
1

Secure Cooperative Sensing in IEEE 802.22
WRANs Using Shadow Fading Correlation
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Abstract—Cooperative (or distributed) sensing has been recognized as a viable means to enhance the incumbent signal detection
by exploiting the diversity of sensors. However, it is challenging to secure such distributed sensing due mainly to the unique features
of dynamic spectrum access networks—openness of low-layer protocol stacks in software-defined radio devices and the absence of
interactions/coordination between primary and secondary devices. To meet this challenge, we propose an attack-tolerant distributed
sensing protocol (ADSP) for DTV signal detection in IEEE 802.22 WRANs, under which sensors in close proximity are grouped as
a cluster, and sensors within a cluster cooperate to safeguard the integrity of sensing. The heart of ADSP is a novel filter based
on shadow-fading correlation, by which the fusion center cross-validates reports from the sensors to identify and penalize abnormal
sensing reports. By realizing this correlation filter, ADSP significantly reduces the impact of an attack on the performance of distributed
sensing, while incurring minimal processing and communication overheads. ADSP also guarantees the detectability requirements
of 802.22 to be met even with the presence of sensing report manipulation attacks by scheduling sensing within the framework of
sequential hypothesis testing. The efficacy of ADSP is validated on a realistic two-dimensional shadow-fading field. Our extensive
simulation-based study shows that ADSP reduces the false-alarm rate by 99.2% while achieving 97.4% of maximum achievable
detection rate, and meets the detection requirements of IEEE 802.22 in various attack scenarios.

Index Terms—Cognitive radio, cooperative sensing, shadowing correlation, attack tolerance, IEEE 802.22, sensing scheduling.
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1 INTRODUCTION

ACCURATE sensing of spectrum condition is key to
the opportunistic use of licensed spectrum bands in

dynamic spectrum access (DSA) networks, thus mitigat-
ing the anticipated spectrum-scarcity problem. The goal
of spectrum sensing is to accurately and reliably detect,
in real time, the presence or absence of primary signals
on a spectrum band. To achieve this goal, numerous
sensing techniques and algorithms have been proposed,
including physical-layer signal detection [2], [3], MAC-
layer sensing scheduling and sensor selection [4], sensor
mobility [5], and associated performance tradeoffs [6], to
name a few.1

In particular, cooperative sensing [7], [8] has recently
received considerable attention as a viable means to
enhance the detection performance by exploiting spatial
diversity in received signal strengths (RSSs) at spectrum
sensors. However, reports from the sensors can be ma-
nipulated by attackers in various ways, such as primary
signal emulation [9], [10] and sensing results falsification
[11]. These sensing-targeted attacks can severely under-
mine the incumbent detection performance because the
fusion rule for a final detection decision relies solely
on the reported RSSs. Sensing-targeted attacks pose
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1. In this paper, we use terms secondary user and sensor interchange-

ably as we focus on the secondary users’ role as spectrum sensors.

a significant threat as they can disrupt opportunistic
spectrum access, the basic premise of DSA. We call
these unique sensing-targeted attacks in DSA networks
sensing-disorder attacks.

A sensing-disorder attack aims to obscure the exis-
tence/absence of a primary signal by manipulating the
spectrum sensing information (e.g., measured RSSs) ei-
ther by raising or lowering the signal strength. When no
primary signal exists, attackers or compromised sensors
can manipulate their reports (i.e., RSSs) to generate an
illusion of a primary signal. For example, in the IEEE
802.22 wireless regional area networks (WRANs) [12], an
attacker can report a fake sensing report to force all users
in the entire cell (of radius up to 100 km) to immediately
vacate the channel [13]. Once users in the cell vacate the
channel, the attacker can freely use the channel without
any interruption. When there is a primary signal, on
the other hand, attackers can lower the RSSs to veil the
presence of a primary signal, leading to an unacceptable
level of interference to the primary users. In both cases,
attackers mislead the fusion center, i.e., base station (BS),
to make an incorrect decision on the presence/absence of
a primary signal, wasting spectrum resources or causing
unacceptable interference to the primary communica-
tions. Therefore, there is a clear incentive for attackers
to launch the sensing-disorder attacks.

While the sensing-disorder attacks can be easily
launched with the aid of programmable software-
defined radio (SDR) devices, their detection is difficult.
Unlike the ordinary Denial-of-Service (DoS) attacks that
exhaust all the network resources, they can be easily
mounted by using SDR devices, such as USRP [14] and
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Sora [15]. These open-source SDR platforms can be an
attractive target for attackers because of their accessibil-
ity of low-layer protocol stacks like PHY and MAC [16].
Detecting these attacks, however, is not an easy task.
While secure mechanisms such as MAC-layer or crypto-
based authentication work well in traditional wireless
networks, lack of primary-secondary communications
precludes their usage. Moreover, the detection of attacks
is exacerbated by the volatile nature of wireless medium
itself, which makes it hard to differentiate between le-
gitimate and deliberately-manipulated sensing reports.
We thus need to devise a mechanism that can protect
cooperative sensing from the above-mentioned attacks.

In this paper, we propose an attack-tolerant coop-
erative sensing protocol for the IEEE 802.22 WRANs
that filters out the abnormal sensing reports (caused by
either adversaries or malfunctioning sensors) by exploit-
ing shadow-fading correlation in RSSs. This RSS-based
filtering is motivated by the fact that attackers cannot
control the physical-layer signal propagation.

This paper makes several main contributions as fol-
lows.

• Proposal of a novel correlation filter for detection of
abnormal sensing reports that (i) exploits shadow-
fading correlation in RSSs without any additional
communication, (ii) safeguards spectrum sensing
against attacks that increase either the incumbent
false-alarm (type-1) or mis-detection (type-2) rates,
and (iii) minimizes processing and sensing over-
heads. Despite their importance, type-2 attacks have
not been considered before.

• Introduction of cluster-based cooperative sensing to
exploit shadowing correlation. Correlation between
sensors, which is entailed by sensor clustering, is
known to have a detrimental impact on incumbent
detection performance [7], [8], [17]. Our evaluation
study, however, shows that the proposed cluster-
ing does not incur any perceivable performance
degradation even in a very low SNR environment.
Therefore, the sensor clustering is an efficient and
useful approach to the sensing-disorder attacks.

• Development of a new data fusion rule tailored to
attack-tolerance. Specifically, we propose weighted
gain combining (WGC) that adaptively assigns differ-
ent weights to sensing reports according to their sta-
tistical significance based on the normal shadowing
profile. As a result, it minimizes the influence of the
unfiltered attacks (due to their small deviations) on
a final decision, further improving attack-tolerance.

• Design of a sensing scheduling scheme that guar-
antees satisfaction of the detection requirements of
802.22 even in the presence of attacks, while min-
imizing the number of sensing rounds. Although
ADSP significantly improves the attack-tolerance,
our simulation results indicate that the detection
requirements of 802.22 may not be satisfied with
one-time sensing. To solve this problem, we propose
an optimal stopping time for sensing scheduling

using sequential hypothesis testing so as to meet
the detectability requirements.

• In-depth evaluation of ADSP in a realistic two-
dimensional shadow fading environments in IEEE
802.22 WRANs. Most previous work uses a simple
but inaccurate one-dimensional model. Our simula-
tion results show that the proposed filtering scheme
successfully withstands the attacks by reducing the
false-alarm rate up to 99.2 % and achieving up to
97.4 % of maximum achievable detection rate.

The remainder of this paper is organized as follows.
Section 2 describes the system and attack models used
in this paper. Section 3 presents our proposed approach
for attack detection, and the generation of a realistic
two-dimensional shadowing field. Section 4 details our
approaches to filter design and data-fusion, and Section 5
proposes a sensing scheduling algorithm. Section 6 eval-
uates the performance of ADSP and Section 7 concludes
the paper.

1.1 Related Work
The problem of ensuring the robustness in distributed
sensing has been studied in [11], [18], [19]. Chen et al. [11]
proposed a robust data-fusion scheme that dynamically
adjusts the reputation of sensors based on the majority
rule. Similarly, in the IEEE 802.22 standard draft, a
voting rule [19] has been proposed for secure decision
fusion. Kaligineedi et al. [18] presented a pre-filtering
scheme based on a simple outlier method that filters
out extremely low or high sensor reports. However, their
method may not suitable for a very low SNR environ-
ment such as 802.22 WRANs where a final data-fusion
decision is very sensitive to small deviations in RSSs. The
defense against Primary User Emulation Attack (PUEA)
has also been studied in [9], [10]. Chen et al. [9] proposed
an RSS-based location verification scheme to detect a
fake primary transmitter. This scheme, however, requires
the deployment of a dense sensor network for estimat-
ing the location of a signal source, and thus, incurs a
high system overhead. Anand et al. [10] analyzed the
feasibility of PUEA and presented a lower-bound on the
probability of a successful PUEA. However, they did
not address the impact of PUEA on the performance of
cooperative sensing.

The problem of enforcing/enticing secondary users to
observe the spectrum etiquette has also been studied.
Woyach et al. [20] studied how to entice secondary
users to observe the spectrum etiquette by giving them
incentives. In a similar context, Liu et al. [21] studied
the problem of detecting unauthorized use of a licensed
spectrum. They exploited the path-loss effect as a main
criterion for detecting anomalous spectrum usage and
presented a machine-learning approach for more general
cases. In contrast, we focus on intelligent filtering of
suspicious sensor reports.

In a broader context, our paper is related to work
on secure data aggregation [22]–[24] and insider attack
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detection [25] in wireless sensor networks. However,
the problem considered in this paper differs from them
in that it focuses on an important, realistic case where
attackers manipulate the sensor reports to mislead the
fusion center in making a final decision on detection of
a primary signal.

2 SYSTEM AND ATTACK MODEL
We first describe the IEEE 802.22 WRANs and the signal
propagation and sensing models to be used throughout
the paper. We then introduce the data-fusion model, and
finally, present the attack model.

2.1 IEEE 802.22 WRANs
We consider an IEEE 802.22 WRAN, an infrastructure-
based cellular system where each cell consists of a BS
and the associated end-users called consumer premise
equipments (CPEs). The CPEs represent households in a
rural area, and are thus stationary. The typical coverage
of each 802.22 cell is 33 km (up to 100 km). The main goal
of IEEE 802.22 WRANs is to provide broadband wireless
access in rural areas by allowing opportunistic access of
TV white spaces recently opened up by the FCC [26]. The
BS, which we assume adversaries cannot compromise,
schedules the sensing of channels and decides on the
presence/absence of a primary signal in each channel
based on the sensing reports from a set C of collaborating
sensors. Among different types of primary users in TV
bands, we focus on detecting DTV signals with 6 MHz
channel bandwidth in the US. We consider an 802.22 cell
located at the edge of the keep-out-radius (i.e., 150.3 km)
of a TV transmitter, and the entire secondary network (or
cell) lies within the detection range of the DTV signal.

2.2 Signal Propagation and Sensing Models
The received primary (DTV) signal strength at sensor
(CPE) i can be expressed as the propagation model [27]:

Pi = Po

“do

di

”α

eXi , (Watt) (1)

where Po is the signal strength at the primary transmit-
ter, α the path-loss exponent, do the reference distance,
and di the distance from the primary transmitter to the
sensor i. Shadow fading is accounted for in eXi where
Xi ∼ N (0, σ2) ∀i. The log-normal shadow fading is
often characterized by its dB-spread, σdB , which has
the relationship σ = 0.1 loge(10)σdB . We assume the
energy detector for PHY-layer sensing which measures
the power level over the wide 6 MHz-wide DTV channel,
the effect of multi-path fading can be ignored [2], [3] as
is commonly assumed in the literature [4], [21].2

The energy detector is widely used for its simple
design and efficiency [2], [29]. Although the feature
detector is more reliable, it takes much longer (e.g., 24 ms

2. For signal-specific sensing techniques, e.g., FFT-based pilot sens-
ing [28], the effect of multipath fading may not be ignored.

for the field-sync detector for ATSC) [3] because it looks
for a specific signature of the primary signal that appears
infrequently. The test statistic of the energy detector is an
estimate of average RSS (including the noise power), and
can be approximated as a Gaussian using the Central
Limit Theorem (CLT) as [12]:

Ti ∼
(

N `
No,

N2

o

M

´ H0 (no primary signal)
N `

Pi+No,
(Pi+No)2

M

´ H1 (primary signal exists),
(2)

where Pi is the received power of a primary signal, No

the noise power, and M the number of signal samples.
We assume that sensors measure the entire 6 MHz DTV
channel at the Nyquist rate for 1 ms, i.e., M =6 × 103.

2.3 Data-Fusion Model
We consider data fusion as the rule for incumbent detec-
tion. While the decision fusion reduces the overhead in
reporting the sensing results, it is difficult to thwart the
sensing-disorder attacks since it only provides a binary
value based on a local decision.

In fading channels, equal gain combining (EGC) is
known to have near-optimal performance without re-
quiring estimation of the channel gains. EGC has the
following decision statistic:

TΣ �

NsX
i=1

wi Ti, (3)

where Ti is the test statistic of the energy detector at
sensor i, Ns is the number of collaborating sensors, and
the sensors have an identical weight, i.e., wi = 1 ∀i. The
decision threshold η to achieve the desired level of false-
alarm probability Q∗

FA can be derived as [29]:

η = Q−1(Q∗F A)

√
NsNo√

M
+ NsNo, (4)

where Q(·) is the well-known Q-function. The perfor-
mance of EGC will be used as a baseline in evaluating
the efficacy of the proposed scheme.

In order to achieve better attack-tolerance, we propose
weighted gain combining (WGC) in ADSP that adjusts the
weights {wi}i∈C so as to minimize the impact of attack
mis-detection on the final decision.

2.4 Attack Model
2.4.1 Attack Scenarios and Types
Sensing can be disrupted as follows.

• A sensor is compromised, and then manipulates its
sensing reports, i.e., raises or lowers RSSs.

• A sensor is malfunctioning or faulty, yielding read-
ings that differ from the actual RSS.

A common consequence of the above two cases is that
the sensing reports to the fusion center are distorted,
thus increasing the probability for the fusion center to
make a wrong decision. To solve this problem efficiently,
we focus on the detection of any abnormal sensing report
instead of pinpointing the actual cause of abnormality.
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Fig. 1. The ADSP framework : Compromised (or malfunctioning) sensors might contaminate their sensing reports
{Ri}. The attack detector filters out these contaminated sensing reports based on the shadowing correlation profile
and then feeds the remaining ones to the fusion center. This process is repeated until the decision statistic at the
fusion-center reaches one of the predefined thresholds, i.e., A and B, in order to guarantee satisfaction of the detection
requirements of 802.22.

Note that another possible attack scenario is a primary
user emulation attack (PUEA), as studied in [9], [10],
[21]. However, PUEA is relatively easy to detect mainly
because the attacker has only a coarse-grained control
of RSSs at sensors since signals are broadcast. In the
above two scenarios, however, the attacker has a fine-
grained control of RSSs at individual sensors, making
their detection harder. Therefore, we will focus on the
above two attack scenarios.

We consider two types of attacks that can be mounted
(caused) by attackers (faulty nodes):

• Type-1 Attacks increase the false-positive rate (classi-
fying a non-primary signal or no signal as a primary
signal) by raising RSSs, and

• Type-2 Attacks increase the false-negative rate (caus-
ing failure to detect a primary signal) by lowering
RSSs.

We assume that the attackers know the pres-
ence/absence of a primary signal regardless of the de-
cision made by the fusion center, and launch type-1
(type-2) attacks under H0 (H1); otherwise, attacks only
serve to improve the incumbent detection performance.

2.4.2 Sensing Reports in the Presence of Attacks
Under the above model, a final sensing report to the
fusion center can be expressed (in Watt) as:

Ri = Pi · 1{H1} + No + Ei| {z }
energy detector output (Ti)

+ Di ∀i ∈ C, (5)

where 1{·} is an indicator function, Ti is the test statistic
of the energy detector (in Eq. (2)) including the mea-
surement error Ei, and Di ∈ R is the deviation or attack
strength, tampered with by a compromised (or faulty)
sensor; Di = 0 for normal sensors. Note that no loss of
reporting packets is assumed, so we can focus on the
detection of abnormal sensing reports.

3 THE PROPOSED APPROACH
We now present the design rationale behind ADSP, its
framework, and the methodology to generate a spatially-
correlated shadow fading field.

3.1 Design Rationale
To maximize attack-tolerance and preserve the detec-
tion accuracy of data fusion, ADSP employs anomaly
detection based on statistics. Specifically, ADSP exploits
physical-layer signal propagation characteristics, or the
spatial correlation in RSSs among neighboring sensors.
The key insight behind ADSP is that, in shadow fading
environments, RSSs at nearby sensors are likely to be
highly correlated, which can be used to identify the
manipulated sensing reports. The adversaries must be
aggressive in raising or lowering the RSSs reported to
the fusion center in order to influence the outcome of
the final decision. However, any sensing report that
significantly deviates from what is expected is deemed
suspicious of being compromised or erroneous, and will
hence be discarded or penalized by the fusion center
in making a final decision. Adversaries must, therefore,
lower their attack strength, reducing the chance for the
fusion center to make a wrong decision; otherwise, they
must risk getting caught by the detector. This way, the
fusion center can achieve a high level of attack-tolerance,
provided the majority of its neighbors are well-behaving.

3.2 ADSP Framework
ADSP resides at the fusion center (i.e., BS) and consists
of the following three building blocks:

• sensing manager that manages sensor clusters and
directs the sensors to report their readings at the end
of each scheduled sensing period,

• attack detector that detects and discards (or penal-
izes) the abnormal sensing reports based on the pre-
established shadowing correlation profile, and

• decision maker that determines the presence or
absence of a primary signal based on the filtered
sensing results using sequential hypothesis testing.

These three components closely interact with each other
and form a robust distributed sensing system. Fig. 1 de-
picts the ADSP framework, which can be implemented
at the 802.22 BS without requiring any modification to
sensors (i.e., CPEs).
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One important and unique feature of the attack de-
tector is the ability to tolerate both type-1 and 2 attacks.
This feature is attributed to the fact that the detector
cross-checks the sensing reports and the assumption that
majority of the sensors are well-behaving. As a result,
under type-1(2) attacks, the sensing reports with rel-
atively high (low) values are likely to be flagged by
more of its neighboring sensors, thus making our scheme
applicable regardless of the existence of a primary signal.
This makes the system design simple and efficient, while
achieving high attack-tolerance.

3.3 Generation of Spatially-Correlated Shadow Fad-
ing
To incorporate the spatially-correlated shadow fading in
our analysis and simulation, we need a shadowing cor-
relation model in which the statistics accurately reflect
the real-world wireless shadowing environment. Note
that one must rely on a model-based approach since
measurement data for shadow fading is very scarce, and
conducting a field test is too expensive to do. Gudmund-
son’s model [30] is one of the most widely-used models
in accounting for the shadowing correlation. However, it
cannot capture spatial shadowing correlation, and hence,
analyses based on this model might yield results that are
significantly different from those in real-world wireless
environments, as evidenced in both the theoretical study
in [31] and empirical measurements in [32]. Recently, the
authors of [33] proposed a statistical modeling approach
to characterization of the spatial spectrum behavior of
primary signals in the context of DSA networks.

Along the same line as in [33], we generate spatially-
correlated shadow fading in a two-dimensional area by
applying the convolution method proposed in [34]. We
refer to the thus-generated data set as a shadowing random
field p where p(x, y) represents the shadowing gain at a
unit grid area, i.e., Δ m×Δ m, centered at the coordinate
(x, y) ∈ R

2.
The shadowing random field p(·, ·) is assumed

to be an isotropic,3 wide-sense stationary, and log-
normally distributed random field with zero mean and
exponentially-decaying spatial correlation. Then, the co-
variance between the two points θi = (xi, yi) and θj =
(xj , yj) in p is given as:

E
ˆ
p(θi),p(θj)

˜
= Rp(dij) = σ2 · e−dij/Dcorr , (6)

where dij = ‖p(θi) − p(θj)‖ is the Euclidean distance
between the locations θi and θj , σ is the standard devi-
ation of shadow fading, and Dcorr is the decorrelation
distance, which depends on local wireless environments
(e.g., urban or suburban).4

Fig. 2(a) shows an example shadowing random field in a
2 km×2 km region, which clearly exhibits a strong spatial

3. Note that we do not consider the angular dependency in shad-
owing correlation for analytical tractability.

4. The measurement study in [35] indicates that a typical decorrela-
tion distance is in the range of 120 − 200 m in suburban areas.

correlation in shadow fading. This is clearly shown
in Fig. 2(b), which depicts the two-dimensional auto-
correlation of the shadow fading. To demonstrate the
accuracy of this method, Fig. 2(c) compares the one-
dimensional auto-correlation function (ρ) of the random
field against the Gudmundson’s empirical model with
with σdB =4.5 dB and Dcorr =150 m. The figure indicates
that the synthetic data in the shadowing random field ac-
curately emulates the real-world shadowing correlations.
Note that our attack detection scheme in ADSP only
requires the one-dimensional auto-correlation function
of the shadowing field, which can be estimated by the
service provider at the time of system deployment.

4 DETECTION OF ABNORMAL SENSOR RE-
PORTS VIA CORRELATION ANALYSIS
In this section, we formulate the anomaly-detection
problem as a hypothesis testing, and present the de-
sign of a correlation-based filter. To further improve the
attack-tolerance of ADSP, we propose a new data-fusion
rule, called the weighted gain combining (WGC).

For cooperative sensing, the designated sensors
(grouped in clusters) report their energy-detector’s out-
put along with their location information to the fusion
center, at the end of each sensing period.5 The location
information is required to exploit the shadowing corre-
lation in RSSs; it may be available at the fusion center
since the sensors (i.e., CPEs) in 802.22 are stationary and
802.22 standard draft mandates the BS to have sensors’
location information. Sensors can employ existing secure
localization protocols (e.g., [36], [37]) to obtain accurate
sensor location information.

4.1 Characterization of the Correlation in Sensing
Reports
We first study the correlation structure of the sensing
reports. A key observation is that the correlation struc-
ture of shadowing components {eXi} is preserved in
the sensing reports {Ri} when there is no attack (or
misbehavior), i.e., Di = 0. To simplify the analysis, we
further assume that the variance of the measurement
error can be approximated as σ2

E ≈ N2

o

M
regardless of the

presence/absence of a primary signal.6

Under the above conditions, and treating all the other
terms in Eq. (1) (except eXi and Ei) as constants, we can
express sensor i’s report in Eq. (5) as:

Ri = C1 eXi + C2 + Ei (Watt), (7)

where C1 = Po

(
do/di

)α, C2 = No, and Ei ∼ N (0,
N2

o

M
) is

the measurement error of the energy detector. The cor-
relation in shadowing component eXi does not change

5. We consider two-dimensional sensor coordinates for simplicity,
while the actual terrain profile is three-dimensional.

6. This assumption is reasonable in a very low SNR environment,
e.g., −20 dB, where the average primary signal power is only about
1 % of the noise power, i.e., E[Pi]=0.01×E[No].
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Fig. 2. Spatially-correlated shadowing random field p(·, ·): (a) An example of p(·, ·) with exponentially-decaying spatial
correlation, where the dB-spread and decorrelation distance are assumed to be σdB = 4.5dB and Dcorr = 150 m,
respectively, (b) Illustration of two-dimensional auto-correlation function of shadow fading, and (c) Comparison of
auto-correlation function: Theoretical model (solid line) vs. synthetic data from a random field p(·, ·) (dotted line).

when we add/multiply the same number to all of the
shadowing components.

Moreover, the variance of measurement error is much
smaller than that of a shadowing component, i.e., σ2

E <
σ2

X , since the number of samples M is sufficiently large
even with a short sensing time, e.g., M =6×103 for the
duration of 1 ms. So, the correlation in the received sens-
ing reports {Ri} almost preserves the correlation of the
shadow fading eXi , i.e., Corr(Ri, Rj)≈Corr(eXi , eXj ).

4.2 Cluster-based Hypothesis Testing
While we exploit shadowing correlation for attack de-
tection, the degree of correlation decreases exponentially
with the distance between sensors. Therefore, we form
sensor clusters among the sensors in close proximity
such that sensors within the same cluster are highly
correlated. A measurement study in [38] indicates that
households in rural areas tend to be clustered, and thus,
it is reasonable to assume that a BS can identify several
sensor (i.e., CPE) clusters within its own cell of typical
radius of 33 km. If such a sensor cluster exists, the BS can
easily identify them based on their location information.
If such sensor clusters do not exist, additional sensors
can be deployed to form such sensor clusters.

Therefore, for each collaborative sensor i ∈ C, the
correlation-filter checks if the sensor exhibits a proper
correlation behavior based on the following hypothesis
testing for each of its neighbors within its cluster:

Ha
0 : Corr(Ri, Rj) = ρ(dij) ∀j ∈ N(i), (8)

where the neighbor set N(i) is defined as the sensors
belong to the same cluster of sensor i. As a result of
this cross-checking, the number of flags raised by the
neighboring sensors will be used as a filtering criterion
(see Section 5.3 for details). We will henceforth focus
on the analysis of shadowing correlation in the sensing
reports.

4.3 Correlation Analysis for Filter Design
Although the shadowing correlation coefficient (ρ) is
an obvious metric for the above hypothesis testing (i.e.,

Eq. (8)), it is not suitable for direct use in our problem
because estimation of the correlation coefficient would
require a sequence of samples; this can incur significant
time and energy overheads for sensing, and can also
deter the detection of returning primary users. Therefore,
we detect a per-sample abnormal behavior by examining
their similarity using the conditional probability distri-
butions of the sensing reports. This is an alternative, but
efficient approach since higher correlation entails greater
similarity, which can be measured via a conditional
distribution of sensor reports, as we will describe next.

In order to capture the similarity between sensing
reports, we first derive the probability distribution of
Ri, which is the sum of non-zero mean normal (i.e., Ei)
and log-normal (i.e., eXi ) random variables, as indicated
in Eq. (7). To the best of our knowledge, there is no
closed-form expression for such a distribution. However,
a close examination of Eq. (7) implies that Ri can be
approximated as a shifted log-normal random variable, i.e.,
the sum of a log-normal random variable and a constant.

Let us denote the sensing reports by a shifted log-
normal random variable, i.e., Ri = eZi +No +C where
Zi ∼ N (μZ , σ2

Z). From Eq. (7), we have the following
approximation after simple manipulation:

eZi + No + C ≈ eXi+ln C1 + No + Ei, (9)

where Zi ∼N (μZ , σ2

Z) and Xi ∼N (0, σ2

X) with σX = σ.
We set the constant C = 4 σE where σE = No√

M
so that

the probability of the right-hand side of Eq. (9) become
less than C is close to zero (i.e., ≈ 3 × 10−5). This is
important to preserve the non-negativeness of the log-
normal random variable eZi .

Then, we estimate the mean and variance of eZi using
a moment-matching method. By matching the mean and
variance of both sides of Eq. (9), we have:

σ̂2
Z = log

»
C2

1 (eσ2

X − 1) e2μX+σ2

X + σ2
E

(C1 eμX+σ2

X
/2 + μE + C)2

+ 1

–
, (10)

μ̂Z = log

»
C1 eμX+σ2

X/2 + μE + C

eσ̂2

Z
/2

–
. (11)
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Fig. 3. Estimation of the distribution of sensing reports as
a shifted log-normal distribution: The empirical data for
sensing reports (solid line) obtained from the shadowing
field can be accurately approximated as a log-normal
distribution (dashed line).

The derivations of Eqs. (10) and (11) are straightforward,
and thus omitted due to space limitation.

Fig. 3 shows an example of such approximation. While
the figure indicates that the sensing reports can be
accurately estimated by such a distribution, it becomes
less accurate as the sensing duration TS increases. Note,
however, that we want to capture the correlation among
sensors in a tractable form, not necessarily accurate ap-
proximation that only complicates the analysis without
yielding a noticeable improvement in detection perfor-
mance. The impact of the approximation error will be
discussed in Section 6.

Based on Eqs. (9), (10), and (11), the p.d.f. of a sensor
report can be expressed as:

fR(r) =
1

(r − C) σZ

√
2π

exp

»
− (ln(r − C) − μZ)2

2 σ2
Z

–
, z ≥ 0.

(12)
Recall that we are interested in studying the simi-

larity of the sensing reports measured at nearby (thus
spatially-correlated) sensors. To measure the similar-
ity between sensing reports, we derive the conditional
p.d.f. of sensor i’s report Ri given the neighboring sensor
j’s report Rj =rj using Eq. (12) as:

fRi|Rj
(ri|rj)

=
1

(ri − C)σRi|Rj

√
2π

exp

»
− 1

2

„
ln(ri − C) − μZi|Zj

σZi|Zj

«1/2–
,

(13)

where

μZi|Zj
= μZi

+ ρij
σZi

σZj

ˆ
ln(rj − C) − μZj

˜
, (14)

σZi|Zj
= σZi

q
1 − ρ2

ij(dij). (15)

Eq. (15) indicates that standard deviation σZi|Zj
de-

creases as the correlation ρij increases, and thus greater
similarity between sensing reports.

Eqs. (13), (14), and (15) indicate that the conditional
distribution of the sensing reports is also log-normally
distributed. We thus set the lower and upper thresholds
on the sensing reports based on conditional p.d.f. in

0

P
D

F

x

P
FA
a

TH
L

TH
U

μ

Fig. 4. The correlation filter for anomaly detection: Sensor
i’s report ri will be flagged if it resides outside of the lower
and upper thresholds, i.e., THL and THU .

Eq. (13), and then mark any outlier that resides outside
of the thresholds. To set the thresholds, we first derive
the cumulative distribution function (c.d.f.) of sensor i’s
report ri, given sensor j’s report rj as:

FRi|Rj
(x) = Pr(Ri ≤ x |Rj = rj)

=
1

2
+

1

2
erf

»
ln(x − C) − μZi|Zj

σZi|Zj

√
2

–
, x ≥ 0, (16)

where erf(x)= 2√
π

∫ x

0
e−t2dt.

Using Eq. (16), the thresholds TH{L,U} with a 100×
(1 − ε)% confidence interval can be derived as:

TH{L,U}(ε) = exp
h√

2 ·erf−1
`
g(ε)

´ ·σZi|Zj
+μZi|Zj

i
+C, (17)

where

g(ε) =

j
ε − 1 for THL

1 − ε for THU
0 ≤ ε ≤ 0.5, (18)

where μZi|Zj
and σZi|Zj

are the conditional mean and
standard deviation in Eqs. (14) and (15), respectively.

Therefore, the null hypothesis Ha
0
, i.e., Corr(Ri, Rj)=

ρ(dij), cannot be rejected if ri ∈ [THL, THU ], as depicted
in Fig. 4, whereas the attack false-alarm probability can
be calculated as P a

FA = Pr(ri < THL) + Pr(ri > THU ).
Note that the thresholds are set differently for neigh-
boring sensors, depending on their relative distance and
measured RSSs.

Clearly, there is a tradeoff in determining the threshold
parameter ε, i.e., the higher the threshold, the higher
(lower) the false-alarm (mis-detection) rate for attack
detection. The impact of the thresholds on the incumbent
detection performance will be studied in Section 6.

4.4 The Proposed Data-Fusion Rule
While the correlation filter accurately detects RSS de-
viations in sensing reports, we observed that it often
mis-detects small deviations (e.g., ≤0.3 dB). These small
deviations can still influence the data-fusion results in a
very low SNR environment due to the high sensitivity
of the fusion decision to RSSs. Therefore, as a second
line of defense, we propose a new data-fusion rule,
namely weighted gain combining (WGC), to provide a
better attack-tolerance to such small deviations. The idea
is to assign different weights to the sensing reports
according to their significance level based on the condi-
tional c.d.f. in Eq. (16). This way, the mis-detected (unfil-
tered) attacks are highly likely to be assigned relatively
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small weights compared to the legitimate sensing reports
because of their lack of significance. Thus, the weights
in WGC are defined as:

wi �

P
j∈Nv(i) wij

|Nv(i)| where wij = 1 − 2
˛̨
FRi|Rj

(ri | rj) − 0.5
˛̨
,

(19)
where Nv(i) is the set of valid neighbors of sensor
i whose reports passed the filter. The thus-obtained
weights are used in calculating the decision statistic.

The simulation results (in Section 6) show that the
WGC for data-fusion significantly reduces the attack
false-alarm and mis-detection probabilities. However,
the results also indicate that the detectability require-
ment of 802.22, i.e., QFA, QMD ≤ 0.1, might not be
met under weak attack strengths (e.g., ≤0.3 dB) as they
cannot be easily differentiated from the normal sensing
reports. To remedy this and meet the detectability re-
quirements of 802.22 regardless of attack strengths, next
we present sequential hypothesis testing framework for
sensing scheduling.

5 THE PROPOSED DATA-FUSION RULE VIA
SEQUENTIAL HYPOTHESIS TESTING
In this section, we first formulate the incumbent detec-
tion problem as a sequential hypothesis testing subject
to the detection requirements of 802.22, followed by the
description of ADSP.

5.1 Attack-Tolerant Sensing Scheduling via SPRT
In ADSP, the BS schedules the sensing periods (stages)
until it obtains a sufficient amount of information for
making a final decision. Thus, the BS receives a sequence
of measured test statistics from the sensors. This makes
sequential detection suitable for our problem. In par-
ticular, among various sequential detection techniques,
we adopt Wald’s Sequential Probability Ratio Test (SPRT)
[39] since it is optimal in the sense of minimizing the
average number of observations, given bounded false-
alarm probability QFA and mis-detection probability
QMD. Therefore, by adopting the SPRT along with WGC,
the BS can meet the detection requirement of 802.22
under the existence of malicious sensors by carefully
designing the decision statistic as we discuss next.

5.1.1 Design of Decision Statistic
For SPRT, the distributions of the weighted test statistics
of the sensors that passed the filter should be available to
the BS under the both hypotheses. In practice, however,
it is not feasible to derive a closed-form expression
for such distributions. Therefore, instead of relying on
the exact distributions of TΣ, we exploit the threshold
property of TΣ as our main decision criterion.

Let ϑn denote a Bernoulli random variable defined as:

ϑn �

(
0 if TΣ,n ≤ ηn

1 if TΣ,n > ηn,
(20)

where TΣ,n is the sum of test statistics from the valid
sensors, i.e., those who passed the filter, in sensing stage
n, and ηn is the decision threshold, which depends on the
number of valid sensing reports and the desired false-
alarm probability Q∗

FA (see Eq. (4) in Section 2).
Our detection problem is thus a binary Gaussian

classification problem where the observed test statistic
ϑn ∀n belongs to one of two classes, H0 or H1, where:

H0 : ϑ ∼ Bernoulli(φ0) (no primary signal)
H1 : ϑ ∼ Bernoulli(φ1) (primary signal exists),

When there is no attack, the random variables φ0 and
φ1 can be defined as:

φ0 � Pr(ϑn = 1 | H0) = Q∗F A, (21)

φ1 � Pr(ϑn = 1 | H1) = Q∗D = 1 − Q∗MD. (22)

In this case, there should be a significant difference
between φ0 and φ1, i.e., φ1 � φ0.7 However, the actual
achievable QFA and QD under attack scenarios can be
higher and lower than the desired values, respectively,
due to the performance deficiency of the filter. For
example, Fig. 8 in Section 6 indicates that φ1 − φ0 can
be as low as 0.08 under weak attacks, thus rendering it
difficult for the BS to make a correct decision.

Therefore, φ0 and φ1 are the key parameters in our
design of SPRT, which must be carefully set so as to
meet the detection requirements of 802.22 under various
attack scenarios. Thus, we set:

φ
′

0 = Q∗F A + ε0 and φ
′

1 = Q∗D − ε1, (23)

where ε0, ε1 ∈ R with the constraint φ
′

1 > φ
′

0.
We set the values of ε0 and ε1 empirically, based on

the observations made in our simulation study. Note
that an inaccurate values of φ

′

0
and φ

′

1
might introduce

additional detection delay. However, as long as φ
′

0
used

by the BS is close to the true distribution under H0

than φ
′

1
, or vice versa, the SPRT will terminate with the

desired level of detection probabilities.

5.1.2 Optimal Stopping Rule for Sensing Scheduling
In SPRT, a decision is made based on the observed
sequence of test statistics, {ϑn}N

n=1, using the following
rule:

ΛN ≥ B ⇒ accept H1 (primary signal exists)
ΛN < A ⇒ accept H0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

where A and B (0<A< B <∞) are the detection thresh-
olds that depend on the desired values of QFA and
QMD. The decision statistic ΛN is the log-likelihood ratio
based on N sequential observations (i.e., test statistics)
ϑ1, . . . , ϑN as:

ΛN � λ(ϑ1, . . . , ϑN) = ln
Pr(ϑ1, . . . , ϑN |H1)

Pr(ϑ1, . . . , ϑN |H0)
. (24)

7. For example, the detection requirements of 802.22 is φ1 − φ0 =
Q∗D − Q∗F A =0.9 − 0.1=0.8.
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Assuming that {ϑn}N
n=1

are i.i.d., Eq. (24) becomes:

ΛN =
NX

n=1

λn =
NX

n=1

ln
Pr(ϑn |H1)

Pr(ϑn |H0)
(25)

Eq. (25) can be rewritten as:

ΛN = sN ln
φ

′

1

φ
′

0

+ (N − sN) ln
1 − φ

′

1

1 − φ
′

0

, (26)

where sN =
∑N

n=1
1{ϑn=1} denotes the number of sensing

stages n where ϑn =1.

5.2 Performance Analysis
We now quantify the performance of our SPRT-based
sensing scheduling in terms of (i) detection performance,
i.e., QFA and QMD, and (ii) average number of sensing
rounds needed to meet the detectability requirements.

In SPRT, the desired detection performance can be
guaranteed by setting the decision thresholds A and B as
follows. Let a∗ and b∗ denote the desired values of QFA

and QMD , respectively. Then, the decision boundaries A
and B are given by [39]:

A = ln
b∗

1 − a∗
and B = ln

1 − b∗

a∗
, (27)

and the actual achievable error probabilities, denoted as
a and b can only be slightly larger than the desired values
a∗ and b∗.

Recall that our objective is to meet the detec-
tion requirements of 802.22 even in the presence of
malicious/mal-functioning sensors. Thus, we aim to
minimize the number of times the spectrum needs to
be sensed, with the decision thresholds derived from
the target detection probabilities as shown in Eq. (27).
Therefore, we are interested in analyzing the number of
sensing rounds until a decision is made (i.e., either the
boundary A or B is reached).

The average number of sensing rounds (also called
quiet periods in 802.22) required to make a decision,
denoted by E[N ], can be computed as:

E[N ] = E[ΛN ]−1 × E[λ |Hk]. (28)

First, using Eq. (26), the average value of λ under both
hypotheses can be derived as:

E[λ |H0] = E

h
ln

1 − φ
′

1

1 − φ
′

0

i
and E[λ |H1] = E

h
ln

φ
′

1

φ
′

0

i
(29)

Next, the average of ΛN can be found as follows.
Suppose H0 holds, then ΛN will reach B (i.e., false alarm)
with the desired false-alarm probability a∗; otherwise, it
will reach A. Thus, using Eq. (27), we get:

E[ΛN |H0] = a∗ ln
1 − b∗

a∗
+ (1 − a∗) ln

b∗

1 − a∗
. (30)

Based on Eqs. (28), (29) and (30), we can derive the
average required sensing rounds for decision-making as:

E[N |H0] =
a∗ ln 1−b∗

a∗
+ (1 − a∗) ln b∗

1−a∗

E

h
ln

1−φ
′

1

1−φ
′

0

i . (31)

Similarly, we can derive E[N |H1].

Algorithm 1 ATTACK-TOLERANT DISTRIBUTED SENSING
WITH WEIGHTED GAIN COMBINING

Procedure ADSP WGC({Ri}, QF A, β)
1: while each sensing round n do
2: TΣ,n ← 0 /* Decision statistic */
3: Nnormal ← 0 /* Number of normal sensing reports */

// Step 1. Check (ab)normality of sensing reports
4: for each sensor cluster Sk k = 1, . . . , Nc do
5: for each sensor i ∈ Sk do
6: (Isnormal(i),wi) ← CorrFilter(i, {Rj}j∈N(i), β)
7: end for
8: end for

// Step 2. Update decision statistic
9: for each sensor cluster Sk k = 1, . . . , Nc do

10: for each sensor i ∈ Sk do
11: if Isnormal(i) == 1 then
12: Update wi using Eq. (19)
13: TΣ,n ← TΣ,n + wiRi

14: Nnormal ← Nnormal + 1
15: end if
16: end for
17: end for
18: TΣ,n ← TΣ,n × Nnormal/

P
wi /* Normalization */

19: Calculate the decision threshold ηn using Eq. (4)
20: if TΣ,n > ηn then

21: Λn ← Λn−1 + ln
φ
′

1

φ
′

0

22: else
23: Λn ← Λn−1 + ln

1−φ
′

1

1−φ
′

0

24: end if

// Step 3. Make a final decision
25: if Λn ≥ B then
26: return 1 /* Primary exists */
27: else if Λn < A then
28: return 0 /* Primary does not exists */
29: else
30: Schedule another sensing round and wait for the

observation
31: end if
32: end while

5.3 Protocol Description

We now present the attack-tolerant distributed sens-
ing protocol (ADSP) with the proposed WGC for final
fusion. Algorithm 1 describes the overall data-fusion
procedure in ADSP. At the end of each sensing period,
the fusion center collects sensing reports {Ri} from the
collaborating sensors, which are co-located in clusters.
Then, the fusion center activates the correlation filter
to selectively discard the abnormal sensing reports and
updates the decision statistic Λn based on the remaining
sensing reports with their weights. Note that the weights
are assigned after the filtering process (line 11) so that
the filtered abnormal sensing reports would have no
influence on them. The fusion center repeats this process
until the decision statistic reaches one of the predefined
thresholds, i.e., A and B.

Algorithm 2 details the filtering procedure. For each
sensing report, the filter counts the number of flags
raised by its neighbors in the cluster. Then, the filter will
return Isnormal=0 if more than β∈ [0, 1] fraction of its
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Algorithm 2 FILTERING ALGORITHM BASED ON CORRE-
LATION ANALYSIS

Procedure CorrFilter(i, {Rj}j∈N(i), β)
1: blacklist counter(i) ← 0 /* Initialize the counter */
2: wi ← [ 0, . . . , 0 ]T /* Initialize the weight vector */
3: Isnormal ← 1 /* Initialize the indicator */
4: for each neighbor j ∈ N(i) do
5: Update wij using Eq. (19)
6: if Corr(Ri, Rj) �= ρ(dij) using Eq. (17) then
7: + + blacklist counter(i)
8: end if
9: end for

10: if blacklist counter(i) > β · N(i) then
11: Isnormal ← 0 /* Mark it as abnormal */
12: end if
13: return (Isnormal,wi)

neighboring sensors mark it as abnormal, where β is a
design parameter; otherwise, it will return Isnormal=1.
The filter also returns the weight vector (wi) for future
use in the final data-fusion process (i.e., WGC). The
computational complexity of the algorithm is bounded
by O(m2) where m is the number of sensors in a cluster.

Remark: Although the key assumptions we have
made, i.e., negligible multipath fading and presence of
sensor clusters, are valid for the DTV signal detection
in IEEE 802.22 WRANs, they might not always hold,
depending on a given DSA environment, thus limiting
the practicality of ADSP. For example, multipath fading
in sensing reports may be negligible when sensors are
mobile, or a primary signal is sensed with narrow chan-
nel bandwidth. However, relaxation of such assumptions
may require a major modification to ADSP, and thus,
extension of ADSP to such a challenging environment is
left as our future work.

6 PERFORMANCE EVALUATION
The performance of ADSP is evaluated via MATLAB-
based simulations. We first describe the simulation setup
and then present the simulation results for both types of
attacks under various attack scenarios.

6.1 Simulation Setup
To demonstrate the effectiveness of ADSP, we consider
an IEEE 802.22 WRAN environment with a single DTV
transmitter with 6 MHz bandwidth and multiple sensors
(i.e., CPEs) located at the edge of the keep-out radius of
150.3 km from the DTV transmitter [2]. An 802.22 cell
of radius 30 km is considered for our evaluation, and
we generate a two-dimensional shadowing field (using
the method discussed in Section 3.3) with a unit grid of
20×20m2 to emulate a realistic shadow fading environ-
ment in a cell. Throughout the simulation, we assume 5
sensor clusters located randomly within the cell, with
6 sensors in each cluster; the sensors are located in
different grids, and the distances between sensors within
a cluster range from dmin = 20 m to dmax = 20

√
5 m,

TABLE 1
System parameters used in simulations

Parameter Value Comments

Ns 30 Number of collaborating sensors
Nc 5 Number of clusters
TS 1 ms Sensing duration
M 6 × 103 # of signal samples per sensing

σdB 4.5 dB Shadow fading dB-spread
Dcorr 150 m Decorrelation distance

Δ 20 m Dimension of a grid
No −95.2 dBm Noise power
γ −20 dB Signal-to-noise ratio (SNR)

Q∗F A 0.01 Target false-alarm probability
β 0.34 Attack detection threshold

as shown in Fig. 5. We consider the attack scenario
where a one-third of the sensors are malicious in each
cluster. Table 1 lists the system parameters used in our
simulation. Each simulation is run on 5×104 randomly-
generated shadowing fields and their average values are
taken as the performance measures.

Fig. 5. Sensor cluster : An illustration of sensor cluster
with 6 sensors in an 802.22 WRAN cell.

6.2 Impact of Sensor Clustering
While ADSP exploits shadowing correlation via sensor
clustering, correlated sensor readings are, in general,
known to degrade the detection performance as it limits
diversity gain [7], [8], [17]. Therefore, we first study
the effect of sensor clustering on detection performance
to understand the efficiency vs. robustness tradeoff in
ADSP. Fig. 6 compares the achieved incumbent detection
probabilities (QD) with and without sensor clustering
(i.e., sensors are randomly selected by the BS). As ex-
pected, cooperative sensing without clustering yields
higher detection probability than with sensor cluster-
ing with −20 dB SNR. However, the performance gap
decreases as more sensors are involved in cooperative
sensing, e.g., sensing with 5 clusters achieves 94 % of
that without clustering. Note that this performance with
clustering gets even closer to that of random selection
as the SNR increases. Therefore, we can conclude that
sensor clustering is not critical to incumbent detection,
while it provides an efficient means of attack detection.

6.3 Attack Detection Performance
As a first line of defense, the attack detector in ADSP
must be able to correctly identify any abnormal sensors
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Fig. 6. Impact of sensor clustering:
Sensor clustering with Nc =5 achieves
94 % of the detection performance
without clustering.
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Fig. 7. Attack detection performance of the correlation filter : The detection
and false-alarm probabilities of our correlation filter increase with attack
strengths under both types of attacks.

within each cluster and discard their reports before
making a final decision. Fig. 7 shows the performance of
our correlation-based filter under both types of attacks.
The lower and upper thresholds (i.e., TH{L,U}) for cor-
relation filter is set using Eq. (17) with 99 % confidence
interval, i.e., ε = 0.01. The figures indicate that the
attack detection rate, i.e., probability that a manipulated
sensing report will be correctly filtered, increases with
attack strength under both attack types. This is because
the larger the deviation from the normal profile, the
easier to identify them. However, the attack false-alarm
rate also increases with the attack strength because the
normal sensing reports will be mistakenly flagged more
frequently by the manipulated sensing reports, and as
a result, the normal sensing reports will be classified
as attacks more frequently. The figures show that ADSP
performs well against both types of attacks.

6.4 Attack-Tolerance for One-Time Sensing
We now demonstrate the robustness of ADSP to both
type-1 and type-2 attacks for one-time sensing. Fig. 8
plots the incumbent false-alarm (QFA) and detection
(QD) probabilities under type-1 and type-2 attacks, re-
spectively. Note that QFA and QD are normalized with
respect to the maximum achievable values in the absence
of attacks. The figure shows that the correlation filter is
efficient in mitigating the effect of attacks on incumbent
detection performance, e.g., 99.2 % for type-1 and 97.4 %
for type-2 attacks, thanks to its ability to accurately filter
out manipulated sensing reports. By contrast, without
ADSP (denoted by EGC in Fig. 8), QFA and QD rapidly
converge to 1 and 0, respectively, as the attack strength
increases, i.e., attacks have maximal influence on the
data-fusion results.

We make the following four main observations. First,
the performance of ADSP suffers in case of low attack
strengths (e.g., < 0.4 dB for type-1 attack). This is be-
cause they do not exhibit deviations significant enough
to be detected (thus causing under-filtering), yet they
affect data-fusion decisions. The proposed weighted gain
combining (WGC) mitigates this performance deficiency

for both types of attacks by adaptively adjusting sensing
reports’ weights based on their statistical significance.
However, WGC performs as well as, or even worse than,
EGC when the attack strength is either (i) extremely low
so that most of attacks will not be filtered out or (ii) large
enough so that most (or all) of attacks are filtered out, as
can be seen in Fig. 8 with ε=0.01. This is because, in the
first case, the unfiltered attacks will decrease the weights
of the legitimate sensing reports, while sharing large
weights among themselves. On the other hand, in the
second case, the legitimate sensing reports with extreme
values are likely to be assigned small weights despite
their critical role in accurate detection of incumbents.

Second, ADSP outperforms the statistics-based filter-
ing method proposed in [18] (denoted by Outlier in
Fig. 8). The fusion center filters out the sensing reports
outside the range [ e1−δ ·eiqr , e3+δ ·eiqr ] where e1 and
e3 represent the first and third quartile of the samples,
respectively, and eiqr = e3−e1 is the interquartile range
(see Eq. (4) in [18]). This method does not require sensor
clustering, and thus, one might think that it performs
well when the attack strength is strong enough to be
easily detected as an outlier. However, the performance
depends strongly on the filtering range, i.e., the choice
of δ, the result of which varies with attack scenarios.
For example, when δ=0.7, the performance suffers from
over-filtering with a high attack mis-detection rate. On
the other hand, when δ = 1, the performance suffers
from under-filtering, and as a result, QFA and QD con-
verge to 1 and 0, respectively, even in the case of high
attack strengths. In contrast, ADSP accurately detects the
manipulated sensing reports by considering shadowing
correlation.

Third, even in case of high attack strengths, ADSP
does not completely eliminate the effects of attacks for
the following reasons. First, the fixed threshold parame-
ter ε does not work optimally for all attack strengths,
thus causing either over- or under-filtering, both of
which degrade the detection performance. The over-
filtering caused by a large threshold value (e.g., ε=0.1)
turned out to lower both QFA and QD, as shown in
Fig. 8. Second, as a result of filtering, the fusion center
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Fig. 8. Attack-tolerance of ADSP: ADSP (a) minimizes the false-alarm probability by up to 99.2 % for type-1 attacks,
and (b) achieves 97.4 % of maximum achievable detection probability (i.e., with 20 normal sensing reports in 5 clusters)
for type-2 attacks.
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Fig. 9. Impact of threshold parameter (ε): (a) QFA and QD exhibit different behaviors under various ε values, and (b)
the number of valid sensing reports for data fusion depends on both filter threshold and attack strength.

will have less samples to be used for data fusion. Since
the data fusion is sensitive to the number of samples
used, especially in very low SNR environments (as
shown in Fig. 6), the incumbent detection performance
degrades. For example, with 20 sensing reports remain-
ing after filtering out all the 10 manipulated sensing
reports, the average achievable QD is 0.88, which cor-
responds to the normalized QD of 0.93 in Fig. 8.

Fourth, in the absence of attacks, the correlation filter
incurs a small increase in both QFA and QD. This is
caused by the inaccuracy in the log-normal approxima-
tion of sensing reports, which causes over-filtering even
in case of no attacks. We observed that this performance
anomaly can be mitigated by reducing the sensing du-
ration TS (e.g., <1 ms), which makes the approximation
more accurate because the distribution of the sensing
reports becomes closer to a normal distribution.

6.5 Tradeoff in Setting the Detection Threshold
We now study the impact of filtering threshold on attack
detection performance. Fig. 9(a) plots the impact of

the filtering threshold ε on incumbent detection perfor-
mance. In this simulation, we fixed the attack strength
at 0.1 dB for both types of attacks. The figure shows
that QFA monotonically decreases as ε increases for both
fusion rules, implying that filtering out more sensing
reports always helps lower the false-alarm rate of incum-
bents. For the same reason, however, a large ε degrades
the detection probability QD. This can be explained by
the heavy-tail of a log-normal distribution of shadow
fading; filtering out high RSSs at the tail lowers the
decision statistics significantly, thus reducing the chance
of generating false-alarms (or detecting incumbents).
Another observation is that WGC outperforms EGC for
type-2 attacks, thanks to its ability to adjust the weights
for sensing reports based on their significance. However,
the performance gain decreases as ε increases. For type-1
attacks, WGC also outperforms EGC in case of under-
filtering, e.g., ε∈ [0.01, 0.06], as discussed in Section 6.4.

Fig. 9(b) shows the average number of valid sensing
reports (i.e., those that passed the filter). It clearly indi-
cates that the filter becomes more aggressive in rejecting
the sensing reports as ε increases, thus reducing the
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Fig. 10. Average number of sensing rounds under various attack strengths: the number of sensing rounds needed to
meet the detectability requirement, i.e., QFA, QMD ≤0.01, both under the filter threshold ε=0.1 and −20 dB SNR.

number of sensing reports to be used for making a final
fusion decision. Therefore, the filter must be carefully
designed to make the tradeoff between false-alarm and
detection probabilities, while considering their depen-
dency on attack strengths.

6.6 Meeting the IEEE 802.22 Detection Require-
ments via Sensing Scheduling
Here we evaluate the performance of the sensing
scheduling algorithm in ADSP in terms of the number of
sensing rounds (i.e., detection delay). Fig. 10 shows the
number of sensing rounds needed to meet the detectabil-
ity requirement of QFA, QMD ≤ 0.01, which is below
the requirements of IEEE 802.22, i.e., QFA, QMD ≤ 0.1.
Figs. 10(a) and 10(b) plot the mean and standard de-
viation of the number of sensing rounds. The figures
indicate that the average number of sensing rounds is
maximized when the attack strength is relatively small,
i.e., 0.12 dB, thus confirming the observation made in
Fig. 8. In 802.22, sensing rounds can be scheduled as
frequent as once every 10 ms, i.e., one MAC frame size in
802.22. Therefore, Fig. 10 implies that ADSP can meet the
incumbent detection timing requirement of 802.22, i.e.,
the returning primary signal must be detected within 2
seconds, since the maximum required number of sensing
rounds remains below 5.

7 CONCLUDING REMARKS
The design of reliable distributed sensing for oppor-
tunistic spectrum use is a major research challenge in
DSA networks. To address this challenge, we have de-
veloped a novel attack-tolerant distributed sensing pro-
tocol (ADSP) that selectively filters out abnormal sensor
reports, and thus maintains the accuracy of incumbent
detection. The key idea behind this mechanism is that
the measured primary signal strength at nearby sensors
should be correlated due to shadow fading, which has
not been considered before. To realize this idea, we pro-
posed a sensor clustering method and designed filters
and data-fusion rules based on the correlation analysis of

the sensor reports. We also proposed a sensing schedul-
ing scheme based on sequential hypothesis testing that
finds an optimal stopping time for sensing, while meet-
ing the detection requirements of 802.22. ADSP can
readily be implemented in 802.22 WRANs, incurring
very low processing and communication overheads. We
evaluated ADSP in realistic shadowing environments of
802.22 WRANs, demonstrating its ability to tolerate both
type-1 and type-2 attacks.
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