9 'wa-m)
Gt = (1— (1_(1_9)—17,3/)(1—7;,))) v

Then, we can show that

GZ(l) o Tl’t + Tz/zp - TLT(ILp > 1
V Gg(l) 7-1/1, + (1 - g)T(ll[) - 7—1{17-(;17 ’

that is, Pr(A, > 1) ~ G9(1) > G%(1) for 0 < g < 1. O

Proposition 1 indicates that the AP can obtain sufficient
information necessary for decision-making from the
observed sequence {A!}" | of node u and further verify
its behavior by using the legitimate probability G'(1) as a
decision metric. In particular, the deviation of its inter-
transmission distribution from the legitimate probability

enables the AP to conclude that the node is selfish.

3.4.2 Decision Criterion for Hypothesis Testing
We can cast the detection problem as a hypothesis testing
with two hypotheses, H, and H,, representing the null and
alternative hypotheses that the observed node is legitimate
and misbehaving, respectively.

Based on Proposition 1, we state the hypothesis testing
problem as

(not misbehaving), )
(misbehaving).

Hy: Pr(A, > 1) <GY(1)
Hy: Pr(A, >1) > GY1)

Here, the probability, GY(1), that the number of node u’s
intertransmissions K, is larger than 1, represents the
detection metric (i.e., legitimate probability) with which
the AP determines whether its client node u is legitimate or
misbehaving.

3.4.3 Closed-Form Detection Metric

In the hypothesis test in (9), the detection metric G2(1) is
derived as a closed-form function of two transmission error
probabilities of the AP and node v, i.e., p,, and p,, as

(1=,)

)> = f(Paps Pu), (10)

)1 =7
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where

 ldptpi 4
bo+b1p1+b2p12+-~-+brpl”7

7=0-p) 1€ {ap,u}.

In order to obtain the detection metric for node u in real
time, we only need to measure the individual conditional
transmission error probability p, and the reference prob-
ability p,, of the AP (see Section 4.2 for details). Note that
accuracy in estimating these error probabilities influences
greatly the detection performance since it determines the
accuracy of the detection metric G°(1).

4 PASSIVE ONLINE DETECTION ALGORITHM

In this section, we present an online algorithm to detect
misbehaving nodes in WLANs based on our analysis
discussed so far. We first discuss the practical challenges
in detecting misbehavior, and then present a practical
runtime solution to them.

4.1 Practical Challenges

We identify two main challenges for misbehavior detection
based on (9) and (10).

e  Estimation of Individual Error Probability. As shown in
(10), the criterion for detecting misbehavior varies
with each node, depending on its own (location-
dependent) transmission-error probability. Thus, the
AP needs to estimate the individual conditional packet
error probability (PER) p,, rather than the average
network-collision probability.* However, the main
difficulty in estimating the uplink PER of a client
node is that the AP can observe only the packets
successfully transmitted from the node and cannot
directly measure the number of total transmission
attempts required to calculate the node’s PER.

o  Coping with Temporal Variations. The random nature
of the channel access in 802.11 may exhibit tempora-
rily bursty packet transmissions from a well-behav-
ing node, misdiagnosing a well-behaving node as
misbehaving. Thus, the detection mechanism must
distinguish such temporal variations of well-be-
haved nodes from deliberate selfish behavior.

For the first challenge, we propose a simple passive online
method to estimate individual nodes’ error probabilities by
exploiting the 802.11’s retransmission mechanism. For the
second challenge, we employ a sequential analysis technique
[16] to accurately detect (i.e., with a small false-alarm prob-
ability) misbehavior with a minimal number of observations.

4.2 Online Derivation of Detection Metric

We first present a simple method for the AP to passively
estimate the uplink transmission error probability of each
individual client node.

4.2.1 Estimation of Clients’ Uplink PERs

As mentioned above, the AP cannot directly measure the
number of total transmission attempts, n!, nor the number

4. Note that the overhearing-based estimation utilizing the average
number of transmission attempts by nodes or the number of idle slots in the
network [9], [25] aims to estimate the network-wide average collision
probability.
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of failures, n{i, of node u. The only observable transmissions
from clients are successful transmissions. Note that if the
AP knows both n!, and n/, the probability p, is computed as
pu = nl/nl.

Our key idea in estimating p, is to leverage the 802.11’s
retransmission mechanism, i.e., the correlation between the
packet-loss probability and the pattern of Retry field in the
802.11 MAC header indicated in successively received
frames. The Retry field in the 802.11 MAC header” consists
of a single bit and indicates if a data or management frame
is being transmitted for the first time or is a retransmission.
For example, a frame with this field set to zero indicates that
the frame is successfully transmitted at its first attempt. On
the other hand, when this field is set to 1, the frame is the
retransmission of an earlier unsuccessful frame. Thus, a
larger fraction of packet receptions with the Retry field set
to 1 indicates a higher uplink error probability.

Let C; denote the number of frames received from
node v with Retry field » € {0,1} at the AP during a
measurement period. Since the probability that a frame is
successfully delivered at the jth attempt is calculated as
p/~1(1 — p,), we can obtain the following relations:

e  Successful reception at the first attempt (j = 1)

CY =nl(1—p,). (11)

e  Successful reception via retransmission (2 < j <r+1)

Co=m(putpt--+p)A-p)  (12)
where 7 is the retry limit (typically » = 4). Dividing (12) by
(11), we obtain

1

c

u

S A N (13)
As a result, the AP can calculate the conditional probability
p, using (13) based on the measurement of C! /CY for node w.
It can be further simplified to p, = C! /C? if C! <« C?.

4.2.2 Online Calculation of Detection Metric

Since the AP can easily calculate its downlink transmission
error probability p,, by using its packet transmission
history, the AP obtains the individual detection metric G%(1)
for node v in (10) in real time.

4.3 Sequential Hypothesis Test for Misbehavior
Detection

We now propose an online algorithm that detects the selfish

behavior via a sequential hypothesis testing, based on the

detection criterion in (9).

4.3.1 Likelihood Ratio Test

For a sequential hypothesis testing, we first define the
likelihood ratio test [26]. Let p = Pr(A > xy=1) be the
probability that the intertransmission count of a node is
larger than the reference zp = 1. Let m (<n) denote the
number of observations whose intertransmission number

5. This field is intended to help the receiving MAC eliminate duplicate
frames.

is larger than 1. If node u is well-behaving, its observed
sequence A, of intertransmission count will satisfy
Pr(A, >1) <G%1) as shown in (9). Therefore, if the
hypothesis Hy: p < G%(1) is rejected by the observed
sequence of node u’s intertransmission counts, we can

conclude that node u is not well-behaving.
For i.i.d. observations, the likelihood ratio test (LRT)

statistic is given as [27]

A é Supp, L(plAqlp RN AZ) _ Sup0§p§9[. pm(l - p)n*m
SUP)<p<1 pm(l — )nfm )

14
SuleL(p|A11”...7AZ) (14)

where supy, L(p|A,, ..., Al) is the maximum likelihood that

u?

the observed sequence {Af}!, is in Hy, and 6, denotes the
legitimate probability (decision criterion) given as 6 2 G%(1)
for node u. In (14), the numerator supy<,q, p" (1 —p)" "
represents the maximum probability of the observed
sequence under the null hypothesis H (i.e., not misbehav-
ing). The denominator supy.,<; p” (1 — p)" " corresponds to
the maximum probability of the observed sequence over all
possible cases or in the alternative hypothesis H; (i.e.,
misbehaving). Note that the maximum likelihood estimator
(MLE) in the numerator is min{p, 6y} while the denominator
has p as the MLE. Thus,

17 lfp < 90a
A= l%n(l _ eo)n—m (15)

B G L ) otherwise.

Thus, a small value of A indicates that the alternative
hypothesis H; is more likely with the observed sequence
than the null hypothesis Hj. In other words, the likelihood
test will reject H, if
1
A< —
< M’
where M € R is the predefined decision threshold. We
will study the impact of M on the detection performance
in Section 5.

(16)

4.3.2 Online Sequential Test Algorithm

Based on the LRT, we can formulate the misbehavior
detection problem for node v as a sequential hypothesis
test. Let p = m/n denote the MLE of p, i.e., the ratio of the
number of intertransmissions larger than 1, to all observed
sequences. For 6y < p < 1, the likelihood test rejects Hy and
concludes that node u is misbehaving if

or (1 —0)"™ 1

~n—m < 737
pr(1-p) M
which is
m(log (’—A’A) + log(l_—(’”)) —log M
n < p “ ) (17)
log (1 —6y) —log (1 —Pp)
For p =1, we have
log M
— . 1
m > el (18)

Algorithm 1 describes the procedure for sequential
hypothesis testing for N associated client nodes. In the
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algorithm, we adopt zy = 1 for the reference number, and
hence, use G%(zo = 1) in (10) as the legitimate probability
6y, which is given as a closed-form expression. Thus, it can
be easily calculated at runtime. For the observed sequence
{AI}!,, m represents the number of sequences j s.t.
Al >2(je{1,2,...,n}).

Algorithm 1. Online Sequential Hypothesis Test
procedure Initialize()

1: xp«— 1

2: for all u such that w € N do

3: nful,mul <0

4: Cylu], Cyu] —

5: end for
procedure EventReceiveF’ ROM (u)

1: // EventRX: Upon receipt of a new packet P, from node u
// Counting the number of inter-transmissions K[u]
Klu] «— K[u] +1
// Calculation of legitimate behavior reference for node u
Colu] — Colu] + 1(retry field of P, = 0)

Ci[u] < Ci[u] + L(retry field of P, = 1)
if Cylu] + C[u] > size_update then
pu — GetPr(Cilu]/Colu]) // (13)
Oy — Go(pupr pe) // (10)
10: end if
procedure EventSucTransmit()

1: // EventTX: Upon every successful transmission of the AP

2: for all u such that v € N do

3 nul —nu]+1

4: mu] — mu] + L(K[u] > x)

5. n <« nful;m — mlu];

6: pem/n

7. if n < mUog (p/(1-p))+log((1-0.)/0,)—log M 44 o)

log (1-6,)—log (1—p)

8: reject Hy // node u is misbehaving

9: elseifp=1andn > — }‘;ggl then
10: reject Hy // node u is mzsbehavzng
11: else
12: undetermined; do not reject H,
13: end if

14: ActivityCheck(u,p) // Activity check
15: Klu] < 0
16: end for
procedure ActivityCheck(u,p)
// ActivityCheck: check whether node u is non-backlogged
if K[ul =0and p < 6, - o then
// count the consecutive events of K[u] =0,
// where v is a check parameter (o = 0.5)
enfu] — cenfu] + 1
else
enfu]l =0
end if
if enfu] > max_consecutive then
1 nlu], m[u] < 0 // node u is non-backlogged; check again
11: end if

Note that the intertransmission count K, of node u will
be always 0 during node u’s nonbacklogged period during
which the node has no packets to transmit. It may lead to
underestimation of MLE p in Algorithm 1, thus misdetecting

—_

e

TABLE 1
Parameters Used in Performance Evaluation
Parameter Value
RetryLimit(m) 4
CWin 31
CWmaax 1023
CWz (1 S i S m) m1n(2’CWmm, CWmaz)
aSlotTime 9 us
SIFS 10 pus
DIFS 28 us
Data Rate 54 Mbps
PHY header (Tpgy) 192 bits/12Mbps
ACK 112bits/12Mbps
Payload Size 1000 bytes
M (in Eq. (16)) 104, 10°

selfish nodes. This is prevented by including procedure
ActivityCheck(u) to check and filter out the nonbacklogged
period.

5 SIMULATION-BASED EVALUATION

We evaluate the performance of the proposed detection
algorithm via simulation with ns-2 v2.34 [28] in WLAN
environments consisting of one AP and multiple mobile
client nodes.

5.1 Simulation Setup

The simulation examines three types of MAC manipulation:
1) CW manipulation (cheating on CW,,;,), 2) IFS manipula-
tion (cheating on DIFS), and 3) BEB manipulation (cheating
on CW,,,,). Selfish nodes manipulate MAC parameters to
acquire more channel access time while legitimate nodes
conform to the MAC parameters specified in the standard,
eg., CWyin =31, CWy,, = 1,023, and DIFS = SIFS + 2
aSlotTime (= 28 ps). We evaluate the proposed detection
scheme using various manipulated MAC parameters to
study the impact of selfish intensity (i.e., the aggressiveness
of selfish behavior) on the detection performance. Particu-
larly, we test three levels of CW manipulation by using
CWpin = T (extreme misbehavior), 15 (intermediate), and 24
(moderate), and two levels of IFS manipulation by using
DIFS = SIFS + 1 % aSlotTime (= 19 ps, i.e., one-slot cheat-
ing) and SIFS + 0 * aSlotTime (= 10 us, i.e., two-slot cheat-
ing). We also vary the number of contending nodes, i.e.,
N =2,4,and 7, to test the impact of channel contention on the
detection performance. In addition, we evaluate our scheme
in the presence of multiple selfish nodes (Section 5.2.3).

We consider the IEEE 802.11g PHY/MAC whose system
parameters are listed in Table 1. Data traffic is generated by
constant bit rate UDP traffic sources under the assumption
of a saturated network condition, i.e., there is more traffic
than the network can accommodate. Thus, all nodes,
including the AP, always have packets to transmit.

To demonstrate the efficiency of our scheme under
realistic heterogeneous channel conditions, we simulate the
following two scenarios:

e  Homogeneous condition. All nodes have the same
collision probability without channel errors;

e  Heterogeneous condition. Each node experiences a
different channel-error probability.
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TABLE 2
Detection Performance: CW Manipulation
with CW,,,;, =7 for N =2, 5, and 7

[ M=10° [ M=10% ]

Detection Rate 1.00 1.00
N =2 | Median # of pkts 11 9
Median Detection Time | 0.06 0.06
Detection Rate 0.997 0.99
N=5 | Median # of pkts 10 9
Median Detection Time | 0.07 0.06
Detection Rate 0.993 0.993
N=7 | Median # of pkts 11 9
Median Detection Time | 0.09 0.07

Under the heterogeneous link condition, a selfish node may
not achieve throughput noticeably higher than legitimate
nodes if the selfish node’s link is highly prone to errors,
thus making its detection difficult. Nevertheless, a detection
scheme must be designed to work properly under realistic
heterogeneous scenarios.

We also evaluate the impact of the decision parameter M
in (16) on the detection performance; we run the simulation
300 times for each set of selfish intensity, number of client
nodes, and decision parameter M.

5.2 Detection Performance

5.2.1 Homogeneous Error-Free Channel

First, we evaluate the performance of the proposed
misbehavior detection, assuming the wireless medium is
error-free, i.e., no transmission error due to fading. Thus, all
nodes experience the same packet transmission error due to
collision. We consider the cases with a single selfish node
and multiple legitimate nodes.

CW Manipulation. Tables 2, 3, and 4 show the detection
results for three selfish intensity levels of CW manipulation,
CWoin = 7, 15, and 24, with different numbers of client
nodes, N = 2, 4, and 7, which all include one selfish node.
The table lists the detection rate, the median number of input
packets for detection, and median detection time (seconds)
in 802.11g PHY. The results indicate that our scheme
achieves high accuracy with the correct detection ratio above
96-100 percent (M = 10°) for all simulated scenarios.

Specifically, when the selfish intensity is high
(CWiin = 7,15) (Tables 2 and 3), our algorithm is shown
to detect the misbehavior very quickly (the median of

TABLE 3
Detection Performance: CW Manipulation
with CW,,,;,, = 15 for N =2, 5, and 7

| M=10° | M=10* |

Detection Rate 1.00 1.00
N=2 | Median # of pkts 20 12
Median Detection Time | 0.07 0.05
Detection Rate 1.00 0.993
N =5 | Median # of pkts 22 15
Median Detection Time | 0.10 0.06
Detection Rate 0.993 0.98
N =7 | Median # of pkts 30 18
Median Detection Time | 0.13 0.09

TABLE 4
Detection Performance: CW Manipulation
with CW,,,;,, =24 for N =2, 5, and 7

[ M=10° [ M=10" ]

Detection Rate 1.00 0.95
N =2 | Median # of pkts 145 70
Median Detection Time | 0.38 0.18
Detection Rate 0.983 0.95
N=5 | Median # of pkts 308 127.5
Median Detection Time | 1.08 0.46
Detection Rate 0.983 0.883
N =7 | Median # of pkts 445 119.5
Median Detection Time | 1.79 0.49

required observations is less than 30) with high accuracy
(more than 99 percent), indicating that more aggressive
selfish behavior is likely to be detected more quickly and
accurately. This is very important for a detection scheme
since such an aggressive behavior can seriously degrade the
performance of well-behaving nodes. The results indicate
that good detection delay and accuracy for high selfish
intensity are maintained even with a large number of
clients—the total number of packets required for detection
does not change much with a varying number of clients.
The results also show the impact of the detection threshold
parameter A on the detection performance. A higher value
of M =10° improves the detection accuracy, but the
difference is marginal, i.e., our scheme can detect the selfish
behavior of high intensity with very high accuracy even
with a small value of M.

On the other hand, the detection of a moderately selfish
node (with CW,,;, = 24) (Table 4) takes more time, i.e., a
larger number of received packets. Specifically, we can
observe that the detection delay increases as the number of
clients increases. This is because, as the number of nodes
increases, the interarrival transmission time for a successful
transmission from a client increases due to increased
collisions, increasing the time to observe a given number
of sequences. Moreover, the impact of such a moderately
selfish node on the network performance is not significant,
i.e., the selfish node achieves only a small throughput gain
over the legitimate nodes. As a result, the moderate selfish
node is not immediately detectable at the AP since it takes
more samples for the AP to accurately detect such selfish
nodes. For example, the simulation result in Fig. 4a shows
that the packet interarrival time distribution of a moder-
ately selfish node is similar to that of legitimate node. This
implies that the selfish node may be able to achieve only a
marginal throughput gain over the legitimate nodes. Hence,
it takes more time for the MLE D to satisfy the detection
condition in (17) or (18). On the other hand, Fig. 4b shows
that the node of high intensity (CW,,;,, = 15) has a much
higher probability in shorter interarrival times under the
same condition, which can provide a significant throughput
gain to the selfish node.

Unlike the selfish behavior of high intensity with
CW,pin = 7 and 15, the result for CW,,;, = 24 shows the
significant impact of the detection threshold parameter M
on the detection accuracy and detection time. There is a
trade-off in selecting the detection threshold parameter M
a larger M increases the detection accuracy, but requires a
longer detection time.
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Fig. 4. Distribution of interarrival time under CW,,;, manipulation with
different selfish intensities; (a) CW,,;, =24 and (b) CW,,;,, =15 for
N=T.

DIFS Manipulation. Tables 5 and 6 show the detection
results for two selfish intensity levels of IFS Manipulation for
DIFS = 10 and 19 pus, respectively. When the selfish intensity
(DIFS = 10 ps) is high (Table 5), the proposed scheme is
shown to detect the misbehavior very quickly with high
accuracy regardless of the number of contending nodes or M.
On the other hand, we can observe a decrease in the detection
accuracy for a moderate selfish intensity (DIFS = 19 us) in
Table 6. As in the case of CW manipulation, this can also be
explained by the fact that the selfish node with a moderate
selfish intensity achieves only a small throughput gain over
the legitimate nodes. We can also observe a significant
impact of M on the accuracy in detecting low selfishness. It is
thus recommended to use a higher value of A, such as
M =105 to identify a wide range of selfish intensity,
although it might take more time to detect.

BEB Manipulation. Table 7 shows the detection perfor-
mance for BEB manipulation. Note that the BEB cheating
affects the selfish node’s behavior only when the collision

TABLE 5
Detection Performance: Interframe Space
Manipulation with DIFS = 10 us for N =2, 5, and 7

[ M=10° | M=10" |

Detection Rate 1.00 1.00
N=2 | Median # of pkts 210 149
Median Detection Time | 0.51 0.36
Detection Rate 0.98 0.98
N=5 | Median # of pkts 128 100
Median Detection Time | 0.48 0.39
Detection Rate 0.96 0.85
N =7 | Median # of pkts 106 98
Median Detection Time | 0.47 0.43

TABLE 6
Detection Performance: Interframe Space
Manipulation with DIFS = 19 us for N =2, 5, and 7

| M=10° | M=10" ]

Detection Rate 1.00 1.00
N =2 | Median # of pkts 640 442
Median Detection Time | 1.56 1.02
Detection Rate 0.93 0.62
N=5 | Median # of pkts 513 336.5
Median Detection Time | 1.80 1.18
Detection Rate 0.87 0.55
N=7 | Median # of pkts 485 286
Median Detection Time | 1.95 1.15

probability is sufficiently high, because unlike legitimate
nodes, its gain comes from not increasing its CW value even
upon collision. One can see low detection accuracy for a
small number of contending nodes, i.e., N = 2, because the
BEB cheating in this environment does not have a beneficial
effect on the throughput gain—the selfish node achieves
only a marginal throughput gain (only about 1.13 times)
over legitimate nodes. Although the throughput gain of
BEB manipulation in the case of a larger number of nodes is
shown to be not significant compared to other types of
MAC manipulation (i.e.,, CW and IFS manipulations), we
observed that the gain of the BEB cheating node increases as
the collision probability increases (about 1.39 and 1.56 for
N =5 and 7, respectively). Therefore, the detection accu-
racy also increases proportionally to the throughput gain.

Overall, our proposed scheme accurately detects various
types of MAC manipulation by exploiting only passively
observed packet information.

5.2.2 Detection Performance in an Error-Prone Channel

Next, we study the impact of channel error on detection
performance under heterogeneous network conditions.
Channel errors induce random variations in the number
of intertransmissions, K,, thus affecting the detection
performance significantly. We consider a heterogeneous
network with one selfish node and two legitimate contend-
ing nodes, as shown in Fig. 6. The network is configured so
that the two legitimate nodes have fixed uplink packet error
rates (PERs) of 0 and 10 percent, respectively. We assume
that the AP’s downlink transmission is error-free, i.e.,
PER,, = 0. We performed several experiments while
varying PER of the selfish node S for PERg = 0, 0.15, and
0.25. Note that such link heterogeneity makes the detection
challenging. This is because, when a selfish node suffers

TABLE 7
Detection Performance: BEB Manipulation (Disabled
BEB by Setting CW,,,,, = 31) for N =2, 5, and 7

I |

[ M=10° [ M=10% ]

Detection Rate 0.62 0.75
N =2 | Median # of pkts 780 656
Median Detection Time | 1.52 1.59
Detection Rate 0.70 0.76
N=5 | Median # of pkts 688 428
Median Detection Time | 1.90 1.55
Detection Rate 0.75 0.73
N=7 | Median # of pkts 528 355
Median Detection Time | 1.99 1.66
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Fig. 5. Distribution of number of packets for detection under selfish
intensity of CW,,,;, = 24 with PERg = 0.25.

from high PER, the achieved throughput or the number of
packets observed at the AP from the selfish node may not
be higher or larger than that from legitimate nodes even
with a high selfish intensity. For instance, in a scenario with
PERg = 0.25, there is no noticeable difference between the
interarrival time distributions of the selfish node S and
legitimate node N2, as shown in Fig. 5. Thus, it is difficult to
identify the selfish behavior based on the interarrival time
or achieved throughput [8], [12]. However, a good detection
scheme must be robust under channel heterogeneity to be
practically useful, since wireless links are usually error-
prone due to channel fading, interference, mobility, etc.

In spite of the difficulty under heterogeneous channel
conditions, Table 8 shows that our detection scheme
achieves high detection accuracy and small delay, being
highly efficient under heterogeneous channel conditions.

5.2.3 Detection of Multiple Cheating Nodes

Next, we test the proposed detection scheme in the
presence of multiple cheating nodes. With increasing
popularity of SDR devices, multiple cheating nodes are
likely to coexist in a WLAN. Thus, it is important for a
detection scheme to identify such multiple selfish nodes
with high accuracy. We consider three scenarios consisting
of two, three, and four selfish nodes among five contending
nodes (Nepewr = 2, 3, and 4).

The simulation results in Table 9 show that the detection
accuracy of our scheme is very high, as in the single
cheating node case. This is because our scheme is based on
the independent examination of each individual client node
for misbehavior detection, i.e., the AP checks the number of
transmissions from each individual client node in between
its two consecutive transmissions. An interesting observa-
tion in the results in Table 9 is that the detection
performance of BEB manipulation (CW,,q, = 31) is im-
proved as the number of cheating nodes increases. This can
be explained by the fact that the collision probability
increases with more cheating nodes due to their selfish
behavior, which makes the BEB cheating more effective.

{0, 15, 25}% error

@1 0% error
N1

No error
No error
No error

N2

Selfish
node S

Fig. 6. Simulation topology under heterogeneous error conditions;
PER;s = {0.0,0.15,0.25}.

TABLE 8
Detection Performance under a Heterogeneous Condition
for Various Types of MAC Manipulation (N = 3, M = 10°)

[PER=0]PER=0.15| PER=0.25 |

CW,in =7 Dete.ction Rate | 0.967 0.993 0.997

Medlap pkt # |14 12.5 13
el I
Ty b A
T et i A
T o A A
Y e A A

Consequently, the increased throughput gain relative to the
legitimate nodes makes their detection easier.

6 IMPLEMENTATION AND EVALUATION

To demonstrate the efficiency of the proposed detection
scheme, we have implemented and evaluated a prototype
of the scheme by using the MadWifi driver [3] for the
ARS5212 chipset on Atheros-based WiFi cards on the Linux
platform. We used MadWifi because of its stability in
implementing an AP mode with the support of hostapd.
We have performed experiments for one of the cheating
schemes based on CW manipulation.

6.1 Accuracy of Passive Per-Link Error Estimation

First, we demonstrate the usability of the proposed passive
packet error estimation introduced in Section 4.2 through
real experiments. Note that the accurate estimation of a client
node’s PER is essential to calculate the accurate legitimate
metric for the node that dictates the detection performance.

We have implemented this estimation method in the
MadWifi driver. When a node receives a frame, the
Hardware Abstraction Layer (HAL) calls the frame-hand-

TABLE 9
Detection Performance in the Presence of
Multiple Cheating Nodes for Various Types
of MAC Manipulation (N = 5, M = 10°)

CWopin =7

| Neheat =2 I Neheat =3 | Neheat =4 |
Miss Detection Rate [0 0 0
False Alarm Rate |0.04 0.04 0.02
Detection Accuracy [0.96 0.96 0.98
Miss Detection Rate [0 0 0

CW,pnin =15 |False Alarm Rate 0.05 0.04 0.03
Detection Accuracy [0.95 0.96 0.97
Miss Detection Rate [0.03 0.09 0.12
CWnin =24 |False Alarm Rate [0.11 0.09 0.04
Detection Accuracy |0.86 0.82 0.86

Miss Detection Rate|0 0 0
DIFS=10 us|False Alarm Rate [0.01 0.01 0.01
Detection Accuracy [0.99 0.99 0.99
Miss Detection Rate [0 0 0

DIFS=19 us|False Alarm Rate [0.04 0.02 0.04
Detection Accuracy [0.96 0.98 0.96
Miss Detection Rate|0.05 0.08 0.07
CW ez =31 |False Alarm Rate 0.18 0.10 0.03
Detection Accuracy [0.77 0.82 0.90
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TABLE 10
Backlogged Nodes and Retry Ratio C,/C)
N [ 1 2 3 1
C1/Cop from Analysis 0.00 0.062 0.120 0.173
C1/Cp from Experiment 0.04 0.09 0.16 0.18
TABLE 11
Legitimate Metric for Online Use in Implementation
Pu PAP
0 01 02 03 04 05 06 07 08 09
0 0.23 0.29 0.37 0.46 0.56 0.65 0.74 0.81 0.88 0.94
0.1 | 018 024 031 04 05 0.59 0.69 0.78 0.86 0.93
0.2 | 0.13 0.18 0.24 0.32 0.42 0.52 0.62 0.72 0.82 0.91
0.3 | 0.09 0.12 0.17 0.24 0.33 0.43 0.54 0.65 0.77 0.88
04 | 0.06 0.08 0.12 0.17 0.24 0.34 045 057 0.7 0.84
0.5 | 0.03 0.05 0.07 0.11 0.17 0.25 0.35 0.47 0.62 0.79
0.6 | 0.02 0.03 0.04 0.07 0.11 0.16 0.25 0.36 0.51 0.72
0.7 | 0.01 0.01 0.02 0.03 0.06 0.1 0.16 0.25 0.39 0.62
08 |0 0 0.01 0.01 0.03 0.04 0.08 0.14 0.25 0.47
09 |0 0 0 0 0.01 0.01 0.02 0.04 0.1 0.25

ling function in the MadWifi driver reporting several
transmission statistics, such as the Retry field information.
To obtain the ratio in (13), we have inserted the estimation
routine and managed this information.

We conducted experiments while varying the number of
laptops from 1 to 4, and computed the retry ratio C/C.
Table 10 shows the data obtained from the experimentation.
We observed a close match between analysis and experi-
mental results with negligible differences of 0.01-0.03,
where the difference is mainly due to the channel errors
occurred in real operational WLANS.

6.2 Methodology and Results

For the implementation of our online detection method, we
computed and constructed the legitimate metric table
offline, corresponding to (10), indexed by the transmission
error probabilities of the AP, p,,, and each client node, e.g.,
py for node u. The part of the table is shown in Table 11. At
runtime, the detection module on the AP then easily obtains
the detection metric, G°(1), of each individual node by a
simple table lookup (without complex numerical computa-
tion), using the most up-to-date estimated PERs, p,, and p,,
as the index.

We evaluated the experimental results with several
values of cheating coefficients of 0.75, 0.5, 0.25, and 0.125,
where the cheating coefficient represents the aggressiveness
of selfish behavior, defined as the ratio of the legitimate CW
value to the manipulated CW value. We built a testbed with
one desktop as an AP and two laptops as client nodes. Since
currently most commodity network interface cards (NICs)
do not allow to tune critical MAC parameters® where the
functionality of tuning is implemented in the firmware, we
implemented the CW manipulation technique by using a
bandwidth throttling (traffic shaping) technique in the user
space [29] on top of the wireless NIC’s driver.

6. Even though MadWifi provides a series of commands (e.g., iwpriv)
to configure several MAC/PHY parameters, the configuration does not
work for some critical MAC parameters including CW,.;,, CW4,, and
AIFS.

TABLE 12
Experimental Results

Cheating coefficients [ 0.75 05 025 0.125

Avg # of Detections 8 14 15 20
Average # of pkts 736 664 649 50

We have differentiated the channel access probabilities
of contending nodes in the testbed by allocating different
rate limiting parameters. We configured a higher rate at one
laptop (which is considered as the selfish node), and same
fixed rate at the AP and the other laptop (legitimate node)
where we repeated experiments while varying the ratio. In
each experiment, we generated 1,000 UDP packets with
500 bytes for each packet and counted the number of
detections for pinpointing the misbehaving node. We set
the minimum required samples for making decisions to
50 packets, and thus the maximum number of detections for
1,000 UDP packets is bounded by 20. Table 12 shows the
experimental results. Our scheme is shown to be able to
easily detect the manipulation. When the degree of self-
ishness increases, the scheme is shown to detect more
quickly. Specifically, when the degree of cheating is high
(low cheating coefficient), our detection scheme is shown to
identify the manipulating node more quickly.

Our implementation on the prototype platform is found
to induce negligible overhead in collecting the appropriate
measurements and making a decision, thanks to the passive
nature of our solution and the table-based implementation.

7 CONCLUSION

In this paper, we proposed a new, practical detection
scheme that relies solely on the sequence of successfully
received packets at the AP to detect misbehaving nodes,
while most existing schemes require unavailable, hardware-
level information, such as backoff time. To further expedite
the detection of such misbehaving nodes, we introduced a
lightweight online decision algorithm using the sequential
hypothesis testing. Our extensive simulation results show
that the proposed scheme achieves high accuracy and agility
in detecting misbehavior in realistic wireless environments.
We also implemented and evaluated the proposed detection
and receiver-side estimation schemes using off-the-shelf
hardware and the MadWiFi device driver. We plan to apply
our passive technique in various scenarios, including
identification of hidden nodes in WLANSs and discovery of
unfairness in 802.11 mesh/relay networks.
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